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ABSTRACT

The ability to autonomously learn behaviors via direct interactions in uninstru-
mented environments can lead to generalist robots capable of enhancing produc-
tivity or providing care in unstructured settings like homes. Such uninstrumented
settings warrant operations only using the robot’s proprioceptive sensor such as
onboard cameras, joint encoders, etc which can be challenging for policy learning
owing to the high dimensionality and partial observability issues. We propose RRL:
Resnet as a representation for Reinforcement Learning – a straightforward yet
effective approach that can learn complex behaviors directly from proprioceptive
inputs. RRL fuses features extracted from pre-trained Resnet into the standard
reinforcement learning pipeline and deliver results comparable to learning directly
from the state. In a simulated dexterous manipulation benchmark, where the state
of the art methods fails to make significant progress, RRL delivers contact rich
behaviors. Its effectiveness in learning behaviors directly from visual inputs with
performance and sample efficiency matching learning directly from the state, even
in complex high dimensional domains, is far from obvious.

1 INTRODUCTION

Recently, Reinforcement learning (RL) has seen tremendous momentum and progress Mnih et al.
(2015); Silver et al. (2017); Jaderberg et al. (2019); Espeholt et al. (2018) in learning complex
behaviors from states Schulman et al. (2017); Haarnoja et al. (2018); Rajeswaran et al. (2017). Most
success stories, however, are limited to simulations or instrumented laboratory conditions as real
world doesn’t provide direct access to its underlying state. Not only learning with state-space, but
visual observation spaces have also found reasonable success Kalashnikov et al. (2018); OpenAI
et al. (2019). However, the sample complexity for methods that can learn directly with visual inputs
is far too extreme for direct real-world training Duan et al. (2016); Kaiser et al. (2020). In order to
deliver the promise presented by data-driven techniques, we need efficient techniques that can learn
unobtrusively without environment instrumentation.

Learning without environment instrumentation, especially in unstructured settings like homes, can
be quite challenging Zhu et al. (2020); Dulac-Arnold et al. (2019); Ahn et al. (2020). Challenges
include – (a) Decision making with incomplete information owing to partial observability as the
agents must rely only on proprioceptive on-board sensors (vision, touch, joint position encoders,
etc) to perceive and act. (b) The influx of sensory information makes the input space quite high
dimensional. (c) Information contamination due to sensory noise. (d) Most importantly, the scene
being flushed with information irrelevant to the task (background, clutter, etc). Agents learning
under these constraints are forced to take a large number of samples simply to untangle these task-
irrelevant details before it makes any progress on the true task objective. A common approach
to handle these high dimensionality issues is to learn representations that distill information into
low dimensional features and use them as inputs to the policy (Figure 2). While such ideas have
found reasonable success Qin et al. (2019); Manuelli et al. (2019a), designing such representations
require a deep understanding of the problem and domain expertise. An alternative approach is to
leverage unsupervised representation learning to autonomously acquire representations based on either
reconstruction Higgins et al. (2016); Zhu et al. (2020); Yarats et al. (2020) or contrastive Srinivas
et al. (2020); Stooke et al. (2020) objective. These methods are quite brittle as the representations are
acquired from narrow task-specific distributions and hence, do not generalize well across different
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Features for ImageNet categories Features for our tasks

Figure 1: Visualization of Layer 4 of Resnet
model of the top 1 class using Grad-CAM Sel-
varaju et al. (2019)[Top] and Guided Back-
propogation Springenberg et al. (2015)[Bottom].
This indicates that Resnet is indeed looking for
the right features in our task images (right) in
spite of such high distributional shift.

Figure 2: LEFT: An ideal RL setting where
the environment outputs the exact state and re-
ward. RIGHT: A practical scenario in which
we only have access to the information re-
ceived from the sensors and the reward. Here,
It+1,Sensor Datat+1 represents the information
received from the camera and joint motor sensors
respectively

tasks. Additionally, they acquire task-specific representations, often needing additional samples from
the environment or domain specific data-augmentations for training representations, leading to poor
sample efficiency.

The key idea behind our method stems from an intuitive observation over the desiderata of a good
representation i.e. (a) it should be low dimensional (b) it should be able to capture silent features
encapsulating the diversity and the variability present in our task (c) it should be robust to irrelevant
information like noise, lighting, viewpoints, etc (d) it should provide effective representation in the
entire distribution that a policy can induce. These requirements are quite harsh usually needing
extreme domain expertise to manually design and an abundance of samples to automatically acquire.
Can we acquire this representation without any additional effort? Our work takes a very small step in
this direction.

The key insight behind our method is embarrassingly simple – representations do not necessarily have
to be trained on the exact task distribution; a representation trained on a sufficiently wide distribution
of real-world scenarios, will remain effective on any distribution a policy optimizing a task in the real
world might induce. While training over such wide distribution is demanding, this is precisely what
the success of large image classification models He et al. (2015); Simonyan & Zisserman (2015);
Tan & Le (2020); Szegedy et al. (2015) in Computer Vision delivers – representations learned over a
large family of real-world scenarios, i.e, trained over hundreds of classes.

Our Contributions: We list the major contributions of our work below-

1. We present a surprisingly simple method (RRL) at the intersection of representation learning,
imitation leaning (IL) and reinforcement learning (RL) that uses features from pre-trained
image classification models (Resnet34) as representations in standard RL pipeline. Our
method is quite general and can be incorporated with minimal changes to state based RL/IL
algorithms.

2. We demonstrate that features learned by image classification models are general towards
different tasks, robust to visual distractors, and when used in conjunction with standard IL
and RL pipelines can efficiently acquire policies directly from proprioceptive inputs.

3. While competing methods have restricted results primarily to planar tasks devoid of depth
perspectives, on a rich collection of simulated high dimensional dexterous manipulation
tasks, where state-of-the-art methods struggle, we demonstrate that RRL can learn rich
behaviors directly from visual inputs with performance & sample efficiency approaching
state-based methods.

2 RELATED WORK

RRL rests on recent developments from the fields of Representation Learning, Imitation Learning
and Reinforcement Learning. In this section, we outline related works leveraging representation
learning for visual reinforcement and imitation learning.

2



Published as a conference paper at ICLR 2021

2.1 LEARNING WITHOUT EXPLICIT REPRESENTATION

A common approach is to learn behaviors in an end to end fashion – from pixels to actions –
without explicit distinction between feature representation and policy representations. Success stories
in this categories range from seminal work Mnih et al. (2013) mastering Atari 2600 computer games
using only raw pixels as input, to Levine et al. (2016) which learns trajectory-centric local policies
using Guided Policy Search Levine & Koltun (2013) for diverse continuous control manipulation
tasks in the real world learned directly from camera inputs. More recently, Haarnoja et al. has
demonstrated success in acquiring multi-finger dexterous manipulation Zhu et al. (2018) and agile
locomotion behaviors using off-policy action critic methods Haarnoja et al. (2018). While learning
directly from pixels has found reasonable success, it requires training large networks with high input
dimensionality. Agents require a prohibitively large number of samples to untangle task-relevant
information in order to acquire behaviors, limiting their application to simulations or constrained
lab settings. RRL maintains an explicit representation network to extract low dimensional features.
Decoupling representation learning from policy learning delivery results in large gains in efficiency.
Next, we outline related works that use explicit representations.

2.2 LEARNING WITH SUPERVISED REPRESENTATIONS

Another approach is to first acquire representations using expert supervision, and use features
extracted from representation as inputs in standard policy learning pipelines. A predominant idea
is to learn representative keypoints encapsulating task details from the input images and using the
extracted keypoints as a replacement of the state information. Using these techniques, Qin et al.
(2019); Manuelli et al. (2019b) demonstrated tool manipulation behaviors in rich scenes flushed
with task-irrelevant details. Nagabandi et al. (2019) demonstrated simultaneous manipulation of
multiple objects in the task of Baoding ball tasks on a high dimensional dexterous manipulation
hand. Along with the inbuilt proprioceptive sensing at each joint, they use an RGB stereo image pair
that is fed into a separately pre-trained tracker to produce 3D position estimates You et al. (2020)
for the two Baoding balls. These methods, while powerful, learn task-specific features and requires
expert supervision, making it harder to (a) translate to variation in tasks/environments, (b) scale with
increasing task diversity. RRL, on the other hand, uses single task-agnostic representations making it
easy to scale.

2.3 LEARNING WITH UNSUPERVISED REPRESENTATIONS

With the ambition of being scalable, this group of methods intends to acquire representation
via unsupervised techniques. Sermanet et al. (2018) uses contrastive learning to time-align visual
features across different embodiment demonstration behavior transfer from human to a Fetch robot.
Burgess et al. (2018), Finn et al.; Zhu et al. (2020) use variational inference Kingma & Welling
(2014); Burgess et al. (2018) to learn compressed latent representations and use it as input to standard
RL pipeline to demonstrate rich manipulation behaviors. Hafner et al. (2020) additionally learns
dynamics models directly in the latent space and used model-based RL to acquire behaviors on
simulated tasks. On similar tasks, Hafner et al. (2019) uses multi-step variational inference to
learn world dynamic as well as rewards models for off-policy RL. Srinivas et al. (2020) uses image
augmentation with variations inference to construct features to be used in standard RL pipeline
and demonstrated performance at par with learning directly from the state. Laskin et al. (2020);
Kostrikov et al. (2020) demonstrate comparable results by assimilating updates over features acquired
only via image augmentation. Similar to supervised methods, unsupervised methods often learns
task-specific brittle representations and often suffers challenges from non-stationarity arising from the
mismatch between the distribution representations are learned on and the distribution policy induces.
To induce stability, RRL uses pre-trained stationary representations trained on distribution with wider
support than what policy can induce. Additionally, representations learned over a wide distribution
of real-world samples are robust to noise and irrelevant information like lighting, illumination, etc.
Unlike prior works Hafner et al. (2020; 2019); Srinivas et al. (2020); Laskin et al. (2020); Kostrikov
et al. (2020), which demonstrate results on simple planner task devoid of depth perspective, we
demonstrate RRL on a suite of high dimensional contact rich dexterous manipulation tasks.

3



Published as a conference paper at ICLR 2021

2.4 LEARNING WITH REPRESENTATIONS AND DEMONSTRATIONS

Learning from demonstrations has a rich history. We focus our discussion on DAPG Rajeswaran
et al. (2017), a state-based Natural policy gradient Rajeswaran et al. (2018) method which optimized
for the natural gradient of a joint loss with imitation as well as reinforcement objective. DAPG has
been demonstrated to outperform competing methods Gupta et al. (2017); Hester et al. (2017) on
the high dimensional ADROIT dexterous manipulation task suite we test on. RRL extends DAPG
to solve the task suite directly from proprioceptive signals with performance and sample efficiency
comparable to state-DAPG. Unlike DAPG which is on-policy, FERM Zhan et al. (2020) is a closely
related off-policy actor-critic methods combining learning from demonstrations with RL. FERM
builds on RAD Laskin et al. (2020) and inherits its challenges. We demonstrate via experiments that
RRL is more stable, more robust to various distractors, and convincingly outperforms FERM.

3 BACKGROUND

RRL solves a standard Markov decision process (Section 3.1) by combining three fundamental
building blocks. (a) Policy gradient algorithm (Section 3.2), (b) Demonstration bootstrapping (Section
3.3), and (c) Representation learning (Section 3.4). We briefly outline these fundamentals before
detailing with our method in Section 4.

3.1 PRELIMINARIES: MDP

We model the control problem as a Markov decision process (MDP), which is defined using the tuple:
M = (S,A,R, T , ρ0, γ). S ∈ Rn and A ∈ Rm represent the state and actions. R : S ×A → R is
the reward function. In the ideal case, this function is simply an indicator for task completion (sparse
reward setting). T : S ×A → S is the transition dynamics, which can be stochastic. In model-free
RL, we do not assume any knowledge about the transition function and require only sampling access
to this function. ρ0 is the probability distribution over initial states and γ ∈ [0, 1) is the discount
factor. We wish to solve for a stochastic policy of the form π : S × A → R which optimizes the
expected sum of rewards:

η(π) = Eπ,M
[ ∞∑
t=0

γtrt

]
(1)

3.2 POLICY GRADIENT

The goal of the RL agent is to maximise the expected discounted return η(π) [Equation 1] under
the distribution induced by the current policy π. Policy Gradient algorithms optimize the policy
(πθ(a | s)) directly, where θ is the function parameter by estimating ∇η(π). First we introduce a
few standard notations, Value function : V π(s), Q function : Qπ(s, a) and the advantage function
: Aπ(s, a). The advantage function can be considered as another version of Q-value with lower
variance by taking the state-value off as the baseline.

V π(s) = EπM
[ ∞∑
t=0

γtrt | s0 = s
]

(2)

Qπ(s, a) = EM
[
R(s, a)

]
+ Es′∼T (∫ ,a)

[
V π(s′)

]
Aπ(s, a) = Qπ(s, a)− V π(s)

(3)

The gradient can be estimated using the Likelihood ratio approach and Markov property of the
problem Williams (1992) and using a sampling based strategy,

∇η(π) = g =
1

NT

N∑
i=0

T∑
t=0

∇θ log πθ(ait|sit)Âπ(sit, ait, t) (4)

Amongst the wide collection of policy gradient algorithms, we build upon Natural Policy Gradient
(NPG) Rajeswaran et al. (2018) to solve our MDP formulation owing to its stability and effectiveness
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in solving complex problems, especially in high dimensional domains Rajeswaran et al. (2018). We
refer to Weng for a detailed background on different policy gradient approaches. Next, we describe
how human demonstrations can be effectively used along with NPG to aid policy optimization.

3.3 DEMO AUGMENTED POLICY GRADIENT

Policy Gradients with appropriately shaped rewards can solve arbitrarily complex tasks. However,
real-world environments seldom provide a shaped reward, and must be manually specified by domain
experts. Learning with sparse signals, such as task completion indicator functions can relax domain
expertise in reward shaping but it results in extremely high sample complexity due to exploration
challenges. DAPG (Rajeswaran et al.) combines policy gradients with few demonstrations to curb
these challenges.

We represent the demonstration dataset using ρD =
{(
s
(i)
t , a

(i)
t , s

(i)
t+1, r

(i)
t

)}
where t indexes time

and i indexes different trajectories. DAPG incorporates demonstrations in two way to efficiently
learn from the them :

(1) Warm up the policy using few demonstrations (25 in our setting) using a simple Mean Squared
Error(MSE) loss, i.e, initialize the policy using behavior cloning [5]. This provides an informed
policy initialization that helps in resolving the exploration issue and reduces the sample complexity.

LBC(θ) =
1

2

∑
i,j∈minibatch

(
πθ(s

(i)
t )− a(i)Ht

)2
(5)

where, θ are the agent parameters and a(i)Ht represents the action taken by the human.

(2) DAPG builds upon on-policy NPG algorithm Rajeswaran et al. (2018) which uses a normalized
gradient ascent procedure where the normalization is under the Fischer metric.

θk+1 = θk +

√
δ

gT F̂−1θk
g
F̂−1θk

g (6)

where F̂θk is the Fischer Information Metric at the current iterate θk,

F̂θk =
1

T

T∑
t=0

∇θlog πθ(at|st)∇θlog πθ(at|st)T (7)

and g is the sample based estimate of the policy gradient [4]. To make the best use of available
demonstrations, DAPG proposes a joint loss gaug with task as well as imitation objective. The
imitation objective asymptotically decays over time allowing the agent to learn behaviors surpassing
the expert.

gaug =
∑

(s,a)∈ρπ

∇θ ln πθ(a|s)Aπ(s, a)

+
∑

(s,a)∈ρD

∇θ ln πθ(a|s)w(s, a)
(8)

where, ρπ is the dataset obtained by executing the current policy, ρD is the demonstration data and
w(s, a) is the heuristic weighting function defined as :

w(s, a) = λ0λ
k
1 max
(s′,a′)∈ρπ

Aπ(s′, a′) ∀ (s, a) ∈ ρD (9)

Though this work builds upon Natural Policy Gradients, in principle, any state based RL algorithm,
can be integrated with our approach. In the next section, we outline our method that scales DAPG
towards visual information.

3.4 REPRESENTATION LEARNING

Until now in the above sections, we have discussed assuming direct access to the low-level state
information. In a real-world scenario, access to such state information is infeasible, instead, we have
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access to high dimensional observations like images. DAPG has thus far only been demonstrated to
be effective with low-level state. DAPG is based on NPG which works well but faces issues with
input dimensionality and hence, cannot be directly used with the images. Representation learning
Bengio et al. (2014) is learning representations of input data typically by transforming it or extracting
features from it, which makes it easier to perform the task (in our case it can be used in place of the
exact state of the environment). These representation learning techniques can be used to tackle the
curse of dimensionality in an intuitive way Wulfmeier et al. (2020). The feature extractor can be (a)
Learned along with RL objective Srinivas et al. (2020); Yarats et al. (2020). (b) Decoupled from
RL by pre-training itStooke et al. (2020). The former lead to task-specific features that can get quite
narrow and specific to the domain. This can hurt the generalization performance especially when it
has to perform in diverse environmental settings. Thus, we pre-train the feature extractor initially and
use it across all the tasks that we have considered. Next we describe RRL in detail.

4 RRL: RESNET AS REPRESENTATION FOR RL

In an ideal RL setting, the agent interacts with the environment based on the current state, and in
return, the environment outputs the next state and the reward obtained. Refer to the left side of
Figure 2. This works well in a simulated environment but in a real-world scenario, we do not have
access to this low-level state information. Instead we get the information from cameras (It) and other
sensors like encoders ( Sensor Data t ). To overcome the challenges associated with learning with
high dimensional spaces (highlighted in section 3.4), we use representations that project information
into a lower-dimensional manifolds.

RRL uses the standard Resnet-34 model as our feature extractor. Resnet is trained over a wide variety
of real-world classes [Described in detail 7.2]. We demonstrate that the diversity of the Resnet feature
extractor allows us to use it across all tasks we considered. This further simplifies our algorithm as
our representations are frozen and do-not face the non-stationarity issues encountered while learning
policy and representations in tandem.

The features (ht) obtained from the above feature extractor are appended with the information
obtained from the internal joint encoders of the Adroit Hand (Sensor Data t). We show that this can
be used as a substitute for the exact state(st) of the agent in the RL algorithm.

st = [ht,Sensor Data t] (10)
here ht = f(It) ∈ Rk , It ∈ Rn represents the raw image obtained from the camera where k << n,
and f is the feature extractor (Resnet). [Pseudo-code - 1].

5 EXPERIMENTAL EVALUATIONS

Our experimental evaluations aims to address the following questions: (1) Can RRL learn complex
tasks directly from proprioceptive signals (camera inputs and joint encoders) , (2) How various
representational choices influence the generality and versatility of the resulting behaviors, (3) How
does RRL’s performance and efficiency compare against other state-of-the-art methods, (4) What are
the effects of various design decisions on our method?

5.1 TASKS

While the applicability of prior proprioception based RL methods Laskin et al. (2020); Kostrikov et al.
(2020); Hafner et al. (2020) have been limited to simple low dimensional tasks (Cartpole swing-up,
Cheetah run, Reacher, Finger spin, Walker walk, Ball in cup catch, etc), we demonstrate performance
on ADROIT manipulation suite Rajeswaran et al. (2017) which consists of high dimensional dexterous
manipulation tasks (Figure8). Furthermore, unlike prior task sets, which are fundamentally planner
tasks devoid of depth perspective, the ADROIT manipulation suite consists of visually rich physically
realistic tasks demanding representations untangling depth information as well.

5.2 RESULTS

In Figure 3, we contrast the performance of RRL against the state of the art baselines. We observed
that NPG Kakade (2001) struggles to solve the suite even with full state information, which establishes
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Figure 3: Performance on ADROIT dexterous manipulation suite Rajeswaran et al. (2017): State of the art
policy gradient method NPGstate Rajeswaran et al. (2018) struggles to solve the suite even with privileged low
level state information, establishing the difficulty of the suite. Amongst demonstration accelerated methods,
RRL(ours) demonstrates stable performance and approaches performance of DAPGstate Rajeswaran et al.
(2017) (upper bound), a demonstration accelerated method using privileged state information. A competing
baseline FERM Zhan et al. (2020) makes good initial, but unstable, progress in a few tasks and often saturates in
performance before exhausting our computational budget (40 hours/ task/ seed).

the difficulty of our task suite. DAPGstate Rajeswaran et al. (2017) uses privileged state information
from the environment to solve the tasks and pose as the best case oracle. RRL demonstrates good
performance on most task, relocate being the hardest, and often approaches performance comparable
to DAPGstate.

A competing baseline FERM 1 Zhan et al. (2020) is quite unstable in these tasks. It starts strong for
hammer and door tasks but saturates in performance. It makes slow progress in pen, and completely
fails for relocate.
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Figure 4: LEFT: Comparison of the computational cost of RRL(Ours) - Resnet 34, FERM - Strongest baseline,
RRL with Resnet 18, RRL with Resnet 50 and RRL(VAE) baseline. CENTER,RIGHT: Influence of various
environment distractions, lightning condition, object color on RRL(Ours), and FERM. RRL(Ours) consistently
performs better than FERM in all the variations

In Figure 4 we compare the computational footprint of various methods we consider. We note that
our method is approximately three times more compute-efficient than FERM (and other variations
we consider. Evaluation details in 7.6). In Figure 4 we probe the robustness of the final policies by
injecting various distractors in the environment during inference. We note that the resilience of the
resnet features induces robustness to RRL’s policies. Task-specific features learned by FERM are
brittle leading to larger degradation in performance [Evaluation Details in 7.5]. To summarize, we
demonstrate that RRL often exhibits state comparable performance, outperforming FERM in such
complex high dimensional tasks, is computationally much more efficient (almost 3x of SOTA) and is
also quite stable to various visual distractions.

5.3 EFFECTS OF REPRESENTATION

In figure 5, we study the effects various representational choices. We note that RRL using resnet
features significantly outperforms a variant RRL(VAE) (see appendix 7.4 for details) using features
learned via variational inference Yarats et al. (2020); Ha & Schmidhuber (2018a;b); Higgins et al.
(2018); Nair et al. (2018) techniques. This indicates that pre-trained Resnet provides superior features
compared to methods that explicitly learn task-specific features using additional samples from the

1Reporting best performance amongst over 30 configurations per task we tried in consultation with the FERM
authors.
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Figure 5: Influence of representation: RRL(Ours), us-
ing resnet34 features, outperforms commonly used rep-
resentation learning method VAE Yarats et al. (2020);
Ha & Schmidhuber (2018a;b); Higgins et al. (2018);
Nair et al. (2018). Amongst different Resnet variations,
Resnet34 strikes the balance between representation ca-
pacity and computational overhead. NPGvision show-
cases the performance with Resnet features but without
demonstration bootstrapping, indicating that only rep-
resentational choices are not enough to solve the task
suite.
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Figure 6: Influence of proprioceptive signals on
RRL(Ours): RRLvision demonstrates that RRL re-
mains performant with (only) visual inputs as well.
RRLnoise demonstrates that RRL remains effective-
ness inpresence of noisy (2%) proprioception

environment. Unlike features learned from the narrow distribution of task environments, Resnet
features are trained on diverse real-world categories [7.2]. In addition to improved sample complexity
resulting from the use of pre-trained features, the resilience, robustness, and versatility of Resnet
features lead to policies that are also robust to visual distractors and clutter in the scene. In Figure
4 we observe that RRL is quite resilient to visual distractions (light, colors, redundant objects)
encountered during test cases.

5.4 EFFECTS OF PROPRIOCEPTION CHOICES AND SENSOR NOISE

While it’s hard to envision a robot without proprioceptive joint sensing, harsh conditions of the
real-world can lead to noisy sensing, even sensor failures. In Figure 6, we subjected RRL to (a)
signals with 2% noise in the information received from the joint encoders, and (b) only visual inputs
are used as proprioceptive signals. In both these cases, our methods remained performant with slight
to no degradation in performance.

5.5 ABLATIONS AND ANALYSIS OF DESIGN DECISIONS
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Figure 7: LEFT: Influence of rewards signals:
RRL(Ours), using sparse rewards, remains performant
with a variation RRLdense using well-shaped dense re-
wards. RIGHT: Effect of policy size on the performance
of RRL . We observe that it is quite stable with respect
to a wide range of policy sizes.

In our next set of experiments, we evaluate the
effect of various design decisions on our method.
In Figure 5, we study the effect of different
Resnet features as our representation. Resnet34,
though computationally more demanding (Fig-
ure 4) than Resnet18, delivers better perfor-
mance owing to its improved representational ca-
pacity and feature expressivity. A further boost
in capacity (Resnet50) degrades performance,
likely due to the incorporation of less useful fea-
tures and an increase in samples required to train
the resulting larger policy network.

Reward design, especially for complex high di-
mensional tasks, requires significant domain ex-
pertise. RRL replaces the needs of well-shaped
rewards by using a few demonstrations (to curb
the exploration challenges in high dimensional
space) and sparse rewards (indicating task completion). This significantly lowers the domain exper-
tise required for our methods. In Figure 7, we observe that RRL (using sparse rewards) delivers
competitive performance to a variant of our methods that uses well-shaped dense rewards. In figure,
7 we note that RRL is resilient to variation in policy network capacity.
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6 DISCUSSION: STRENGTHS, LIMITATIONS & OPPORTUNITIES

This paper presents an intuitive idea bringing together advancements from the fields of representation
learning, imitation learning, and reinforcement learning. A very simple method named RRL that
leverages Resnet features as representation to learn complex behaviors directly from proprioceptive
signals. The resulting algorithm approaches the performance of state-based methods in complex
ADROIT dexterous manipulation suite.

Strengths: The strength of our insight lies in its simplicity, and applicability to almost any rein-
forcement or imitation learning algorithms that intends to learn directly from high dimensional
proprioceptive signals. We present RRL , an instantiating of this insight on top of imitation + (on-
policy) reinforcement learning method called DAPG, to showcase its strength. It presents yet another
demonstration that features learned by Resnet are quite general and are broadly applicable.

Resnet features trained over 1000s of real-world image classes are more robust and resilient in
comparison to the features learned by methods that learn representation and policies in tandem
using only samples from the task distribution. The use of such general but frozen representations
in conjunction with RL pipelines additionally avoids the non-stationary issues faced by competing
methods, that simultaneously optimizes reinforcement and representation objectives, leading to more
stable algorithms. Additionally, not having to train your own features extractors results in a significant
sample and compute efficiency gains, refer to figure 4.

Limitations: While this work demonstrates promises of using pre-trained features, it doesn’t investi-
gate the data mismatch problem that might exist. Real-world datasets used to train resnet features
are from human-centric environments. While we desire robots to operate in similar settings, there
are still differences in their morphology and mode of operations. Additionally, resent (and similar
models) acquire features from data primarily comprised of static scenes. In contrast, embodied agents
desire rich features of dynamic and interactive movements.

Opportunities: RRL uses a single pre-trained representation for solving four complex and very
different tasks. Unlike the domains of vision and language, there is a non-trivial cost associated with
data in robotics. The possibility of having a standard shared representational space opens up avenues
for (a) leveraging data from various sources, (b) building hardware-accelerated devices from feature
compression (c) low latency information transmission.
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7 APPENDIX

7.1 RRL(OURS)

Same parameters are used across all the tasks (pen-v0, door-v0, hammer-v0 and relocate-v0) unless
explicity mentioned. Sparse reward setting is used in all the environments as proposed by Rajeswaran
et al.. We have directly used the parameters provided by DAPG without any additional fine tuning
except for the policy size (same across all tasks).

Parameters Setting
Encoder Resnet34
BC batch size 32
BC epochs 5
BC learning rate 0.001
Policy Size (256, 256)
Samples collected per iteration 40000
vf batch size 64
vf epochs 2
rl step size 0.05
rl gamma 0.995
rl gae 0.97
lam 0 0.01
lam 1 0.95

7.2 RESNET ARCHITECTURAL DETAILS

We use standard Resnet-34 model as RRL’s feature extractor. The model is pre-trained on the
ImageNet dataset which consists of 1000 classes. It is trained on 1.28 million images on the
classification task of ImageNet. The last layer (fc layer) of the model is removed and all the
parameters are frozen throughout the training of the RL agent. During inference, the observations
obtained from the environment are of size 256× 256, a center crop of size 224× 224 is fed into the
model. We also evaluate our model using different Resnet sizes (Figure 5).
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Figure 8: ADROIT manipulation suite consisting of complex dexterous manipulation tasks involv-
ing object relocation, in hand manipulation (pen repositioning), tool use (hammering a nail), and
interacting with human centric environments (opening a door).

Algorithm 1 RRL
1: Input: 25 Human Demonstrations ρD
2: Initialize using Behavior Cloning [Eq.5].
3: repeat
4: for i = 1 to n do
5: for t = 1 to horizon do
6: Take action

at = πθ([Encoder(It), SensorData t])
and receive It+1, SensorData t+1, rt+1

from the environment.
7: end for
8: end for
9: Compute∇θ log πθ(at|st) for each (s, a) ∈ ρπ, ρD

10: Compute Aπ(s, a) for each (s, a) ∈ ρπ and w(s, a) for each (s, a) ∈ ρD according to
Equations 2, 9

11: Calculate policy gradient according to 8
12: Compute Fisher matrix 7
13: Take the gradient ascent step according to 6.
14: Update the parameters of the value function in order to approximate(2) :

V πk (s
(n)
t ) ≈

∑T
t′=t γ

t′−tr
(n)
t

15: until Satisfactory performance

7.3 PERFORMANCE BOOST IN RELOCATE-V0
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Figure 9: Significant boost in
performance of Relocate using three
cameras instead of one.

We were able to boost the performance of relocate significantly
simply by using three cameras instead of one. Relocate is
the toughest task among all the four settings as it severely
faces issues like occlusion, precisely extracting 3-D information
(location of object and target). Both of them can be countered
using multiple cameras, so we report the performance with
three camera setting too. Refer to Figure 9

7.4 RRL(VAE)

For training, we collected a dataset of 1 million images of size
64 x 64. Out of the 1 million images collected, 25% of the
images are collected using an optimal course of actions (expert
policy), 25% with a little noise (expert policy + small noise),
25% with even higher level of noise (expert policy + large noise)
and remaining portion by randomly sampling actions (random
actions). This is to ensure that the images collected sufficiently represents the distribution faced by
policy during the training of the agent. We observed that this significantly helps compared to collecting
data only from the expert policy. The variational auto-encoder(VAE) is trained using a reconstruction
objective Kingma & Welling (2014) for 10epochs. Figure 10 showcases the reconstructed images.
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Figure 10: ROW1: Original input images of the Hammer task; ROW2: Corresponding Reconstructed images;
ROW3: Original input images of the Door task; ROW4: Corresponding Reconstructed images. These images
depict that the latent features sufficiently encodes features required to reconstruct the images.

We used a latent size of 512 for a fair comparison with Resnet. The weights of the encoder are freezed
and used as feature extractors in place of Resnet in RRL. RRL(VAE) also uses the inputs from the
pro-prioceptive sensors along with the encoded features. VAE implementation courtesy Subramanian
(2020).

7.5 VISUAL DISTRACTOR EVALUATION DETAILS

Figure 11: COL1: Original images; COL2: Change in light position; COL3: Change in light direction; COL4:
Randomizing object colors; COL5: Introducing a random object in the scene. All the parameters are randomly
sampled every time in an episode.

In order to test the generalisation performance of RRL and FERM Zhan et al. (2020), we subject the
environment to various kinds of visual distractions during inference (Figure 11). Note all parameters
are freezed during this evaluation, an average performance over 75 rollouts is reported. Following
distractors were used during inference to test robustness of the final policy -

• Random change in light position.
• Random change in light direction.
• Random object color. (Handle, door color for Door-v0; Different hammer parts and nail for

Hammer-v0)
• Introducing a new object in scene - random color, position, size and geometry (Sphere,

Capsule, Ellipsoid, Cylinder, Box).

7.6 COMPUTE COST CALCULATION

We calculate the actual compute cost involved for all the methods (RRL(Ours), FERM, RRL(Resnet-
50), RRL(Resnet-18)) that we have considered. Since in a real-world scenario there is no simulation
of the environment we do not include the cost of simulation into the calculation. For fair comparison
we show the compute cost with same sample complexity (4 million steps) for all the methods. FERM
is quite compute intensive (almost 3x RRL(Ours)) because (a) Data augmentation is applied at every
step (b) The parameters of Actor and Critic are updated once/twice at every step (Compute results
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shown are with one update per step) whereas most of the computation of RRL goes in the encoding
of features using Resnet. The cost of VAE pretraining in included in the over all cost. RRL(Ours)
that uses Resnet-34 strikes a balance between the computational cost and performance. Note: No
parallel processing is used while calculating the cost.
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