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ABSTRACT

In the rapidly evolving landscape of machine learning, the quest for efficient and
accurate supervision signals remains paramount. Suitable supervision signals can
be costly and in certain scenarios ineffective to obtain for models that require
subjective cognitive labels, such as individual-specific interpretation of images
or subjective training input for generative models. In this paper, we introduce a
novel approach: cognition-supervised learning, leveraging human brain signals
as direct supervisory signals. Using electroencephalogram (EEG) data, we con-
trastively train models to detect visual saliency without the need for any manual
annotations. Our approach , the first of its kind, demonstrates that representations
of semantic visual saliencies can be learned directly from EEG data. In down-
stream tasks, such as classification, clustering, and image generation, our learned
representations not only reflect semantic saliency but also achieve competitive per-
formance compared to models trained with manually labeled datasets. This work
provides a promising avenue for future research in utilizing signals measured from
the human cognitive system for supervising computer vision and machine learning
models.

1 INTRODUCTION

Human cognition excels at detecting salient information, rapidly identifying what is important for
an individual in a specific context or task. This innate ability to discern relevance is crucial for
applications ranging from personalized content recommendations to user-centric interface designs.
However, replicating this capability in machines, especially in a personalized manner that reflects
an individual’s intention, remains a significant challenge. Traditional machine learning approaches
have often relied on large datasets of implicitly obtained signals, such as click data (Joachims et al.,
2005; McAuley, in press; Shen et al., 2012) or dwell time (Yi et al., 2014), observed in platforms
like social media or search engine result pages. These data are often paired with visual information
under a supervised learning setting (Yang et al., 2022). While these behavioral signals act as prox-
ies to cognitive responses to salient features, they may not always capture the nuanced cognitive
preferences of individuals.

In this work, we propose an alternative approach, cognition-supervised learning, to obtain human
responses toward visual information without any reliance on manual labels or behavioral data. Our
approach relies on natural reactions of human cognition as a preference signal measured via elec-
troencephalogram (EEG) as evoked in response to human visual perception. That is, a participant
is only looking at visual information and the EEG signals of the participant’s brain activity evoked
in response to visual perception are recorded. The EEG data are then used within a self-supervision
setting to learn representations that reflect the salient semantic visual features that cause differences
in human cognitive responses.

Historically, integrating brain responses into machine learning has been challenging. Previous re-
search on visual saliency detection using brain responses often relied on manually labeled data (Pinto
et al., 2023; Zheng et al., 2020; Chen et al., 2021) or fine-tuning pre-trained models that are trained
with manually labeled data (Santamarı́a-Vázquez et al., 2020; Cooney et al., 2019; Elsayed et al.,
2021; Takagi & Nishimoto, 2022). On the other hand, unsupervised methods often underperform
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Figure 1: Illustrations of proposed cognition-supervised learning. EEG responses to visual stimuli
are used to train embedding models, with CLIP loss using the vectors that were used to generate
the stimuli images. The learned EEG embeddings can be applied in downstream tasks such as clus-
tering, classification, fine-tuning personalized models and condition generative models. No manual
annotation is needed during training or inference.

on brain data due to the inherent noise and complexity of brain data (Nishimoto et al., 2020). Even
in supervised binary classification, when only single-trial data is available and the visual stimuli
is complex, the typical accuracy often hovers around 0.7, for example, 0.78 for classifying human
faces against objects (Lawhern et al., 2018), around 0.7 for within-subject and around 0.4 for cross-
subject (Lawhern et al., 2018), 0.708 for subsets of ImageNet (Ahmed et al., 2021b) and below 0.6
for text stimuli (Eugster et al., 2014). Furthermore, a line of earlier research tackling similar tasks
has also been questioned for confounded datasets (Li et al., 2020). Consequently, the problem of
directly using brain signals as a source for the supervision of machine learning models has remained
unsolved.

Our novel approach learns a representation of the visual saliency perceived by the brain directly
using unlabeled EEG data, contrasted with visual stimuli, as the primary source of supervision.
The model is designed to distinguish target and non-target saliency based on participants’ brain
responses.

Using the model, we address the following two primary research questions:

RQ1: Can representations of semantic saliency be learned directly using EEG data as a supervi-
sion signal?

RQ2: Do the learned representations of semantic saliency accurately reflect the salient features
in downstream tasks?

Furthermore, to support and encourage further research in this domain, we are releasing an open,
anonymized EEG dataset from 30 participants. This dataset, complete with well-defined semantic
saliency detection tasks, aims to catalyze advancements in cognition-supervised models.

In summary, our primary contributions include:

• A novel approach for contrastively training models using cognitive EEG responses to visual
stimuli, to learn representations of semantic visual saliencies.

• A new open and anonymized EEG dataset from 30 participants, accompanied by a compre-
hensive codebase to foster research in cognition-supervised models.

2 RELATED WORK

In recent years, the integration of brain signals and machine learning has received considerable
attention due to its potential to enhance the performance and interpretability of machine learning al-
gorithms. Among various brain-computer interface devices, electroencephalography (EEG) signals
have emerged as a popular modality, providing rich yet noisy information for supervised machine
learning models. EEG offers advantages such as a non-intrusive setting, high temporal resolution,
and cost-effectiveness. However, EEG signals are inherently limited in spatial resolution and are
prone to artifacts and noise caused by subject movements, which can significantly hinder the per-
formance of EEG-based machine learning models, particularly those involving cognitive processes
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such as visual semantic saliency recognition. The low spatial resolution of EEG signals may pose
challenges in accurately capturing the precise localization of neural activity associated with visual
cognition, while noises can introduce additional distortions to the relevant cognitive signals of inter-
est. Decoding EEG signals have enabled a wide range of applications, including motor imagery (Al-
tuwaijri et al., 2022; Padfield et al., 2019), emotion recognition (Al-Nafjan et al., 2017; Huang et al.,
2019), mental workload assessment (Aricò et al., 2016; Riccio et al., 2011), and sleep stage clas-
sification (Chen et al., 2018; Chambon et al., 2018). The foundation of these EEG-based machine
learning applications lies in the supervised EEG classification models, which enable the effective
utilization of brain data in various contexts.

However, traditional approaches to supervised machine learning rely on manual annotations, which
pose challenges in terms of cost and subjectivity. Manual annotations require domain experts to label
large amounts of data, making the process time-consuming and resource-intensive. Furthermore, the
subjectivity of human annotations introduces inter-annotator variability, compromising the reliabil-
ity and consistency of annotations, particularly for subjective phenomena like emotions and mental
states. To address these limitations, there is a growing need for unsupervised and self-supervised
approaches that leverage EEG as supervisory signals to train machine learning models.

Recent research has explored the direct utilization of brain signals as supervisory signals for machine
learning models (DelPreto et al., 2020; Chen et al., 2018; Chambon et al., 2018). The self-supervised
learning with EEG data may provide potentially more objective and quantifiable measures of brain
activity, which in turn leads to more reliable and cost-effective annotations compared to traditional
methods that require expert knowledge for manual annotation. Moreover, the real-time capture of
brain responses enhances the adaptability and robustness of machine learning models, enabling them
to dynamically respond to changes in brain states.

A series of earlier studies on EEG-based image reconstruction suffer from confounded EEG data
due to specific experimental block designs. This includes the EEG-GAN approach (Palazzo et al.,
2017; Spampinato et al., 2017), Thoughtviz (Tirupattur et al., 2018), Brain2image citepkava-
sidis2017brain2image, EEG-ChannelNet (Palazzo et al., 2020), and numerous subsequent research
on the same datasets such as EEG2IMAGE (Singh et al., 2023), DM-RE2I (Zeng et al., 2023),
NeuroGAN (Mishra et al., 2023), and GDN-GAN (Khaleghi et al., 2022). However, subsequent
analyses (Li et al., 2020; Ahmed et al., 2021b;a) have identified a critical flaw in these approaches:
the block design in data collection introduces temporal correlations between the presentation order
of stimulus class and the experiment’s duration. Replication attempts have suggested that models
were learning to recognize stimuli order rather than genuine cognitive reactions to stimuli.

In parallel, contrastive learning methods have gained significant attention in the broader field of ma-
chine learning (Wang & Qi, 2022; He et al., 2020; Xu et al., 2022; Chen et al., 2020a; He et al.,
2022; Radford et al., 2021; Gunel et al., 2021). Contrastive learning aims to learn robust and use-
ful representations without explicit annotations by maximizing the agreement between constructed
positive pairs (similar samples) and minimizing the agreement between negative pairs (dissimilar
samples). While the success of contrastive learning methods has been demonstrated in areas such
as large language models (Radford et al., 2021), image embeddings (Jaiswal et al., 2020), and au-
dio data (Saeed et al., 2021), its potential in EEG-based machine learning models remains largely
unexplored. The similar methods has been applied to EEG modality as well, for instance sleep
stage classification (Jiang et al., 2021), emotion recognition (Mohsenvand et al., 2020) and pathol-
ogy screening (Banville et al., 2021). These self-supervised contrastive learning methods heavily
depend on carefully designed artificial data augmentation transformations or random combinations
of weak transformations. However, the efficient data augmentation transforms for contrastive learn-
ing with EEG data are still largely unknown. As discovered in a recent work (Jiang et al., 2021), a
wrong choice of transformation can decrease the test accuracy from 82.90% to 48.15%.

On the other hand, contrastive learning methods on a single modality discard potentially useful infor-
mation from other modalities. This issue was addressed by supervised contrastive learning (Gunel
et al., 2021), which groups augmented image pairs with the help of labels. Another recent work (Xu
et al., 2022) proposed a hierarchical semantic alignment strategy to model the semantic similarity be-
tween images. Additionally, a multimodal contrastive training approach (Yuan et al., 2021) adopted
multiple loss functions to exploit the intrinsic data structure within each modality. Our work build
on top of the well-known language supervision approach CLIP (Radford et al., 2021) which learns
representation from paired text and image data that aligns between two modalities, our embedding
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model aligns representations from paired EEG and visual stimuli, which comes effortlessly from
the data collection steps. Instead of decoding EEG signals to the categorical or simple stimuli, the
contrastive methods bridges EEG to high-dimensional stimuli. Analogous to CLIP which classifies
itself as natural language supervision, we consider our approach as cognition supervised learning.

One recent study (Schneider et al., 2023) explored non-linear methods for learning a consistent
latent space of joint behavior and neural data across subjects and evaluated the approach using
various animal data. However, it is important to note that all the data were collected with intrusive
implanted electrodes or probes, which, unlike EEG signals, are more difficult to obtain for human
subjects. The study claimed movie frame reconstruction, but it focused on recovering the order of
movie frames and assumes the frames remain the same between the training and testing sets, which
limits its generalizability.

Therefore, there exists a research gap for effective cognition-supervised learning. To bridge this gap,
we propose a novel method that utilizes the contrast between EEG data and stimuli as a supervision
signal. Our approach combines the merits of label-free learning with EEG data, while also incorpo-
rating the stimuli information to ensure effectiveness even when the available amount of EEG data
is limited and insufficient for self-supervision based solely on EEG signals.

3 METHODS

3.1 DATA COLLECTION AND PREPARATION

In order to investigate the feasibility of cognition-supervised learning, we conducted neurophysi-
ological experiments to collect EEG responses to generated visual stimuli. Our experiments are
accepted by the ethical review board of anonymous organization and fully comply with declaration
of Helsinki. Refer to our ethics statement for details.

Visual Stimuli Preparation. We choose generated face images as visual stimuli, as human is known
to respond strongly to facial stimuli (Vuilleumier et al., 2001). We opted for generated images over
real images to better control variances in semantics and confounding visual features, avoiding brain
responses associated with recognition effect. The generated homogeneous dataset also allows strict
semantic-level evaluation in generative tasks. A random sample of 70,000 images was generated
from a progressive GAN1 (Karras et al., 2018) pre-trained on the CelebA dataset (Liu et al., 2015).
The images were manually screened to ensure realism and the absence of visual artifacts. These im-
ages were then grouped into eight categories based on their semantic saliency: smiling, not smiling,
female, male, young, old, dark hair, and light hair (blond). Further details on stimuli preparation can
be found in Sec. A.1.

Participants. Neurophysiological data were collected from thirty participants (self-reported 13
as female and 17 as male, mean age 28 years (SD = 7.14, Min = 18, Max = 45)) at anonymous
organization . The participants were healthy with normal or corrected-to-normal vision.

Apparatus, Tasks, and Procedure Participants were sequentially presented with eight recognition
tasks, each task corresponding to a semantic saliency group (e.g., female, smiling, etc.). During
each task, all stimuli presented were assigned a binary label based on semantic saliency. For ex-
ample, during the task “smile”, participants were shown smiling faces (target) or non-smiling faces
(non-target). Participants were instructed to only observe the presented images and make a mental
note whenever they saw an image that matched the task description. No other mental or physical
inputs were asked from the participants. Twenty target and twenty non-target images were shown in
random order during each iteration of the task. Stimuli were presented following a rapid serial visual
presentation (RSVP) procedure at the rate of 500 ms, such that stimuli were presented sequentially.
Before each task, participants completed a demonstration task to ensure that they understood the
experiment. Only in this demonstration task, they were asked to select the images that contained the
semantic feature of interest.

Data Preprocessing. After the data acquisition, standard signal cleaning procedures were em-
ployed (Luck, 2014) to improve the signal-to-noise ratio. These were restricted to only automatic

1https://github.com/tkarras/progressive_growing_of_gans under attribution-
noncommercial 4.0 international (cc by-nc 4.0) license
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procedures that do not require any additional labeled data, including a band-pass filter 0.2-35 Hz,
time-locking to epochs ranging from -200 to 900 ms relative to stimulus onset, and eyeblink artifacts
removal using a threshold-based heuristic. An average of 1144 epochs per participant remained af-
ter pre-processing and balancing target and non-target epochs. The data averaged over participants
shows a typical P300 effect with amplified potentials for target stimuli starting at 250 ms after stim-
uli onset and lasting until 600 ms as illustrated in Figure 2. This finding confirms that, on population
average, the experiment resulted in an expected ERP effect.

3.2 COGNITION-SUPERVISED LEARNING

Cognition-supervised learning leverages a fundamental observation that the human brain responds
to differences in perception. This observation suggests that the contrast between visual stimuli
and human brain responses can serve as a supervision signal to learn directly from the preference
reflected in the cognitive processes. With this contrastive learning setting, it becomes possible to
design a loss function that utilizes only EEG data and the stimuli, eliminating the need for manual
annotations.

Figure 2: The average event-
related potentials (ERPs) over the
participant population at the Pz
electrode for target and non-target
stimuli. The ERPs reflect a P300
effect.

In order to achieve cognition-supervised learning, we propose
a model that learns an embedding of EEG signals. For each
stimulus image generated from a latent vector Y ∈ RL of di-
mension L, we vectorize the epoched EEG response signal as
X ∈ RC×T , where C is the number of channels and T is the
number of time steps in the sliced window.

A straightforward approach to learning the embedding is to
use a regression model freg : RC×T → RL to reconstruct
the stimulus vector from the EEG inputs. However, we found
that this method overfits to noise and has poor generalizabil-
ity. Additionally, it is not practical to reconstruct the entire
stimulus vector from the EEG since only the salient semantic
features and major face attributes are recognized by the partic-
ipant. Therefore, we use a noise contrastive CLIP loss (Rad-
ford et al., 2021) and aim to learn an embedding to represent
the semantic saliency perceived by the participant.

We propose a method for training an embedding model fembed :
RC×T → RL. Given an EEG signal X and its corresponding
stimuli vector Y , we construct a set of stimuli vectors Yi as
negative stimuli vectors, where i ∈ {2, 3, . . . , N}. The negative set is sampled from the remaining
stimuli vectors in the dataset while avoiding duplication of Y and Yi. We add Y1 := Y as the
positive sample.

The model fembed is trained to predict the probability p̂j = P[Yj = Y ] by computing the dot product
between Z := fembed(X) and each Yj , followed by a Softmax function. The probability function is
given by

p̂j =
e⟨Z,Yj⟩

N∑
j′=1

e⟨Z,Y ′
j ⟩

(1)

where ⟨·, ·⟩ denotes the inner product.

We train fembed using cross-entropy between pj and p̂j with pj = 1 if and only if j = 1 otherwise
pj = 0. The loss function can be simplified as

LCLIP(p, p̂) = −⟨Z, Y ⟩+ log(

N∑
j=2

e⟨Z,Yj⟩) (2)

3.3 STRUCTURE OF THE MODEL

In order to account for the inter-subject variability, while learning the intrinsic structures of EEG
signals, we utilize a deep neural network fembed, that takes as input the raw vectorized EEG sig-
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nals. In addition, a one-hot encoded vector representing the corresponding participant is given. The
network outputs an embedding vector Z that is of the same length as the stimulus vector Y . The
structure of the network consists of two parts: (1) a participant-specific convolution matrix and (2)
a sequence of fully connected layers. See Sec. A.2 for detailed specifications.

Participant-Specific Matrix. To create a unified model that can incorporate the variability between
participants, we adopt the approach introduced in (Défossez et al., 2022). A participant-specific
layer is included at the beginning of the network. This layer consists of a trainable matrix of size
C × C for each participant. This C × C matrix is multiplied by the vectorized C × T EEG signal
by channels. We initialize the matrix randomly, close to the identity matrix with small random noise
added.

Data Augmentation. To improve the generalization ability of our model and avoid overfitting, we
use random data augmentation during training. First, we first multiply each EEG vector x ∈ RC×T

with a random vector c ∈ [0.95, 1.05]C . Next, we randomly crop and resize the vector into the
original shape. For the validation set, we use the central interval without random multiplication.

4 EXPERIMENTS

We evaluate the efficiency of cognitive supervision using four different evaluation strategies. First,
we conduct unsupervised clustering of the embedding space to reveal whether it corresponds to the
target and non-target saliency. Second, we follow a common linear evaluation protocol (He et al.,
2016; Oord et al., 2018; Kolesnikov et al., 2019; Bachman et al., 2019; Cole et al., 2022; Da Costa
et al., 2022) to study whether linear classifiers trained on top of the saliency embeddings perform
better than those trained on data that is not supervised from human cognition. Third, we examined
personalized tuning of the embedding models. Fourth, we conduct a qualitative evaluation by vi-
sualizing the outputs of the cognition-supervised predictions via generative adversarial networks.
Detailed experimental setups and hyperparameters are described in Sec. A.3.

4.1 UNSUPERVISED CLUSTERING

Evaluation procedure. The dataset in each task should have two clusters, the target, and the non-
target cluster because the stimuli are deliberately ensured to either contain the task-specific semantic
saliency or not. To obtain the two distinct clusters, we trained the embedding model on the entire
dataset and ran KMeans with k = 2 on the frozen embeddings, then cluster with a higher averaged
P300 effect was selected as the Target cluster CT , while the other cluster as the Non-target cluster
CN . For evaluation only we used the explicit stimuli labels to compute the clustering accuracy.

Control models. We consider three control models that apply KMeans clustering to different inputs:
(1) stimuli vectors; (2) flattened EEG signals; (3) concatenated EEG signals and paired stimuli
vectors. We followed the standard protocol of enumerating all possible cluster permutations and
reporting the highest accuracy achieved for control models.

Results The clustering accuracies, presented in Table 1, indicate that our embedding model consis-
tently outperformed the control models across all tasks with substantial improvements. Furthermore,
the results verify that the learned embedding captures the salient features perceived by the partici-
pant.

4.2 LINEAR EVALUATION

Evaluation procedure. To evaluate the efficiency of the learned saliency representations, we
follow the commonly used linear evaluation protocol, by training a linear classifier on top of the
frozen embeddings. The dataset is randomly split into a training set and a testing set with disjoint
sets of stimuli. We then train our contrastive embedding model on the training set and then compute
the embeddings with frozen model weights. A single-layer binary classifier C(·) : R512 → {0, 1}
is trained on the embeddings from the training set using the explicit labels of stimuli images. The
classifier is then evaluated on the test set using the labels with classification accuracy.

Control models. To provide a basis for comparison, we also consider three control models as the
baseline. The first is a well-known supervised EEGNet (Lawhern et al., 2018) structure to estimate
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Table 1: Clustering accuracies on all tasks with different inputs for KMeans.

KMeans input female male blond darkhaired smiles nosmile old young Mean

stimuli vectors 0.591 0.511 0.548 0.501 0.501 0.506 0.543 0.545 0.531± 0.030
EEG signals 0.568 0.512 0.559 0.521 0.565 0.503 0.520 0.549 0.537± 0.024
concatenated 0.545 0.549 0.580 0.605 0.503 0.535 0.541 0.501 0.545± 0.033

saliency embedding 0.816 0.786 0.803 0.773 0.745 0.720 0.626 0.702 0.746 ± 0.059

Table 2: Linear classification accuracies for all models. The train/test split is the same for all models.

Tasks female male blond darkhaired smiles nosmile old young Mean

EEGNet 0.773 0.687 0.727 0.673 0.728 0.678 0.655 0.670 0.699± 0.037
LDA 0.596 0.539 0.585 0.573 0.563 0.549 0.522 0.538 0.558± 0.024
random control 0.485 0.488 0.503 0.543 0.471 0.501 0.471 0.502 0.496± 0.022

contrastive embedding 0.765 0.725 0.735 0.731 0.724 0.685 0.614 0.658 0.704 ± 0.046

the upper limit of performance for the cognition-supervised models and highlights the difficulties
of the task. The second is a linear discriminant analysis model (LDA) (Blankertz et al., 2011) to
estimate the separability of raw EEG signals. Both control models are trained on the raw EEG signals
and the explicit labels. The third baseline model is a randomly permuted cognition-supervised EEG
classifier to determine a lower bound performance, in which the pairs of EEG signals and stimuli
vectors are shuffled so that the pairs are broken.

Results. Table 2 shows the mean accuracies of all models for each task. The linear classifiers on
saliency embeddings consistently outperform the random baseline and the LDA models, indicating
that the learned embeddings were effective in disentangling semantic features. Furthermore, we
observed that the mean accuracy across all tasks is higher than that of the EEGNet, which suggests
that the learned embeddings successfully reduced the high dimensionality of raw EEG signals while
preserving the saliency perceived by the participant. It is worth noting that, the embedding model is
trained without labels and the supervised linear classifier on top of it is expected to have relatively
lower performance compared to a completely supervised model, as shown in (Chen et al., 2020b).

4.3 PERSONALIZED MODEL EVALUATION

Evaluation procedure. In order to extend the utility of our model to reflect the cognitive responses
of an individual, we evaluate fine-tuned personalized models. For each of the 30 participants, we
first train a base model with the EEG data from the other 29 participants. Next, the data from the
target participant is split into a 5-fold training set and a test set. We then freeze the base model
weights except for the participant-specific matrix of the target participant. This matrix is randomly
initialized then fine-tuned on this single-participant training set and the frozen saliency embeddings
from other participants are clustered to assist in selecting the target cluster.

Control models. For comparison, we also evaluated two control models. The first control model
is the base model evaluated on the test set without fine-tuning. The target participant matrix is set
to the identity matrix. The second control model was fine-tuned on randomly shuffled training data,
breaking the pairs of EEG signals and stimuli vectors.

Results. Table 3 shows the mean clustering accuracy on the test set and reports the mean of 5-fold
validation across all participants. The consistently improved accuracy of personalized models over
the base models demonstrates that our method is capable of adapting to different individuals and
generalize. Moreover, the base model, which is not trained on the personal data, achieved high
clustering accuracy compared to the random control model. This promising ability of zero-shot
prediction of our embedding model suggests its potential to learn robust representations and its
flexibility to learn subjective information from the cognitive signals of individuals.
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Table 3: Mean clustering accuracies of all personalized models.

Tasks female male blond darkhaired smiles nosmile old young Mean

random control 0.538 0.509 0.532 0.529 0.484 0.493 0.520 0.520 0.516± 0.018
base model 0.740 0.662 0.697 0.677 0.697 0.654 0.613 0.652 0.674± 0.036

personalized model 0.743 0.667 0.702 0.683 0.701 0.659 0.619 0.657 0.679 ± 0.035

4.4 QUALITATIVE EVALUATION VIA GENERATIVE VISUALIZATION

Generative Visualization of Salient Features. In order to provide an intuitive understanding of
the inter-subject variations, we visualize the embeddings for a qualitative evaluation. We sample
a set S of candidate stimuli vectors which can be the set of stimuli vectors in the training set, or a
fresh set of randomly sampled vectors from the noise distribution used in the generative model. Each
embedding Z in a cluster C is mapped to one of these stimuli vZ = argmaxY ∈S⟨Z, Y ⟩, and use the
mean MC = 1

|C|
∑
Z∈C

vZ to represent the cluster. We visualize it using the pre-trained generative

model. For each task, we expect the image generated from MCTarget to contain salient task-specific
semantic features and MCNon-target to have the opposite semantic saliency.

A B

Figure 3: Visualization of clusters after mapping to stimuli vectors from A the training set and B
randomly sampled stimuli vectors. For each task and each cluster, one image is generated by the
mean mapped vector.

Results. The generated images with the stimuli set and the randomly sampled set are shown in
Figure 3. Between the images from MCTarget and MCNon-target , it can be clearly seen that the semantic
difference in images is correlated to the semantic task given to the participants. In Figure 3A the
candidate image vectors are the stimuli vectors from the training set. In Figure 3B, 600 randomly
sampled 512 vectors that are not present in the training set, are used as candidate sets and the
semantic difference matching the task is still present. The salient features are clearly present across
the different tasks and not present in the opposite tasks (Figure 3A). The representations result
in generated images in which the intended salient features are present even for randomly sampled
candidates (Figure 3B). This indicates that the learned embeddings reflect the underlying signal from
human cognition for generating task-specific salient features.

In addition, a visualization of the learned embedding space is in Sec. A.4 For each individual, we
also visualized the subset of embeddings from a single participant similarly in Sec. A.5.

4.5 ABLATION ANALYSIS

An ablation study was conducted to study the effects of participant-specific matrices and data aug-
mentation. In contrast to the full model, three variants of the models were trained: (a) Mno matrix
that removes the participant-specific matrix; (b) Mno augmentation that removes data augmentation; (c)
Mbase that removes both.
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Table 4: Ablation study on model variants.

Tasks female male blond darkhaired smiles nosmile old young Mean

full model 0.816 0.786 0.803 0.773 0.745 0.720 0.626 0.702 0.746 ± 0.059

Mbase 0.768 0.632 0.682 0.688 0.657 0.595 0.617 0.655 0.662± 0.050
Mno augmentation 0.748 0.673 0.690 0.688 0.653 0.632 0.623 0.663 0.671± 0.037
Mno matrix 0.738 0.668 0.695 0.670 0.712 0.642 0.632 0.648 0.676± 0.034

The base model Mbase and Mno matrix assumes that all data are collected from the same participant,
and we select the cluster with the higher ERP effect as the target cluster. To minimize the differences
caused by random cropping in data augmentation or other dimension changes, the base model Mbase
and Mno augmentation crops the EEG signals with fixed intervals as used in the test set.

Table 4 shows the accuracies of the full model and other variants for each task. The full model with
the participant-specific matrix consistently yields improved accuracy over all model variants in all
tasks except the task old. The two variant models Mno matrix and Mno augmentation both have improved
mean accuracy over the base model. These results indicate the effectiveness of the participant-
specific layer and data augmentation.

5 CONCLUSIONS

We set out to study whether machine learning models could be directly supervised by monitoring
human cognition via EEG and utilize those data for cognition supervising models to learn represen-
tations of visual saliency. To this end, we asked two research questions that we reflect on below.

Can representations of semantic saliency be learned directly using EEG data as a supervision
signal? We introduced a novel approach for contrastively training models supervised only by brain
signals and show that it is possible to learn semantic visual saliencies from relevant signals contained
in EEG. Our models correctly capture the semantic saliency without any explicit manual annotations
in the process.

Do the learned representations of semantic saliency accurately reflect the salient features in
downstream tasks? The performance of the learned models was evaluated in classification, cluster-
ing, and image generation tasks using facial image data. Our results showed improved performance
across tasks competitive to classification models that are pre-trained and fine-tuned using large la-
beled datasets. The image generation results show that the models yield performance that has face
validity in several tasks and can be competitive even against models utilizing manually provided
supervision data.

Limitations. Today, most brain-computer interfacing research is still limited by low accuracy and
convenience compared to conventional user interfaces. However, while our device setup is still
restricted to laboratory experimentation and may not be readily usable by the public today, our results
demonstrate that it is possible to develop human-in-the-loop learning systems that tap directly into
human cognitive processing without a requirement for manual labeling or reliance on inaccurate and
indirect manual annotations or implicit behavioral information. A clear limitation of our approach is
that it only learns target or non-target saliency for an individual. That is, the individual’s underlying
task is simply detecting whether something salient appears in the visual information the participant
is perceiving or not, rather than assigning a label for the salient feature. Therefore, our approach
can not replace annotation scenarios that require inputting a label, but rather a recognition scenario
where individual preferences are modeled, or the individual’s task can be determined by other means.
Examples of applicable scenarios could be the detection of images in image search results that match
the query, the detection of CAPTCHA images, or image annotation where a saliency detection task
is pre-determined for the participant. Despite restrictions on what EEG data can entail, many of
our results indicate performance that bypasses the performance of models trained with conventional
manual labels.

More generally, the presented approach opens avenues for human-in-the-loop systems that naturally
integrate with human cognition and allow human-machine collaboration solely based on passive
observation of brain signals.
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Reproducibility Statement To improve the reproducibility of our experiments, a detailed specifica-
tion is described in Sec. A.2. Additional details on neurophysiological data acquisition are included
in Sec. A.1. The source code to train and evaluate and anonymized datasets will be released publicly
to further ensure reproducibility.

Ethics Statement The research that has been documented adheres to the ethical guidelines outlined
by the ICLR. The neurophysiological data acquisition and the follow-up experiments were approved
by the ethical review board of social and behavioral sciences at anonymous organization and the
protocols and consents comply with the declaration of Helsinki2. Informed consent was signed by
each participant to acknowledge their rights. The participants were compensated with vouchers for
the local cinema.

We demonstrated for the first time that machine learning could be self-supervised directly from
human brain signals captured via EEG: cognitive supervision. The approach opens avenues for novel
machine learning systems where human-in-the-loop interactions are implemented by monitoring
cognitive reactions as they happen in the human brain when individuals perceive digital information.
While this is a new, powerful supervision paradigm that can enhance machine learning, the approach
also implies ethical concerns. The most significant ethical risks do not emerge from the recording
technology itself. However, if wearable sensors capable of monitoring human cognition become
more pervasive, the signals could be used beyond the original consent. This has become possible as
our results show that the models do not anymore need labels and specific calibration to tasks, but
they can be self-supervised from brain responses. For example, large-scale collection of sensitive
signals and self-supervised alignment to visually perceived data that their users are exposed to may
enable inference of human and crowd opinions toward a vast amount of digital information. We
already observe such effects in our proof-of-concept experiments. For example, most of the images
generated for the task young are females and most of the images generated for the task old are males
in Figure A.9. These concerns call for ethical guidelines to support the broader adoption of this
technology.

REFERENCES

Hamad Ahmed, Ronnie B Wilbur, Hari M Bharadwaj, and Jeffrey Mark Siskind. Confounds in the
data—comments on “decoding brain representations by multimodal learning of neural activity
and visual features”. IEEE transactions on pattern analysis and machine intelligence, 44(12):
9217–9220, 2021a.

Hamad Ahmed, Ronnie B Wilbur, Hari M Bharadwaj, and Jeffrey Mark Siskind. Object classifi-
cation from randomized eeg trials. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3845–3854, 2021b.

Abeer Al-Nafjan, Manar Hosny, Yousef Al-Ohali, and Areej Al-Wabil. Review and classification of
emotion recognition based on eeg brain-computer interface system research: a systematic review.
Applied Sciences, 7(12):1239, 2017.

Ghadir Ali Altuwaijri, Ghulam Muhammad, Hamdi Altaheri, and Mansour Alsulaiman. A multi-
branch convolutional neural network with squeeze-and-excitation attention blocks for eeg-based
motor imagery signals classification. Diagnostics, 12(4), 2022. ISSN 2075-4418. doi: 10.3390/
diagnostics12040995. URL https://www.mdpi.com/2075-4418/12/4/995.
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A APPENDIX

A.1 NEUROPHYSIOLOGICAL DATA ACQUISITION

Visual Stimuli Preparation. We use a progressive GAN pre-trained on the CelebA dataset to
generate a random sample of 70,000 images. Raw images have a resolution of 1024 by 1024 pixels.
These images are screened by several researchers to exclude images with visual artifacts, such as
distorted faces or other clear signs of an artificial image, to prevent brain responses from being
influenced by artifact recognition rather than semantic saliency.

RSVP and EEG setup. An elliptic grey frame was positioned over all images to mask the back-
ground. The EEG data were recorded using 32 Ag/AgCl electrodes, arranged according to the 10–20
system, and connected to a QuickAmp USB (BrainProducts GmbH, Gilching, Germany) amplifier
running at 2,000 Hz. Eye movements were detected (for artifact removal) using two pairs of bipolar
electrodes for artifact detection (1 cm to the lateral canthi of the left and right eye, and 2 cm above
and below the right pupil). The electrode placement is shown in Figure A.4. Specifically, we used
32 equidistant electrodes situated at FP1, FP2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz,
C4, T8, TP9, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, PO9, O1, O2, PO10, Iz, within the
10% system.

Data Preprocessing. After the data acquisition, standard signal cleaning procedures were em-
ployed to improve the signal-to-noise ratio. These were restricted to only automatic procedures that
do not require any additional labeled data, including a band-pass filter in the frequency range 0.2–35
Hz and time-locking to (epochs) ranging from -200 to 900 ms relative to stimulus onset with baseline
correction based on a pre-stimulus period of -200 to 0 ms. Eyeblink artifacts were removed using
a threshold-based heuristic, where the threshold is set to the 200th largest mean absolute value of
epochs over all channels, and clipped to range [10, 80]. An average of 1144 epochs per participant
remained after pre-processing and balancing target and non-target epochs.

A.2 SPECIFICATION OF MODEL ARCHITECTURE

In order to account for the inter-subject variability, while learning the intrinsic structures of EEG
signals, we utilize a deep neural network fembed, that takes as input the raw vectorized EEG sig-
nals. In addition, a one-hot encoded vector representing the corresponding participant is given. The
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Figure A.4: Visualization of electrode placement.

network outputs an embedding vector Z that is of the same length as the stimulus vector Y . The
structure of the network consists of two parts: (1) a participant-specific convolution matrix and (2)
a sequence of fully connected layers.

Participant-Specific Matrix. To create a unified model that can incorporate the variability between
participants, we adopt the approach introduced in (Défossez et al., 2022). A participant-specific
layer is included at the beginning of the network. This layer consists of a trainable matrix of size
C × C for each participant. This C × C matrix is multiplied by the vectorized C × T EEG signal
by channels. We initialize the matrix randomly, close to the identity matrix with small random noise
added.

Fully Connected Layers. The embedding model consists of four fully connected layers, each of the
first three layers has 2048 hidden nodes with an activation function LeakyReLU with an α = 0.3.
Each fully-connected layer is followed by a Dropout layer with a dropout rate of 0.5. The last layer
has 512 outputs with no activation.

Data Augmentation. For random data augmentations during training, we first multiply each EEG
vector x ∈ RC×T with a random vector c ∈ [0.95, 1.05]C . Next, we randomly crop and resize the
vector into shape x′ ∈ RC×T by selecting an interval [l, r] with l ∈ [0, T

10 ] and r ∈ [T − T
10 , T ]. For

the validation set, we crop and resize the data with the fixed interval [ T20 , T − T
20 ], without random

multiplication.

A.3 EXPERIMENTAL SETUP

Dataset. Our dataset consists of EEG signal and stimuli vector pairs from 30 participants, com-
prising a total of 35490 pairs. To ensure that the individual factor is accounted for, we mixed all
participant data while retaining a unique participant identifier to apply the participant-specific ma-
trix. For the unsupervised task, we trained and evaluated our embedding model on the entire dataset.
For linear classification tasks, we employed 10-fold validation by randomly splitting the dataset into
training and testing sets and reported the mean of evaluation metrics.

Hyperparameters and Hardware. In all experiments, the brain embedding model is trained with
Adam optimizers with an initial learning rate 1e − 4, β1 = 0.9, β2 = 0.999, and a weight decay
1e − 4. The mini-batch size is set to 256 in all experiments. We conducted all experiments on
Tensorflow with Nvidia GeForce RTX 3070 Ti GPUs.

Each embedding model in the unsupervised clustering experiments and linear evaluation experi-
ments and the base model in the personalized experiments are trained with 500 epochs. The per-
sonalized model is fine-tuned by 100 iterations by using the base model, with all other parameters
frozen except the participant-specific matrix.
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Clustering Accuracy For our embedding models, the clusters are compared for P300 effect by
computing mean values of EEG signals in the window 200ms to 400ms, the cluster with a higher
mean value was selected as the Target cluster CT , while the other cluster was designated as the
Non-target cluster CN . For evaluation of the clustering accuracy only, we used the explicit labels
LX = LY ∈ {0, 1} of each EEG signal-stimuli vector pair (X,Y ), where LX = 1 indicates that
the image from Y contains the task saliency, and LX = 0 otherwise. The clustering accuracy was
computed as follows:

Accuracy(CT , CN ) =

∑
X∈CT

LX +
∑

X∈CN

(1− LX)

|CT |+ |CN |
(3)

For control models, we followed the standard protocol of enumerating all possible cluster permu-
tations and reporting the highest accuracy achieved. That is, if the two resulting clusters from a
control model are denoted as C1 and C2, then the clustering accuracy for the model is computed as
max{Accuracy(C1, C2),Accuracy(C2, C1)}.

A.4 VISUALIZATION OF EMBEDDINGS

We visualize the features space of the (1) raw EEG signals, (2) learned embeddings, and (3) image
stimuli vectors using (a) Principal component analysis (PCA) and (b) t-SNE on task blond, as shown
in Figure A.5. We observe that the distribution of EEG and stimuli are all entangled, but the learned
embeddings have the target group (blond) and non-target group (dark hair) more separable. In
addition, the largest principal component of the learned embeddings aligns with the task semantic,
so that in Figure A.5C the targets and non-targets are separated to the left and right.

A.5 ADDITIONAL VISUALIZATION OF EMBEDDINGS
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A B

C D

E F

Figure A.5: Visualization of features space of A EEG by PCA, B EEG by t-SNE, C embeddings by
PCA, D embeddings by t-SNE, E stimuli by PCA, F stimuli by t-SNE.
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Figure A.6: Visualization of subsets of embeddings for each participant in task ”female” and ”male”.
The embeddings from the same participant are mapped to the stimuli image vectors.
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Figure A.7: Visualization of subsets of embeddings for each participant in task ”blond” and ”dark
hair”. The embeddings from the same participant are mapped to the stimuli image vectors.
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Figure A.8: Visualization of subsets of embeddings for each participant in task ”smile” and ”no
smile”. The embeddings from the same participant are mapped to the stimuli image vectors.
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Figure A.9: Visualization of subsets of embeddings for each participant in task ”young” and ”old”.
The embeddings from the same participant are mapped to the stimuli image vectors.
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Figure A.10: Visualization of subsets of embeddings for each participant in task ”female” and
”male”, by mapping embeddings to the randomly sampled candidate set.
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Figure A.11: Visualization of subsets of embeddings for each participant in task ”blond” and ”dark
hair”, by mapping embeddings to the randomly sampled candidate set.

23



Under review as a conference paper at ICLR 2024

Figure A.12: Visualization of subsets of embeddings for each participant in task ”smile” and ”no
smile”, by mapping embeddings to the randomly sampled candidate set.
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Figure A.13: Visualization of subsets of embeddings for each participant in task ”young” and ”old”,
by mapping embeddings to the randomly sampled candidate set.
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