

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EXponential-Wrapped Mechanisms: Differential Privacy on Hadamard Manifolds Made Practical

Anonymous authors

Paper under double-blind review

ABSTRACT

We propose a general and computationally efficient framework for achieving differential privacy (DP) on Hadamard manifolds, which are complete and simply connected Riemannian manifolds with non-positive curvature. Leveraging the Cartan-Hadamard theorem, we introduce Exponential-Wrapped Laplace and Gaussian mechanisms that achieve ϵ -DP, (ϵ, δ) -DP, Gaussian DP (GDP), and Rényi DP (RDP) without relying on computationally intensive MCMC sampling. Our methods operate entirely within the intrinsic geometry of the manifold, ensuring both theoretical soundness and practical scalability. We derive utility bounds for privatized Fréchet means and demonstrate superior utility and runtime performances on both synthetic data and real-world data in the space of symmetric positive definite matrices (SPDM) and hyperbolic space. To our knowledge, this work constitutes the first unified extension of multiple DP notions to general Hadamard manifolds with practical and scalable implementations.

1 INTRODUCTION

Recent advances in AI and machine learning have spurred interest in analyzing complex data types, particularly those residing on nonlinear manifolds. Among these, Hadamard manifolds, such as hyperbolic space and the space of symmetric positive definite matrices (SPDM), play pivotal roles. Hyperbolic spaces provide efficient representations for hierarchical structures via hyperbolic embeddings (Nickel and Kiela, 2017; Cetin et al., 2023), enhancing both performance and interpretability in models for tree-structured data (Sarkar, 2011; Chamberlain et al., 2017; Ganea et al., 2018; Peng et al., 2021). SPDM spaces are critical in medical imaging, especially for modelling water diffusion in diffusion tensor imaging (Basser et al., 1994; Le Bihan et al., 2001), and have found utility in shape analysis and computer vision tasks such as segmentation and motion tracking (Fillard et al., 2005; 2007; Medioni et al., 2000; Brox et al., 2006; Weickert and Brox, 2002; Weickert and Hagen, 2005). The rising importance of manifold-structured data, particularly in the biomedical domains, naturally raises privacy concerns, necessitating tailored privacy mechanisms that respect the underlying geometry.

Differential privacy (DP) (Dwork et al., 2006b) offers a rigorous mathematical framework for quantifying and preserving privacy. While many mechanisms have been developed for Euclidean data (McSherry and Talwar, 2007; Barak et al., 2007; Wasserman and Zhou, 2010; Reimherr and Awan, 2019), they often perform poorly on manifold-valued data due to geometric incompatibility. These traditional methods typically operate extrinsically by embedding manifold data into Euclidean space, which can distort geometric structure and result in substantial utility loss. As demonstrated in Reimherr et al. (2021), respecting the intrinsic geometry of the data leads to mechanisms that provide significantly better trade-offs between privacy and utility. This observation highlights the need for privacy-preserving methods that are not only theoretically sound but also tailored to the geometric nature of nonlinear data through tools from Riemannian geometry.

The differential privacy framework was first extended to general Riemannian manifolds by Reimherr et al. (2021), who introduced the Riemannian Laplace mechanism to achieve ϵ -DP. Since then, various mechanisms have been proposed to ensure ϵ -DP on manifolds (Soto et al., 2022; He et al., 2025), with applications in mobile crowd sensing (Li et al., 2024) and federated learning (Huang

et al., 2024). Han et al. (2024) further developed a differentially private Riemannian optimization framework by perturbing the Riemannian gradient in the tangent space. However, extensions of other privacy notions such as (ϵ, δ) -DP and Gaussian DP (GDP) remain limited. For example, Utpala et al. (2023b) extended (ϵ, δ) -DP only to a single manifold, the SPDM space equipped with the Log-Euclidean metric, which renders the space flat (Arsigny et al., 2007) and enables closed-form computations. However, this choice limits generality, as the framework does not extend to other manifolds, nor to the SPDM space under either the more geometrically faithful affine-invariant metric or the computationally faster and numerically more stable Log-Cholesky metric. Similarly, Jiang et al. (2023) extended GDP to general manifolds, but their calibration algorithm is restricted to constant-curvature spaces and entails high computational cost. Notably, the sampling procedures required by both the Riemannian Laplace and Gaussian mechanisms (Reimherr et al., 2021; Jiang et al., 2023) depend on Markov Chain Monte Carlo (MCMC), which becomes computationally expensive in high-dimensional or geometrically complex spaces such as SPDM. These challenges underscore the need for broader extensions of differential privacy frameworks to general manifolds and the development of more computationally efficient mechanisms suited for practical applications.

We summarize our key contributions below:

- **Unified Extension of DP Notions:** We introduce the first mechanisms to extend (ϵ, δ) -DP, Gaussian DP (GDP), and Rényi DP (RDP) to general Hadamard manifolds. Notably, this includes the first RDP mechanism applicable beyond Euclidean spaces.
- **Efficient and Scalable Implementation:** Our proposed Exponential-Wrapped mechanisms avoid computationally intensive MCMC procedures and instead rely on simple sampling from tangent space distributions followed by the exponential map, enabling efficient and scalable deployment.
- **Strong Empirical Performance:** Through comprehensive simulations on SPDM manifolds under multiple metrics, as well as on hyperbolic space, together with real-data experiments on SPDM manifolds, we demonstrate that the proposed mechanisms consistently surpass traditional Riemannian approaches in utility while markedly reducing computational runtime. Notably, the Exponential-Wrapped Gaussian mechanism achieves substantial utility improvements in high-dimensional regimes with stringent privacy budgets.

This paper is organized as follows. Appendix B reviews key concepts from Riemannian geometry (Lee, 2006; Petersen, 2006; Pennec et al., 2019; Said, 2021; Grigoryan, 2009) and differential privacy (Dwork and Roth, 2014; Mironov, 2017; Dong et al., 2021; 2022). Section 2 introduces the Exponential-Wrapped distribution and its calibration for achieving (ϵ, δ) -DP, GDP, and RDP. Section 3.1 addresses the release of differentially private Fréchet means and establishes theoretical utility guarantees for our mechanisms. Section 4 presents numerical simulations and real-world experiments, with additional details provided in Appendix 4.2. All proofs are given in Appendix A.

2 DIFFERENTIAL PRIVACY ON HADAMARD RIEMANNIAN MANIFOLDS

2.1 EXPONENTIAL-WRAPPED DISTRIBUTION

In measure-theoretic terms, the Exponential-Wrapped Probability is the push-forward of the tangent space probability via the exponential map. For a manifold \mathcal{M} with dimension $d > 1$, wrapping a density around the manifold involves volume distortion. This occurs because the exponential map typically does not preserve the area between the Lebesgue measure on the tangent space and the reference measure on the manifold.

Let \mathcal{M} be a manifold with the Riemannian volume measure ν . Given μ , a probability distribution on $T_p\mathcal{M}$ with a probability density h w.r.t the Lebesgue measure λ_p on $T_p\mathcal{M}$, the corresponding Exponential-Wrapped distribution is defined as the push-forward of μ by the exponential, $\Lambda = \text{Exp}_{p*} \mu$, where the $*$ refers to the push-forward by Exp_p , such that $\Lambda(A) = \mu(\text{Log}_p(A))$ for any A in the Borel σ -algebra of \mathcal{M} . Since we assume \mathcal{M} is a Hadamard manifold, Log_p is defined everywhere on \mathcal{M} for any $p \in \mathcal{M}$. It follows that the density g of Λ can be expressed from h and a

108 volume change term,

$$109 \quad g(q) = \frac{d\Lambda}{d\nu}(q) = \frac{d\text{Exp}_{p^*}(\lambda_p)}{d\nu} \frac{d\Lambda}{d\text{Exp}_{p^*}(\lambda_p)}(q) = \frac{d\text{Exp}_{p^*}(\lambda_p)}{d\nu}(q)h(\text{Log}_p q) = \frac{h(\text{Log}_p q)}{J_p(\text{Log}_p q)},$$

112 where $J_p(u) := |\det(D_u \text{Exp}_p)|$ with $D_u \text{Exp}_p : T_p \mathcal{M} \rightarrow T_{\text{Exp}_p(u)} \mathcal{M}$ denote the differential of
113 Exp_p at $u \in T_q \mathcal{M}$.

114 The most attractive property of the Exponential-Wrapped Distribution is its straightforward sampling
115 procedure. In order to sample from g , it suffices to sample from h : if U_1, \dots, U_n are i.i.d. random
116 variables on a tangent space $T_p \mathcal{M}$ following the density h , then $X_1 = \text{Exp}_p(U_1), \dots, X_n =$
117 $\text{Exp}_p(U_n)$ are i.i.d. random variables on \mathcal{M} following the density g . For a more detailed discussion
118 on Exponential-Wrapped Distribution, please refer to Chevallier et al. (2022).

120 2.2 EXPONENTIAL-WRAPPED LAPLACE MECHANISM

122 **Definition 2.1** (Exponential-Wrapped Laplace Distribution). *Let \mathcal{M} be a Hadamard Riemannian
123 manifold with measure ν , we define a probability density function w.r.t ν as*

$$124 \quad g(y) \propto \frac{1}{J_{p_0}(\text{Log}_{p_0} y)} \exp\left(-\frac{\|\text{Log}_{p_0} y - \text{Log}_{p_0} \eta\|}{\sigma}\right).$$

127 We called this distribution an **Exponential-Wrapped Laplace Distribution** with **footpoint** p_0 , **center**
128 η and **rate** $\sigma > 0$. We denote it as **EWL**(p_0, η, σ).

129 The Exponential-Wrapped Laplace Distribution is the push-forward probability of the tangent space
130 probability defined by the probability density $h(u) \propto \exp\{-\|u - \text{Log}_{p_0} \eta\|/\sigma\}$. We present the
131 following theorem to demonstrate how it can be used to achieve ε -DP.

132 Denote $\mathcal{D} = \{X_1, X_2, \dots, X_n\}$ as the confidential dataset and $\mathcal{D}' = \{X'_1, X'_2, \dots, X_n\}$ its neighbouring dataset, where without loss of generality we assume they differ in the first record.

135 **Theorem 2.1** (Exponential-Wrapped Laplace Mechanism). *Let \mathcal{M} be a Hadamard Riemannian
136 manifold and f be a \mathcal{M} -valued summary with sensitivity Δ .¹ The Exponential-Wrapped Laplace
137 mechanism, which output $Y \sim \text{EWL}(p_0, f(\mathcal{D}), \Delta/\varepsilon)$, satisfies ε -DP.*

138 Compared to the Riemannian Laplace mechanism proposed by Reimherr et al. (2021), the Exponential-
139 Wrapped Laplace mechanism defined above offers two primary advantages. First, our method only
140 requires a rate of Δ/ε to achieve ε -DP across all **Hadamard** manifolds, homogeneous or not. This
141 is more efficient than the Riemannian Laplace mechanism, which necessitates a rate of $2\Delta/\varepsilon$ for
142 non-homogeneous manifolds. Second, our approach is easier to implement and less computationally
143 complex. The Riemannian Laplace mechanism relies on MCMC sampling, which is computationally
144 intensive due to prolonged burn-in iterations and frequent recalculations of Riemannian distances.
145 These computations escalate in cost with increasing manifold dimensionality. Even in SPDM
146 space with the Rao-Fisher affine invariant metric, where efficient sampling techniques for the
147 Riemannian Laplace Distribution exist (Hajri et al., 2016) – MCMC procedures remain necessary,
148 and the choice of proposal distribution critically affects convergence. In contrast, sampling from
149 the Exponential-Wrapped Laplace Distribution is straightforward: it involves 1) sampling from
150 $u \sim h(u) \propto \exp\{-\|u - \text{Log}_{p_0} \eta\|/\sigma\}$ and 2) computing $\text{Exp}_{p_0} u$. For more details on the sampling
procedure, see Appendix C.1.

151 **Remark 1.** Note that there is no restriction on the choice of footpoint p_0 in the Exponential-Wrapped
152 Laplace mechanism. However, its selection can have an impact on the performance of the mechanism.
153 Furthermore, to be compliant with the differential privacy definition, the selection of the footpoint
154 p_0 cannot be based on the private dataset \mathcal{D} . For more discussion on the selection of footpoint, see
155 Section 3.2.

156 2.3 EXPONENTIAL-WRAPPED GAUSSIAN MECHANISM

158 Beyond the Laplace mechanism, the Gaussian mechanism stands as one of the most prevalent tools
159 in DP (Dwork and Roth, 2014; Balle and Wang, 2018a). This section introduces the Exponential-

161 ¹A summary f is said to have a sensitivity of $\Delta < \infty$, with respect to $d(\cdot, \cdot)$, if we have $d(f(\mathcal{D}), f(\mathcal{D}')) \leq \Delta$ for any two datasets $\mathcal{D} \simeq \mathcal{D}'$.

162 Wrapped Gaussian mechanism, calibrated to achieve (ε, δ) -DP, RDP, and GDP. Initially, we will
 163 define the Exponential-Wrapped Gaussian Distribution as follows.

164 **Definition 2.2** (Exponential-Wrapped Gaussian Distribution). *Let \mathcal{M} be a Hadamard Riemannian
 165 manifold with reference measure denoted by ν , we define a probability density function w.r.t ν as*

$$167 \quad g(y) \propto \frac{1}{J_{p_0}(\text{Log}_{p_0} y)} \exp\left(-\frac{\|\text{Log}_{p_0} y - \text{Log}_{p_0} \eta\|^2}{2\sigma^2}\right).$$

170 We called this distribution an **Exponential-Wrapped Gaussian Distribution** with **footpoint** p_0 , **tangent**
 171 center η , and rate $\sigma > 0$. We denote it as $\text{EWG}(p_0, \eta, \sigma)$.

172 The Exponential-Wrapped Gaussian Distribution is defined as the push-forward of the multivariate
 173 Gaussian distribution, characterized by a mean of $\text{Log}_{p_0} \eta$ and a covariance of $\sigma^2 \mathbf{I}$, on the tangent
 174 space $T_p \mathcal{M}$. We present the following theorem to demonstrate how it can be used to achieve (ε, δ) -DP.

175 **Theorem 2.2.** *Let \mathcal{M} be a Hadamard Riemannian manifold and f be an \mathcal{M} -valued summary.
 176 The Exponential-Wrapped Gaussian mechanism, which output $Y \sim \text{EWG}(p_0, f(\mathcal{D}), \sigma)$, satisfies
 177 (ε, δ) -DP if and only if the σ satisfies following condition,*

$$179 \quad \Phi\left(-\frac{\sigma\varepsilon}{\Delta_{p_0}} + \frac{\Delta_{p_0}}{2\sigma}\right) - e^\varepsilon \Phi\left(-\frac{\sigma\varepsilon}{\Delta_{p_0}} + \frac{\Delta_{p_0}}{2\sigma}\right) \leq \delta, \quad (1)$$

181 where $\Delta_{p_0} = \sup_{D \simeq D'} \|\text{Log}_{p_0}(f(\mathcal{D})) - \text{Log}_{p_0}(f(\mathcal{D}'))\|$.

183 Theorem 2.2 shares similarities with the analytic Gaussian mechanism in Balle and Wang (2018a).
 184 Primary distinction lies in the use of Δ_{p_0} rather than the standard sensitivity Δ in inequality (1). This
 185 substitution generally does not pose significant challenges; if Δ_{p_0} proves difficult to compute, Δ can
 186 be used instead in (1) as $\Delta \geq \Delta_{p_0}$ since Log_{p_0} is a contraction for Hadamard manifolds.

187 Implementing the Exponential-Wrapped Gaussian mechanism for (ε, δ) -DP is straightforward. We
 188 follow a similar procedure as in Algorithm 1. After determining the appropriate σ numerically from
 189 inequality (1)—using a method such as that proposed in Balle and Wang (2018a)—one can proceed
 190 by first sampling \mathbf{u} from the tangent Gaussian distribution $\mathcal{N}_{\text{tang}}(\mathbf{0}, \sigma^2 \mathbf{I}_d)$. The privatized summary
 191 is then computed as $\text{Exp}_{p_0}(\mathbf{u} + \text{Log}_{p_0}(f(\mathcal{D})))$. For more details on the sampling procedure, see
 192 Appendix C.2.

193 Suppose \mathcal{M} is the space of SPDM equipped with Log-Euclidean metric, the Exponential-Wrapped
 194 Gaussian mechanism with **footpoint** $p_0 = \mathbf{I}$ reduces to the tangent Gaussian mechanism in Utpala
 195 et al. (2023b). Hence, the Exponential-Wrapped Gaussian mechanism is a generalization of the
 196 tangent Gaussian mechanism, as our mechanism can be employed for any Hadamard manifold
 197 equipped with any Riemannian metric. This makes our Exponential-Wrapped Gaussian mechanism
 198 the first working mechanism to achieve (ε, δ) -DP in SPDM under the non-Log-Euclidean metric.

199 Similar to how the Euclidean Gaussian Distribution can be used to achieve GDP, we can calibrate the
 200 Exponential-Wrapped Gaussian Distribution to achieve GDP in the following manner.

201 **Theorem 2.3** (Wrapped Gaussian Mechanism for GDP). *Let \mathcal{M} be a Hadamard Riemannian
 202 manifold and f be an \mathcal{M} -valued summary with global sensitivity Δ . The Exponential-Wrapped
 203 Gaussian mechanism, which outputs $Y \sim \text{EWG}(p_0, f(\mathcal{D}), \Delta/\mu)$, satisfies μ -GDP.*

205 Previously, Jiang et al. (2023) introduced the Riemannian Gaussian mechanism to achieve μ -GDP.
 206 However, our approach presents significant advantages in both calibration and sampling. Firstly, the
 207 Riemannian Gaussian mechanism requires the resolution of infinitely many integral inequalities to
 208 calibrate the rate σ for a given privacy budget μ . The calibration algorithm provided by Jiang et al.
 209 (2023) is only applicable to constant curvature spaces and is computationally intensive, involving
 210 grid searches and MCMC techniques to compute the integrals. In contrast, our method simplifies
 211 calibration to a straightforward calculation: $\sigma = \Delta/\mu$. Secondly, like the Riemannian Laplace distribution,
 212 sampling from the Riemannian Gaussian distribution involves complex processes (detailed in
 213 section 2.2). Our sampling technique is considerably simpler, requiring only the sampling from a
 214 multivariate Gaussian distribution followed by computations using Exp_{p_0} and Log_{p_0} . The complete
 215 algorithm is detailed in Algorithm 1.

216 In a similar fashion, we can use the Exponential-Wrapped Gaussian Distribution to achieve RDP.

216 **Algorithm 1** Exponential-Wrapped Gaussian Mechanism for μ -GDP

217 **Input:** sensitivity Δ , privacy budget μ , query result $f(\mathcal{D})$, footpoint p_0 .218 **Output:** privatized query result $\tilde{f}(\mathcal{D})$ 219 1: **Sample** $\mathbf{v} \sim \mathcal{N}_{\text{tang}}(\mathbf{0}, \mathbf{I}_d)$.220 2: **Compute** $\mathbf{u} = \text{Log}_{p_0} f(\mathcal{D}) + \sigma \mathbf{v}$ with $\sigma = \Delta/\mu$ and $\tilde{f}(\mathcal{D}) = \text{Exp}_{p_0} \mathbf{u}$.221 3: **Return:** $\tilde{f}(\mathcal{D})$.

222
223 **Theorem 2.4** (Wrapped Gaussian Mechanism for Rényi DP). *Let \mathcal{M} be a Hadamard Riemannian
224 manifold and f be an \mathcal{M} -valued summary with global sensitivity Δ . The Exponential-Wrapped
225 Gaussian mechanism, which outputs $Y \sim \text{EWG}(p_0, f(\mathcal{D}), \Delta/\sqrt{2\varepsilon/\alpha})$, satisfies (α, ε) -RDP.*226

3 DIFFERENTIALLY PRIVATE FRÉCHET MEAN AND UTILITY GUARANTEE

227

3.1 DIFFERENTIALLY PRIVATE FRÉCHET MEAN

228 For a comprehensive overview of the Fréchet mean in the context of DP, please refer to Reimherr
229 et al. (2021). Consider a set of data x_1, \dots, x_n on the manifold \mathcal{M} . The Euclidean sample mean can
230 be generalized to Riemannian manifolds as the sample Fréchet mean, defined as the minimizer of
231 the sum-of-squared distances to the data points, $\bar{x} = \arg \min_{x \in \mathcal{M}} \sum_{i=1}^n d(x, x_i)^2$. The properties
232 of Hadamard manifolds guarantee the existence and uniqueness of the Fréchet mean. To ensure the
233 sensitivity of the sample Fréchet mean is finite, we need the following assumption:234 **Assumption 1.** *The data $\mathcal{D} \subseteq B_r(m_0)$ for some $m_0 \in \mathcal{M}$, $r < \infty$.*235 The assumption that data lies within a geodesic ball is standard in the field of DP and should not raise
236 concerns (Reimherr et al., 2021; Soto et al., 2022). Consider two datasets $\mathcal{D} \simeq \mathcal{D}'$ on \mathcal{M} , and denote
237 \bar{x} and \bar{x}' as the two sample Fréchet means of \mathcal{D} and \mathcal{D}' respectively. Under Assumption 1, we have
238 $d(\bar{x}, \bar{x}') \leq 2r/n$.239

3.2 UTILITY GUARANTEE

240 We now analyze the expected utility of our mechanisms in terms of the expected Riemannian distance
241 to the sample Fréchet mean \bar{x} .242 **Theorem 3.1.** *Let \mathcal{M} be a d -dimensional Hadamard manifold and assume assumption 1 holds.
243 Denote \tilde{x}_{EWL} as a sample drawn from an Exponential-Wrapped Laplace Distribution with footpoint
244 p_0 , center \bar{x} and rate $\sigma = 2r/(n\varepsilon)$. \tilde{x}_{EWL} is ε -DP and we have*

245
$$\mathbb{E} d(\tilde{x}_{\text{EWL}}, \bar{x}) \leq \sigma d + 2d(p_0, \bar{x}). \quad (2)$$

246 Similarly, denote \tilde{x}_{EWG} as a sample drawn from an Exponential-Wrapped Gaussian Distribution
247 with footpoint p_0 , center \bar{x} and rate $\sigma = 2r/(n\mu)$. \tilde{x}_{EWG} is μ -GDP and we have,

248
$$\begin{aligned} 249 \mathbb{E} d(\tilde{x}_{\text{EWG}}, \bar{x}) &\leq \sigma \sqrt{\frac{\pi}{2}} L_{1/2}^{d/2-1} \left(-\frac{d^2(p_0, \bar{x})}{2} \right) + d(p_0, \bar{x}) \\ 250 &\leq \sigma \sqrt{2} \frac{\Gamma((d+1)/2)}{\Gamma(d/2)} + 2d(p_0, \bar{x}), \end{aligned} \quad (3)$$

251 where $L_{1/2}$ denote the Laguerre polynomials. If we impose the additional of $\text{Sec}_{\mathcal{M}} > K$ for some
252 $K \leq 0$, we have,

253
$$\mathbb{E} d(\tilde{x}_{\text{EWL}}, \bar{x}) \leq \frac{\sinh(\sqrt{K}r)}{\sqrt{K}r} \sigma d, \quad (4)$$

254
$$\mathbb{E} d(\tilde{x}_{\text{EWG}}, \bar{x}) \leq \frac{\sinh(\sqrt{K}r)}{\sqrt{K}r} \sigma \sqrt{2} \frac{\Gamma((d+1)/2)}{\Gamma(d/2)}. \quad (5)$$

255 where Γ denotes the gamma function.²

256 ² $\text{Sec}_{\mathcal{M}}$ denotes the sectional curvature of \mathcal{M} .

Observe that the footpoint p_0 appears explicitly in the utility bounds equation 2 and equation 3, highlighting its direct impact on the utility of the mechanisms. To tighten these bounds, it is desirable to minimize the distance $d(p_0, \bar{x})$. When the data are well-dispersed within a ball $B_r(m_0)$, the Fréchet mean typically lies near the center m_0 , making it a natural choice for the footpoint. However, if prior knowledge suggests that the majority of the data are concentrated in a smaller region $R \subset B_r(m_0)$, selecting the center of R as the footpoint may yield better utility. In the absence of such prior information, it may be beneficial to allocate a portion of the privacy budget to privately estimate a suitable footpoint. [See Appendix G for a concrete DP mechanism for selecting a data-dependent footpoint \$p_0\$.](#)

Furthermore, as the dimension d increases, the leading terms in the utility bounds dominate, reducing the relative influence of the footpoint, provided the data radius r in Assumption 1 remains fixed. This implies that in high-dimensional settings, the influence of the footpoint on utility becomes relatively less significant. Indeed, this trend is reflected in our simulation results on the SPDM space equipped with the affine-invariant metric, as shown in Section 4.

By contrast, the bounds in equation 4 and equation 5 illustrate how the geometry of the underlying manifold influences utility through curvature. The sectional curvature [lower](#) bound K acts as a regularizer: smaller values of K correspond to geometries closer to flat and yield tighter utility bounds. In the limiting case of a flat manifold, these bounds simplify to equalities:

$$\mathbb{E} d(\tilde{x}_{\text{EWL}}, \bar{x}) = \sigma d, \quad \mathbb{E} d(\tilde{x}_{\text{EWG}}, \bar{x}) = \sigma \sqrt{2} \frac{\Gamma((d+1)/2)}{\Gamma(d/2)},$$

in which the footpoint no longer affects the utility. This phenomenon is further confirmed in our simulations on SPDM spaces equipped with the Log-Cholesky and Log-Euclidean metrics, as presented in Section 4.

4 SIMULATION AND EXPERIMENT

We evaluate the performance of our Exponential-Wrapped mechanisms for releasing GDP-compliant Fréchet means. Experiments are conducted on the manifold of symmetric positive definite matrices (SPDM), a standard space in medical imaging (Pennec et al., 2019; Said et al., 2017; Hajri et al., 2016). Appendix B.3 reviews the geometry of SPDM under three metrics, while Appendix B.4 reviews the geometry of the hyperbolic space. Section 4.1 describes the simulation setup and presents results. Real-world experiments on the OCTMNIST dataset are provided in section 4.2.

4.1 NUMERICAL SIMULATION

For the simulation study, we focus on releasing the GDP Fréchet mean on the SPDM spaces S_m^+ under three different Riemannian metrics: the Log-Cholesky metric, the Log-Euclidean metric, and the affine-invariant metric³, and on Hyperbolic space \mathbb{H}_d . We compare the performance of our Exponential-Wrapped Gaussian (EWG) mechanism, described in Section 2.3, with the Riemannian Laplace (RL) mechanism proposed in Reimherr et al. (2021). A Riemannian Laplace mechanism that satisfies ε -DP can also be interpreted as satisfying μ -GDP, with the correspondence given by $\varepsilon = \log[(1 - \Phi(-u/2))/\Phi(-u/2)]$ (Liu et al., 2022).

For SPDM spaces S_m^+ , we generate samples x_1, \dots, x_n from the geodesic ball $B_r(\mathbf{I}_m)$ using the Wishart distribution as in Reimherr et al. (2021, Supplemental 1.2.1). The Fréchet mean \bar{x} is computed using formulas equation 9 and equation 8 for the Log-Cholesky and Log-Euclidean metrics, respectively, while the gradient descent procedure from Fletcher and Joshi (2004); Reimherr et al. (2021) is used for the affine-invariant metric. To implement the RL mechanism, we follow the method of Reimherr et al. (2021); Hajri et al. (2016), using a burn-in of 10,000 iterations to sample from the Riemannian Laplace distribution. For our EWG mechanism, we use the method described in Algorithm 1 and Appendix C.3, sampling from the Exponential-Wrapped Gaussian distribution centred at the fixed footpoint $p_0 = \mathbf{I}_m$.

Throughout these simulations, we fix the sample size at $n = 40$ and the data radius at $r = 1.5$ to ensure constant sensitivity Δ . With Δ fixed, we vary the privacy budget $\mu \in \{0.1, 0.2, \dots, 0.7, 1, 1.5, 2\}$ and

³Note that the manifold of SPDM is not inherently Hadamard; this property depends on the choice of Riemannian metric.

Figure 1: Utility Comparison of EWG and RL Mechanisms across Three Metrics. Blue lines with triangular symbols show the Riemannian distances $d(\bar{x}, \tilde{x}_{\text{RL}}^{\text{gdp}})$, and the red line with circular symbols represent the Riemannian distances $d(\bar{x}, \tilde{x}_{\text{EWG}}^{\text{gdp}})$. Results are shown for the Log-Cholesky (top), Log-Euclidean (middle), and affine-invariant (bottom) metrics.

manifold dimension $d = m(m + 1)/2 \in \{3, 10, 15\}$. Let $\tilde{x}_{\text{RL}}^{\text{gdp}}$ and $\tilde{x}_{\text{EWG}}^{\text{gdp}}$ denote the outputs of the RL and EWG mechanisms, respectively. Figure 1 shows the average Riemannian distances $d(\bar{x}, \tilde{x}_{\text{RL}}^{\text{gdp}})$ (blue triangles) and $d(\bar{x}, \tilde{x}_{\text{EWG}}^{\text{gdp}})$ (red circles), computed over 100 independent runs. Shaded regions indicate standard errors around the sample means. Results are organized by metric: the top, middle, and bottom rows correspond to the Log-Cholesky, Log-Euclidean, and affine-invariant metrics, respectively.

Across all three dimensions $d \in \{3, 10, 15\}$ and a wide range of privacy budgets $\mu \in [0.1, 2]$, the EWG mechanism consistently outperforms the RL mechanism under the Log-Cholesky and Log-Euclidean metrics. Under the affine-invariant metric, the EWG mechanism shows degraded performance at moderate to high privacy budgets $\mu \in [0.7, 2]$ when $d = 3$. This degradation reflects the influence of curvature on utility: as the privacy budget increases and less noise is injected, the effect of footpoint misalignment becomes more pronounced. However, for higher dimensions $d = 10, 15$, the EWG mechanism outperforms the RL mechanism across nearly all privacy budgets. In high dimensions, utility is dominated by noise magnitude rather than footpoint alignment, leading to more stable performance.

Similarly, for hyperbolic space \mathbb{E}_d , we generate samples x_1, \dots, x_n uniformly from the geodesic ball $B_r(p)$ with $p = (1, 0, \dots, 0)$, $r = 1.5$ and $n = 40$ fixed throughout the simulation. Same as the SPDM space equipped with Affine-Invariant metric, the Fréchet mean \bar{x} is computed using the

gradient descent procedure from Fletcher and Joshi (2004); Reimherr et al. (2021). To implement the RL mechanism, we follow the sampling method of Pennec et al. (2019). For our EWG mechanism, we use the method described in Algorithm 1 and Appendix C.4, sampling from the Exponential-Wrapped Gaussian distribution centred at the fixed footpoint $p_0 = (1, 0, \dots, 0)$. The results, shown in Figure 2, are much more consistent compared to S_m^+ with Affine-Invariant metric. Across all dimensions $d \in \{3, 10, 15\}$ and all privacy budget, the EWG mechanism consistently outperforms the RL mechanism, which is similar to the scenarios of S_m^+ under Log-Euclidean and Log-Cholesky metrics. This suggests that in spaces with more regular, less exotic geometry, the influence of the footpoint on performance is reduced.

Figure 2: Utility Comparison of EWG and RL Mechanisms on Hyperbolic space \mathbb{H}_d . Blue lines with triangular symbols show the Riemannian distances $d(\bar{x}, \tilde{x}_{\text{RL}}^{\text{gdp}})$, and the red line with circular symbols represent the Riemannian distances $d(\bar{x}, \tilde{x}_{\text{EWG}}^{\text{gdp}})$.

In addition to improved utility, the EWG mechanism offers a substantial computational advantage over the RL mechanism. As shown in Table 1, EWG requires significantly less runtime, often by several orders of magnitude, especially as the manifold dimension increases. This efficiency stems from its straightforward sampling procedure (see Section 2.3 and Algorithm 1), in contrast to the RL mechanism’s reliance on MCMC with a long burn-in, making EWG more scalable and practical for high-dimensional settings.

4.2 REAL-WORLD EXPERIMENT ON OCTMINST DATASET

In this section, we compare our EWG mechanism to the Riemannian Laplace mechanism for releasing the GDP Fréchet mean on the real-world dataset OCTMINST. As one of the 12 standardized 2D datasets in the MedMNIST collection (Yang et al., 2023), OCTMINST consists of 28×28 greyscale images and is derived from Optical Coherence Tomography (OCT) medical imaging data. Following prior work (Utpala et al., 2023a; Tuzel et al., 2006), we extract covariance descriptors from each image to represent them as points on the space of 5×5 SPDM, S_5^+ , equipped with the Log-Euclidean metric. These descriptors serve as structured, manifold-valued features for comparison. The detailed covariance descriptor construction is given below.

To perform tasks such as classification on medical imaging datasets, it is common practice to extract a covariance descriptor from each image, using it as a representative feature of the image. Here, we follow a similar approach as in Utpala et al. (2023a); Tuzel et al. (2006) to extract the covariance descriptors. Let $\mathcal{I} \in \mathbb{R}^{h \times w}$ be a greyscale image of height h and width w and $\mathcal{I}(\mathbf{x})$ denote the pixel intensity at position x and y with $\mathbf{x} = (x, y)$. The covariance descriptor is given by

$$R_\eta(\mathcal{I}) = \left[\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} (\phi(\mathcal{I})(\mathbf{x}) - \mu)(\phi(\mathcal{I})(\mathbf{x}) - \mu)^T \right] + \eta \mathbf{I},$$

where $\phi(\mathcal{I})(\mathbf{x})$ is defined as the following,

$$\left[\mathcal{I}(\mathbf{x}), \left| \frac{\partial \mathcal{I}(\mathbf{x})}{\partial x} \right|, \left| \frac{\partial \mathcal{I}(\mathbf{x})}{\partial y} \right|, \left| \frac{\partial^2 \mathcal{I}(\mathbf{x})}{\partial x^2} \right|, \left| \frac{\partial^2 \mathcal{I}(\mathbf{x})}{\partial y^2} \right| \right].$$

We set $\eta = 10^{-6}$ to ensure the covariance descriptors are positive definite. It follows that each covariance descriptor $R_\eta(\mathcal{I})$ is an element of S_5^+ with $d = 5(5 + 1)/2 = 15$.

432 Equipping S_5^+ with the Log-Euclidean metric, we have
 433

$$d(R_\eta(\mathcal{I}), \mathbf{I}) \leq \sqrt{5} \max \{ |\log(\eta)|, |\log(5 \cdot 255^2 + \eta)| \} \quad (6)$$

435 by following a similar computation as in Utpala et al. (2023a). Note that, different from the experiment
 436 in Utpala et al. (2023a), we did not normalize the pixel value/intensity \mathcal{I} to be between 0 and 1.
 437 Based on (6), the data must reside in $B_r(\mathbf{I})$ where r is determined by the righthand side of (6) and
 438 thus the sensitivity for computing Fréchet mean is then $\Delta = \sup_{\bar{x} \simeq \bar{x}'} d(\bar{x}, \bar{x}') \leq 2r/n$.
 439

440 We compute a covariance descriptor for each image in the dataset, then calculate the sample
 441 Fréchet mean \bar{x} under the Log-Euclidean metric. We then release a GDP version \tilde{x}^{gdp} using
 442 both the Exponential-Wrapped Gaussian (EWG) mechanism and the Riemannian Laplace
 443 (RL) mechanism (Reimherr et al., 2021), each calibrated to the same privacy budget $\mu \in$
 444 $\{0.1, 0.2, \dots, 0.7, 1, 1.5, 2\}$. For EWG, we fix the footpoint at $p_0 = I_5$ and apply Algorithm 1.
 445 For RL, we follow the MCMC-based sampling procedure with 10,000 burn-in steps.
 446

447 There are four different classes in the OCTMNIST dataset, labelled from 0 to 3. We compare
 448 the utility between our EWG mechanism and RL mechanism in each of the four classes. Denote
 449 $\tilde{x}_{\text{RL}}^{\text{gdp}}$, $\tilde{x}_{\text{EWG}}^{\text{gdp}}$ as the output of the Riemannian Laplace mechanism and Exponential-Wrapped Laplace
 450 mechanism respectively, the plots in Figure 3 display the average Riemannian distances $d(\bar{x}, \tilde{x}_{\text{EWG}}^{\text{gdp}})$
 451 (in red with circular symbols) and $d(\bar{x}, \tilde{x}_{\text{RL}}^{\text{gdp}})$ (in blue with triangular symbols) across 100 Monte
 452 Carlo replications for each class. Shaded regions indicate standard errors around the sample means.
 453 Similarly to the numerical simulation, our EWG mechanism achieves better utility across different
 454 privacy budgets. These results confirm that EWG provides practical scalability and strong utility
 455 guarantees for differentially private inference on real-world manifold-valued data.
 456

464 Figure 3: Utility Comparison of EWG and RL Mechanisms for Class 0 to 3 in the OCTMNIST data
 465 under Log-Euclidean metric. Blue lines with triangular symbols show the Riemannian distances
 466 $d(\bar{x}, \tilde{x}_{\text{RL}}^{\text{gdp}})$, and the red line with circular symbols represent the Riemannian distances $d(\bar{x}, \tilde{x}_{\text{EWG}}^{\text{gdp}})$.
 467

469 5 CONCLUSION AND FUTURE DIRECTIONS

470 We introduced Exponential-Wrapped Laplace and Gaussian mechanisms for achieving differential privacy
 471 on Hadamard manifolds. These mechanisms support multiple privacy notions— (ε, δ) -DP, Rényi
 472 DP, and Gaussian DP—and operate entirely within the intrinsic geometry of the manifold. Crucially,
 473 they avoid MCMC sampling by leveraging efficient push-forward sampling via the exponential map.
 474 Theoretically, we derived utility bounds for both mechanisms that capture the impact of curvature,
 475 dimension, and footpoint alignment on the privatized Fréchet mean. Empirically, we showed that
 476 the Exponential-Wrapped Gaussian mechanism consistently outperforms the Riemannian Laplace
 477 mechanism on flat manifolds and performs competitively on curved manifolds, with substantial
 478 improvements in runtime.
 479

480 Several avenues for future work remain. First, determining an optimal or data-adaptive choice
 481 of footpoint p_0 could improve utility in non-constant curvature settings. In particular, strategies
 482 for privately selecting p_0 are worth exploring. Second, extending our framework to manifolds
 483 with non-negative curvature, such as spheres, is a natural direction. Finally, we aim to extend
 484 our approach beyond Fréchet mean estimation to more complex tasks such as principal geodesic
 485 analysis (Huckemann et al., 2010; Fletcher et al., 2003; Zhang and Fletcher, 2013) and regression on
 486 manifolds (Cheng and Wu, 2013).
 487

486 REFERENCES
487

488 Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Geometric means in a novel
489 vector space structure on symmetric positive-definite matrices. *SIAM Journal on Matrix Analysis
490 and Applications*, 29(1):328–347, 2007. doi: 10.1137/050637996. URL <https://doi.org/10.1137/050637996>.

492 Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy:
493 Analytical calibration and optimal denoising. In *International Conference on Machine Learning*,
494 2018a.

495 Borja Balle and Yu-Xiang Wang. Improving the Gaussian mechanism for differential privacy:
496 Analytical calibration and optimal denoising. In Jennifer Dy and Andreas Krause, editors,
497 *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of
498 *Proceedings of Machine Learning Research*, pages 394–403. PMLR, 10–15 Jul 2018b. URL
499 <https://proceedings.mlr.press/v80/balle18a.html>.

501 Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal Talwar.
502 Privacy, accuracy, and consistency too: A holistic solution to contingency table release. In
503 *Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
504 of Database Systems, PODS '07*, page 273–282, New York, NY, USA, 2007. Association for
505 Computing Machinery. ISBN 9781595936851. doi: 10.1145/1265530.1265569. URL <https://doi.org/10.1145/1265530.1265569>.

507 Peter J Basser, James Mattiello, and Denis LeBihan. Mr diffusion tensor spectroscopy and imaging.
508 *Biophysical journal*, 66(1):259–267, 1994.

510 Rabi Bhattacharya and Vic Patrangenaru. Large sample theory of intrinsic and extrinsic sample
511 means on manifolds. *The Annals of Statistics*, 31(1):1 – 29, 2003. doi: 10.1214/aos/1046294456.
512 URL <https://doi.org/10.1214/aos/1046294456>.

513 Thomas Brox, Joachim Weickert, Bernhard Burgeth, and Pavel Mrázek. Nonlinear structure tensors.
514 *Image and Vision Computing*, 24(1):41–55, 2006.

515 Edoardo Cetin, Benjamin Paul Chamberlain, Michael M. Bronstein, and Jonathan J Hunt. Hyperbolic
516 deep reinforcement learning. In *The Eleventh International Conference on Learning
517 Representations*, 2023.

519 Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. Neural embeddings of
520 graphs in hyperbolic space. *arXiv preprint arXiv:1705.10359*, 2017.

522 Ming-Yen Cheng and Hau-Tieng Wu. Local linear regression on manifolds and its geometric
523 interpretation. *Journal of the American Statistical Association*, 108(504):1421–1434, 2013.

524 Emmanuel Chevallier, Didong Li, Yulong Lu, and David Dunson. Exponential-wrapped distributions
525 on symmetric spaces. *SIAM Journal on Mathematics of Data Science*, 4(4):1347–1368, 2022.

527 Seunghyuk Cho, Juyong Lee, Jaesik Park, and Dongwoo Kim. A rotated hyperbolic wrapped normal
528 distribution for hierarchical representation learning. *Advances in Neural Information Processing
529 Systems*, 35:17831–17843, 2022.

530 Jinshuo Dong, Weijie Su, and Linjun Zhang. A central limit theorem for differentially private query
531 answering. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
532 *Advances in Neural Information Processing Systems*, volume 34, pages 14759–14770. Curran
533 Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/7c2c48a32443ad8f805e48520f3b26a4-Paper.pdf.

535 Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. *Journal of the Royal
536 Statistical Society Series B: Statistical Methodology*, 84(1):3–37, 2022.

538 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. *Found. Trends
539 Theor. Comput. Sci.*, 9:211–407, aug 2014. ISSN 1551-305X. doi: 10.1561/0400000042. URL
<https://doi.org/10.1561/0400000042>.

540 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
 541 ourselves: Privacy via distributed noise generation. In *Proceedings of the 24th Annual International*
 542 *Conference on The Theory and Applications of Cryptographic Techniques*, *EUROCRYPT'06*,
 543 page 486–503, Berlin, Heidelberg, 2006a. Springer-Verlag. ISBN 3540345469. doi: 10.1007/
 544 11761679_29. URL https://doi.org/10.1007/11761679_29.

545 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
 546 in private data analysis. In Shai Halevi and Tal Rabin, editors, *Theory of Cryptography*, pages
 547 265–284, Berlin, Heidelberg, 2006b. Springer Berlin Heidelberg.

549 Charles Fefferman, Sergei Ivanov, Yaroslav Kurylev, Matti Lassas, and Hariharan Narayanan. Re-
 550 construction and interpolation of manifolds. i: The geometric whitney problem. *Found. Comput.*
 551 *Math.*, 20(5):1035–1133, October 2020. ISSN 1615-3375. doi: 10.1007/s10208-019-09439-7.
 552 URL <https://doi.org/10.1007/s10208-019-09439-7>.

553 Pierre Fillard, Vincent Arsigny, Xavier Pennec, Paul M Thompson, and Nicholas Ayache. Extrapol-
 554 ation of sparse tensor fields: Application to the modeling of brain variability. In *Information*
 555 *Processing in Medical Imaging: 19th International Conference, IPMI 2005, Glenwood Springs,*
 556 *CO, USA, July 10-15, 2005. Proceedings* 19, pages 27–38. Springer, 2005.

557 Pierre Fillard, Vincent Arsigny, Xavier Pennec, Kiralee M Hayashi, Paul M Thompson, and Nicholas
 558 Ayache. Measuring brain variability by extrapolating sparse tensor fields measured on sulcal lines.
 559 *Neuroimage*, 34(2):639–650, 2007.

561 P. Thomas Fletcher and Sarang Joshi. Principal geodesic analysis on symmetric spaces: Statistics of
 562 diffusion tensors. In Milan Sonka, Ioannis A. Kakadiaris, and Jan Kybic, editors, *Computer Vision*
 563 *and Mathematical Methods in Medical and Biomedical Image Analysis*, pages 87–98, Berlin,
 564 Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-27816-0.

565 P.T. Fletcher, Conglin Lu, and S. Joshi. Statistics of shape via principal geodesic analysis on lie groups.
 566 In *2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003.*
 567 *Proceedings.*, volume 1, pages I–I, 2003. doi: 10.1109/CVPR.2003.1211342.

568 Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. *Advances in*
 569 *neural information processing systems*, 31, 2018.

571 Alexander Grigoryan. *Heat kernel and analysis on manifolds*. American Mathematical Soc., 2009.

573 Hatem Hajri, Ioana Ilea, Salem Said, Lionel Bombrun, and Yannick Berthoumieu. Riemannian laplace
 574 distribution on the space of symmetric positive definite matrices. *Entropy*, 18(3), 2016. ISSN 1099-
 575 4300. doi: 10.3390/e18030098. URL <https://www.mdpi.com/1099-4300/18/3/98>.

576 Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Junbin Gao. Differentially private riemannian
 577 optimization. *Mach. Learn.*, 113(3):1133–1161, February 2024. ISSN 0885-6125. doi: 10.1007/
 578 s10994-023-06508-5. URL <https://doi.org/10.1007/s10994-023-06508-5>.

579 Peilin He, Liou Tang, M Amin Rahimian, and James Joshi. Conformal-dp: Differential privacy on
 580 riemannian manifolds via conformal transformation. *arXiv preprint arXiv:2504.20941*, 2025.

582 Zhenwei Huang, Wen Huang, Pratik Jawanpuria, and Bamdev Mishra. Federated learning on
 583 riemannian manifolds with differential privacy. *arXiv preprint arXiv:2404.10029*, 2024.

584 Stephan Huckemann, Thomas Hotz, and Axel Munk. Intrinsic shape analysis: Geodesic pca for
 585 riemannian manifolds modulo isometric lie group actions. *Statistica Sinica*, 20(1):1–58, 2010.
 586 ISSN 10170405, 19968507.

588 Yangdi Jiang, Xiaotian Chang, Yi Liu, Lei Ding, Linglong Kong, and Bei Jiang. Gaussian differ-
 589 ential privacy on riemannian manifolds. In *Advances in Neural Information Processing Systems*
 590 *36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New*
 591 *Orleans, LA, USA, December 10 - 16, 2023*, 2023.

592 Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential
 593 privacy. *IEEE Transactions on Information Theory*, 63(6):4037–4049, 2017. doi: 10.1109/TIT.
 2017.2685505.

594 Denis Le Bihan, Jean-François Mangin, Cyril Poupon, Chris A Clark, Sabina Pappata, Nicolas Molko,
 595 and Hughes Chabriat. Diffusion tensor imaging: concepts and applications. *Journal of Magnetic*
 596 *Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in*
 597 *Medicine*, 13(4):534–546, 2001.

598

599 John M Lee. *Riemannian manifolds: an introduction to curvature*. Springer Science & Business
 600 Media, 2006.

601

602 Chengxin Li, Saiqin Long, Haolin Liu, Youngjune Choi, Hiroo Sekiya, and Zhetao Li. Enhanc-
 603 ing sparse mobile crowdsensing with manifold optimization and differential privacy. *IEEE*
 604 *Transactions on Information Forensics and Security*, 19:6070–6083, 2024. doi: 10.1109/TIFS.
 605 2024.3407668.

606

607 Zhenhua Lin. Riemannian geometry of symmetric positive definite matrices via cholesky decom-
 608 position. *SIAM Journal on Matrix Analysis and Applications*, 40(4):1353–1370, 2019. doi:
 609 10.1137/18M1221084.

610

611 Yi Liu, Ke Sun, Bei Jiang, and Linglong Kong. Identification, amplification and measurement:
 612 A bridge to gaussian differential privacy. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
 613 and Kyunghyun Cho, editors, *Advances in Neural Information Processing Systems*, 2022. URL
 614 <https://openreview.net/forum?id=UpNCpGvD96A>.

615

616 Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. *Proceedings - Annual*
 617 *IEEE Symposium on Foundations of Computer Science*, FOCS, pages 94–103, 11 2007. doi:
 618 10.1109/FOCS.2007.66.

619

620 Gérard Medioni, Mi-Suen Lee, and Chi-Keung Tang. *A computational framework for segmentation*
 621 *and grouping*. Elsevier, 2000.

622

623 Ilya Mironov. Rényi differential privacy. In *2017 IEEE 30th computer security foundations*
 624 *symposium (CSF)*, pages 263–275. IEEE, 2017.

625

626 Yoshihiro Nagano, Shoichiro Yamaguchi, Yasuhiro Fujita, and Masanori Koyama. A wrapped
 627 normal distribution on hyperbolic space for gradient-based learning. In *International conference*
 628 *on machine learning*, pages 4693–4702. PMLR, 2019.

629

630 Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
 631 *Advances in neural information processing systems*, 30, 2017.

632

633 Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, and Guoying Zhao. Hyperbolic
 634 deep neural networks: A survey. *IEEE Transactions on pattern analysis and machine intelligence*,
 635 44(12):10023–10044, 2021.

636

637 Xavier Pennec, Stefan Sommer, and Tom Fletcher. *Riemannian geometric statistics in medical image*
 638 *analysis*. Academic Press, 2019.

639

640 Peter Petersen. *Riemannian geometry*. Springer, 3rd edition, 2006.

641

642 Matthew Reimherr and Jordan Awan. Kng: The k-norm gradient mechanism. In H. Wal-
 643 lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors,
 644 *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
 645 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/faefec47428cf9a2f0875ba9c2042a81-Paper.pdf.

646

647 Matthew Reimherr, Karthik Bharath, and Carlos Soto. Differential privacy over riemannian man-
 648 ifolds. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, edi-
 649 tors, *Advances in Neural Information Processing Systems*, volume 34, pages 12292–12303. Cur-
 650 ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/6600e06fe9350b62c1e343504d4a7b86-Paper.pdf.

651

652 Salem Said. Statistical models and probabilistic methods on riemannian manifolds, 2021.

648 Salem Said, Lionel Bombrun, Yannick Berthoumieu, and Jonathan H. Manton. Riemannian gaussian distributions on the space of symmetric positive definite matrices. *IEEE Transactions on*
 649 *Information Theory*, 63(4):2153–2170, 2017. doi: 10.1109/TIT.2017.2653803.
 650

651

652 Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In *International*
 653 *symposium on graph drawing*, pages 355–366. Springer, 2011.
 654

655 Armin Schwartzman. *Random ellipsoids and false discovery rates: Statistics for diffusion tensor*
 656 *imaging data*. Stanford University, 2006.
 657

658 Armin Schwartzman. Lognormal distributions and geometric averages of symmetric positive definite
 659 matrices. *International Statistical Review*, 84(3):456–486, 2016. doi: <https://doi.org/10.1111/insr.12113>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12113>.
 660

661

662 Kiyoshi Shiga. Hadamard manifolds. *Geometry of Geodesics and Related Topics*, 3:239–282, 1984.
 663

664 Carlos Soto, Karthik Bharath, Matthew Reimherr, and Aleksandra Slavković. Shape and structure
 665 preserving differential privacy. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
 666 A. Oh, editors, *Advances in Neural Information Processing Systems*, volume 35, pages 24693–
 667 24705. Curran Associates, Inc., 2022.
 668

669 Oncel Tuzel, Fatih Porikli, and Peter Meer. Region covariance: A fast descriptor for detection
 670 and classification. In Aleš Leonardis, Horst Bischof, and Axel Pinz, editors, *Computer Vision*
 671 – *ECCV 2006*, pages 589–600, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN
 672 978-3-540-33835-2.
 673

674 Saiteja Utpala, Andi Han, Pratik Jawanpuria, and Bamdev Mishra. Improved differentially pri-
 675 vate riemannian optimization: Fast sampling and variance reduction. *Transactions on Machine*
 676 *Learning Research*, 2023a. ISSN 2835-8856. URL <https://openreview.net/forum?id=paguBNtqio>.
 677

678 Saiteja Utpala, Praneeth Vepakomma, and Nina Miolane. Differentially private fréchet mean on the
 679 manifold of symmetric positive definite (SPD) matrices with log-euclidean metric. *Transactions on*
 680 *Machine Learning Research*, 2023b. ISSN 2835-8856. URL <https://openreview.net/forum?id=mAx8QqZ14f>.
 681

682

683 Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy. *Journal of*
 684 *the American Statistical Association*, 105(489):375–389, 2010. ISSN 01621459. URL <http://www.jstor.org/stable/29747034>.
 685

686

687 Joachim Weickert and Thomas Brox. Diffusion and regularization of vector-and matrixvalued. *Inverse*
 688 *Problems, Image Analysis, and Medical Imaging: AMS Special Session on Interaction of Inverse*
 689 *Problems and Image Analysis*, January 10-13, 2001, New Orleans, Louisiana, 313:251, 2002.
 690

691 Joachim Weickert and Hans Hagen. *Visualization and processing of tensor fields*. Springer Science
 692 & Business Media, 2005.
 693

694 Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
 695 Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image
 696 classification. *Scientific Data*, 10(1):41, 2023.
 697

698 Miao Zhao and Tom Fletcher. Probabilistic principal geodesic analysis. In
 699 C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors,
 700 *Advances in Neural Information Processing Systems*, volume 26. Curran Associates, Inc.,
 701 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/eb6fdc36b281b7d5eabf33396c2683a2-Paper.pdf.

702 A PROOFS
703704 A.1 PROOF OF THEOREM 2.1
705706 *Proof.* Denote the Exponential-Wrapped Laplace mechanism as M and its density as g_1 corresponding
707 to $f(\mathcal{D})$ and g_2 corresponding to $f(\mathcal{D}')$. To show $\mathbb{P}(M(\mathcal{D}) \in S) \leq e^\varepsilon \mathbb{P}(M(\mathcal{D}') \in S)$ for all
708 measurable set S , it's sufficient to show that,

709
$$\frac{g_1(y)}{g_2(y)} \leq e^\varepsilon.$$

710
711

712 Denote $\eta_1 = f(\mathcal{D})$ and $\eta_2 = f(\mathcal{D}')$, we simplify the ratio on the left-hand side,
713

714
$$\frac{g_1(y)}{g_2(y)} = \frac{\frac{1}{J_{p_0}(\text{Log}_{p_0}(y))} \exp\left(-\frac{\|\text{Log}_{p_0}(y) - \text{Log}_{p_0}(\eta_1)\|}{\sigma}\right)}{\frac{1}{J_{p_0}(\text{Log}_{p_0}(y))} \exp\left(-\frac{\|\text{Log}_{p_0}(y) - \text{Log}_{p_0}(\eta_2)\|}{\sigma}\right)}$$

715
716
717
718
719
720
721
722
723
724
725
726
727
728

$$\begin{aligned}
&= \exp\left\{\frac{1}{\sigma} [\|\text{Log}_{p_0}(y) - \text{Log}_{p_0}(\eta_2)\| - \|\text{Log}_{p_0}(y) - \text{Log}_{p_0}(\eta_1)\|]\right\} \\
&\leq \exp\left\{\frac{1}{\sigma} \|\text{Log}_{p_0}(\eta_1) - \text{Log}_{p_0}(\eta_2)\|\right\}, \quad \text{triangle inequality} \\
&\leq \exp\left\{\frac{1}{\sigma} d(\eta_1, \eta_2)\right\}, \quad \text{Log}_y \text{ is a contraction for Hadamard manifold} \\
&\leq \exp\left\{\frac{\Delta}{\sigma}\right\} \\
&\leq e^\varepsilon, \quad \text{for } \sigma = \frac{\Delta}{\varepsilon}.
\end{aligned}$$

729 \square
730731 A.2 PROOF OF THEOREM 2.2
732733 *Proof.* Let $g_{p_0, \eta, \sigma}$ denote the Exponential-Wrapped Gaussian Distribution with **footpoint** p_0 , **center**
734 η and rate σ . From Balle and Wang (2018a), our Exponential-Wrapped Gaussian mechanism satisfies
735 (ε, δ) -DP if and only if,

736
$$\sup_{\mathcal{D} \simeq \mathcal{D}'} \int_A g_{p_0, \eta_1, \sigma}(y) d\nu(y) - e^\varepsilon \int_A g_{p_0, \eta_2, \sigma}(y) d\nu(y) \leq \delta,$$

737
738

739 where $A = \{y \mid g_{p_0, \eta_1, \sigma}(y) / g_{p_0, \eta_2, \sigma}(y) \geq e^\varepsilon\}$, $\eta_1 = f(\mathcal{D})$ and $\eta_2 = f(\mathcal{D}')$. We have
740

741
$$\frac{g_{p_0, \eta_1, \sigma}(y)}{g_{p_0, \eta_2, \sigma}(y)}$$

742
743
744
745
746
747

$$\begin{aligned}
&= \exp\left\{\frac{1}{2\sigma^2} [\|\text{Log}_{p_0}(y) - \text{Log}_{p_0}(\eta_2)\|^2 - \|\text{Log}_{p_0}(y) - \text{Log}_{p_0}(\eta_1)\|^2]\right\} \\
&= \exp\left\{\frac{1}{2\sigma^2} [-2 \langle \text{Log}_{p_0}(y) - \text{Log}_{p_0}(\eta_1), \text{Log}_{p_0}(\eta_2) - \text{Log}_{p_0}(\eta_1) \rangle + \|\text{Log}_{p_0}(\eta_2) - \text{Log}_{p_0}(\eta_1)\|^2]\right\}.
\end{aligned}$$

748 Denote $\Delta_{p_0, \eta_1, \eta_2} = \|\text{Log}_{p_0}(\eta_2) - \text{Log}_{p_0}(\eta_1)\|$. It follows that,
749

750
$$A = \left\{y \mid \langle \text{Log}_{p_0}(y) - \text{Log}_{p_0}(\eta_1), \text{Log}_{p_0}(\eta_2) - \text{Log}_{p_0}(\eta_1) \rangle \leq -\sigma^2 \varepsilon + \frac{\Delta_{p_0, \eta_1, \eta_2}^2}{2}\right\}$$

751
752

753 Apply change of variable with $u = \text{Log}_{p_0} y$, we have
754

755
$$\sup_{\mathcal{D} \simeq \mathcal{D}'} \int_{A^*} \mathcal{N}(u \mid \text{Log}_{p_0}(\eta_1), \sigma^2 \mathbf{I}) d\lambda(u) - e^\varepsilon \int_{A^*} \mathcal{N}(u \mid \text{Log}_{p_0}(\eta_2), \sigma^2 \mathbf{I}) d\lambda(u) \leq \delta,$$

756 where λ is the Lebegue measure on the tangent space $T_{p_0}\mathcal{M}$ and
 757

$$758 \quad A^* = \left\{ u \mid \langle u - \text{Log}_{p_0}(\eta_1), \text{Log}_{p_0}(\eta_2) - \text{Log}_{p_0}(\eta_1) \rangle \geq -\sigma^2 \varepsilon + \frac{\Delta_{p_0, \eta_1, \eta_2}^2}{2} \right\}. \\ 759$$

760 It follows that,
 761

$$762 \quad \int_{A^*} \mathcal{N}(u \mid \text{Log}_{p_0}(\eta_1), \sigma^2 \mathbf{I}) d\lambda(u) = \Phi \left(-\frac{\sigma \varepsilon}{\Delta_{p_0, \eta_1, \eta_2}} + \frac{\Delta_{p_0, \eta_1, \eta_2}}{2\varepsilon} \right). \\ 763$$

764 Take a similar approach for the second integral, we have
 765

$$766 \quad \int_{A^*} \mathcal{N}(u \mid \text{Log}_{p_0}(\eta_2), \sigma^2 \mathbf{I}) d\lambda(u) = \Phi \left(-\frac{\sigma \varepsilon}{\Delta_{p_0, \eta_1, \eta_2}} - \frac{\Delta_{p_0, \eta_1, \eta_2}}{2\varepsilon} \right). \\ 767$$

768 Finally, we have

$$769 \quad \Phi \left(-\frac{\sigma \varepsilon}{\Delta_{p_0}} + \frac{\Delta_{p_0}}{2\sigma} \right) - e^\varepsilon \Phi \left(-\frac{\sigma \varepsilon}{\Delta_{p_0}} + \frac{\Delta_{p_0}}{2\sigma} \right) \leq \delta, \\ 770$$

772 where $\Delta_{p_0} = \sup_{\mathcal{D} \simeq \mathcal{D}'} \Delta_{p_0, \eta_1, \eta_2}$ as needed. \square
 773

A.3 PROOF OF THEOREM 2.3

775 *Proof.* Using definition B.3, we need to show the following,
 776

$$777 \quad \forall \varepsilon \geq 0, \sup_{\mathcal{D} \simeq \mathcal{D}'} \int_A g_{p_0, \eta_1, \sigma}(y) d\nu(y) - e^\varepsilon \int_A g_{p_0, \eta_2, \sigma}(y) d\nu(y) \leq \delta_\mu(\varepsilon) \quad (7) \\ 778$$

779 where g denotes the density of the Exponential-Wrapped Gaussian Distribution. From the proof in
 780 A.2, we have

$$781 \quad \sup_{\mathcal{D} \simeq \mathcal{D}'} \int_A g_{p_0, \eta_1, \sigma}(y) d\nu(y) - e^\varepsilon \int_A g_{p_0, \eta_2, \sigma}(y) d\nu(y) \\ 782 \\ 783 \\ 784 \\ 785 \quad = \Phi \left(-\frac{\sigma \varepsilon}{\Delta_{p_0}} + \frac{\Delta_{p_0}}{2\sigma} \right) - e^\varepsilon \Phi \left(-\frac{\sigma \varepsilon}{\Delta_{p_0}} + \frac{\Delta_{p_0}}{2\sigma} \right).$$

786 Thus, the equality in (7) holds if and only if $\sigma = \Delta_{p_0}/\mu$. Since Log_{p_0} is a contraction for any
 787 $p_0 \in \mathcal{M}$ (for Hadamard manifold \mathcal{M}), we have $\Delta \geq \Delta_{p_0}$ and $\sigma = \Delta/\mu$ achieves μ -GDP as well.
 788 \square
 789

A.4 PROOF OF THEOREM 2.4

792 *Proof.* Let M denote the Exponential-Wrapped Gaussian mechanism, we have
 793

$$794 \quad D_\alpha(M(\mathcal{D}) \| M(\mathcal{D}')) \\ 795 \\ 796 \quad = \frac{1}{\alpha - 1} \log \int \frac{1}{J_{p_0}(\text{Log}_{p_0}(y))} \frac{1}{(\sqrt{2\pi}\sigma)^d} \\ 797 \\ 798 \quad \exp \left\{ -\frac{\alpha}{2\sigma^2} [\|\text{Log}_{p_0} y - \text{Log}_{p_0} \eta_1\|^2] - \frac{1 - \alpha}{2\sigma^2} \|\text{Log}_{p_0} y - \text{Log}_{p_0} \eta_2\|^2 \right\} d\nu(y) \\ 799 \\ 800 \quad = \frac{1}{\alpha - 1} \log \exp \left\{ -\frac{\alpha(1 - \alpha)}{2\sigma^2} \|\text{Log}_{p_0} \eta_1 - \text{Log}_{p_0} \eta_2\|^2 \right\}, \text{ completing the squares} \\ 801 \\ 802 \quad = \frac{\alpha}{2\sigma^2} \|\text{Log}_{p_0} \eta_1 - \text{Log}_{p_0} \eta_2\|^2 \\ 803 \\ 804 \quad \leq \frac{\alpha}{2\sigma^2} d(\eta_1 - \eta_2)^2, \text{ Log}_{p_0} \text{ is a contraction for Hadamard manifolds} \\ 805 \\ 806 \quad \leq \frac{\alpha}{2\sigma^2} \Delta^2 \\ 807 \\ 808 \quad \leq \varepsilon, \text{ for } \sigma = \frac{\Delta}{\sqrt{2\varepsilon/\alpha}}. \\ 809$$

\square

810 A.5 PROOF OF THEOREM 3.1
811

812 First, we will show the proof for bounds in (2) and (3).

813 **Lemma 1.** *Let \mathcal{M} be a d -dimensional Hadamard manifold.*814
815 1. *Denote y as a sample drawn from an Exponential-Wrapped Laplace Distribution with
816 footprint p_0 , center η and rate σ , then we have,*

817
$$\mathbb{E} d(y, \eta) \leq \sigma d + 2 \|\text{Log}_{p_0} \eta\|.$$

818

819 2. *Denote y as a sample drawn from an Exponential-Wrapped Gaussian Distribution with
820 footprint p_0 , center η and rate σ , then we have*
821

822
$$\mathbb{E} d(y, \eta) \leq \sigma \sqrt{\frac{\pi}{2}} L_{1/2}^{d/2-1} \left(-\frac{d(p_0, \eta)^2}{2} \right) + d(p_0, \eta) \leq \sigma \sqrt{2} \frac{\Gamma((d+1)/2)}{\Gamma(d/2)} + 2 \|\text{Log}_{p_0} \eta\|.$$

823

824
825 *Proof.* For Exponential-Wrapped Laplace Distribution, denote

826
$$C(\sigma) = \int \exp \left(-\frac{\|x\|}{\sigma} \right) d\lambda(x),$$

827

828 then we have
829

830
$$\begin{aligned} & \mathbb{E} d(y, \eta) \\ &= \int d(y, \eta) \frac{C(\sigma)^{-1}}{J_{p_0}(\text{Log}_{p_0} y)} \exp \left(-\frac{\|\text{Log}_{p_0} y - \text{Log}_{p_0} \eta\|}{\sigma} \right) d\nu(y) \\ &\leq \int d(y, p_0) \frac{C(\sigma)^{-1}}{J_{p_0}(\text{Log}_{p_0} y)} \exp \left(-\frac{\|\text{Log}_{p_0} y - \text{Log}_{p_0} \eta\|}{\sigma} \right) d\nu(y) + d(p_0, \eta), \text{ triangle inequality} \\ &= \int \|\text{Log}_{p_0} y\| \frac{C(\sigma)^{-1}}{J_{p_0}(\text{Log}_{p_0} y)} \exp \left(-\frac{\|\text{Log}_{p_0} y - \text{Log}_{p_0} \eta\|}{\sigma} \right) d\nu(y) + d(p_0, \eta) \\ &= \int \frac{\|u + \text{Log}_{p_0} \eta\|}{C(\sigma)} \exp \left(-\frac{\|u\|}{\sigma} \right) d\lambda(u) + d(p_0, \eta), u = \text{Log}_{p_0} y - \text{Log}_{p_0} \eta \\ &\leq \frac{1}{C(\sigma)} \int \|u\| \exp \left(-\frac{\|u\|}{\sigma} \right) d\lambda(u) + 2d(p_0, \eta), \text{ triangle inequality} \\ &= \left(\sigma \int_0^\infty r^{d-1} \exp(-r) dr \right)^{-1} \int_0^\infty \sigma^2 r^d \exp(-r) dr + 2d(p_0, \eta), \text{ spherical coordinates} \\ &= \sigma d + 2d(p_0, \eta). \end{aligned}$$

831

832 Similarly, for the Exponential-Wrapped Gaussian distribution, we have,
833

834
$$\begin{aligned} & \mathbb{E} d(y, \eta) \\ &= \int d(y, \eta) \frac{(\sqrt{2\pi}\sigma)^{-d}}{J_{p_0}(\text{Log}_{p_0} y)} \exp \left(-\frac{\|\text{Log}_{p_0} y - \text{Log}_{p_0} \eta\|^2}{2\sigma^2} \right) d\nu(y) \\ &\leq \mathbb{E} d(y, p_0) + d(p_0, \eta). \end{aligned}$$

835

836 Note that since $(\text{Log}_{p_0} y)/\sigma \sim \mathcal{N}(\text{Log}_{p_0} \eta, \mathbf{I})$, $d(y, p_0)/\sigma$ follows a noncentral chi distribution and
837 have a mean of
838

839
$$\sqrt{\frac{\pi}{2}} L_{1/2}^{d/2-1} \left(-\frac{d(p_0, \eta)^2}{2} \right),$$

840

841 where $L_{1/2}$ denote the Laguerre polynomials. Thus, we have
842

843
$$\begin{aligned} & \mathbb{E} d(y, \eta) \\ &\leq \sigma \sqrt{\frac{\pi}{2}} L_{1/2}^{d/2-1} \left(-\frac{d(p_0, \eta)^2}{2} \right) + d(p_0, \eta). \end{aligned}$$

844

864 However, this upper bound is hard to interpret. We will also derive a less tight upper bound but with
 865 better interpretability as follows.

$$\begin{aligned}
 & \mathbb{E}d(y, \eta) \\
 &= \int d(y, \eta) \frac{(\sqrt{2\pi}\sigma)^{-d}}{J_{p_0}(\log_{p_0} y)} \exp\left(-\frac{\|\log_{p_0} y - \log_{p_0} \eta\|^2}{2\sigma^2}\right) d\nu(y) \\
 &\leq \int \frac{\|u + \log_{p_0} \eta\|}{(\sqrt{2\pi}\sigma)^d} \exp\left(-\frac{\|u\|^2}{2\sigma^2}\right) d\lambda(u) + d(p_0, \eta), \quad u = \log_{p_0} y - \log_{p_0} \eta \\
 &\leq \int \frac{\|u\|}{(\sqrt{2\pi}\sigma)^d} \exp\left(-\frac{\|u\|^2}{2\sigma^2}\right) d\lambda(u) + 2d(p_0, \eta), \quad \text{triangle inequality} \\
 &= \sigma\sqrt{2} \frac{\Gamma((d+1)/2)}{\Gamma(d/2)} + 2d(p_0, \eta), \quad \text{since } \frac{\|u\|}{\sigma} \sim \chi_d.
 \end{aligned}$$

□

880 Bounds (2) and (3) follows from Lemma 1 directly. Now, we prove the bounds in (4) and (5).

881 *Proof.* Under the assumption that $|\text{Sec}_{\mathcal{M}}| < K$ for some $K \geq 0$, then by Rauch comparison
 882 theorem (Fefferman et al., 2020, Page 1082), we have

$$\frac{\sin(\sqrt{K}r)}{\sqrt{K}r} \|\log_{p_0}(x) - \log_{p_0}(x')\| \leq d(x, x') \leq \frac{\sinh(\sqrt{K}r)}{\sqrt{K}r} \|\log_{p_0}(x) - \log_{p_0}(x')\|,$$

883 for any $x, x' \in B_r(p_0)$.

884 It follows that

$$\frac{\sin(\sqrt{K}r)}{\sqrt{K}r} \|\log_{p_0}(y) - \log_{p_0}(\eta)\| \leq d(y, \eta) \leq \frac{\sinh(\sqrt{K}r)}{\sqrt{K}r} \|\log_{p_0}(y) - \log_{p_0}(\eta)\|,$$

885 for any $\eta, y \in B_r(p_0)$.

886 Under Assumption 1, we have $\eta \in B_r(p_0)$. For $y \in B_r(p_0)$, we want project y back into $B_r(p_0)$.
 887 Note that this is no privacy leakage during this step, as the projection only depends on p_0 and r ,
 888 which requires no privacy protection. Denote y^* as the projection of y back into $B_r(p_0)$, defined as

$$y^* = \exp_{p_0} \left(\frac{r}{\|\log_{p_0} y\|} \log_{p_0} y \right).$$

889 Immediately, we have $\|\log_{p_0} y^* - \log_{p_0} \eta\| \leq \|\log_{p_0} y - \log_{p_0} \eta\|$. After the projection, we have,

$$\begin{aligned}
 \mathbb{E}d(\eta, y) &= \int_{B_r(p_0)} d(\eta, y) d\mathbb{P}(y) + \int_{\mathcal{M} \setminus B_r(p_0)} d(\eta, y^*) d\mathbb{P}(y) \\
 &\leq \int_{B_r(p_0)} \frac{\sinh(\sqrt{K}r)}{\sqrt{K}r} \|\log_{p_0}(\eta) - \log_{p_0}(y)\| d\mathbb{P}(y) \\
 &\quad + \int_{\mathcal{M} \setminus B_r(p_0)} \frac{\sinh(\sqrt{K}r)}{\sqrt{K}r} \|\log_{p_0}(\eta) - \log_{p_0}(y^*)\| d\mathbb{P}(y) \\
 &\leq \int_{B_r(p_0)} \frac{\sinh(\sqrt{K}r)}{\sqrt{K}r} \|\log_{p_0}(\eta) - \log_{p_0}(y)\| d\mathbb{P}(y) \\
 &\quad + \int_{\mathcal{M} \setminus B_r(p_0)} \frac{\sinh(\sqrt{K}r)}{\sqrt{K}r} \|\log_{p_0}(\eta) - \log_{p_0}(y)\| d\mathbb{P}(y) \\
 &= \int_{\mathcal{M}} \frac{\sinh(\sqrt{K}r)}{\sqrt{K}r} \|\log_{p_0}(\eta) - \log_{p_0}(y)\| d\mathbb{P}(y) \\
 &= \frac{\sinh(\sqrt{K}r)}{\sqrt{K}r} \mathbb{E} \|\log_{p_0}(\eta) - \log_{p_0}(y)\|.
 \end{aligned}$$

918 Note that from the proof for Lemma 1, we have
 919

$$\begin{aligned} 920 \quad \mathbb{E} \|\log_{p_0}(y) - \log_{p_0}(\eta)\| &= \sigma d, & \text{for Laplace mechanism,} \\ 921 \quad \mathbb{E} \|\log_{p_0}(y) - \log_{p_0}(\eta)\| &= \sigma \sqrt{2} \frac{\Gamma((d+1)/2)}{\Gamma(d/2)}, & \text{for Gaussian mechanism.} \\ 922 \end{aligned}$$

923 The result follows. \square
 924

926 B BACKGROUND MATERIALS

928 B.1 RIEMANNIAN GEOMETRY

930 Let \mathcal{M} be a d -dimensional Riemannian manifold endowed with a Riemannian metric g , which assigns
 931 to each point $p \in \mathcal{M}$ a smoothly varying inner product $\langle \cdot, \cdot \rangle_p$ on the tangent space $T_p \mathcal{M}$. This inner
 932 product induces a norm $\|v\|_p = \langle v, v \rangle_p^{1/2}$, enabling the measurement of geometric quantities such as
 933 angles, lengths, and distances. For a smooth curve $\gamma(t)$ on \mathcal{M} , the length is given by

$$934 \quad L(\gamma) = \int \|\dot{\gamma}(t)\|_{\gamma(t)} dt = \int \sqrt{\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_{\gamma(t)}} dt. \\ 935$$

937 Curves that locally minimize length are called geodesics, and they play a central role in defining
 938 intrinsic geometry. A Riemannian manifold is said to be geodesically complete if every geodesic
 939 can be extended to the entire real line \mathbb{R} ; we assume this property holds throughout. Based on the
 940 definition of length, the distance between any two points $p, q \in \mathcal{M}$ is defined as the infimum of the
 941 lengths over all piecewise smooth curves joining them:

$$942 \quad d(p, q) = \inf_{\gamma(0)=p, \gamma(1)=q} L(\gamma). \\ 943$$

944 In local coordinates, the metric g is represented by a positive definite matrix $g = (g_{ij})$, and the
 945 Lebesgue measure is denoted by λ . The metric tensor induces a natural volume measure ν on the
 946 Borel σ -algebra of \mathcal{M} , given in coordinates by $d\nu = \sqrt{|\det g|} d\lambda$. This Riemannian volume measure
 947 will serve as the default reference measure for integration and probability throughout the paper.

948 Geodesic completeness ensures that the Riemannian exponential map is globally defined. Given a
 949 point $p \in \mathcal{M}$ and a tangent vector $v \in T_p \mathcal{M}$, the geodesic $\gamma_{(p,v)}(t)$ satisfying $\gamma_{(p,v)}(0) = p$ and
 950 $\dot{\gamma}_{(p,v)}(0) = v$ exists for all $t \in \mathbb{R}$, and defines the Riemannian exponential map via $\text{Exp}_p(v) =$
 951 $\gamma_{(p,v)}(1)$. Around each point p , there exists a neighbourhood $V \subset T_p \mathcal{M}$ and $U \subset \mathcal{M}$ such that the
 952 restriction $\text{Exp}_p|_V : V \rightarrow U$ is a diffeomorphism. Its inverse, the Riemannian logarithmic map, is
 953 denoted by $\text{Log}_p : U \rightarrow T_p \mathcal{M}$ and satisfies $\text{Log}_p(q) = v$ whenever $q = \text{Exp}_p(v)$. In such normal
 954 neighbourhoods, the Riemannian distance can be expressed in closed form as $d(p, q) = \|\text{Log}_p(q)\|_p$,
 955 reducing the computation of distances to norms in the tangent space.

956 The primary focus of this paper is on Hadamard manifolds, which are simply connected complete
 957 Riemannian manifolds of non-positive curvature. It is named after the famous Cartan-Hadamard
 958 theorem which states that for any d -dimensional Hadamard manifold \mathcal{M} , it is diffeomorphic to
 959 \mathbb{R}^d and more precisely, at any point $p \in \mathcal{M}$, the exponential mapping $\text{Exp}_p : T_p \mathcal{M} \rightarrow \mathcal{M}$ is a
 960 diffeomorphism and thus Log_p is defined everywhere on \mathcal{M} . This property enables us to develop
 961 the Exponential-Wrapped mechanisms in Sections 2.2 and 2.3. Another important property of the
 962 Hadamard manifold is that Log_p is a contraction for any $p \in \mathcal{M}$. That is, $\|\text{Log}_p q_1 - \text{Log}_p q_2\|_p \leq$
 963 $d(q_1, q_2)$ for any $p, q_1, q_2 \in \mathcal{M}$. For more technical details on Hadamard manifolds, please refer to
 964 Petersen (2006); Shiga (1984).

966 B.2 DIFFERENTIAL PRIVACY

968 Differential privacy (DP) is a principled framework for quantifying privacy guarantees in data analysis.

969 **Definition B.1** ((Dwork et al., 2006a)). *A data-releasing mechanism M is said to be (ε, δ) -DP with*
 970 *$\varepsilon \geq 0, 0 \leq \delta \leq 1$, if for any adjacent datasets, denoted as $\mathcal{D} \simeq \mathcal{D}'$, differing in only one record, we*
 971 *have $\Pr(M(\mathcal{D}) \in A) \leq e^\varepsilon \Pr(M(\mathcal{D}') \in A) + \delta$ for any measurable set A in the range of M . For*
 972 *$\delta = 0$, M is said to be ε -DP.*

972 Since (ε, δ) -DP is a well-defined concept on any measurable space (Wasserman and Zhou, 2010),
 973 it can be readily extended to any Riemannian manifold equipped with the Borel σ -algebra. One
 974 relaxation of ε -DP is the Rényi DP, which is based on Rényi divergence. It shares many important
 975 properties with ε -DP while allowing tighter analysis of composite heterogeneous mechanisms.

976 **Definition B.2** ((Mironov, 2017)). *A mechanism M is said to have ε -**Rényi Differential Privacy**
 977 (**RDP**) of order α , or (α, ε) -RDP for short, if $D_\alpha(M(\mathcal{D}) \| M(\mathcal{D}')) \leq \varepsilon$ for all neighbouring datasets
 978 $\mathcal{D} \simeq \mathcal{D}'$, where the Rényi divergence of a finite order $\alpha \neq 1$ is defined as*

$$980 \quad D_\alpha(P \| Q) = \frac{1}{\alpha - 1} \log \mathbb{E}_{x \sim Q} \left(\frac{P(x)}{Q(x)} \right)^\alpha, \\ 981$$

982 and Renyi divergence at orders $\alpha = 1, \infty$ are defined by continuity.

983 Another way of extending the differential privacy definition is through the viewpoint of the statistical
 984 hypothesis testing (Wasserman and Zhou, 2010; Kairouz et al., 2017). In the context of hypothesis
 985 testing, we define H_0 : the underlying dataset is \mathcal{D} and H_1 : the underlying dataset is \mathcal{D}' . As the
 986 values of ε and δ decrease, the task of conducting this hypothesis testing becomes more difficult. This
 987 means that detecting the presence of an individual based on the outcome of the mechanism becomes
 988 increasingly challenging. With this interpretation in mind, we can extend (ε, δ) -differential privacy
 989 to Gaussian differential privacy (GDP).

990 Denote the outcome distribution under H_0 and H_1 as $M(\mathcal{D})$ and $M(\mathcal{D}')$, respectively. We introduce
 991 the optimal trade-off function between type I and type II errors as follows,

$$993 \quad T(M(\mathcal{D}), M(\mathcal{D}')) : [0, 1] \rightarrow [0, 1], \quad \alpha \mapsto T(M(\mathcal{D}), M(\mathcal{D}'))(\alpha),$$

994 where $T(M(\mathcal{D}), M(\mathcal{D}'))(\alpha)$ is the smallest type II error when type I error equals α . GDP centres
 995 around this optimal trade-off function and is defined as follows.

996 **Definition B.3** ((Dong et al., 2022)). *A mechanism M is said to satisfy μ -**Gaussian Differential**
 997 **Privacy** (μ -**GDP**) if $T(M(\mathcal{D}), M(\mathcal{D}')) \geq G_\mu$ for all neighbouring datasets $\mathcal{D} \simeq \mathcal{D}'$ with $G_\mu :=$
 998 $T(N(0, 1), N(\mu, 1))$.*

1000 However, the involvement of the optimal trade-off function $T(M(\mathcal{D}), M(\mathcal{D}'))$ makes Definition B.3
 1001 difficult to work with on Riemannian manifolds. To make this definition more tractable, we adapt the
 1002 equivalent characterization from Jiang et al. (2023), which is based on Dong et al. (2022, Corollary
 1003 1).

1004 **Definition B.4** (Gaussian Differential Privacy (Dong et al., 2022; Jiang et al., 2023)). *A \mathcal{M} -valued
 1005 data-releasing mechanism M is said to be μ -**GDP** if it's $(\varepsilon, \delta_\mu(\varepsilon))$ -DP for all $\varepsilon \geq 0$, where*

$$1006 \quad 1007 \quad \delta_\mu(\varepsilon) := \Phi \left(-\frac{\varepsilon}{\mu} + \frac{\mu}{2} \right) - e^\varepsilon \Phi \left(-\frac{\varepsilon}{\mu} - \frac{\mu}{2} \right), \\ 1008$$

1009 with Φ denotes the cumulative distribution function of the standard normal distribution.

1010 B.3 SPDM SPACE

1012 Let S_m^+ denote the manifold of $m \times m$ real symmetric positive-definite matrices, with tangent space
 1013 at each point identified with \mathcal{S}_m , the space of $m \times m$ symmetric matrices. The affine-invariant
 1014 (Rao-Fisher) Riemannian metric endows S_m^+ with non-positive sectional curvature and desirable
 1015 invariance properties, but introduces substantial analytical and computational complexity. In contrast,
 1016 the Log-Euclidean and Log-Cholesky metrics induce flat Riemannian geometries on S_m^+ , each derived
 1017 from a bi-invariant Lie group structure: the former using the matrix logarithm, and the latter the
 1018 Cholesky decomposition. The Log-Euclidean metric defines distances via the Frobenius norm by
 1019 applying the matrix logarithm Log , $\|\text{Log}(p) - \text{Log}(q)\|_F$, allowing closed-form expressions for
 1020 geodesics and Fréchet means. The Log-Cholesky metric offers similarly explicit formulas while
 1021 providing improved numerical stability and computational efficiency.

1022 Consider the data $X_1, \dots, X_n \in \mathcal{S}_m^+$. Under the Log-Euclidean metric, the sample Fréchet mean has
 1023 the following closed-form expression,

$$1024 \quad 1025 \quad \bar{x} = \text{Exp} \left\{ \frac{1}{n} \sum_{i=1}^n \text{Log}(X_i) \right\}, \quad (8)$$

1026 where Exp and Log denote the matrix exponential and logarithm maps.
 1027

1028 Under the Log-Cholesky metric, the sample Fréchet mean has the following expression,
 1029

$$\bar{x} = \bar{x}^* (\bar{x}^*)^\top, \quad (9)$$

1030 where
 1031

$$\bar{x}^* = \frac{1}{n} \sum_{i=1}^n L_i + \text{Exp} \left\{ \frac{1}{n} \sum_{i=1}^n \text{Log} \mathbb{D}(L_i) \right\}, \quad (10)$$

1032 with L_i being the cholesky decomposition of X_i such that $L_i L_i^\top = X_i$, $[\cdot]$ returning the strictly
 1033 lower triangular matrix, and $\mathbb{D}(\cdot)$ returning the diagonal matrix. Refer to Arsigny et al. (2007); Lin
 1034 (2019) for more details.
 1035

1036 Although these metrics forgo affine invariance, their flatness simplifies analysis and makes them
 1037 particularly suitable for statistical inference and privacy-preserving tasks. In the simulations that
 1038 follow, we compare all three metrics, with particular emphasis on the Log-Euclidean and Log-
 1039 Cholesky approaches due to their practical advantages. For more details on SPDM spaces and these
 1040 metrics, refer to Arsigny et al. (2007); Lin (2019); Said et al. (2017); Reimherr et al. (2021).
 1041

1042 B.4 HYPERBOLIC SPACE

1043 Hyperbolic space is a space of constant negative curvature. Here, we will focus on the Lorentz model
 1044 \mathbb{H}_d , also referred to as the hyperboloid model, of hyperbolic space. For the Lorentz model \mathbb{H}_d , each
 1045 point is identified with $x \in \mathbb{R}^{d+1}$ such that $\langle x, x \rangle_L = -1$ with the Lorentz inner product defined as
 1046 follows,
 1047

$$\langle x, y \rangle_L = x_0 y_0 + \sum_{i=1}^n x_i y_i.$$

1048 The distance between two points $x, y \in \mathbb{H}_d$ is then defined as,
 1049

$$d_L(x, y) = \text{arccosh}(-\langle x, y \rangle_L).$$

1050 The tangent space $T_x \mathbb{H}_d$ at each point $x \in \mathbb{H}_d$ is identified as $\{u : \langle u, x \rangle_L = 0\}$. The exponential
 1051 map \exp_x has the following closed-form expression,
 1052

$$\exp_x(u) = \cosh(\|u\|_L)x + \sinh(\|u\|_L) \frac{u}{\|u\|_L},$$

1053 with $\|u\|_L = \sqrt{\langle u, u \rangle_L}$. Similarly, the logarithm map has the following expression,
 1054

$$\log_x(y) = \frac{\text{arccosh}(\alpha)}{\sqrt{\alpha^2 - 1}}(y - \alpha x),$$

1055 with $\alpha = -\langle x, y \rangle_L$. For more details on the Lorentz model, see Nagano et al. (2019); Cho et al.
 1056 (2022).
 1057

1058 C SAMPLING FROM EXPONENTIAL-WRAPPED DISTRIBUTION

1059 C.1 EXPONENTIAL-WRAPPED LAPLACE DISTRIBUTION

1060 The EWL Distribution is the push-forward probability of the tangent space probability defined by
 1061 the probability density $h(u) \propto \exp\{-\|u - \log_{p_0} \eta\|/\sigma\}$. The sampling procedure for the EWL
 1062 Distribution is straightforward:
 1063

1. Sampling from $u \sim h(u) \propto \exp\{-\|u - \log_{p_0} \eta\|/\sigma\}$.
2. Computing $\exp_{p_0} u$.

1064 Note that the sampling step $u \sim h(u)$ needs some clarification. We want to emphasize that $\|\cdot\|$ within
 1065 step 1 is not the l_2 -norm but rather the norm induced by the Riemannian metric g_p . Note that the
 1066 tangent space $T_p \mathcal{M}$ equipped with g_p can be identified with \mathbb{R}^d equipped with the Euclidean metric
 1067

1080 as follows. Let $\{e_1, \dots, e_d\}$ be an orthogonal basis w.r.t. g_p on $T_p\mathcal{M}$, then any point $v \in T_p\mathcal{M}$ can
 1081 be identified with a point $v^* \in \mathbb{R}^d$ via the following map,
 1082

$$1083 \quad \iota_p : T_p\mathcal{M} \rightarrow \mathbb{R}^d, \quad v = \sum_{i=1}^d a_i e_i \mapsto \iota_p(v) = (a_1, \dots, a_d), \quad (11)$$

1086 Denote this map as $\iota_p : T_p\mathcal{M} \rightarrow \mathbb{R}^d$, and note that ι_p is a isometry for any $p \in \mathcal{M}$ as,
 1087

$$1088 \quad g_p(v_1, v_2) = \iota_p(v_1)^\top \iota_p(v_2) = \langle \iota_p(v_1), \iota_p(v_2) \rangle,$$

1089 where $\langle \cdot, \cdot \rangle$ denote the euclidean inner product here. Putting it together, we have the following
 1090 sampling procedure,

- 1091 1. Sampling from $u \sim h(u) \propto \exp\{-\|u - \iota_{p_0}(\log_{p_0} \eta)\|_2/\sigma\}$.
- 1092 2. Computing $\exp_{p_0}(\iota_{p_0}^{-1}(u))$.

1094 C.2 EXPONENTIAL-WRAPPED GAUSSIAN DISTRIBUTION

1096 Implementing the EWG mechanism for (ε, δ) -DP is straightforward. We follow a similar procedure
 1097 as in Algorithm 1. After determining the appropriate σ numerically from inequality (1)—using a
 1098 method such as that proposed in Balle and Wang (2018b)—one can proceed by
 1099

- 1100 1. first sampling \mathbf{u} from the multivariate Gaussian distribution $\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_d)$.
- 1101 2. The privatized summary is then computed as

$$1102 \quad \exp_{p_0} \{ \iota_{p_0}^{-1}(\mathbf{u}) + \iota_{p_0}[\log_{p_0}(f(\mathcal{D}))] \}.$$

1104 Suppose \mathcal{M} is the space of SPDM equipped with log-Euclidean metric, the EWG mechanism with
 1105 **footpoint** $p_0 = \mathbf{I}$ reduces to the tangent Gaussian mechanism in Utpala et al. (2023b). Hence, the
 1106 EWG mechanism is a generalization of the tangent Gaussian mechanism, as our mechanism can be
 1107 employed for any Hadamard manifold equipped with any Riemannian metric. This makes our EWG
 1108 mechanism the first working mechanism to achieve (ε, δ) -DP in SPDM under the non-log-Euclidean
 1109 metric.

1110 The implementation of the EWG mechanism for μ -GDP is similar.

1112 C.3 SAMPLING FROM EWG ON SPDM SPACE

1114 Here, we discuss how to sample from the EWG distribution on SPDM space equipped with the three
 1115 different metrics. All the sampling procedures are summarized in Algorithm 2.

1116 **(i) Affine-Invariant metric** We note that the Riemannian metric g_P on $T_P S_m^+$ is defined as,

$$1118 \quad g_P(X, Y) = \text{trace}(P^{-1} X P^{-1} Y).$$

1119 Due to the affine invariant property of the Affine-Invariant metric, we have,

$$1121 \quad g_P(X, Y) = g_{\mathbf{I}_m}(P^{-1/2} X P^{-1/2}, P^{-1/2} Y P^{-1/2}) \\ 1122 \quad = \text{trace}(P^{-1/2} X P^{-1/2} P^{-1/2} Y P^{-1/2}) \\ 1123 \quad = \langle P^{-1/2} X P^{-1/2}, P^{-1/2} Y P^{-1/2} \rangle_F,$$

1125 where $\langle \cdot, \cdot \rangle_F$ denotes the Frobenius inner product. Note $P^{-1/2} X P^{-1/2} \in S_m$, the space of $m \times m$
 1126 symmetric matrices, we can map them into $\mathbb{R}^{m(m+1)/2}$ via the function $\text{vecd} : S_m \rightarrow \mathbb{R}^{m(m+1)/2}$
 1127 which is defined as

$$1128 \quad \text{vecd}(W) = (\text{diag}(W)^\top, \sqrt{2} \text{offdiag}(W)^\top)^\top,$$

1129 where $\text{diag}(W)$ is an m -dimensional vector containing the diagonal entries of W and $\text{offdiag}(Y)$ is
 1130 an $m(m-1)/2$ -dimensional vector containing the off-diagonal entries of W copied from below the
 1131 diagonal columnwise (or above the diagonal row-wise). The inclusion of the factor $\sqrt{2}$ for the off
 1132 diagonal entries ensure that ,

$$1133 \quad \langle X, Y \rangle_F = \text{vecd}(X)^\top \text{vecd}(Y),$$

for any $X, Y \in S_m$. See Schwartzman (2006; 2016) for more details on this vectorization operator. It follows that the map ι_P defined as

$$\iota_P : T_p S_m^+ \rightarrow \mathbb{R}^{m(m+1)/2}, \quad X \mapsto \text{vecd}(P^{-1/2} X P^{-1/2}) \quad (12)$$

is an isometry. Thus, to sample from EWG with footprint p_0 , **tangent** center η , and rate $\sigma > 0$ under the Affine-Invariant metric can be summarized as follows.

1. Map the **tangent** center to $\mathbb{R}^{m(m+1)/2}$ via \log_{p_0} and ι_{p_0} as $\iota_{p_0}[\log_{p_0}(\eta)]$.
2. Sample $\mathbf{u} \sim \mathcal{N}(\iota_{p_0}[\log_{p_0}(\eta)], \sigma^2 \mathbf{I}_d)$.
3. Map \mathbf{u} back to \mathcal{M} via $\iota_{p_0}^{-1}$ and \exp_{p_0} as $\exp_{p_0}\{\iota_{p_0}^{-1}(\mathbf{u})\}$.

(ii) Log-Euclidean metric For both Log-Euclidean and Log-Cholesky metric, we fix the footprint to be \mathbf{I}_m as the footprint will have no impact on the result due to vanishing curvature and \mathbf{I}_m simplifies the computation a bit. We note that under the Log-Euclidean metric, we have,

$$g_{\mathbf{I}_m}(X, Y) = \text{trace}(XY) = \langle X, Y \rangle_F.$$

Thus, follows a similar argument as in the Affine-invariant case and note that vecd is a isometry between $T_{\mathbf{I}_m} S_m^+$ and $\mathbb{R}^{m(m+1)/2}$, we can sample from EWG with footprint p_0 , **tangent** center η , and rate $\sigma > 0$ under the Log-Euclidean metric can be summarized as follow.

1. Map the **tangent** center η to $\mathbb{R}^{m(m+1)/2}$ via Log and vecd as $\text{vecd}[\text{Log}(\eta)]$.
2. Sample $\mathbf{u} \sim \mathcal{N}(\text{vecd}[\text{Log}(\eta)], \sigma^2 \mathbf{I}_d)$.
3. Map \mathbf{u} back to \mathcal{M} via vecd^{-1} and Exp as $\text{Exp}\{\text{vecd}^{-1}(\mathbf{u})\}$.

Note that Exp and Log denote the matrix exponential and logarithm, respectively.

(iii) Log-Euclidean metric We note the following relation,

$$S_m^+ \xrightarrow{\mathcal{L}} \mathcal{L}^+ \xrightarrow{\widetilde{\text{Log}}_{\mathbf{I}_m}} \mathcal{L} \xrightarrow{\widetilde{\text{vecd}}} \mathbb{R}^{m(m+1)/2},$$

where

1. \mathcal{L} denotes the space of upper triangular matrices,
2. \mathcal{L}^+ denotes the space of upper triangular matrices with positive diagonal entries,
3. \mathcal{L} denotes the Log-Cholesky decomposition,
4. $\widetilde{\log}$ is defined as,

$$\widetilde{\log}_L(K) = \lfloor K \rfloor - \lfloor L \rfloor + \mathbb{D}(L)\text{Log}\{\mathbb{D}(L)^{-1}\mathbb{D}(K)\},$$

5. and the operator $\widetilde{\text{vecd}}$ is defined as follow,

$$\widetilde{\text{vecd}}(X) = (\text{diag}(X)^\top, \text{offdiag}(x)^\top)^\top \quad \text{for } X \in \mathcal{L}.$$

Once again, we have $\langle X, Y \rangle_F = \widetilde{\text{vecd}}(X)^\top \widetilde{\text{vecd}}(Y)$ for any $X, Y \in \mathcal{L}$, and thus $\widetilde{\text{vecd}}$ is a isometry between \mathcal{L} and $\mathbb{R}^{m(m+1)/2}$. Combine with fact that $\widetilde{\log}_{\mathbf{I}_m} \circ \mathcal{L}$ is a isometry between S_m^+ and \mathcal{L} , we have

$$\widetilde{\text{vecd}} \circ \widetilde{\log}_{\mathbf{I}_m} \circ \mathcal{L}$$

is a isometry between S_m^+ and $\mathbb{R}^{m(m+1)/2}$. Thus, to sample from EWG with footprint p_0 , **tangent** center η , and rate $\sigma > 0$ under the Log-Cholesky metric can be summarized as follow.

1. Map the **tangent** center η to $\mathbb{R}^{m(m+1)/2}$ as

$$\widetilde{\text{vecd}} \circ \widetilde{\log}_{\mathbf{I}_m} \circ \mathcal{L}(\eta).$$

2. Sample

$$\mathbf{u} \sim \mathcal{N}\left\{\widetilde{\text{vecd}} \circ \widetilde{\log}_{\mathbf{I}_m} \circ \mathcal{L}(\eta), \sigma^2 \mathbf{I}_d\right\}.$$

3. Map \mathbf{u} back to \mathcal{M} as

$$\left[\widetilde{\text{vecd}} \circ \widetilde{\log}_{\mathbf{I}_m} \circ \mathcal{L}\right]^{-1}(\mathbf{u}).$$

1188 **Algorithm 2** Generate GDP Fréchet mean on SPDM space
1189
1190 **Input:** Data radius r , privacy budget μ , private data $X_1, \dots, X_n \in S_m^+$, Riemannian Metric ρ ,
1191 footpoint p_0 for Affine-Invariant metric.
1192 **Output:** Privatized Fréchet mean $\tilde{x}_{\text{EWG}}^{\text{gdp}} \in S_m^+$.
1193 1: **Sample** $\mathbf{v} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ with $d = m(m+1)/2$.
1194 2: **if** $\rho = \rho^{\text{LE}}$ **then**
1195 3: **Compute** sample Fréchet mean \bar{x} using equation 8.
1196 4: **Compute** $\tilde{x}_{\text{EWG}}^{\text{gdp}} = \text{Exp}(\text{Log}(\bar{x}) + \text{vecd}^{-1}(\sigma\mathbf{v}))$ with $\sigma = 2r_0/\mu$.
1197 5: **else if** $\rho = \rho^{\text{LC}}$ **then**
1198 6: **Compute** sample Fréchet mean \bar{x} using equation 9.
1199 7: **Compute** $L = \widetilde{\text{exp}}_{\mathbf{I}_m}(\widetilde{\text{log}}_{\mathbf{I}_m} \circ \mathcal{L}(\bar{x}) + \widetilde{\text{vecd}}^{-1}(\sigma\mathbf{v}))$ with $\sigma = 2r_0/\mu$.
1200 8: **Compute** $\tilde{x}_{\text{EWG}}^{\text{gdp}} = LL^\top$.
1201 9: **else if** $\rho = \rho^{\text{AI}}$ **then**
1202 10: **Compute** sample Fréchet mean \bar{x} using Gradient Descent algorithm.
1203 11: **Compute** $\tilde{x}_{\text{EWG}}^{\text{gdp}} = \exp_{p_0}\{\iota_{p_0}^{-1}(\iota_{p_0}[\log_{p_0}(\bar{x})] + \sigma\mathbf{v})\}$ where ι_{p_0} is defined in equation 12.
1204 12: **end if**
1205 13: **Return:** $\tilde{x}_{\text{EWG}}^{\text{gdp}}$.
1206
1207

1208 C.4 SAMPLING FROM EWG ON HYPERBOLIC SPACE
1209

1210 To sample from EWG with footpoint p_0 , **tangent** center η , and rate $\sigma > 0$ on \mathbb{H}_d , we modifies the
1211 approach described in Cho et al. (2022), which is stated below:

1212 1. Map the **tangent** center η to $T_{p_0}\mathbb{H}_d$ as $\log_{p_0}(\eta)$.
1213 2. Sample $\mathbf{u} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ and parallel transport the vector $[0, \mathbf{u}]$ to the tangent space $T_{p_0}\mathbb{H}_d$,
1214 $\tilde{\mathbf{u}} = \text{PT}_{e_1 \rightarrow p_0}([0, \mathbf{u}])$.
1215 3. Map $\tilde{\mathbf{u}} + \log_{p_0}(\eta)$ back to \mathbb{H}_d via exponential map,

$$\exp_{p_0}(\tilde{\mathbf{u}} + \log_{p_0}(\eta)).$$

1216
1217 D COMPUTATION TIME COMPARISON
1218

1239 Figure 4: Computation time comparison of EWG and RL Mechanisms under the affine-invariant
1240 metric. The blue line with triangular symbols represents the RL mechanism, while the red line with
1241 circular symbols represents the EWG mechanism. The RL mechanism is implemented with a burn-in
1242 size of 10,000.

1242

1243 Table 1: Computation time (seconds) comparison between RL and EWG mechanisms under the
1244 affine-invariant metric. The RL mechanism is implemented with a burn-in size of 10,000. Results
1245 from 10 Monte Carlo replications.

1246	1247	1248	mechanism					
			1249	EWG		RL		
				size m	mean	SD	mean	SD
1250			2	0.00248	0.00252	1.01774	0.05029	
1251			5	0.00160	0.00022	1.33547	0.07959	
1252			7	0.00166	0.00011	1.61042	0.08033	
1253			10	0.00204	0.00032	2.03352	0.10878	
1254			13	0.00241	0.00018	2.48609	0.09874	
1255			17	0.00329	0.00083	3.50102	0.29508	
1256			20	0.00402	0.00067	4.20360	0.13551	
1257			23	0.00460	0.00065	5.00708	0.12180	
1258			27	0.00761	0.00509	6.05043	0.10942	
1259			30	0.00709	0.00074	6.85141	0.10098	

1261

1262

E SIMULATION WITH VARYING SAMPLE SIZES

1263

1264

Supplemental to the results we have in Section 4, we examine the effect of sample size n on performance. Here, we repeat the same simulation for Hyperbolic space but fix the privacy budget μ at 0.1 while varying the sample size $n \in 10, 20, \dots, 100$. The results are provided in Figure 5.

1265

1266

As the sample size n only factors into the result via the computation of the sensitivity. The sensitivity for the sample Fréchet mean under Hadamard manifolds takes the form of $\Delta = 2r/n$ and the rate parameter σ of the noises injected takes the form of $\sigma = \Delta/\mu = 2r/(n\mu)$. Thus, one would expect n and μ to have the same effect on the result. Indeed, this is what is observed in Figure 5, which mirrors what we observed in Figure 2.

1267

1268

1269

Figure 5: Utility Comparison of EWG and RL Mechanisms on Hyperbolic space \mathbb{H}_d . Blue lines with triangular symbols show the Riemannian distances $d(\bar{x}, \tilde{x}_{\text{RL}}^{\text{gdp}})$, and the red line with circular symbols represent the Riemannian distances $d(\bar{x}, \tilde{x}_{\text{EWG}}^{\text{gdp}})$.

1270

1271

F EXPERIMENT WITH VARYING FOOTPOINTS

1272

1273

Supplemental to the results we have in Section 4, we examine the effect of footprint on performance. Here, we repeat the same simulation for Hyperbolic space but we randomly select a point within $B_{r/2}(p_0)$ as the footprint for each simulation. The results are provided in Figure 6.

1274

1275

Compare to the result in Figure 2, we observed the performance of EWG mechanism under randomly selected footprint is slightly worse but still outperform the RL mechanism.

Figure 6: Utility Comparison of EWG and RL Mechanisms on Hyperbolic space \mathbb{H}_d . Blue lines with triangular symbols show the Riemannian distances $d(\bar{x}, \tilde{x}_{\text{RL}}^{\text{gdp}})$, and the red line with circular symbols represent the Riemannian distances $d(\bar{x}, \tilde{x}_{\text{EWG}}^{\text{gdp}})$.

G SELECTING A DATA-DEPENDENT FOOTPOINT

Mentioned in 3.2, if there is no prior knowledge, it might be worthwhile to spend part of the privacy budget to select a data-dependent footprint p_0 . In the context of outputting sample fréchet mean, a natural candidate to use would be the extrinsic sample fréchet mean \bar{x}_E , see Bhattacharya and Patrangenaru (2003, Section 3) for details. The extrinsic frechet mean \bar{x}_E is obtained by

1. Embedding the manifold \mathcal{M} into a ambient Euclidean space via the embedding $j : \mathcal{M} \rightarrow \mathbb{R}^k$: $j(X_1), \dots, j(X_n)$.
2. Compute the Euclidean mean of $j(X_1), \dots, j(X_n)$ as $\overline{j(x)}$.
3. Project the mean $\overline{j(x)}$ back to $j(\mathcal{M})$ via the projection P : $P(\overline{j(x)})$.
4. Lastly, map back to \mathcal{M} by reverse the embedding: $\bar{x}_E = j^{-1}(P(\overline{j(x)}))$.

To obtain a differentially private version of \bar{x}_E , we can simply inject the Euclidean Gaussian noise into $\overline{j(x)}$ to obtain $\overline{j(x)}^{\text{gdp}}$ via the Gaussian mechanism for GDP on Euclidean space. It follows that $\bar{x}_E^{\text{dp}} = j^{-1}(P(\overline{j(x)}^{\text{dp}}))$ is differential private by the post-processing property.

Note that this approach could extend to other \mathcal{M} -statistics as long as there exists a Euclidean counterpart, which is often the case in manifolds.

H COMPUTING RESOURCES

For simulations in section 4.1, refer to `simulation_gaussian.R` and `spd_functions.R` for the affine invariant metric, `simulation_gaussian_le.R` and `spd_functions_le.R` for Log-Euclidean metric, and `simulation_gaussian_lc.R` and `spd_functions_lc.R` for Log-Euclidean metric. Similarly, `simulation_gaussian_hyperbolic.R` and `hyperbolic_functions.R` are used for generating the results for hyperbolic space.

`GDP_plot.R`, `GDP_le_plot.R` and `GDP_lc_plot.R` are for generating the result plots in Figure 1, while as `GDP_hyperbolic_plot.R` are for generating the result plots in Figure 2.

For the computation time comparison, refer to `simulation_gaussian_time.R` and `GDP_time_plot.R`.

For the experiments on OCTMNIST dataset in Section 4.2, refer to `octmnist_data.R` for generating covariance descriptors, `octmnist_gaussian.R` for simulation on the covariance descriptors, and `octmnist_GDP_plot.R` for generating the result plots in Figure 3.

The simulations were performed using R on a PC with a 12th Gen Intel Core i5-12600K CPU with 32 GB of RAM running Windows 11. Computation times for EWG and RL mechanisms are given in Table 1 and Figure 4.