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ABSTRACT

We propose a general and computationally efficient framework for achieving dif-
ferential privacy (DP) on Hadamard manifolds, which are complete and simply
connected Riemannian manifolds with non-positive curvature. Leveraging the
Cartan-Hadamard theorem, we introduce Exponential-Wrapped Laplace and Gaus-
sian mechanisms that achieve -DP, (g, §)-DP, Gaussian DP (GDP), and Rényi DP
(RDP) without relying on computationally intensive MCMC sampling. Our meth-
ods operate entirely within the intrinsic geometry of the manifold, ensuring both
theoretical soundness and practical scalability. We derive utility bounds for priva-
tized Fréchet means and demonstrate superior utility and runtime performances on
both synthetic data and real-world data in the space of symmetric positive definite
matrices (SPDM) and hyperbolic space. To our knowledge, this work constitutes
the first unified extension of multiple DP notions to general Hadamard manifolds
with practical and scalable implementations.

1 INTRODUCTION

Recent advances in Al and machine learning have spurred interest in analyzing complex data
types, particularly those residing on nonlinear manifolds. Among these, Hadamard manifolds,
such as hyperbolic space and the space of symmetric positive definite matrices (SPDM), play
pivotal roles. Hyperbolic spaces provide efficient representations for hierarchical structures via
hyperbolic embeddings (Nickel and Kiela, 2017} |Cetin et al.,[2023)), enhancing both performance
and interpretability in models for tree-structured data (Sarkar, [2011; Chamberlain et al., 2017} |Ganea
et al., 2018 [Peng et al.,|2021). SPDM spaces are critical in medical imaging, especially for modelling
water diffusion in diffusion tensor imaging (Basser et al., [1994; |Le Bihan et al., 2001)), and have
found utility in shape analysis and computer vision tasks such as segmentation and motion tracking
(Fillard et al., 2005; 2007 [Medioni et al., [2000; Brox et al., 2006; /Weickert and Brox| [2002; \Weickert
and Hagen| |2005). The rising importance of manifold-structured data, particularly in the biomedical
domains, naturally raises privacy concerns, necessitating tailored privacy mechanisms that respect the
underlying geometry.

Differential privacy (DP) (Dwork et al., [2006b) offers a rigorous mathematical framework for
quantifying and preserving privacy. While many mechanisms have been developed for Euclidean
data (McSherry and Talwar, 2007 Barak et al., 2007; Wasserman and Zhou, [2010; Reimherr and
Awanl |2019)), they often perform poorly on manifold-valued data due to geometric incompatibility.
These traditional methods typically operate extrinsically by embedding manifold data into Euclidean
space, which can distort geometric structure and result in substantial utility loss. As demonstrated in
Reimbherr et al|(2021), respecting the intrinsic geometry of the data leads to mechanisms that provide
significantly better trade-offs between privacy and utility. This observation highlights the need for
privacy-preserving methods that are not only theoretically sound but also tailored to the geometric
nature of nonlinear data through tools from Riemannian geometry.

The differential privacy framework was first extended to general Riemannian manifolds by Reimherr
et al.| (2021), who introduced the Riemannian Laplace mechanism to achieve e-DP. Since then,
various mechanisms have been proposed to ensure e-DP on manifolds (Soto et al.| 2022} |He et al.,
2025)), with applications in mobile crowd sensing (L1 et al., [2024) and federated learning (Huang
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et al.,|2024)). [Han et al.| (2024) further developed a differentially private Riemannian optimization
framework by perturbing the Riemannian gradient in the tangent space. However, extensions of other
privacy notions such as (e, d)-DP and Gaussian DP (GDP) remain limited. For example, Utpala
et al.| (2023b) extended (g, 0)-DP only to a single manifold, the SPDM space equipped with the
Log-Euclidean metric, which renders the space flat (Arsigny et al.,[2007) and enables closed-form
computations. However, this choice limits generality, as the framework does not extend to other
manifolds, nor to the SPDM space under either the more geometrically faithful affine-invariant metric
or the computationally faster and numerically more stable Log-Cholesky metric. Similarly, Jiang
et al.| (2023) extended GDP to general manifolds, but their calibration algorithm is restricted to
constant-curvature spaces and entails high computational cost. Notably, the sampling procedures
required by both the Riemannian Laplace and Gaussian mechanisms (Reimherr et al., [2021}; Jiang
et al, 2023) depend on Markov Chain Monte Carlo (MCMC), which becomes computationally
expensive in high-dimensional or geometrically complex spaces such as SPDM. These challenges
underscore the need for broader extensions of differential privacy frameworks to general manifolds
and the development of more computationally efficient mechanisms suited for practical applications.

We summarize our key contributions below:

* Unified Extension of DP Notions: We introduce the first mechanisms to extend (e, §)-DP,
Gaussian DP (GDP), and Rényi DP (RDP) to general Hadamard manifolds. Notably, this
includes the first RDP mechanism applicable beyond Euclidean spaces.

* Efficient and Scalable Implementation: Our proposed Exponential-Wrapped mechanisms
avoid computationally intensive MCMC procedures and instead rely on simple sampling
from tangent space distributions followed by the exponential map, enabling efficient and
scalable deployment.

* Strong Empirical Performance: Through comprehensive simulations on SPDM manifolds
under multiple metrics, as well as on hyperbolic space, together with real-data experiments
on SPDM manifolds, we demonstrate that the proposed mechanisms consistently surpass
traditional Riemannian approaches in utility while markedly reducing computational run-
time. Notably, the Exponential-Wrapped Gaussian mechanism achieves substantial utility
improvements in high-dimensional regimes with stringent privacy budgets.

This paper is organized as follows. Appendix [B] reviews key concepts from Riemannian geome-
try (Leel 2006 Petersen, |2006; Pennec et al., |2019; Said, [2021} |Grigoryan, [2009) and differential
privacy (Dwork and Roth, 2014} Mironov, [2017; |Dong et al., [2021;|2022). Section [2| introduces
the Exponential-Wrapped distribution and its calibration for achieving (e, §)-DP, GDP, and RDP.
Section [3.T]addresses the release of differentially private Fréchet means and establishes theoretical
utility guarantees for our mechanisms. Section {4 presents numerical simulations and real-world
experiments, with additional details provided in Appendix All proofs are given in Appendix

2 DIFFERENTIAL PRIVACY ON HADAMARD RIEMANNIAN MANIFOLDS

2.1 EXPONENTIAL-WRAPPED DISTRIBUTION

In measure-theoretic terms, the Exponential-Wrapped Probability is the push-forward of the tangent
space probability via the exponential map. For a manifold M with dimension d > 1, wrapping a
density around the manifold involves volume distortion. This occurs because the exponential map
typically does not preserve the area between the Lebesgue measure on the tangent space and the
reference measure on the manifold.

Let M be a manifold with the Riemannian volume measure v. Given p, a probability distribution
on T, M with a probability density h w.r.t the Lebesgue measure A\, on 7, M, the corresponding
Exponential-Wrapped distribution is defined as the push-forward of i by the exponential, A =
Exp,,, i1, where the * refers to the push-forward by Exp,,, such that A(A) = p (Logp(A)) for any
A in the Borel o-algebra of M. Since we assume M is a Hadamard manifold, Log,, is defined
everywhere on M for any p € M. If follows that the density g of A can be expressed from h and a
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volume change term,
dA dExp,, (\) dA dExp,,. (A\p) h(Log, q)
=—(q)= ot (q9) = 2P (q)h(Log, q) = ————,
dv dv dExp,. (Ap) dv Jp(Log,(q))

where Jp,(u) := [det(D,Exp,)| with DyExp,, : T)M — Ty, ()M denote the differential of
Exp, atu € TyM.

The most attractive property of the Exponential-Wrapped Distribution is its straightforward sampling
procedure. In order to sample from g, it suffices to sample from h: if Uy, ..., U, arei.i.d. random
variables on a tangent space 7, M following the density A, then X; = Exp,(Ui), ..., X, =
Exp, (U, ) are i.i.d. random variables on M following the density g. For a more detailed discussion
on Exponential-Wrapped Distribution, please refer to|Chevallier et al.| (2022).

9(q)

2.2 EXPONENTIAL-WRAPPED LAPLACE MECHANISM

Definition 2.1 (Exponential-Wrapped Laplace Distribution). Let M be a Hadamard Riemannian
manifold with measure v, we define a probability density function w.r.t v as

1 exp (_ | Log,, y — Log,, n||> .
Ipy (Log,, ) o

We called this distribution an Exponential-Wrapped Laplace Distribution with footpoint p,, center
n and rate o > 0. We denote it as EWL(pg, 1, o).

g(y) o

The Exponential-Wrapped Laplace Distribution is the push-forward probability of the tangent space
probability defined by the probability density h(u) oc exp{—|lu — Log, n||/c}. We present the
following theorem to demonstrate how it can be used to achieve e-DP.

Denote D = { X1, Xo,..., X, } as the confidential dataset and D’ = {X], X5, ..., X,,} its neigh-
bouring dataset, where without loss of generality we assume they differ in the first record.

Theorem 2.1 (Exponential-Wrapped Laplace Mechanism). Let M be a Hadamard Riemannian
manifold and f be a M-valued summary with sensitivity A. The Exponential-Wrapped Laplace
mechanism, which output Y ~ EWL(po, (D), A/e), satisfies e-DP.

Compared to the Riemannian Laplace mechanism proposed by Reimherr et al.|(2021), the Exponential-
Wrapped Laplace mechanism defined above offers two primary advantages. First, our method only
requires a rate of A /e to achieve e-DP across all Hadamard manifolds, homogeneous or not. This
is more efficient than the Riemannian Laplace mechanism, which necessitates a rate of 2A /e for
non-homogeneous manifolds. Second, our approach is easier to implement and less computationally
complex. The Riemannian Laplace mechanism relies on MCMC sampling, which is computationally
intensive due to prolonged burn-in iterations and frequent recalculations of Riemannian distances.
These computations escalate in cost with increasing manifold dimensionality. Even in SPDM
space with the Rao-Fisher affine invariant metric, where efficient sampling techniques for the
Riemannian Laplace Distribution exist (Hajr1 et al.l 2016) - MCMC procedures remain necessary,
and the choice of proposal distribution critically affects convergence. In contrast, sampling from
the Exponential-Wrapped Laplace Distribution is straightforward: it involves 1) sampling from
u ~ h(u) < exp{—|lu — Log, nl|/c} and 2) computing Exp,, u. For more details on the sampling
procedure, see Appendix

Remark 1. Note that there is no restriction on the choice of footpoint pg in the Exponential-Wrapped
Laplace mechanism. However, its selection can have an impact on the performance of the mechanism.
Furthermore, to be compliant with the differential privacy definition, the selection of the footpoint
po cannot be based on the private dataset D. For more discussion on the selection of footpoint, see
Section[3.2]

2.3 EXPONENTIAL-WRAPPED GAUSSIAN MECHANISM

Beyond the Laplace mechanism, the Gaussian mechanism stands as one of the most prevalent tools
in DP (Dwork and Roth} |2014; Balle and Wang, 2018al). This section introduces the Exponential-

'A summary f is said to have a sensitivity of A < oo, with respect to d(-, -), if we have d (f(D), f (D)) <
A for any two datasets D ~ D’.
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Wrapped Gaussian mechanism, calibrated to achieve (g, 0)-DP, RDP, and GDP. Initially, we will
define the Exponential-Wrapped Gaussian Distribution as follows.

Definition 2.2 (Exponential-Wrapped Gaussian Distribution). Let M be a Hadamard Riemannian
manifold with reference measure denoted by v, we define a probability density function w.r.t v as

2
1 oy [ H08p, ¥ — Logy, nl” | -
Jpo (LOg,,, ¥) 202

g(y) o<

We called this distribution an Exponential-Wrapped Gaussian Distribution with footpoint pg, tengent
center 1, and rate o > 0. We denote it as EWG (po, 1, 7).

The Exponential-Wrapped Gaussian Distribution is defined as the push-forward of the multivariate
Gaussian distribution, characterized by a mean of Log,, 7 and a covariance of o1, on the tangent

space T, M. We present the following theorem to demonstrate how it can be used to achieve (g, §)-DP.
Theorem 2.2. Let M be a Hadamard Riemannian manifold and f be an M-valued summary.

The Exponential-Wrapped Gaussian mechanism, which output Y ~ EWG(py, f(D), o), satisfies
(€,0)-DP if and only if the o satisfies following condition,

oe A oe A
o — PO ) _ e | — =P < 1
( Apo+ 20) ‘ < Apo+ 2J> =4 W

where 8y, = supp~pr || Log,, (f(D)) — Log,, (f(D))].

Theorem shares similarities with the analytic Gaussian mechanism in|Balle and Wang|(2018a)).
Primary distinction lies in the use of A, rather than the standard sensitivity A in inequality (I). This
substitution generally does not pose significant challenges; if A, proves difficult to compute, A can
be used instead in as A > A, since LogpU is a contraction for Hadamard manifolds.

Implementing the Exponential-Wrapped Gaussian mechanism for (g, §)-DP is straightforward. We
follow a similar procedure as in Algorithm|[I] After determining the appropriate o numerically from
inequality (T)—using a method such as that proposed in [Balle and Wang (2018a)—one can proceed
by first sampling u from the tangent Gaussian distribution Nyang (0, 0°I4). The privatized summary
is then computed as Exp,, (u + Log, (f(D))). For more details on the sampling procedure, see

Appendix

Suppose M is the space of SPDM equipped with Log-Euclidean metric, the Exponential-Wrapped
Gaussian mechanism with footpoint py = I reduces to the tangent Gaussian mechanism in [Utpala
et al. (2023b). Hence, the Exponential-Wrapped Gaussian mechanism is a generalization of the
tangent Gaussian mechanism, as our mechanism can be employed for any Hadamard manifold
equipped with any Riemannian metric. This makes our Exponential-Wrapped Gaussian mechanism
the first working mechanism to achieve (&, 4)-DP in SPDM under the non-Log-Euclidean metric.

Similar to how the Euclidean Gaussian Distribution can be used to achieve GDP, we can calibrate the
Exponential-Wrapped Gaussian Distribution to achieve GDP in the following manner.

Theorem 2.3 (Wrapped Gaussian Mechanism for GDP). Let M be a Hadamard Riemannian
manifold and f be an M-valued summary with global sensitivity /. The Exponential-Wrapped
Gaussian mechanism, which outputs Y ~ EWG(po, (D), A/ ), satisfies j1-GDP.

Previously, Jiang et al.|(2023)) introduced the Riemannian Gaussian mechanism to achieve p-GDP.
However, our approach presents significant advantages in both calibration and sampling. Firstly, the
Riemannian Gaussian mechanism requires the resolution of infinitely many integral inequalities to
calibrate the rate o for a given privacy budget p. The calibration algorithm provided by Jiang et al.
(2023)) is only applicable to constant curvature spaces and is computationally intensive, involving
grid searches and MCMC techniques to compute the integrals. In contrast, our method simplifies
calibration to a straightforward calculation: 0 = A/u. Secondly, like the Riemannian Laplace distri-
bution, sampling from the Riemannian Gaussian distribution involves complex processes (detailed in
section[2.2). Our sampling technique is considerably simpler, requiring only the sampling from a
multivariate Gaussian distribution followed by computations using Exp,, and Log,, . The complete
algorithm is detailed in Algorithm [I]

In a similar fashion, we can use the Exponential-Wrapped Gaussian Distribution to achieve RDP.
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Algorithm 1 Exponential-Wrapped Gaussian Mechanism for y-GDP

Input: sensitivity A, privacy budget 11, query result f(D), footpoint py.
Output: privatized query result f(D)
1: Sample v ~ Niang(0,14).
2: Compute u = Log,, f(D) + ov witho = A/pand f(D) = Exp,, u.
3: Return: f(D).

Theorem 2.4 (Wrapped Gaussian Mechanism for Rényi DP). Let M be a Hadamard Riemannian
manifold and f be an M-valued summary with global sensitivity A. The Exponential-Wrapped
Gaussian mechanism, which outputs Y ~ EWG(po, f(D), A/+/2¢/ ), satisfies (o, €)-RDP.

3 DIFFERENTIALLY PRIVATE FRECHET MEAN AND UTILITY GUARANTEE

3.1 DIFFERENTIALLY PRIVATE FRECHET MEAN

For a comprehensive overview of the Fréchet mean in the context of DP, please refer to Reimherr
et al.| (2021)). Consider a set of data =1, .. ., z,, on the manifold M. The Euclidean sample mean can
be generalized to Riemannian manifolds as the sample Fréchet mean, defined as the minimizer of
the sum-of-squared distances to the data points, Z = arg mingea o, d (z, xi)z. The properties
of Hadamard manifolds guarantee the existence and uniqueness of the Fréchet mean. To ensure the
sensitivity of the sample Fréchet mean is finite, we need the following assumption:

Assumption 1. The data D C B, (mg) for some mg € M, r < co.

The assumption that data lies within a geodesic ball is standard in the field of DP and should not raise
concerns (Reimherr et al.| 2021} |Soto et al.| [2022). Consider two datasets D ~ D’ on M, and denote
Z and T’ as the two sample Fréchet means of D and D’ respectively. Under Assumption we have
d(z,z') < 2r/n.

3.2 UTILITY GUARANTEE

We now analyze the expected utility of our mechanisms in terms of the expected Riemannian distance
to the sample Fréchet mean z.

Theorem 3.1. Let M be a d-dimensional Hadamard manifold and assume assumption [I| holds.
Denote Trwri, as a sample drawn from an Exponential-Wrapped Laplace Distribution with footpoint
po, center T and rate o = 2r /(ne). Trwry is e-DP and we have

Ed({iEWL,.’Z’) < Ud+2d(p0,f). 2)

Similarly, denote Trwg as a sample drawn from an Exponential-Wrapped Gaussian Distribution
with footpoint pg, center T and rate o = 2r/(nu). Trwe is p-GDP and we have,

- d?(po, z
Ed(Zewa,T) < J\/ZL% 1 < (1920 w)) + d(po, Z)
3

< oﬁW + 2d(po, T),

where L/ denote the Laguerre polynomials. If we impose the additional of Secpq > K for some
K <0, we have,

sinh(vKr)
VEr
sinh(VEKr) ~T((d+1)/2)
Ve TV )

Ed(f}EWL,Q_j’) < od, “)

&)

Ed(Zrwg,T) <

where T denotes the gamma function. E]

2Secq denotes the sectional curvature of M.
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Observe that the footpoint p, appears explicitly in the utility bounds equation [2] and equation [3]
highlighting its direct impact on the utility of the mechanisms. To tighten these bounds, it is desirable
to minimize the distance d(pg, Z). When the data are well-dispersed within a ball B,.(m ), the Fréchet
mean typically lies near the center m, making it a natural choice for the footpoint. However, if prior
knowledge suggests that the majority of the data are concentrated in a smaller region R C B,.(mg),
selecting the center of R as the footpoint may yield better utility. In the absence of such prior
information, it may be beneficial to allocate a portion of the privacy budget to privately estimate a
suitable footpoint. See Appendix |G| for a concrete DP mechanism for selecting a data-dependent
footpoint pg.

Furthermore, as the dimension d increases, the leading terms in the utility bounds dominate, reducing
the relative influence of the footpoint, provided the data radius r in Assumption [I|remains fixed. This
implies that in high-dimensional settings, the influence of the footpoint on utility becomes relatively
less significant. Indeed, this trend is reflected in our simulation results on the SPDM space equipped
with the affine-invariant metric, as shown in Section

By contrast, the bounds in equation 4] and equation [5]illustrate how the geometry of the underlying
manifold influences utility through curvature. The sectional curvature lower bound K acts as a
regularizer: smaller values of K correspond to geometries closer to flat and yield tighter utility
bounds. In the limiting case of a flat manifold, these bounds simplify to equalities:

I'((d+1)/2
sl /)
I'(d/2)
in which the footpoint no longer affects the utility. This phenomenon is further confirmed in our

simulations on SPDM spaces equipped with the Log-Cholesky and Log-Euclidean metrics, as
presented in Section 4]

Ed(.’f?EWL, SZ‘) = od, Ed(wag, i‘) =0

4 SIMULATION AND EXPERIMENT

We evaluate the performance of our Exponential-Wrapped mechanisms for releasing GDP-compliant
Fréchet means. Experiments are conducted on the manifold of symmetric positive definite matrices
(SPDM), a standard space in medical imaging (Pennec et al., 2019; Said et al., |2017; |Hajri et al.,
2016). Appendix [B.3|reviews the geometry of SPDM under three metrics, while Appendix
reviews the geometry of the hyperbolic space. Section.1|describes the simulation setup and presents
results. Real-world experiments on the OCTMNIST dataset are provided in section

4.1 NUMERICAL SIMULATION

For the simulation study, we focus on releasing the GDP Fréchet mean on the SPDM spaces S},
under three different Riemannian metrics: the Log-Cholesky metric, the Log-Euclidean metric, and
the affine-invariant metricﬂ and on Hyperbolic space H;. We compare the performance of our
Exponential-Wrapped Gaussian (EWG) mechanism, described in Section[2.3] with the Riemannian
Laplace (RL) mechanism proposed in|Reimherr et al|(2021). A Riemannian Laplace mechanism
that satisfies e-DP can also be interpreted as satisfying pu-GDP, with the correspondence given by
e =log[(1 — ®(—u/2))/®(—u/2)] (Liu et al., 2022).

For SPDM spaces S, we generate samples x1, . .., z, from the geodesic ball B,.(L,,) using the
Wishart distribution as in [Reimherr et al.| (2021, Supplemental 1.2.1). The Fréchet mean ¥ is
computed using formulas equation|9)and equation|8]for the Log-Cholesky and Log-Euclidean metrics,
respectively, while the gradient descent procedure from [Fletcher and Joshil (2004); Reimherr et al.
(2021) is used for the affine-invariant metric. To implement the RL mechanism, we follow the
method of |[Reimbherr et al.| (202 1)); Hajri et al.| (2016), using a burn-in of 10,000 iterations to sample
from the Riemannian Laplace distribution. For our EWG mechanism, we use the method described
in Algorithm [T]and Appendix sampling from the Exponential-Wrapped Gaussian distribution
centred at the fixed footpoint py = I,,.

Throughout these simulations, we fix the sample size at n = 40 and the data radius at» = 1.5 to ensure
constant sensitivity A. With A fixed, we vary the privacy budget ¢ € {0.1,0.2,...,0.7,1,1.5,2} and

3Note that the manifold of SPDM is not inherently Hadamard; this property depends on the choice of
Riemannian metric.
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Figure 1: Utility Comparison of EWG and RL Mechanisms across Three Metrics. Blue lines with
triangular symbols show the Riemannian distances d(Z, xRi ), and the red line with circular symbols

represent the Riemannian distances d(Z, xEWG) Results are shown for the Log-Cholesky (top),
Log-Euclidean (middle), and affine-invariant (bottom) metrics.

manifold dimension d = m(m 4 1)/2 € {3,10,15}. Let Z&P and Z5% , denote the outputs of the

RL and EWG mechanisms, respectively. Figureshows the average Riemannian distances d(Z, zgR‘;f’)

(blue triangles) and d(Z, ng\‘,’VG) (red circles), computed over 100 independent runs. Shaded regions
indicate standard errors around the sample means. Results are organized by metric: the top, middle,
and bottom rows correspond to the Log-Cholesky, Log-Euclidean, and affine-invariant metrics,
respectively.

Across all three dimensions d € {3,10,15} and a wide range of privacy budgets p € [0.1,2],
the EWG mechanism consistently outperforms the RL mechanism under the Log-Cholesky and
Log-Euclidean metrics. Under the affine-invariant metric, the EWG mechanism shows degraded
performance at moderate to high privacy budgets 1 € [0.7, 2] when d = 3. This degradation reflects
the influence of curvature on utility: as the privacy budget increases and less noise is injected,
the effect of footpoint misalignment becomes more pronounced. However, for higher dimensions
d = 10, 15, the EWG mechanism outperforms the RL mechanism across nearly all privacy budgets.
In high dimensions, utility is dominated by noise magnitude rather than footpoint alignment, leading
to more stable performance.

Similarly, for hyperbolic space E;, we generate samples x4, . .., z, uniformly from the geodesic
ball B,(p) withp = (1,0,---,0), » = 1.5 and n = 40 fixed throughout the simulation. Same as
the SPDM space equipped with Affine-Invariant metric, the Fréchet mean z is computed using the
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gradient descent procedure from [Fletcher and Joshi| (2004); Reimherr et al.|(2021). To implement the
RL mechanism, we follow the sampling method of |Pennec et al.| (2019). For our EWG mechanism,
we use the method described in Algorithm [I]and Appendix |C.4] sampling from the Exponential-
Wrapped Gaussian distribution centred at the fixed footpoint py = (1,0, - - - ,0).The results, shown
in Figure [2| are much more consistent compared to S, with Affine-Invariant metric. Across all
dimensions d € {3,10, 15} and all privacy budget, the EWG mechanism consistently outperforms
the RL mechanism, which is similar to the scenarios of S}, under Log-Euclidean and Log-Cholesky
metrics. This suggests that in spaces with more regular, less exotic geometry, the influence of the
footpoint on performance is reduced.

Hyperbolic; d = 3 Hyperbolic; d = 10 Hyperbolic; d = 15

N

N
o
Riemannian distance
N
Riemannian distance

o

- EWG
- RL

- EWG
-+ RL

- EWG
-+ RL

w

N
(6]
w

-
o
N

N

o
o
N

Riemannian distance

o
o
o
o

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

Figure 2: Utility Comparison of EWG and RL Mechanisms on Hyperbolic space H,;. Blue lines with
triangular symbols show the Riemannian distances d(Z, jﬁip), and the red line with circular symbols
represent the Riemannian distances d(Z, JZ’%%{}G).

In addition to improved utility, the EWG mechanism offers a substantial computational advantage
over the RL mechanism. As shown in Table[I] EWG requires significantly less runtime, often by
several orders of magnitude, especially as the manifold dimension increases. This efficiency stems
from its straightforward sampling procedure (see Section[2.3]and Algorithm|[T), in contrast to the RL
mechanism’s reliance on MCMC with a long burn-in, making EWG more scalable and practical for
high-dimensional settings.

4.2 REAL-WORLD EXPERIMENT ON OCTMINST DATASET

In this section, we compare our EWG mechanism to the Riemannian Laplace mechanism for releasing
the GDP Fréchet mean on the real-world dataset OCTMINST. As one of the 12 standardized 2D
datasets in the MedMNIST collection (Yang et al.,|2023)), OCTMINST consists of 28 x 28 greyscale
images and is derived from Optical Coherence Tomography (OCT) medical imaging data. Following
prior work (Utpala et al., [2023a}; Tuzel et al., [2006)), we extract covariance descriptors from each
image to represent them as points on the space of 5 x 5 SPDM, S5+ , equipped with the Log-Euclidean
metric. These descriptors serve as structured, manifold-valued features for comparison. The detailed
covariance descriptor construction is given below.

To perform tasks such as classification on medical imaging datasets, it is common practice to extract
a covariance descriptor from each image, using it as a representative feature of the image. Here, we
follow a similar approach as in|Utpala et al.|(2023a); [Tuzel et al.| (2006) to extract the covariance
descriptors. Let Z € R"*™ be an greyscale image of height A and width w and Z(x) denote the pixel
intensity at position « and y with x = (z, y). The covariance descriptor is given by

By(@) = | 757 G000 ~ (@00 — )T | + 1L
x€eS
where ¢(Z)(x) is defined as the following,
0Z(x)| |0Z(x)| |0°Z(x)| |0*Z(x)
200, [ Z522). |22 |9 |2 2E ).

We set n = 107% to ensure the covariance descriptors are positive definite. It follows that each
covariance descriptor R, (Z) is an element of S with d = 5(5 + 1)/2 = 15.
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Equipping S5~ with the Log-Euclidean metric, we have
d(R,(Z),1) < V5max {|log(n)|, |log(5 - 255% + n)|} (6)

by following a similar computation as in|Utpala et al.|(2023a)). Note that, different from the experiment
in Utpala et al.| (2023a), we did not normalize the pixel value/intensity Z to be between 0 and 1.
Based on (@), the data must reside in B, (I) where r is determined by the righthand side of (6 and

thus the sensitivity for computing Fréchet mean is then A = sup;../ d(Z,Z’') < 2r/n.

We compute a covariance descriptor for each image in the dataset, then calculate the sample
Fréchet mean z under the Log-Euclidean metric. We then release a GDP version 8% us-
ing both the Exponential-Wrapped Gaussian (EWG) mechanism and the Riemannian Laplace
(RL) mechanism (Reimherr et al., 2021)), each calibrated to the same privacy budget y €
{0.1,0.2,...,0.7,1,1.5,2}. For EWG, we fix the footpoint at py = I5 and apply Algorithm
For RL, we follow the MCMC-based sampling procedure with 10,000 burn-in steps.

There are four different classes in the OCTMNIST dataset, labelled from 0 to 3. We compare
the utility between our EWG mechanism and RL mechanism in each of the four classes. Denote

iﬁip, :JE%%@G as the output of the Riemannian Laplace mechanism and Exponential-Wrapped Laplace

mechanism respectively, the plots in Figure [3{display the average Riemannian distances d(Z, 1_7%(%}\)/(;)

(in red with circular symbols) and d(Z, Zg; ") (in blue with triangular symbols) across 100 Monte
Carlo replications for each class. Shaded regions indicate standard errors around the sample means.
Similarly to the numerical simulation, our EWG mechanism achieves better utility across different
privacy budgets. These results confirm that EWG provides practical scalability and strong utility
guarantees for differentially private inference on real-world manifold-valued data.
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15
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Figure 3: Utility Comparison of EWG and RL Mechanisms for Class 0 to 3 in the OCTMNIST data
under Log-Euclidean metric. Blue lines with triangular symbols show the Riemannian distances

d(z, #&P), and the red line with circular symbols represent the Riemannian distances d(Z, ;%%%SG).

5 CONCLUSION AND FUTURE DIRECTIONS

We introduced Exponential-Wrapped Laplace and Gaussian mechanisms for achieving differential pri-
vacy on Hadamard manifolds. These mechanisms support multiple privacy notions—(e, 6)-DP, Rényi
DP, and Gaussian DP—and operate entirely within the intrinsic geometry of the manifold. Crucially,
they avoid MCMC sampling by leveraging efficient push-forward sampling via the exponential map.
Theoretically, we derived utility bounds for both mechanisms that capture the impact of curvature,
dimension, and footpoint alignment on the privatized Fréchet mean. Empirically, we showed that
the Exponential-Wrapped Gaussian mechanism consistently outperforms the Riemannian Laplace
mechanism on flat manifolds and performs competitively on curved manifolds, with substantial
improvements in runtime.

Several avenues for future work remain. First, determining an optimal or data-adaptive choice
of footpoint py could improve utility in non-constant curvature settings. In particular, strategies
for privately selecting py are worth exploring. Second, extending our framework to manifolds
with non-negative curvature, such as spheres, is a natural direction. Finally, we aim to extend
our approach beyond Fréchet mean estimation to more complex tasks such as principal geodesic
analysis (Huckemann et al., 2010j [Fletcher et al.,|2003; [Zhang and Fletcher, [2013)) and regression on
manifolds (Cheng and Wu, [2013)).
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A  PROOFS

A.1 PROOF OF THEOREM [2.]]

Proof. Denote the Exponential-Wrapped Laplace mechanism as M and its density as g; correspond-
ing to f(D) and g corresponding to f(D’). To show P(M (D) € S) < e*P(M(D') € S) for all
measurable set S, it’s sufficient to show that,

1(y)
92(y)

Q

<ef

Denote 71 = f(D) and 15 = f(D’), we simplify the ratio on the left-hand side,

S (_ l Logy, (y>—Logp0<m)|\>
g1(y)  Tpp(Tog,, ) P -

y) 1 [ Log,, (y)—Log, (772)”)
W) Ty (T80 (1)) exp T

~ exp {1 [ Log,, () — Log,, (n2)]| — || Log,, (4) — Log,, ()]l }

IN

| /\

exp { | Log,, (m1) — Log,, (n2)||} , triangle inequality

{ d(n1,m2 } Log,, is a contraction for Hadamard manifold
<ef, foro=—.

€

Q-

I
Sl

A.2 PROOF OF THEOREM [2.7]
Proof. Let gy, n,o denote the Exponential-Wrapped Gaussian Distribution with footpoint pg, center

71 and rate 0. From Balle and Wang| (2018a)), our Exponential-Wrapped Gaussain mechanism satisfies
(¢, 6)-DP if and only if,

sup /A Gromno () d(y) — € /A Grommo () dv(y) < 6,

D~D’
where A = {y | 9po.m.0(4)/9po.na,0(y) = €}, = f(D) and 2 = f(D'). We have
Ipo,m o (y)
Ypo.na.o (Y)

1
=exp {202 [l Log,,, (y) — Log,, (n2)||> — || Log,, () — Log,, (m)|*] }
1
=exp { 552 [—2 (Logy, (y) — Log,, (1), Logp, (n2) — Logp, (m)) + || Logp, (n2) — Logp, (1) |I°] } :
Denote A 5, . = || Logp, (12) — Logp, (11)]]. It follows that,
A2
A=y | (Logp, (y) — Logy, (1), Logp, (n2) — Logp, (m)) < —o’e + —Fo

Apply change of variable with u = Log,, y, we have

sup | N(u|Logp, (m), o’I) d\(u) — € | N(u | Logp, (12),0°L) dA(u) < 6,
~D’ A* A*
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where A is the Lebegue measure on the tangent space 7},, M and

A2
A* = {u | <u — Lngo(nl)aLngo<n2) - Logpo(m» > o2 + ,,02771"2} '

It follows that,

A
N(U | Lngo(n1),02I) d)\(’U,) — & (_ ge + poﬂhﬂ]z) ]
Ax Apo.mme 2e
Take a similar approach for the second integral, we have
A
J\/(U | Lngo(n2)702I) d)\(u) - (_ ge _ poﬂhﬂ?z) )
A* A;D()Jh,'flz 2e

Finally, we have

o(_C¢ +Ap0 T +Ap0 <o,
Ay 20 Ay, 20
where A, = suppopr Apg,ny n. as needed. O

A.3 PROOF OF THEOREM[2.3]

Proof. Using definition[B.3] we need to show the following,
Ve 2 0, 50 [ oo 0) 0) = € [ gpnnlv) dvly) £ 5,(6) ™
DD’ S A A
where g denotes the density of the Exponential-Wrapped Gaussian Distribution. From the proof in

[A2] we have
sup / Ipo,m .o (y) dv(y) — e /A Ipouns.o (y) dv(y)

D~D' J A

oe A o€ A
=d ( — Po ) _ et [ — Po
(2o 3) e (5

Po

Thus, the equality in holds if and only if ¢ = A, /p. Since Log,, is a contraction for any
po € M (for Hadamard manifold M), we have A > A, and o = A/p achieves y-GDP as well.

O
A.4 PROOF OF THEOREM [2.4]

Proof. Let M denote the Exponential-Wrapped Gaussian mechanism, we have
Do(M(D)||M(D"))

1 1 !
a8 / Ipo (Logy, (¥)) (V2mo)d

« 11—«
exp {—202 [lITog,, y = Logy, m|*] — =5l Log,, y — Log,, 772||2} dv(y)

a(l —a)
202

s
= logexp < —

. | Log,,, m — Log,, n2||2} , completing the squares
o —

«
= @H Logpg mn— Logpo T’2||2

Q—Qd(m — )2, Log,,, is a contraction for Hadamard manifolds
o
O A2
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A.5 PROOF OF THEOREM[3.1]

First, we will show the proof for bounds in (2) and (3).
Lemma 1. Let M be a d-dimensional Hadamard manifold.

1. Denote y as a sample drawn from an Exponential-Wrapped Laplace Distribution with
footpoint pg, center n and rate o, then we have,

Ed(y,n) < od + 2| Log,, nl|-

2. Denote y as a sample drawn from an Exponential-Wrapped Gaussian Distribution with
Jfootpoint py, center n and rate o, then we have

Ed(y,n) < U\/gLfgl (_d(po2,7])> +d(po,m) < 0\[%/12))/) +2[| Log,,, nl|-

Proof. For Exponential-Wrapped Laplace Distribution, denote

C(U)—/exp< ”f_”) dA(2),

then we have

Ed(y,n)
Clo)™! ( | Log,, y — Log, nl)
= [ d(y,n)—=—~——exp | — 0 0 dv
[ dtw.m) T o7 ~ v)
Clo)~! | Log,,, y — Log,, 1]l . . .
< |/|d - — Po Po d d t 1 lit
_/ (y,po)Jpo(LOgm ” ex ~ v(y) + d(po,n), triangle inequality

Clo)1 | Log,, ¥ — Log,, nll
-/ ||Log,,oy||(( " e (— v v )du<y> + d(po,n)
Po

Log,, ) o

[|[u + Log,, nll u
7)’” exp U dA(u) + d(po,n), v = Log,, y — Log, n

_C /||u||exp< [ ”) A(u) + 2d(po, n), triangle inequality

1 0
= <o—/ 41 exp(—r) d7“> / o?r?exp(—r) dr 4 2d(po, n), spherical coordinates
0 0

=od + 2d(p07 77)

Similarly, for the Exponential-Wrapped Gaussian distribution, we have,

Ed(y,n)
o —d [0) — Lo 2
:/d(ym) (v270) oxp (_IIL 8po ¥ — Log,, 7l )dy(y)

Ipo (LG, Y) 20?
< Ed(y, po) + d(po,n)-
Note that since (Log,,, ¥)/o ~ N (Log, n,1), d(y,po)/o follows a noncentral chi distribution and

have a mean of
7 raj2—1 (_dpo, n)?
2 1/2 2 ’

where L /5 denote the Laguerre polynomials. Thus, we have

Ed(y,n)
T _d/2- d(po,n)?
<50 (<152 ) + dw.
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However, this upper bound is hard to interpret. We will also derive a less tight upper bound but with
better interpretability as follows.

Ed(y,n)
yes —d [0) — Lo 2
:/d(y,n) (v2ro) exp (_L 8po ¥ — Log,, 1] )dy(y)

Ipo (108, ) 20°

||+ Log,, nll [l
/ T x| =5 = | dA(w) +d(po. 1), u = Log,,y — Log,, 7

IIUH Al : , .
< ( exp dA(u) + 2d(po,n), triangle inequality

27 20
zaﬁW + 2d(po,n), since — H ” ~ Xd-

Bounds (2) and (@) follows from Lemma [T]directly. Now, we prove the bounds in () and (3).

Proof. Under the assumption that | Secy(| < K for some K > 0, then by Rauch comparison
theorem (Fefferman et al., 2020, Page 1082), we have

bmf}ﬁr)lllogpo( ) —log,, («)]| < d(z,2") < Sim\l(i\f”nlogpo(m) —log,, ()],

for any x, 2’ € B, (po).

It follows that
sin(v Kr) sinh(VKr)
WH logpo (y) — 10ng Ml <d(y,n) < WH logpo (y) — 1ngo (mll;

for any 1,y € By(po).

Under Assumption |1} we have np € B,.(po). For y € B,.(po), we want project y back into B, (po).
Note that this is no privacy leakage during this step, as the projection only depends on pgy and r,
which requires no privacy protection. Denote y* as the projection of y back into B,.(p), defined as

T
* = — _log, y]).
YT (Illogpoyll %80 y)

Immediately, we have || log,,  y* —log, 7l < |/log,, y —log,, nl|. After the projection, we have,

Ed(n,y) = /B (po)d(n,y) dP(y) + /M\B (po)d(n,y*)dﬁ”(y)

<[ N I}f) og, () — logy, (4)]| dP(y)
o s‘“\l(r;f’")n log, (1) — oy, (u°)1| AB(y)
< *‘”f}f”n logy, (n) — Togy, ()] AE(y)
+ /M\B . Sin}\l%i?r)n log,, (1) —log,, ()|l dP(y)
-/ O g, (1) ~ g, ()] 4F0)
_ sinh(vVKr)

7 ——=—"E|/log,, (1) —log,, ()]
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Note that from the proof for Lemma[I] we have

E| log,, (y) — log, (n)|| = od, for Laplace mechanism,
ri((d+1)/2
E| log,, (y) — log,, (m)| = U\@W, for Gaussian mechanism.
The result follows. 0

B BACKGROUND MATERIALS

B.1 RIEMANNIAN GEOMETRY

Let M be a d-dimensional Riemannian manifold endowed with a Riemannian metric g, which assigns
to each point p € M a smoothly varying inner product (-, -),, on the tangent space T, M. This inner
product induces a norm ||v||, = (v, v) ,1,/ ?, enabling the measurement of geometric quantities such as
angles, lengths, and distances. For a smooth curve v(t) on M, the length is given by

L(y) = / 158 oy dt = / SO A D)0 d.

Curves that locally minimize length are called geodesics, and they play a central role in defining
intrinsic geometry. A Riemannian manifold is said to be geodesically complete if every geodesic
can be extended to the entire real line R; we assume this property holds throughout. Based on the
definition of length, the distance between any two points p, ¢ € M is defined as the infimum of the
lengths over all piecewise smooth curves joining them:

d(p,q) = inf L(7).

#.9) ¥(0)=p,y(1)=q ™
In local coordinates, the metric g is represented by a positive definite matrix g = (g;;), and the
Lebesgue measure is denoted by A. The metric tensor induces a natural volume measure v on the

Borel g-algebra of M, given in coordinates by dv = /| det g| d\. This Riemannian volume measure
will serve as the default reference measure for integration and probability throughout the paper.

Geodesic completeness ensures that the Riemannian exponential map is globally defined. Given a
point p € M and a tangent vector v € T, M, the geodesic . (t) satisfying v, ,)(0) = p and
Y(p,w)(0) = v exists for all ¢ € R, and defines the Riemannian exponential map via Exp,(v) =
Y(p,v)(1). Around each point p, there exists a neighbourhood V' C T, M and U C M such that the
restriction Expp|v : V' — U is a diffeomorphism. Its inverse, the Riemannian logarithmic map, is
denoted by Log,, : U — T}, M and satisfies Logp(q) = v whenever ¢ = Expp(v). In such normal
neighbourhoods, the Riemannian distance can be expressed in closed form as d(p, ¢) = ||Log,(q) ||,
reducing the computation of distances to norms in the tangent space.

The primary focus of this paper is on Hadamard manifolds, which are simply connected complete
Riemannian manifolds of non-positive curvature. It is named after the famous Cartan-Hadamard
theorem which states that for any d-dimensional Hadamard manifold M, it is differomorphic to
R? and more precisely, at any point p € M, the exponential mapping Exp, : TpM — M s a
diffeomorphism and thus Log, is defined everywhere on M. This property enables us to develop
the Exponential-Wrapped mechanisms in Sections [2.2]and [2.3] Another important property of the
Hadamard manifold is that Log,, is a contraction for any p € M. That is, || Log, ¢1 — Log, g2l <
d(q1, g2) for any p, g1, g2 € M. For more technical details on Hadamard manifolds, please refer to
Petersen! (2006); Shiga| (1984).

B.2 DIFFERENTIAL PRIVACY

Differential privacy (DP) is a principled framework for quantifying privacy guarantees in data analysis.

Definition B.1 ((Dwork et al., 2006a)). A data-releasing mechanism M is said to be (e, §)-DP with
€ >0,0 <6 <1, iffor any adjacent datasets, denoted as D ~ D', differing in only one record, we
have Pr(M (D) € A) < e* Pr (M (D’) € A) + § for any measurable set A in the range of M. For
0 =0, M is said to be e-DP.
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Since (e, 9)-DP is a well-defined concept on any measurable space (Wasserman and Zhou, [2010),
it can be readily extended to any Riemannian manifold equipped with the Borel o-algebra. One
relaxation of e-DP is the Rényi DP, which is based on Rényi divergence. It shares many important
properties with e-DP while allowing tighter analysis of composite heterogeneous mechanisms.

Definition B.2 ((Mironov, 2017)). A mechanism M is said to have c-Rényi Differential Privacy
(RDP) of order a, or (a, €)-RDP for short, if Do (M (D)||M (D')) < € for all neighbouring datasets
D ~ D', where the Rényi divergence of a finite order o # 1 is defined as

o)

and Renyi divergence at orders o = 1, 00 are defined by continuity.

1
Da(PQ) = ElongNQ (

Another way of extending the differential privacy definition is through the viewpoint of the statistical
hypothesis testing (Wasserman and Zhou, [2010; |Kairouz et al., 2017). In the context of hypothesis
testing, we define Hy: the underlying dataset is D and H;: the underlying dataset is D’. As the
values of € and d decrease, the task of conducting this hypothesis testing becomes more difficult. This
means that detecting the presence of an individual based on the outcome of the mechanism becomes
increasingly challenging. With this interpretation in mind, we can extend (&, §)-differential privacy
to Gaussian differential privacy (GDP).

Denote the outcome distribution under Hy and Hy as M (D) and M (D'), respectively. We introduce
the optimal trade-off function between type I and type II errors as follows,

T (M(D),M (D)) :10,1] = [0,1], aw— T (M(D),M (D)) (a),

where T (M (D), M (D)) («) is the smallest type II error when type I error equals . GDP centres
around this optimal trade-off function and is defined as follows.

Definition B.3 ((Dong et al., [2022)). A mechanism M is said to satisfy p-Gaussian Differential
Privacy (u-GDP) if T (M (D), M (D')) > G, for all neighbouring datasets D ~ D' with G, :=
T(N(0,1), N(u, 1)).

However, the involvement of the optimal trade-off function T'(M (D), M (D')) makes Definition B.3]
difficult to work with on Riemannian manifolds. To make this definition more tractable, we adapt the
equivalent characterization from Jiang et al.[(2023)), which is based onDong et al.| (2022, Corollary
D).

Definition B.4 (Gaussian Differential Privacy (Dong et al.| 2022} Jiang et al.|[2023)). A M-valued
data-releasing mechanism M is said to be i-GDP if it’s (€,0,(¢))-DP for all € > 0, where

b =e(5+5) o (55,

with ® denotes the cumulative distribution function of the standard normal distribution.

B.3 SPDM SPACE

Let S; denote the manifold of m X m real symmetric positive-definite matrices, with tangent space
at each point identified with S,,,, the space of m x m symmetric matrices. The affine-invariant
(Rao-Fisher) Riemannian metric endows S, with non-positive sectional curvature and desirable
invariance properties, but introduces substantial analytical and computational complexity. In contrast,
the Log-Euclidean and Log-Cholesky metrics induce flat Riemannian geometries on S}, each derived
from a bi-invariant Lie group structure: the former using the matrix logarithm, and the latter the
Cholesky decomposition. The Log-Euclidean metric defines distances via the Frobenius norm by
applying the matrix logarithm Log, ||Log(p) — Log(q)||r, allowing closed-form expressions for
geodesics and Fréchet means. The Log-Cholesky metric offers similarly explicit formulas while
providing improved numerical stability and computational efficiency.

Consider the data Xq,..., X, € S,‘;. Under the Log-Euclidean metric, the sample Fréchet mean has
the following closed-form expression,

1 n
z = Exp {n > Log(X»} , ®)
=1
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where Exp and Log denote the matrix exponential and logarithm maps.

Under the Log-Cholesky metric, the sample Fréchet mean has the following expression,
T=z"(z%)", )

where
B 1 n 1 n
7= ;:1 L; + Exp {n ;:1 LogD(Li)} , (10)

with L; being the cholesky decomposition of X; such that ;L] = X;, |-] returning the strictly
lower triangular matrix, and D(-) returning the diagonal matrix. Refer to|Arsigny et al.| (2007); |Lin
(2019) for more details.

Although these metrics forgo affine invariance, their flatness simplifies analysis and makes them
particularly suitable for statistical inference and privacy-preserving tasks. In the simulations that
follow, we compare all three metrics, with particular emphasis on the Log-Euclidean and Log-
Cholesky approaches due to their practical advantages. For more details on SPDM spaces and these
metrics, refer to|Arsigny et al.| (2007); ILin| (2019); Said et al.|(2017); Reimherr et al.| (202 1}).

B.4 HYPERBOLIC SPACE

Hyperbolic space is a space of constant negative curvature. Here, we will focus on the Lorentz model
Hyg, also referred to as the hyperboloid model, of hyperbolic space. For the Lorentz model H,, each
point is identified with = € R9*+! such that (z, ), = —1 with the Lorentz inner product defined as
follows,

n

(z,y)r = Toyo + Zl“zyz
i=1

The distance between two points x,y € H, is then defined as,
dr(z,y) = arccosh(—{z,y)1).

The tangent space T, H, at each point 2 € Hy; is identified as {u : (u,z);, = 0}. The exponential
map exp,, has the following closed-form expression,

expy (u) = cosh(|[uf| L)z + sinh([|u] )

u
llull”

with ||u||, = 4/(u, ). Similarly, the logarithm map has the following expression,

arccosh(«)
lo = ———"(y — ax),
with @« = —(x,y). For more details on the Lorentz model, see Nagano et al.| (2019); (Cho et al.

(2022).

C SAMPLING FROM EXPONENTIAL-WRAPPED DISTRIBUTION

C.1 EXPONENTIAL-WRAPPED LAPLACE DISTRIBUTION

The EWL Distribution is the push-forward probability of the tangent space probability defined by
the probability density h(u) oc exp{—|lu — log, n||/c}. The sampling procedure for the EWL
Distribution is straightforward:

1. Sampling from u ~ h(u) oc exp{—|lu — log, 7| /o}.

2. Computing exp,, u.
Note that the sampling step u ~ h(u) needs some clarification. We want to emphasize that || - || within

step 1 is not the l3-norm but rather the norm induced by the Riemannian metric g,. Note that the
tangent space 1, M equipped with g,, can be identified with R? equipped with the Euclidean metric
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as follows. Let {e1, ..., eq} be an orthogonal basis w.r.t. g, on T, M, then any point v € T), M can
be identified with a point v* € R? via the following map,

d
Lp:TpM—HRd, szaieil—MP(v):(al,...,ad), (11)
i=1

Denote this map as ¢, : 7,M — R%, and note that ¢, is a isometry for any p € M as,

9p(v1,v2) = 1p(v1) Ty (v2) = (1p(01), 1(v2)),

where (-, -) denote the euclidean inner product here. Putting it together, we have the following
sampling procedure,

1. Sampling from u ~ h(u) o< exp{—|ju — tp, (logm n)|l2/c}.

2. Computing exp,, (L, (u)).

C.2 EXPONENTIAL-WRAPPED GAUSSIAN DISTRIBUTION

Implementing the EWG mechanism for (¢, §)-DP is straightforward. We follow a similar procedure
as in Algorithm[I] After determining the appropriate o numerically from inequality (I)—using a
method such as that proposed in|Balle and Wang|(2018b)—one can proceed by

1. first sampling u from the multivariate Gaussian distribution A/(0, o21,).

2. The privatized summary is then computed as
exPy, {tpy (W) + 1y, [log,,, (F(D)]} -

Suppose M is the space of SPDM equipped with log-Euclidean metric, the EWG mechanism with
footpoint py = I reduces to the tangent Gaussian mechanism in |Utpala et al.|(2023b). Hence, the
EWG mechanism is a generalization of the tangent Gaussian mechanism, as our mechanism can be
employed for any Hadamard manifold equipped with any Riemannian metric. This makes our EWG
mechanism the first working mechanism to achieve (¢, 4)-DP in SPDM under the non-log-Euclidean
metric.

The implementation of the EWG mechanism for 4~-GDP is similar.

C.3 SAMPLING FROM EWG ON SPDM SPACE

Here, we discuss how to sample from the EWG distribution on SPDM space equipped with the three
different metrics. All the sampling procedures are summarized in Algorithm 2]

(i) Affine-Invariant metric We note that the Riemannian metric gp on Tp S}, is defined as,
gp(X,Y) = trace(P~* X P~'Y).
Due to the affine invariant property of the Affine-Invariant metric, we have,
QP(X, Y) =g, (P)fl/Q)(ijl/Q7 P71/2YP71/2)
= trace(P~Y2X P12 p~1/2y p~1/2)
_ <P_1/2XP_1/2, P_1/2YP_1/2>F7
where (-, -) - denotes the Frobenius inner product. Note P~'/2X P~1/2 € S, the space of m x m
symmetric matrices, we can map them into R™("+1)/2 via the function vecd : S,,, — R™(m+1)/2
which is defined as
vecd(W) = (diag(W) T, V2 oftdiag(W) ") T,
where diag(W) / is an m-dimensional vector containing the diagonal entries of W and offdiag(Y") is

an m(m — 1)/2-dimensional vector containing the off-diagonal entries of W copied from below the

diagonal columnwise (or above the diagonal row-wise). The inclusion of the factor /2 for the off
diagonal entries ensure that ,

(X,Y)p = veed(X) Tveed(Y),

21



Under review as a conference paper at ICLR 2026

forany X,Y € 5,,. See/Schwartzman| (2006}, [2016)) for more details on this vectorization operator.
It follows that the map ¢ p defined as

vp TS — R™MMAN/2 0 Xy veed(P~Y/2X P~Y/2) (12)
is an isometry. Thus, to sample from EWG with footpoint p, tangent center ), and rate ¢ > 0 under
the Affine-Invariant metric can be summarized as follows.

1. Map the tangent center to R™(™+1)/2 vialog, and tp, as tp, [log,, (1)]-
2. Sample u ~ N (1, [log, (1)], o°14).
3. Map u back to M via ¢, I and exp,, as exp, {i,!(u)}.
(ii) Log-Euclidean metric For both Log-Euclidean and Log-Cholesky metric, we fix the footpoint

to be I,,, as the footpoint will have no impact on the result due to vanishing curvature and I,
simplifies the computation a bit. We note that under the Log-Euclidean metric, we have,

g1, (X, Y) = trace(XY) = (X,Y)p.
Thus, follows a similar argument as in the Affine-invariant case and note that vecd is a isometry
between Tt, ;- and R"™("+1)/2 we can sample from EWG with footpoint p, tangent center 7, and
rate o > 0 under the Log-Eucldiean metric can be summarized as follow.
1. Map the tangent center 1) to R"("+1)/2 via Log and vecd as vecd[Log(n)].
2. Sample u ~ N (vecd[Log(n), 0%1,).
3. Map u back to M via vecd " and Exp as Exp {Vecd_l(u)}.

Note that Exp and Log denote the matrix exponential and logarithm, respectively.

(iii) Log-Euclidean metric We note the following relation,

st e I iy
where
1. £ denotes the space of upper triangular matrices,
2. LT denotes the space of upper triangular matrices with postive diagonal entries,
3. & denotes the Log-Cholesky decomposition,
4. IBTg is defined as,

log (K) = | K| — |L] + D(L)Log{D(L)'D(K)},
5. and the operator vecd is defined as follow,
\E&(X) = (diag(X) ", offdiag(z) ") for X € L.

Once again, we have (X,Y)p = \;a\c_a(X)T\ECJd(Y) forany X,Y € £, and thus vecd is a isometry

between £ and R"™("™+1)/2 Combine with fact that logy, o .Z is aisometry between St and £ , we
have — =
vecdology o

is a isometry between S;t and R™(™+1)/2 Thus, to sample from EWG with footpoint py, tangent
center 7, and rate o > 0 under the Log-Cholesky metric can be summarized as follow.

1. Map the tangent center 1) to R™("+1)/2 5
vecd o ﬁélm o Z(n).
2. Sample
u~ N{\;)\(_:a o lfongm o,i”(n),azld} .
3. Map u back to M as
[veAca ology of] ).
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Algorithm 2 Generate GDP Fréchet mean on SPDM space
Input: Data radius r, privacy budget p, private data Xy,..., X, € S;, Riemannian Metric p,
footpoint py for Affine-Invariant metric.
Output: Privatized Fréchet mean 7555, € Si.
1: Sample v ~ N (0,1;) with d = m(m +1)/2.
2: if p = p'F then
3:  Compute sample Fréchet mean Z using equation [§]
4 Compute 750, = Exp (Log(z) + vecd™ ! (av)) with o = 2ro/p.
5: else if p = p"C then
6:  Compute sample Fréchet mean Z using equation[9]
7
8

— —
Compute L = expy <log1m o Z (%) + veed (av)) with o = 2rg/p.

Compute 720, = LLT.

9: else if p = p”! then

10:  Compute sample Fréchet mean x using Gradient Descent algorithm.

11:  Compute 5P, = expy, {tp (tpollog,, ()] + ov) } where ¢y, is defined in equation
12: end if ;

13: Return: Z§y -

C.4 SAMPLING FROM EWG ON HYPERBOLIC SPACE

To sample from EWG with footpoint p, tangent center 1, and rate ¢ > 0 on H;, we modifies the
approach described in|Cho et al.|(2022)), which is stated below:

1. Map the tangent center 1) to T;,,Hy as log,, (1).
2. Sample u ~ N(0,021;) and parallel transport the vector [0, u] to the tangent space T}, Hy,

u= PTelﬁpo ([O» u])
3. Map u + log,, (n) back to Hj via exponential map,

exp,, (0 + log, (1))

D CoMPUTATION TIME COMPARISON

o6l TEWG
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m

Figure 4: Computation time comparison of EWG and RL Mechanisms under the affine-invariant
metric. The blue line with triangular symbols represents the RL mechanism, while the red line with
circular symbols represents the EWG mechanism. The RL mechanism is implemented with a burn-in
size of 10,000.

23



Under review as a conference paper at ICLR 2026

Table 1: Computation time (seconds) comparison between RL and EWG mechanisms under the
affine-invariant metric. The RL mechanism is implemented with a burn-in size of 10,000. Results
from 10 Monte Carlo replications.

mechanism
EWG RL

size m mean SD mean SD

2 0.00248 0.00252 1.01774 0.05029
5 0.00160 0.00022 1.33547 0.07959
7 0.00166 0.00011 1.61042 0.08033
10 0.00204 0.00032 2.03352 0.10878
13 0.00241 0.00018 2.48609 0.09874
17 0.00329 0.00083 3.50102 0.29508
20 0.00402 0.00067 4.20360 0.13551
23 0.00460 0.00065 5.00708 0.12180
27 0.00761 0.00509 6.05043 0.10942
30 0.00709 0.00074 6.85141 0.10098

E SIMULATION WITH VARYING SAMPLE SIZES

Supplemental to the results we have in Section ] we examine the effect of sample size n on
performance. Here, we repeat the same simulation for Hyperbolic space but fix the privacy budget p
at 0.1 while varying the sample size n € 10,20, ..., 100. The results are provided in Figure[5]

As the sample size n only factors into the result via the computation of the sensitivity. The sensitivity
for the sample Fréchet mean under Hadamard manifolds takes the form of A = 2r/n and the rate
parameter o of the noises injected takes the form of o = A/ = 2r/(npu). Thus, one would expect
n and y to have the same effect on the result. Indeed, this is what is observed in Figure[5] which
mirrors what we observed in Figure 2]

Hyperbolic; d=3; mu=0.1 Hyperbolic; d=10; mu=0.1 Hyperbolic; d=15; mu=0.1
10 20
9 -~ EWG 15 -~ EWG
-+ RL 12 “RL

(o]

w

IN
o

Riemannian distance
)

Riemannian distance
[e2]

Riemannian distance

o

25 50 75 100 25 50 75 100

Figure 5: Utility Comparison of EWG and RL Mechanisms on Hyperbolic space H. Blue lines with
triangular symbols show the Riemannian distances d(Z, iﬁip), and the red line with circular symbols
represent the Riemannian distances d(Z, F530 ).

F EXPERIMENT WITH VARYING FOOTPOINTS

Supplemental to the results we have in Section ] we examine the effect of footpoint on performance.
Here, we repeat the same simulation for Hyperbolic space but we randomly select a point within
B, /2(po) as the footpoint for each simulation. The results are provided in Figure@

Compare to the result in Figure[2] we observed the performance of EWG mechanism under randomly
selected footpoint is slightly worser but still outperform the RL mechanism.
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Hyperbolic; d = 3 Hyperbolic; d = 10 Hyperbolic; d = 15
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Figure 6: Utility Comparison of EWG and RL Mechanisms on Hyperbolic space H. Blue lines with
triangular symbols show the Riemannian distances d(Z, :Ic%ip), and the red line with circular symbols
represent the Riemannian distances d(z, :E%%EG).

G SELECTING A DATA-DEPENDENT FOOTPOINT

Mentioned in[3.2] if there is no prior knowledge, it might be worthwhile to spend part of the privacy
budget to select a data-dependent footpoint py. In the context of outputting sample fréchet mean,
a natural candidate to use would be the extrinsic sample fréchet mean Z g, see Bhattacharya and|
Patrangenaru| (2003} Section 3) for details. The extrinsic frechet mean T g is obtained by

1. Embedding the manifold M into a ambient Euclidean space via the embedding j : M — R¥:
(X)), J(Xn).
2. Compute the Euclidean mean of j(X1),...,j(X,) as j(z).

3. Project the mean j(x) back to j(M) via the projection P: P(j(x)).

4. Lastly, map back to M by reverse the embedding: Z = j~1(P(j(z))).

To obtain a differentially private version of Z i, we can simply inject the Euclidean Gaussian noise

— ——¢d
into j(x) to obtain j(z)" " via the Gaussian mechanism for GDP on Euclidean space. It follows that

—d
j:%p =i Y P>(x) p)) is differential private by the post-processing property.

Note that this approach could extend to other M-statistics as long as there exists a Euclidean
counterpart, which is often the case in manifolds.

H COMPUTING RESOURCES

For simulations in section .1} refer to simulation_gaussian.R and spd_functions.R
for the affine invariant metric, simulation_gaussian_le.R and spd_functions_le.R
for Log-Euclidean metric, and simulation_gaussian_lc.R and spd_-functions_lc.R
for Log-Euclidean metric. Similarly, simulation_gaussian_hyperbolic.R and
hyperbolic_functions.R are used for generating the results for hyperbolic space.

GDP_plot.R,GDP_le_plot.Rand GDP_lc_plot .R are for generating the result plots in Figure
[} while as GDP_hyperbolic_plot.R are for generating the result plots in Figure[2}

For the computation time comparison, refer to simulation_gaussian_time.R and
GDP_time_plot.R.

For the experiments on OCTMNIST dataset in Section[4.2} refer to octmnist_data.R for generat-
ing covariance descriptors, octmnist_gaussian.R for simulation on the covariance descriptors,
and octmnist_GDP_plot .R for generating the result plots in Figure[3]

The simulations were performed using R on a PC with a 12th Gen Intel Core i5-12600K CPU with
32 GB of RAM running Windows 11. Computation times for EWG and RL mechanisms are given in
Table [T]and Figure 4]

25



	Introduction
	Differential Privacy on Hadamard Riemannian Manifolds
	Exponential-Wrapped Distribution
	Exponential-Wrapped Laplace Mechanism
	Exponential-Wrapped Gaussian Mechanism

	Differentially Private Fréchet Mean and Utility Guarantee
	Differentially Private Fréchet Mean
	Utility Guarantee

	Simulation and Experiment
	Numerical Simulation
	Real-World Experiment on OCTMINST Dataset

	Conclusion and Future Directions
	Proofs
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Proof of Theorem 2.4
	Proof of Theorem 3.1

	Background Materials
	Riemannian Geometry
	Differential Privacy
	SPDM Space
	Hyperbolic Space

	Sampling from Exponential-Wrapped Distribution
	Exponential-Wrapped Laplace Distribution
	Exponential-Wrapped Gaussian Distribution
	Sampling From EWG on SPDM Space
	Sampling From EWG on Hyperbolic Space

	Computation Time Comparison
	Simulation with Varying Sample Sizes
	Experiment with Varying Footpoints
	Selecting a Data-Dependent Footpoint
	Computing Resources

