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ABSTRACT

We propose a general and computationally efficient framework for achieving dif-
ferential privacy (DP) on Hadamard manifolds, which are complete and simply
connected Riemannian manifolds with non-positive curvature. Leveraging the
Cartan-Hadamard theorem, we introduce Exponential-Wrapped Laplace and Gaus-
sian mechanisms that achieve ε-DP, (ε, δ)-DP, Gaussian DP (GDP), and Rényi DP
(RDP) without relying on computationally intensive MCMC sampling. Our meth-
ods operate entirely within the intrinsic geometry of the manifold, ensuring both
theoretical soundness and practical scalability. We derive utility bounds for priva-
tized Fréchet means and demonstrate superior utility and runtime performances on
both synthetic data and real-world data in the space of symmetric positive definite
matrices (SPDM) and hyperbolic space. To our knowledge, this work constitutes
the first unified extension of multiple DP notions to general Hadamard manifolds
with practical and scalable implementations.

1 INTRODUCTION

Recent advances in AI and machine learning have spurred interest in analyzing complex data
types, particularly those residing on nonlinear manifolds. Among these, Hadamard manifolds,
such as hyperbolic space and the space of symmetric positive definite matrices (SPDM), play
pivotal roles. Hyperbolic spaces provide efficient representations for hierarchical structures via
hyperbolic embeddings Nickel and Kiela (2017); Cetin et al. (2023), enhancing both performance
and interpretability in models for tree-structured data Sarkar (2011); Chamberlain et al. (2017);
Ganea et al. (2018); Peng et al. (2021). SPDM spaces are critical in medical imaging, especially for
modelling water diffusion in diffusion tensor imaging Basser et al. (1994); Le Bihan et al. (2001),
and have found utility in shape analysis and computer vision tasks such as segmentation and motion
tracking Fillard et al. (2005; 2007); Medioni et al. (2000); Brox et al. (2006); Weickert and Brox
(2002); Weickert and Hagen (2005). The rising importance of manifold-structured data, particularly in
the biomedical domains, naturally raises privacy concerns, necessitating tailored privacy mechanisms
that respect the underlying geometry.

Differential privacy (DP) Dwork et al. (2006b) offers a rigorous mathematical framework for quan-
tifying and preserving privacy. While many mechanisms have been developed for Euclidean data
McSherry and Talwar (2007); Barak et al. (2007); Wasserman and Zhou (2010); Reimherr and
Awan (2019), they often perform poorly on manifold-valued data due to geometric incompatibility.
These traditional methods typically operate extrinsically by embedding manifold data into Euclidean
space, which can distort geometric structure and result in substantial utility loss. As demonstrated in
Reimherr et al. (2021), respecting the intrinsic geometry of the data leads to mechanisms that provide
significantly better trade-offs between privacy and utility. This observation highlights the need for
privacy-preserving methods that are not only theoretically sound but also tailored to the geometric
nature of nonlinear data through tools from Riemannian geometry.

The differential privacy framework was first extended to general Riemannian manifolds by Reimherr
et al. (2021), who introduced the Riemannian Laplace mechanism to achieve ε-DP. Since then,
various mechanisms have been proposed to ensure ε-DP on manifolds (Soto et al., 2022; He et al.,
2025), with applications in mobile crowd sensing (Li et al., 2024) and federated learning (Huang
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et al., 2024). Han et al. (2024) further developed a differentially private Riemannian optimization
framework by perturbing the Riemannian gradient in the tangent space. However, extensions of other
privacy notions such as (ε, δ)-DP and Gaussian DP (GDP) remain limited. For example, Utpala
et al. (2023b) extended (ε, δ)-DP only to a single manifold, the SPDM space equipped with the
Log-Euclidean metric, which renders the space flat (Arsigny et al., 2007) and enables closed-form
computations. However, this choice limits generality, as the framework does not extend to other
manifolds, nor to the SPDM space under either the more geometrically faithful affine-invariant metric
or the computationally faster and numerically more stable Log-Cholesky metric. Similarly, Jiang
et al. (2023) extended GDP to general manifolds, but their calibration algorithm is restricted to
constant-curvature spaces and entails high computational cost. Notably, the sampling procedures
required by both the Riemannian Laplace and Gaussian mechanisms (Reimherr et al., 2021; Jiang
et al., 2023) depend on Markov Chain Monte Carlo (MCMC), which becomes computationally
expensive in high-dimensional or geometrically complex spaces such as SPDM. These challenges
underscore the need for broader extensions of differential privacy frameworks to general manifolds
and the development of more computationally efficient mechanisms suited for practical applications.

We summarize our key contributions below:

• Unified Extension of DP Notions: We introduce the first mechanisms to extend (ε, δ)-DP,
Gaussian DP (GDP), and Rényi DP (RDP) to general Hadamard manifolds. Notably, this
includes the first RDP mechanism applicable beyond Euclidean spaces.

• Efficient and Scalable Implementation: Our proposed Exponential-Wrapped mechanisms
avoid computationally intensive MCMC procedures and instead rely on simple sampling
from tangent space distributions followed by the exponential map, enabling efficient and
scalable deployment.

• Strong Empirical Performance: Through comprehensive simulations on SPDM manifolds
under multiple metrics, as well as on hyperbolic space, together with real-data experiments
on SPDM manifolds, we demonstrate that the proposed mechanisms consistently surpass
traditional Riemannian approaches in utility while markedly reducing computational run-
time. Notably, the Exponential-Wrapped Gaussian mechanism achieves substantial utility
improvements in high-dimensional regimes with stringent privacy budgets.

This paper is organized as follows. Appendix B reviews key concepts from Riemannian geome-
try (Lee, 2006; Petersen, 2006; Pennec et al., 2019; Said, 2021; Grigoryan, 2009) and differential
privacy (Dwork and Roth, 2014; Mironov, 2017; Dong et al., 2021; 2022). Section 2 introduces
the Exponential-Wrapped distribution and its calibration for achieving (ε, δ)-DP, GDP, and RDP.
Section 3.1 addresses the release of differentially private Fréchet means and establishes theoretical
utility guarantees for our mechanisms. Section 4 presents numerical simulations and real-world
experiments, with additional details provided in Appendix 4.2. All proofs are given in Appendix A.

2 DIFFERENTIAL PRIVACY ON HADAMARD RIEMANNIAN MANIFOLDS

2.1 EXPONENTIAL-WRAPPED DISTRIBUTION

In measure-theoretic terms, the Exponential-Wrapped Probability is the push-forward of the tangent
space probability via the exponential map. For a manifold M with dimension d > 1, wrapping a
density around the manifold involves volume distortion. This occurs because the exponential map
typically does not preserve the area between the Lebesgue measure on the tangent space and the
reference measure on the manifold.

Let M be a manifold with the Riemannian volume measure ν. Given µ, a probability distribution
on TpM with a probability density h w.r.t the Lebesgue measure λp on TpM, the corresponding
Exponential-Wrapped distribution is defined as the push-forward of µ by the exponential, Λ =
Expp∗ µ, where the ∗ refers to the push-forward by Expp, such that Λ(A) = µ

(
Logp(A)

)
for any

A in the Borel σ-algebra of M. Since we assume M is a Hadamard manifold, Logp is defined
everywhere on M for any p ∈ M. If follows that the density g of Λ can be expressed from h and a
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volume change term,

g(q) =
dΛ

dν
(q) =

dExpp∗ (λp)

dν

dΛ

dExpp∗ (λp)
(q) =

dExpp∗ (λp)

dν
(q)h(Logp q) =

h(Logp q)

Jp(Logp(q))
,

where Jp(u) := |det(DuExpp)| with DuExpp : TpM → TExpp(u)
M denote the differential of

Expp at u ∈ TqM.

The most attractive property of the Exponential-Wrapped Distribution is its straightforward sampling
procedure. In order to sample from g, it suffices to sample from h: if U1, . . . , Un are i.i.d. random
variables on a tangent space TpM following the density h, then X1 = Expp(U1), . . . , Xn =
Expp(Un) are i.i.d. random variables on M following the density g. For a more detailed discussion
on Exponential-Wrapped Distribution, please refer to Chevallier et al. (2022).

2.2 EXPONENTIAL-WRAPPED LAPLACE MECHANISM

Definition 2.1 (Exponential-Wrapped Laplace Distribution). Let M be a Hadamard Riemannian
manifold with measure ν, we define a probability density function w.r.t ν as

g(y) ∝ 1

Jp0
(Logp0

y)
exp

(
−
∥Logp0

y − Logp0
η∥

σ

)
.

We called this distribution an Exponential-Wrapped Laplace Distribution with footpoint p0, center
η and rate σ > 0.

The Exponential-Wrapped Laplace Distribution is the push-forward probability of the tangent space
probability defined by the probability density h(u) ∝ exp{−∥u − Logp0

η∥/σ}. We present the
following theorem to demonstrate how it can be used to achieve ε-DP.
Theorem 2.1 (Exponential-Wrapped Laplace Mechanism). Let M be a Hadamard Riemannian
manifold and f be a M-valued summary with sensitivity ∆.1 The Exponential-Wrapped Laplace
Distribution with footprint p0, center f(D) and rate ∆/ε satisfies ε-DP.

Compared to the Riemannian Laplace mechanism proposed by Reimherr et al. (2021), the Exponential-
Wrapped Laplace mechanism defined above offers two primary advantages. First, our method only
requires a rate of ∆/ε to achieve ε-DP across all manifolds, homogeneous or not. This is more
efficient than the Riemannian Laplace mechanism, which necessitates a rate of 2∆/ε for non-
homogeneous manifolds. Second, our approach is easier to implement and less computationally
complex. The Riemannian Laplace mechanism relies on MCMC sampling, which is computationally
intensive due to prolonged burn-in iterations and frequent recalculations of Riemannian distances.
These computations escalate in cost with increasing manifold dimensionality. Even in SPDM
space with the Rao-Fisher affine invariant metric, where efficient sampling techniques for the
Riemannian Laplace Distribution exist (Hajri et al., 2016) – MCMC procedures remain necessary,
and the choice of proposal distribution critically affects convergence. In contrast, sampling from
the Exponential-Wrapped Laplace Distribution is straightforward: it involves 1) sampling from
u ∼ h(u) ∝ exp{−∥u− Logp0

η∥/σ} and 2) computing Expp0
u. For more details on the sampling

procedure, see Appendix C.1.
Remark 1. Note that there is no restriction on the choice of footpoint p0 in the Exponential-Wrapped
Laplace mechanism. However, its selection can have an impact on the performance of the mechanism.
Furthermore, to be compliant with the differential privacy definition, the selection of the footpoint
p0 cannot be based on the private dataset D. For more discussion on the selection of footpoint, see
Section 3.2.

2.3 EXPONENTIAL-WRAPPED GAUSSIAN MECHANISM

Beyond the Laplace mechanism, the Gaussian mechanism stands as one of the most prevalent tools
in DP (Dwork and Roth, 2014; Balle and Wang, 2018a). This section introduces the Exponential-
Wrapped Gaussian mechanism, calibrated to achieve (ε, δ)-DP, RDP, and GDP. Initially, we will
define the Exponential-Wrapped Gaussian Distribution as follows.

1A summary f is said to have a sensitivity of ∆ < ∞, with respect to d(·, ·), if we have d (f(D), f (D′)) ≤
∆ for any two datasets D ≃ D′.
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Definition 2.2 (Exponential-Wrapped Gaussian Distribution). Let M be a Hadamard Riemannian
manifold with reference measure denoted by ν, we define a probability density function w.r.t ν as

g(y) ∝ 1

Jp0
(Logp0

y)
exp

(
−
∥Logp0

y − Logp0
η∥2

2σ2

)
.

We called this distribution an Exponential-Wrapped Gaussian Distribution with footpoint p0, tangent
center η, and rate σ > 0.

The Exponential-Wrapped Gaussian Distribution is defined as the push-forward of the multivariate
Gaussian distribution, characterized by a mean of Logp0

η and a covariance of σ2I, on the tangent
space TpM. We present the following theorem to demonstrate how it can be used to achieve (ε, δ)-DP.
Theorem 2.2. Let M be a Hadamard Riemannian manifold and f be an M-valued summary. The
Exponential-Wrapped Gaussian Distribution with footprint p0, tangent center Logp0

f(D) and rate
σ satisfies (ε, δ)-DP if and only if the following condition is satisfied,

Φ

(
− σε

∆p0

+
∆p0

2σ

)
− eεΦ

(
− σε

∆p0

+
∆p0

2σ

)
≤ δ, (1)

where ∆p0 = supD≃D′ ∥Logp0
(f(D))− Logp0

(f(D′))∥.

Theorem 2.2 shares similarities with the analytic Gaussian mechanism in Balle and Wang (2018a).
Primary distinction lies in the use of ∆p0 rather than the standard sensitivity ∆ in inequality (1). This
substitution generally does not pose significant challenges; if ∆p0 proves difficult to compute, ∆ can
be used instead in (1) as ∆ ≥ ∆p0 since Logp0

is a contraction for Hadamard manifolds.

Implementing the Exponential-Wrapped Gaussian mechanism for (ε, δ)-DP is straightforward. We
follow a similar procedure as in Algorithm 1. After determining the appropriate σ numerically from
inequality (1)—using a method such as that proposed in Balle and Wang (2018a)—one can proceed
by first sampling u from the tangent Gaussian distribution Ntang(0, σ

2Id). The privatized summary
is then computed as Expp0

(u + Logp0
(f(D))). For more details on the sampling procedure, see

Appendix C.2.

Suppose M is the space of SPDM equipped with Log-Euclidean metric, the Exponential-Wrapped
Gaussian mechanism with footprint p0 = I reduces to the tangent Gaussian mechanism in Utpala et al.
(2023b). Hence, the Exponential-Wrapped Gaussian mechanism is a generalization of the tangent
Gaussian mechanism, as our mechanism can be employed for any Hadamard manifold equipped with
any Riemannian metric. This makes our Exponential-Wrapped Gaussian mechanism the first working
mechanism to achieve (ε, δ)-DP in SPDM under the non-Log-Euclidean metric.

Similar to how the Euclidean Gaussian Distribution can be used to achieve GDP, we can calibrate the
Exponential-Wrapped Gaussian Distribution to achieve GDP in the following manner.
Theorem 2.3 (Wrapped Gaussian Mechanism for GDP). Let M be a Hadamard Riemannian
manifold and f be an M-valued summary with global sensitivity ∆. The Exponential-Wrapped
Gaussian Distribution with footprint p0, tangent center Logp0

f(D) and rate ∆/µ satisfies µ-GDP.

Previously, Jiang et al. (2023) introduced the Riemannian Gaussian mechanism to achieve µ-GDP.
However, our approach presents significant advantages in both calibration and sampling. Firstly, the
Riemannian Gaussian mechanism requires the resolution of infinitely many integral inequalities to
calibrate the rate σ for a given privacy budget µ. The calibration algorithm provided by Jiang et al.
(2023) is only applicable to constant curvature spaces and is computationally intensive, involving
grid searches and MCMC techniques to compute the integrals. In contrast, our method simplifies
calibration to a straightforward calculation: σ = ∆/µ. Secondly, like the Riemannian Laplace distri-
bution, sampling from the Riemannian Gaussian distribution involves complex processes (detailed in
section 2.2). Our sampling technique is considerably simpler, requiring only the sampling from a
multivariate Gaussian distribution followed by computations using Expp0

and Logp0
. The complete

algorithm is detailed in Algorithm 1.

In a similar fashion, we can use the Exponential-Wrapped Gaussian Distribution to achieve RDP.
Theorem 2.4 (Wrapped Gaussian Mechanism for Rényi DP). Let M be a Hadamard Riemannian
manifold and f be an M-valued summary with global sensitivity ∆. The Exponential-Wrapped
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Algorithm 1 Exponential-Wrapped Gaussian Mechanism for µ-GDP
Input: sensitivity ∆, privacy budget µ, query result f(D), footpoint p0.
Output: privatized query result f̃(D)

1: Sample v ∼ Ntang(0, Id).
2: Compute u = Logp0

f(D) + σv with σ = ∆/µ and f̃(D) = Expp0
u.

3: Return: f̃(D).

Gaussian distribution with footprint p0, tangent center Logp0
f(D) and rate ∆/

√
2ε/α satisfies

(α, ε)-RDP.

3 DIFFERENTIALLY PRIVATE FRÉCHET MEAN AND UTILITY GUARANTEE

3.1 DIFFERENTIALLY PRIVATE FRÉCHET MEAN

For a comprehensive overview of the Fréchet mean in the context of DP, please refer to Reimherr
et al. (2021). Consider a set of data x1, . . . , xn on the manifold M. The Euclidean sample mean can
be generalized to Riemannian manifolds as the sample Fréchet mean, defined as the minimizer of
the sum-of-squared distances to the data points, x̄ = argminx∈M

∑n
i=1 d (x, xi)

2. The properties
of Hadamard manifolds guarantee the existence and uniqueness of the Fréchet mean. To ensure the
sensitivity of the sample Fréchet mean is finite, we need the following assumption:
Assumption 1. The data D ⊆ Br (m0) for some m0 ∈ M, r < ∞.

The assumption that data lies within a geodesic ball is standard in the field of DP and should not raise
concerns (Reimherr et al., 2021; Soto et al., 2022). Consider two datasets D ≃ D′ on M, and denote
x̄ and x̄′ as the two sample Fréchet means of D and D′ respectively. Under Assumption 1, we have
d (x̄, x̄′) ≤ 2r/n.

3.2 UTILITY GUARANTEE

We now analyze the expected utility of our mechanisms in terms of the expected Riemannian distance
to the sample Fréchet mean x̄.
Theorem 3.1. Let M be a d-dimensional Hadamard manifold and assume assumption 1 holds.
Denote x̃EWL as a sample drawn from an Exponential-Wrapped Laplace Distribution with footprint
p0, tangent center Logp0

x̄ and rate σ = 2r/(nε). x̃EWL is ε-DP and we have

E d(x̃EWL, x̄) ≤ σd+ 2d(p0, x̄). (2)

Similarly, denote x̃EWG as a sample drawn from an Exponential-Wrapped Gaussian Distribution
with footprint p0, tangent center Logp0

x̄ and rate σ = 2r/(nµ). x̃EWG is µ-GDP and we have,

E d(x̃EWG, x̄) ≤ σ

√
π

2
L
d/2−1
1/2

(
−d2(p0, x̄)

2

)
+ d(p0, x̄)

≤ σ
√
2
Γ((d+ 1)/2)

Γ(d/2)
+ 2d(p0, x̄),

(3)

where L1/2 denote the Laguerre polynomials. If we impose the additional of | SecM | < K 2 for
some K ≥ 0, we have,

E d(x̃EWL, x̄) ≤
sinh(

√
Kr)√

Kr
σd, (4)

E d(x̃EWG, x̄) ≤
sinh(

√
Kr)√

Kr
σ
√
2
Γ((d+ 1)/2)

Γ(d/2)
. (5)

where Γ denotes the gamma function.
2Secm denotes the sectional curvature of M.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Observe that the footpoint p0 appears explicitly in the utility bounds equation 2 and equation 3,
highlighting its direct impact on the utility of the mechanisms. To tighten these bounds, it is desirable
to minimize the distance d(p0, x̄). When the data are well-dispersed within a ball Br(m0), the Fréchet
mean typically lies near the center m0, making it a natural choice for the footpoint. However, if prior
knowledge suggests that the majority of the data are concentrated in a smaller region R ⊂ Br(m0),
selecting the center of R as the footpoint may yield better utility. In the absence of such prior
information, it may be beneficial to allocate a portion of the privacy budget to privately estimate a
suitable footpoint.

Furthermore, as the dimension d increases, the leading terms in the utility bounds dominate, reducing
the relative influence of the footpoint, provided the data radius r in Assumption 1 remains fixed. This
implies that in high-dimensional settings, the influence of the footpoint on utility becomes relatively
less significant. Indeed, this trend is reflected in our simulation results on the SPDM space equipped
with the affine-invariant metric, as shown in Section 4.

By contrast, the bounds in equation 4 and equation 5 illustrate how the geometry of the underlying
manifold influences utility through curvature. The sectional curvature upper bound K acts as a
regularizer: smaller values of K correspond to geometries closer to flat and yield tighter utility
bounds. In the limiting case of a flat manifold, these bounds simplify to equalities:

E d(x̃EWL, x̄) = σd, E d(x̃EWG, x̄) = σ
√
2
Γ((d+ 1)/2)

Γ(d/2)
,

in which the footpoint no longer affects the utility. This phenomenon is further confirmed in our
simulations on SPDM spaces equipped with the Log-Cholesky and Log-Euclidean metrics, as
presented in Section 4.

4 SIMULATION AND EXPERIMENT

We evaluate the performance of our Exponential-Wrapped mechanisms for releasing GDP-compliant
Fréchet means. Experiments are conducted on the manifold of symmetric positive definite matrices
(SPDM), a standard space in medical imaging (Pennec et al., 2019; Said et al., 2017; Hajri et al.,
2016). Appendix B.3 reviews the geometry of SPDM under three metrics, while Appendix B.4
reviews the geometry of the hyperbolic space. Section 4.1 describes the simulation setup and presents
results. Real-world experiments on the OCTMNIST dataset are provided in section 4.2.

4.1 NUMERICAL SIMULATION

For the simulation study, we focus on releasing the GDP Fréchet mean on the SPDM spaces S+
m

under three different Riemannian metrics: the Log-Cholesky metric, the Log-Euclidean metric, and
the affine-invariant metric3, and on Hyperbolic space Hd. We compare the performance of our
Exponential-Wrapped Gaussian (EWG) mechanism, described in Section 2.3, with the Riemannian
Laplace (RL) mechanism proposed in Reimherr et al. (2021). A Riemannian Laplace mechanism
that satisfies ε-DP can also be interpreted as satisfying µ-GDP, with the correspondence given by
ε = log[(1− Φ(−u/2))/Φ(−u/2)] (Liu et al., 2022).

For SPDM spaces S+
m, we generate samples x1, . . . , xn from the geodesic ball Br(Im) using the

Wishart distribution as in Reimherr et al. (2021, Supplemental 1.2.1). The Fréchet mean x̄ is
computed using formulas equation 9 and equation 8 for the Log-Cholesky and Log-Euclidean metrics,
respectively, while the gradient descent procedure from Fletcher and Joshi (2004); Reimherr et al.
(2021) is used for the affine-invariant metric. To implement the RL mechanism, we follow the
method of Reimherr et al. (2021); Hajri et al. (2016), using a burn-in of 10,000 iterations to sample
from the Riemannian Laplace distribution. For our EWG mechanism, we use the method described
in Algorithm 1 and Appendix C.3, sampling from the Exponential-Wrapped Gaussian distribution
centred at the fixed footpoint p0 = Im.

Throughout these simulations, we fix the sample size at n = 40 and the data radius at r = 1.5 to ensure
constant sensitivity ∆. With ∆ fixed, we vary the privacy budget µ ∈ {0.1, 0.2, . . . , 0.7, 1, 1.5, 2} and

3Note that the manifold of SPDM is not inherently Hadamard; this property depends on the choice of
Riemannian metric.
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Figure 1: Utility Comparison of EWG and RL Mechanisms across Three Metrics. Blue lines with
triangular symbols show the Riemannian distances d(x̄, x̃gdp

RL ), and the red line with circular symbols
represent the Riemannian distances d(x̄, x̃gdp

EWG). Results are shown for the Log-Cholesky (top),
Log-Euclidean (middle), and affine-invariant (bottom) metrics.

manifold dimension d = m(m+ 1)/2 ∈ {3, 10, 15}. Let x̃gdp
RL and x̃gdp

EWG denote the outputs of the
RL and EWG mechanisms, respectively. Figure 1 shows the average Riemannian distances d(x̄, x̃gdp

RL )

(blue triangles) and d(x̄, x̃gdp
EWG) (red circles), computed over 100 independent runs. Shaded regions

indicate standard errors around the sample means. Results are organized by metric: the top, middle,
and bottom rows correspond to the Log-Cholesky, Log-Euclidean, and affine-invariant metrics,
respectively.

Across all three dimensions d ∈ {3, 10, 15} and a wide range of privacy budgets µ ∈ [0.1, 2],
the EWG mechanism consistently outperforms the RL mechanism under the Log-Cholesky and
Log-Euclidean metrics. Under the affine-invariant metric, the EWG mechanism shows degraded
performance at moderate to high privacy budgets µ ∈ [0.7, 2] when d = 3. This degradation reflects
the influence of curvature on utility: as the privacy budget increases and less noise is injected,
the effect of footpoint misalignment becomes more pronounced. However, for higher dimensions
d = 10, 15, the EWG mechanism outperforms the RL mechanism across nearly all privacy budgets.
In high dimensions, utility is dominated by noise magnitude rather than footpoint alignment, leading
to more stable performance.

Similarly, for hyperbolic space Ed, we generate samples x1, . . . , xn uniformly from the geodesic
ball Br(p) with p = (1, 0, · · · , 0), r = 1.5 and n = 40 fixed throughout the simulation. Same as
the SPDM space equipped with Affine-Invariant metric, the Fréchet mean x̄ is computed using the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

gradient descent procedure from Fletcher and Joshi (2004); Reimherr et al. (2021). To implement the
RL mechanism, we follow the sampling method of Pennec et al. (2019). For our EWG mechanism,
we use the method described in Algorithm 1 and Appendix C.4, sampling from the Exponential-
Wrapped Gaussian distribution centred at the fixed footpoint p0 = (1, 0, · · · , 0).The results, shown
in Figure 2, are much more consistent compared to S+

m with Affine-Invariant metric. Across all
dimensions d ∈ {3, 10, 15} and all privacy budget, the EWG mechanism consistently outperforms
the RL mechanism, which is similar to the scenarios of S+

m under Log-Euclidean and Log-Cholesky
metrics. This suggests that in spaces with more regular, less exotic geometry, the influence of the
footpoint on performance is reduced.

Figure 2: Utility Comparison of EWG and RL Mechanisms on Hyperbolic space Hd. Blue lines with
triangular symbols show the Riemannian distances d(x̄, x̃gdp

RL ), and the red line with circular symbols
represent the Riemannian distances d(x̄, x̃gdp

EWG).

In addition to improved utility, the EWG mechanism offers a substantial computational advantage
over the RL mechanism. As shown in Table 1, EWG requires significantly less runtime, often by
several orders of magnitude, especially as the manifold dimension increases. This efficiency stems
from its straightforward sampling procedure (see Section 2.3 and Algorithm 1), in contrast to the RL
mechanism’s reliance on MCMC with a long burn-in, making EWG more scalable and practical for
high-dimensional settings.

4.2 REAL-WORLD EXPERIMENT ON OCTMINST DATASET

In this section, we compare our EWG mechanism to the Riemannian Laplace mechanism for releasing
the GDP Fréchet mean on the real-world dataset OCTMINST. As one of the 12 standardized 2D
datasets in the MedMNIST collection (Yang et al., 2023), OCTMINST consists of 28× 28 greyscale
images and is derived from Optical Coherence Tomography (OCT) medical imaging data. Following
prior work (Utpala et al., 2023a; Tuzel et al., 2006), we extract covariance descriptors from each
image to represent them as points on the space of 5× 5 SPDM, P5, equipped with the Log-Euclidean
metric. These descriptors serve as structured, manifold-valued features for comparison. The detailed
covariance descriptor construction is given below.

To perform tasks such as classification on medical imaging datasets, it is common practice to extract
a covariance descriptor from each image, using it as a representative feature of the image. Here, we
follow a similar approach as in Utpala et al. (2023a); Tuzel et al. (2006) to extract the covariance
descriptors. Let I ∈ Rh×w be an greyscale image of height h and width w and I(x) denote the pixel
intensity at position x and y with x = (x, y). The covariance descriptor is given by

Rη(I) =

[
1

|S|
∑
x∈S

(ϕ(I)(x)− µ)(ϕ(I)(x)− µ)T

]
+ ηI,

where ϕ(I)(x) is defined as the following,[
I(x),

∣∣∣∣∂I(x)∂x

∣∣∣∣ , ∣∣∣∣∂I(x)∂y

∣∣∣∣ , ∣∣∣∣∂2I(x)
∂x2

∣∣∣∣ , ∣∣∣∣∂2I(x)
∂y2

∣∣∣∣] .
We set η = 10−6 to ensure the covariance descriptors are positive definite. It follows that each
covariance descriptor Rη(I) is an element of P5 with d = 5(5 + 1)/2 = 15.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Equipping P5 with the Log-Euclidean metric, we have

d(Rη(I), I) ≤
√
5max

{
| log(η)|, | log(5 · 2552 + η)|

}
(6)

by following a similar computation as in Utpala et al. (2023a). Note that, different from the experiment
in Utpala et al. (2023a), we did not normalize the pixel value/intensity I to be between 0 and 1.
Based on (6), the data must reside in Br(I) where r is determined by the righthand side of (6) and
thus the sensitivity for computing Fréchet mean is then ∆ = supx̄≃x̄′ d(x̄, x̄′) ≤ 2r/n.

We compute a covariance descriptor for each image in the dataset, then calculate the sample
Fréchet mean x̄ under the Log-Euclidean metric. We then release a GDP version x̃gdp us-
ing both the Exponential-Wrapped Gaussian (EWG) mechanism and the Riemannian Laplace
(RL) mechanism (Reimherr et al., 2021), each calibrated to the same privacy budget µ ∈
{0.1, 0.2, . . . , 0.7, 1, 1.5, 2}. For EWG, we fix the footpoint at p0 = I5 and apply Algorithm 1.
For RL, we follow the MCMC-based sampling procedure with 10,000 burn-in steps.

There are four different classes in the OCTMNIST dataset, labelled from 0 to 3. We compare
the utility between our EWG mechanism and RL mechanism in each of the four classes. Denote
x̃gdp

RL , x̃gdp
EWG as the output of the Riemannian Laplace mechanism and Exponential-Wrapped Laplace

mechanism respectively, the plots in Figure 3 display the average Riemannian distances d(x̄, x̄gdp
EWG)

(in red with circular symbols) and d(x̄, x̄gdp
RL ) (in blue with triangular symbols) across 100 Monte

Carlo replications for each class. Shaded regions indicate standard errors around the sample means.
Similarly to the numerical simulation, our EWG mechanism achieves better utility across different
privacy budgets. These results confirm that EWG provides practical scalability and strong utility
guarantees for differentially private inference on real-world manifold-valued data.

Figure 3: Utility Comparison of EWG and RL Mechanisms for Class 0 to 3 in the OCTMNIST data
under Log-Euclidean metric. Blue lines with triangular symbols show the Riemannian distances
d(x̄, x̃gdp

RL ), and the red line with circular symbols represent the Riemannian distances d(x̄, x̃gdp
EWG).

5 CONCLUSION AND FUTURE DIRECTIONS

We introduced Exponential-Wrapped Laplace and Gaussian mechanisms for achieving differential pri-
vacy on Hadamard manifolds. These mechanisms support multiple privacy notions—(ε, δ)-DP, Rényi
DP, and Gaussian DP—and operate entirely within the intrinsic geometry of the manifold. Crucially,
they avoid MCMC sampling by leveraging efficient push-forward sampling via the exponential map.
Theoretically, we derived utility bounds for both mechanisms that capture the impact of curvature,
dimension, and footpoint alignment on the privatized Fréchet mean. Empirically, we showed that
the Exponential-Wrapped Gaussian mechanism consistently outperforms the Riemannian Laplace
mechanism on flat manifolds and performs competitively on curved manifolds, with substantial
improvements in runtime.

Several avenues for future work remain. First, determining an optimal or data-adaptive choice
of footpoint p0 could improve utility in non-constant curvature settings. In particular, strategies
for privately selecting p0 are worth exploring. Second, extending our framework to manifolds
with non-negative curvature, such as spheres, is a natural direction. Finally, we aim to extend
our approach beyond Fréchet mean estimation to more complex tasks such as principal geodesic
analysis (Huckemann et al., 2010; Fletcher et al., 2003; Zhang and Fletcher, 2013) and regression on
manifolds (Cheng and Wu, 2013).
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A PROOFS

A.1 PROOF OF THEOREM 2.1

Proof. Denote the Exponential-Wrapped Laplace mechanism as M and its density as g1 correspond-
ing to f(D) and g2 corresponding to f(D′). To show P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) for all
measurable set S, it’s sufficient to show that,

g1(y)

g2(y)
≤ eε.
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We simplify the ratio on the left-hand side,

g1(y)

g2(y)
=

1
Jp0 (Logp0

(y)) exp
(
−∥Logp0

(y)−Logp0
(η1)∥

σ

)
1

Jp0
(Logp0

(y)) exp
(
−∥Logp0

(y)−Logp0
(η2)∥

σ

)
= exp

{
1

σ

[
∥Logp0

(y)− Logp0
(η2)∥ − ∥Logp0

(y)− Logp0
(η1)∥

]}
≤ exp

{
1

σ
∥Logp0

(η1)− Logp0
(η2)∥

}
, triangle inequality

≤ exp

{
1

σ
d(η1, η2)

}
, Logy is a contraction for Hadamard manifold

≤ exp

{
∆

σ

}
≤ eε, for σ =

∆

ε
.

A.2 PROOF OF THEOREM 2.2

Proof. Let gp0,η,σ denote the Exponential-Wrapped Gaussian Distribution with footprint p0, tangent
center Logp0

(η) and rate σ. From Balle and Wang (2018a), our Exponential-Wrapped Gaussain
mechanism satisfies (ε, δ)-DP if and only if,

sup
D≃D′

∫
A

gp0,η1,σ(y) dν(y)− eε
∫
A

gp0,η2,σ(y) dν(y) ≤ δ,

where A = {y | gp0,η1,σ(y)/gp0,η2,σ(y) ≥ eε}, η1 = f(D) and η2 = f(D′). We have

gp0,η1,σ(y)

gp0,η2,σ(y)

= exp

{
1

2σ2

[
∥Logp0

(y)− Logp0
(η2)∥2 − ∥Logp0

(y)− Logp0
(η1)∥2

]}
=exp

{
1

2σ2

[
−2
〈
Logp0(y)− Logp0

(η1),Logp0(η2)− Logp0(η1)
〉
+ ∥Logp0(η2)− Logp0(η1)∥2

]}
.

Denote ∆p0,η1,η2
= ∥Logp0

(η2)− Logp0
(η1)∥. It follows that,

A =

{
y |
〈
Logp0(y)− Logp0

(η1),Logp0(η2)− Logp0(η1)
〉
≤ −σ2ε+

∆2
p0,η1,η2

2

}
Apply change of variable with u = Logp0

y, we have

sup
D≃D′

∫
A∗

N (u | Logp0(η1), σ
2I) dλ(u)− eε

∫
A∗

N (u | Logp0(η2), σ
2I) dλ(u) ≤ δ,

where λ is the Lebegue measure on the tangent space Tp0
M and

A∗ =

{
u |
〈
u− Logp0

(η1),Logp0(η2)− Logp0(η1)
〉
≥ −σ2ε+

∆2
p0,η1,η2

2

}
.

It follows that,∫
A∗

N (u | Logp0
(η1), σ

2I) dλ(u) = Φ

(
− σε

∆p0,η1,η2

+
∆p0,η1,η2

2ε

)
.

Take a similar approach for the second integral, we have∫
A∗

N (u | Logp0(η2), σ
2I) dλ(u) = Φ

(
− σε

∆p0,η1,η2

− ∆p0,η1,η2

2ε

)
.
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Finally, we have

Φ

(
− σε

∆p0

+
∆p0

2σ

)
− eεΦ

(
− σε

∆p0

+
∆p0

2σ

)
≤ δ,

where ∆p0
= supD≃D′ ∆p0,η1,η2

as needed.

A.3 PROOF OF THEOREM 2.3

Proof. Using definition B.3, we need to show the following,

∀ε ≥ 0, sup
D≃D′

∫
A

gp0,η1,σ(y) dν(y)− eε
∫
A

gp0,η2,σ(y) dν(y) ≤ δµ(ε) (7)

where g denotes the density of the Exponential-Wrapped Gaussian Distribution. From the proof in
A.2, we have

sup
D≃D′

∫
A

gp0,η1,σ(y) dν(y)− eε
∫
A

gp0,η2,σ(y) dν(y)

=Φ

(
− σε

∆p0

+
∆p0

2σ

)
− eεΦ

(
− σε

∆p0

+
∆p0

2σ

)
.

Thus, the equality in (7) holds if and only if σ = ∆p0
/µ. Since Logp0

is a contraction for any
p0 ∈ M (for Hadamard manifold M), we have ∆ ≥ ∆p0 and σ = ∆/µ achieves µ-GDP as well.

A.4 PROOF OF THEOREM 2.4

Proof. Let M denote the Exponential-Wrapped Gaussian mechanism, we have

Dα(M(D)∥M(D′))

=
1

α− 1
log

∫
1

Jp0
(Logp0

(y))

1

(
√
2πσ)d

exp

{
− α

2σ2

[
∥Logp0

y − Logp0
η1∥2

]
− 1− α

2σ2
∥Logp0

y − Logp0
η2∥2

}
dν(y)

=
1

α− 1
log exp

{
−α(1− α)

2σ2
∥Logp0

η1 − Logp0
η2∥2

}
, completing the squares

=
α

2σ2
∥Logp0

η1 − Logp0
η2∥2

≤ α

2σ2
d(η1 − η2)

2, Logp0
is a contraction for Hadamard manifolds

≤ α

2σ2
∆2

≤ ε, for σ =
∆√
2ε/α

.

A.5 PROOF OF THEOREM 3.1

First, we will show the proof for bounds in (2) and (3).

Lemma 1. Let M be a d-dimensional Hadamard manifold.

1. Denote y as a sample drawn from an Exponential-Wrapped Laplace Distribution with
footprint p0, tangent center Logp0

η and rate σ, then we have,

E d(y, η) ≤ σd+ 2∥Logp0
η∥.
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2. Denote y as a sample drawn from an Exponential-Wrapped Gaussian Distribution with
footprint p0, tangent center Logp0

η and rate σ, then we have

E d(y, η) ≤ σ

√
π

2
L
d/2−1
1/2

(
−d(p0, η)

2

2

)
+d(p0, η) ≤ σ

√
2
Γ((d+ 1)/2)

Γ(d/2)
+2∥Logp0

η∥.

Proof. For Exponential-Wrapped Laplace Distribution, denote

C(σ) =

∫
exp

(
−∥x∥

σ

)
dλ(x),

then we have

Ed(y, η)

=

∫
d(y, η)

C(σ)−1

Jp0(Logp0
y)

exp

(
−
∥Logp0

y − Logp0
η∥

σ

)
dν(y)

≤
∫

d(y, p0)
C(σ)−1

Jp0
(Logp0

y)
exp

(
−
∥Logp0

y − Logp0
η∥

σ

)
dν(y) + d(p0, η), triangle inequality

=

∫
∥Logp0

y∥ C(σ)−1

Jp0
(Logp0

y)
exp

(
−
∥Logp0

y − Logp0
η∥

σ

)
dν(y) + d(p0, η)

=

∫ ∥u+ Logp0
η∥

C(σ)
exp

(
−∥u∥

σ

)
dλ(u) + d(p0, η), u = Logp0

y − Logp0
η

≤ 1

C(σ)

∫
∥u∥ exp

(
−∥u∥

σ

)
dλ(u) + 2d(p0, η), triangle inequality

=

(
σ

∫ ∞

0

rd−1 exp(−r) dr

)−1 ∫ ∞

0

σ2rd exp(−r) dr + 2d(p0, η), spherical coordinates

=σd+ 2d(p0, η).

Similarly, for the Exponential-Wrapped Gaussian distribution, we have,

Ed(y, η)

=

∫
d(y, η)

(
√
2πσ)−d

Jp0
(Logp0

y)
exp

(
−
∥Logp0

y − Logp0
η∥2

2σ2

)
dν(y)

≤ Ed(y, p0) + d(p0, η).

Note that since (Logp0
y)/σ ∼ N (Logp0

η, I), d(y, p0)/σ follows a noncentral chi distribution and
have a mean of √

π

2
L
d/2−1
1/2

(
−d(p0, η)

2

2

)
,

where L1/2 denote the Laguerre polynomials. Thus, we have

Ed(y, η)

≤σ

√
π

2
L
d/2−1
1/2

(
−d(p0, η)

2

2

)
+ d(p0, η).
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However, this upper bound is hard to interpret. We will also derive a less tight upper bound but with
better interpretability as follows.

Ed(y, η)

=

∫
d(y, η)

(
√
2πσ)−d

Jp0
(Logp0

y)
exp

(
−
∥Logp0

y − Logp0
η∥2

2σ2

)
dν(y)

≤
∫ ∥u+ Logp0

η∥
(
√
2πσ)d

exp

(
−∥u∥2

2σ

)
dλ(u) + d(p0, η), u = Logp0

y − Logp0
η

≤
∫

∥u∥
(
√
2πσ)d

exp

(
−∥u∥2

2σ

)
dλ(u) + 2d(p0, η), triangle inequality

=σ
√
2
Γ((d+ 1)/2)

Γ(d/2)
+ 2d(p0, η), since

∥u∥
σ

∼ χd.

Bounds (2) and (3) follows from Lemma 1 directly. Now, we prove the bounds in (4) and (5).

Proof. Under the assumption that | SecM | < K for some K ≥ 0, then by Rauch comparison
theorem (Fefferman et al., 2020, Page 1082), we have

sin(
√
Kr)√

Kr
∥ logp0

(x)− logp0
(x′)∥ ≤ d(x, x′) ≤ sinh(

√
Kr)√

Kr
∥ logp0

(x)− logp0
(x′)∥,

for any x, x′ ∈ Br(p0).

It follows that

sin(
√
Kr)√

Kr
∥ logp0

(y)− logp0
(η)∥ ≤ d(y, η) ≤ sinh(

√
Kr)√

Kr
∥ logp0

(y)− logp0
(η)∥,

for any η, y ∈ Br(p0).

Under Assumption 1, we have η ∈ Br(p0). For y ∈ Br(p0), we want project y back into Br(p0).
Note that this is no privacy leakage during this step, as the projection only depends on p0 and r,
which requires no privacy protection. Denote y∗ as the projection of y back into Br(p0), defined as

y∗ = expp0

(
r

∥ logp0
y∥

logp0
y

)
.

Immediately, we have ∥ logp0
y∗ − logp0

η∥ ≤ ∥ logp0
y − logp0

η∥. After the projection, we have,

Ed(η, y) =
∫
Br(p0)

d(η, y) dP(y) +
∫
M\Br(p0)

d(η, y∗) dP(y)

≤
∫
Br(p0)

sinh(
√
Kr)√

Kr
∥ logp0

(η)− logp0
(y)∥ dP(y)

+

∫
M\Br(p0)

sinh(
√
Kr)√

Kr
∥ logp0

(η)− logp0
(y∗)∥ dP(y)

≤
∫
Br(p0)

sinh(
√
Kr)√

Kr
∥ logp0

(η)− logp0
(y)∥ dP(y)

+

∫
M\Br(p0)

sinh(
√
Kr)√

Kr
∥ logp0

(η)− logp0
(y)∥dP(y)

=

∫
M

sinh(
√
Kr)√

Kr
∥ logp0

(η)− logp0
(y)∥ dP(y)

=
sinh(

√
Kr)√

Kr
E∥ logp0

(η)− logp0
(y)∥.
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Note that from the proof for Lemma 1, we have

E∥ logp0
(y)− logp0

(η)∥ = σd, for Laplace mechanism,

E∥ logp0
(y)− logp0

(η)∥ = σ
√
2
Γ((d+ 1)/2)

Γ(d/2)
, for Gaussian mechanism.

The result follows.

B BACKGROUND MATERIALS

B.1 RIEMANNIAN GEOMETRY

Let M be a d-dimensional Riemannian manifold endowed with a Riemannian metric g, which assigns
to each point p ∈ M a smoothly varying inner product ⟨·, ·⟩p on the tangent space TpM. This inner
product induces a norm ∥v∥p = ⟨v, v⟩1/2p , enabling the measurement of geometric quantities such as
angles, lengths, and distances. For a smooth curve γ(t) on M, the length is given by

L(γ) =

∫
∥γ̇(t)∥γ(t) dt =

∫ √
⟨γ̇(t), γ̇(t)⟩γ(t) dt.

Curves that locally minimize length are called geodesics, and they play a central role in defining
intrinsic geometry. A Riemannian manifold is said to be geodesically complete if every geodesic
can be extended to the entire real line R; we assume this property holds throughout. Based on the
definition of length, the distance between any two points p, q ∈ M is defined as the infimum of the
lengths over all piecewise smooth curves joining them:

d(p, q) = inf
γ(0)=p,γ(1)=q

L(γ).

In local coordinates, the metric g is represented by a positive definite matrix g = (gij), and the
Lebesgue measure is denoted by λ. The metric tensor induces a natural volume measure ν on the
Borel σ-algebra of M, given in coordinates by dν =

√
| det g| dλ. This Riemannian volume measure

will serve as the default reference measure for integration and probability throughout the paper.

Geodesic completeness ensures that the Riemannian exponential map is globally defined. Given a
point p ∈ M and a tangent vector v ∈ TpM, the geodesic γ(p,v)(t) satisfying γ(p,v)(0) = p and
γ̇(p,v)(0) = v exists for all t ∈ R, and defines the Riemannian exponential map via Expp(v) =
γ(p,v)(1). Around each point p, there exists a neighbourhood V ⊂ TpM and U ⊂ M such that the
restriction Expp|V : V → U is a diffeomorphism. Its inverse, the Riemannian logarithmic map, is
denoted by Logp : U → TpM and satisfies Logp(q) = v whenever q = Expp(v). In such normal
neighbourhoods, the Riemannian distance can be expressed in closed form as d(p, q) = ∥Logp(q)∥p,
reducing the computation of distances to norms in the tangent space.

The primary focus of this paper is on Hadamard manifolds, which are simply connected complete
Riemannian manifolds of non-positive curvature. It is named after the famous Cartan-Hadamard
theorem which states that for any d-dimensional Hadamard manifold M, it is differomorphic to
Rd and more precisely, at any point p ∈ M, the exponential mapping Expp : TpM → M is a
diffeomorphism and thus Logp is defined everywhere on M. This property enables us to develop
the Exponential-Wrapped mechanisms in Sections 2.2 and 2.3. Another important property of the
Hadamard manifold is that Logp is a contraction for any p ∈ M. That is, ∥Logp q1 − Logp q2∥p ≤
d(q1, q2) for any p, q1, q2 ∈ M. For more technical details on Hadamard manifolds, please refer to
Petersen (2006); Shiga (1984).

B.2 DIFFERENTIAL PRIVACY

Differential privacy (DP) is a principled framework for quantifying privacy guarantees in data analysis.
Definition B.1 ((Dwork et al., 2006a)). A data-releasing mechanism M is said to be (ε, δ)-DP with
ε ≥ 0, 0 ≤ δ ≤ 1, if for any adjacent datasets, denoted as D ≃ D′, differing in only one record, we
have Pr(M(D) ∈ A) ≤ eε Pr (M (D′) ∈ A) + δ for any measurable set A in the range of M . For
δ = 0, M is said to be ε-DP.
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Since (ε, δ)-DP is a well-defined concept on any measurable space (Wasserman and Zhou, 2010),
it can be readily extended to any Riemannian manifold equipped with the Borel σ-algebra. One
relaxation of ε-DP is the Rényi DP, which is based on Rényi divergence. It shares many important
properties with ε-DP while allowing tighter analysis of composite heterogeneous mechanisms.
Definition B.2 ((Mironov, 2017)). A mechanism M is said to have ε-Rényi Differential Privacy
(RDP) of order α, or (α, ε)-RDP for short, if Dα (M(D)∥M (D′)) ≤ ε for all neighbouring datasets
D ≃ D′, where the Rényi divergence of a finite order α ̸= 1 is defined as

Dα(P∥Q) =
1

α− 1
logEx∼Q

(
P (x)

Q(x)

)α

,

and Renyi divergence at orders α = 1,∞ are defined by continuity.

Another way of extending the differential privacy definition is through the viewpoint of the statistical
hypothesis testing (Wasserman and Zhou, 2010; Kairouz et al., 2017). In the context of hypothesis
testing, we define H0: the underlying dataset is D and H1: the underlying dataset is D′. As the
values of ε and δ decrease, the task of conducting this hypothesis testing becomes more difficult. This
means that detecting the presence of an individual based on the outcome of the mechanism becomes
increasingly challenging. With this interpretation in mind, we can extend (ε, δ)-differential privacy
to Gaussian differential privacy (GDP).

Denote the outcome distribution under H0 and H1 as M(D) and M(D′), respectively. We introduce
the optimal trade-off function between type I and type II errors as follows,

T (M(D),M (D′)) : [0, 1] → [0, 1], α 7→ T (M(D),M (D′)) (α),

where T (M(D),M (D′)) (α) is the smallest type II error when type I error equals α. GDP centres
around this optimal trade-off function and is defined as follows.
Definition B.3 ((Dong et al., 2022)). A mechanism M is said to satisfy µ-Gaussian Differential
Privacy (µ-GDP) if T (M(D),M (D′)) ≥ Gµ for all neighbouring datasets D ≃ D′ with Gµ :=
T (N(0, 1), N(µ, 1)).

However, the involvement of the optimal trade-off function T (M(D),M(D′)) makes Definition B.3
difficult to work with on Riemannian manifolds. To make this definition more tractable, we adapt the
equivalent characterization from Jiang et al. (2023), which is based on Dong et al. (2022, Corollary
1).
Definition B.4 (Gaussian Differential Privacy (Dong et al., 2022; Jiang et al., 2023)). A M-valued
data-releasing mechanism M is said to be µ-GDP if it’s (ε, δµ(ε))-DP for all ε ≥ 0, where

δµ(ε) := Φ

(
− ε

µ
+

µ

2

)
− eεΦ

(
− ε

µ
− µ

2

)
,

with Φ denotes the cumulative distribution function of the standard normal distribution.

B.3 SPDM SPACE

Let S+
m denote the manifold of m×m real symmetric positive-definite matrices, with tangent space

at each point identified with Sym(m), the space of m×m symmetric matrices. The affine-invariant
(Rao-Fisher) Riemannian metric endows S+

m with non-positive sectional curvature and desirable
invariance properties, but introduces substantial analytical and computational complexity. In contrast,
the Log-Euclidean and Log-Cholesky metrics induce flat Riemannian geometries on S+

m, each derived
from a bi-invariant Lie group structure: the former using the matrix logarithm, and the latter the
Cholesky decomposition. The Log-Euclidean metric defines distances via the Frobenius norm by
applying the matrix logarithm Log, ∥Log(p) − Log(q)∥F , allowing closed-form expressions for
geodesics and Fréchet means. The Log-Cholesky metric offers similarly explicit formulas while
providing improved numerical stability and computational efficiency.

Consider the data X1, . . . , Xn ∈ PM . Under the Log-Euclidean metric, the sample Fréchet mean
has the following closed-form expression,

η̂ = Exp

{
1

n

n∑
i=1

Log(Xi)

}
, (8)
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where Exp and Log denote the matrix exponential and logarithm maps.

Under the Log-Cholesky metric, the sample Fréchet mean has the following expression,

η̂ = η̂∗(η̂∗)⊤, (9)

where

η̂∗ =
1

n

n∑
i=1

Li + Exp

{
1

n

n∑
i=1

LogD(Li)

}
, (10)

with Li being the cholesky decomposition of Xi such that LiL
⊤
i = Xi, ⌊·⌋ returning the strictly

lower triangular matrix, and D(·) returning the diagonal matrix. Refer to Arsigny et al. (2007); Lin
(2019) for more details.

Although these metrics forgo affine invariance, their flatness simplifies analysis and makes them
particularly suitable for statistical inference and privacy-preserving tasks. In the simulations that
follow, we compare all three metrics, with particular emphasis on the Log-Euclidean and Log-
Cholesky approaches due to their practical advantages. For more details on SPDM spaces and these
metrics, refer to Arsigny et al. (2007); Lin (2019); Said et al. (2017); Reimherr et al. (2021).

B.4 HYPERBOLIC SPACE

Hyperbolic space is a space of constant negative curvature. Here, we will focus on the Lorentz model
Hd, also referred to as the hyperboloid model, of hyperbolic space. For the Lorentz model Hd, each
point is identified with x ∈ Rd+1 such that ⟨x, x⟩L = −1 with the Lorentz inner product defined as
follows,

⟨x, y⟩L = x0y0 +

n∑
i=1

xiyi.

The distance between two points x, y ∈ Hd is then defined as,

dL(x, y) = arccosh(−⟨x, y⟩L).

The tangent space TxHd at each point x ∈ Hd is identified as {u : ⟨u, x⟩L = 0}. The exponential
map expx has the following closed-form expression,

expx(u) = cosh(∥u∥L)x+ sinh(∥u∥L)
u

∥u∥L
,

with ∥u∥L =
√

⟨u, u⟩L. Similarly, the logarithm map has the following expression,

logx(y) =
arccosh(α)√

α2 − 1
(y − αx),

with α = −⟨x, y⟩L. For more details on the Lorentz model, see Nagano et al. (2019); Cho et al.
(2022).

C SAMPLING FROM EXPONENTIAL-WRAPPED DISTRIBUTION

C.1 EXPONENTIAL-WRAPPED LAPLACE DISTRIBUTION

The EWL Distribution is the push-forward probability of the tangent space probability defined by
the probability density h(u) ∝ exp{−∥u − logp0

η∥/σ}. The sampling procedure for the EWL
Distribution is straightforward:

1. Sampling from u ∼ h(u) ∝ exp{−∥u− logp0
η∥/σ}.

2. Computing logp0
u.

Note that the sampling step u ∼ h(u) needs some clarification. We want to emphasize that ∥·∥ within
step 1 is not the l2-norm but rather the norm induced by the Riemannian metric gp. Note that the
tangent space TpM equipped with gp can be identified with Rd equipped with the Euclidean metric
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as follows. Let {e1, . . . , ed} be an orthogonal basis w.r.t. gp on TpM, then any point v ∈ TpM can
be identified with a point v∗ ∈ Rd via the following map,

ιp : TpM → Rd, v =

d∑
i=1

aiei 7→ ιp(v) = (a1, . . . , ad), (11)

Denote this map as ιp : TpM → Rd, and note that ιp is a isometry for any p ∈ M as,

gp(v1, v2) = ιp(v1)
⊤ιp(v2) = ⟨ιp(v1), ιp(v2)⟩,

where ⟨·, ·⟩ denote the euclidean inner product here. Putting it together, we have the following
sampling procedure,

1. Sampling from u ∼ h(u) ∝ exp{−∥u− ιp0(logp0
η)∥2/σ}.

2. Computing logp0
(ι−1

p0
(u)).

C.2 EXPONENTIAL-WRAPPED GAUSSIAN DISTRIBUTION

Implementing the EWG mechanism for (ϵ, δ)-DP is straightforward. We follow a similar procedure
as in Algorithm 1. After determining the appropriate σ numerically from inequality (1)—using a
method such as that proposed in Balle and Wang (2018b)—one can proceed by

1. first sampling u from the multivariate Gaussian distribution N (0, σ2Id).
2. The privatized summary is then computed as

logp0

{
ι−1
p0

(u) + ιp0
[logp0

(f(D))]
}
.

Suppose M is the space of SPDM equipped with log-Euclidean metric, the EWG mechanism with
footprint p0 = I reduces to the tangent Gaussian mechanism in Utpala et al. (2023b). Hence, the
EWG mechanism is a generalization of the tangent Gaussian mechanism, as our mechanism can be
employed for any Hadamard manifold equipped with any Riemannian metric. This makes our EWG
mechanism the first working mechanism to achieve (ϵ, δ)-DP in SPDM under the non-log-Euclidean
metric.

The implementation of the EWG mechanism for µ-GDP is similar.

C.3 SAMPLING FROM EWG ON SPDM SPACE

Here, we discuss how to sample from the EWG distribution on SPDM space equipped with the three
different metrics. All the sampling procedures are summarized in Algorithm 2.

(i) Affine-Invariant metric We note that the Riemannian metric gP on TPS
+
m is defined as,

gP (X,Y ) = trace(P−1XP−1Y ).

Due to the affine invariant property of the Affine-Invariant metric, we have,

gP (X,Y ) = gIm(P−1/2XP−1/2, P−1/2Y P−1/2)

= trace(P−1/2XP−1/2P−1/2Y P−1/2)

= ⟨P−1/2XP−1/2, P−1/2Y P−1/2⟩F ,

where ⟨·, ·⟩F denotes the Frobenius inner product. Note P−1/2XP−1/2 ∈ Sm, the space of m×m
symmetric matrices, we can map them into Rm(m+1)/2 via the function vecd : Sm → Rm(m+1)/2

which is defined as
vecd(W ) = (diag(W )⊤,

√
2 offdiag(W )⊤)⊤,

where diag(W ) / is an m-dimensional vector containing the diagonal entries of W and offdiag(Y ) is
an m(m− 1)/2-dimensional vector containing the off-diagonal entries of W copied from below the
diagonal columnwise (or above the diagonal row-wise). The inclusion of the factor

√
2 for the off

diagonal entries ensure that ,

⟨X,Y ⟩F = vecd(X)⊤vecd(Y ),
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for any X,Y ∈ Sm. See Schwartzman (2006; 2016) for more details on this vectorization operator.
It follows that the map ιP defined as

ιP : TpS
+
m → Rm(m+1)/2, X 7→ vecd(P−1/2XP−1/2) (12)

is an isometry. Thus, to sample from EWG with footpoint p0, tangent center η, and rate σ > 0 under
the Affine-Invariant metric can be summarized as follows.

1. Map the tangent center to Rm(m+1)/2 via logp0
and ιp0

as ιp0
[logp0

(η)].

2. Sample u ∼ N (ιp0
[logp0

(η)], σ2Id).

3. Map u back to M via ι−1
p0

and expp0
as expp0

{
ι−1
p0

(u)
}

.

(ii) Log-Euclidean metric For both Log-Euclidean and Log-Cholesky metric, we fix the footpoint
to be Im as the footpoint will have no impact on the result due to vanishing curvature and Im
simplifies the computation a bit. We note that under the Log-Euclidean metric, we have,

gIm(X,Y ) = trace(XY ) = ⟨X,Y ⟩F .
Thus, follows a similar argument as in the Affine-invariant case and note that vecd is a isometry
between TImS+

m and Rm(m+1)/2, we can sample from EWG with footpoint p0, tangent center η, and
rate σ > 0 under the Log-Eucldiean metric can be summarized as follow.

1. Map the tangent center to Rm(m+1)/2 via Log and vecd as vecd[Log(η)].
2. Sample u ∼ N (vecd[Log(η), σ2Id).

3. Map u back to M via vecd−1 and Exp as Exp
{
vecd−1(u)

}
.

Note that Exp and Log denote the matrix exponential and logarithm, respectively.

(iii) Log-Euclidean metric We note the following relation,

S+
m

L
−−−−−→ L+

L̃ogIm

−−−−−→ L
ṽecd

−−−−−→ Rm(m+1)/2,

where

1. L denotes the space of upper triangular matrices,
2. L+ denotes the space of upper triangular matrices with postive diagonal entries,
3. L denotes the Log-Cholesky decomposition,

4. l̃og is defined as,

l̃ogL(K) = ⌊K⌋ − ⌊L⌋+ D(L)Log{D(L)−1D(K)},

5. and the operator ṽecd is defined as follow,

ṽecd(X) = (diag(X)⊤, offdiag(x)⊤)⊤ for X ∈ L.

Once again, we have ⟨X,Y ⟩F = ṽecd(X)⊤ṽecd(Y ) for any X,Y ∈ L, and thus ṽecd is a isometry
between L and Rm(m+1)/2. Combine with fact that l̃ogIm ◦ L is a isometry between S+

m and L , we
have

ṽecd ◦ l̃ogIm ◦ L

is a isometry between S+
m and Rm(m+1)/2. Thus, to sample from EWG with footpoint p0, tangent

center η, and rate σ > 0 under the Log-Cholesky metric can be summarized as follow.

1. Map the tangent center η to Rm(m+1)/2 as

ṽecd ◦ l̃ogIm ◦ L (η).

2. Sample
u ∼ N

{
ṽecd ◦ l̃ogIm ◦ L (η), σ2Id

}
.

3. Map u back to M as [
ṽecd ◦ l̃ogIm ◦ L

]−1

(u).
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Algorithm 2 Generate GDP Fréchet mean on SPDM space
Input: Data radius r, privacy budget µ, private data X1, . . . , Xn ∈ S+

m, Riemannian Metric ρ,
footpoint p0 for Affine-Invariant metric.
Output: Privatized Fréchet mean η̂dpn ∈ S+

m.
1: Sample v ∼ N (0, Id) with d = m(m+ 1)/2.
2: if ρ = ρLE then
3: Compute sample Fréchet mean η̂n using equation 8.
4: Compute η̂dpn = Exp

(
Log(η̂n) + vecd−1(σv)

)
with σ = 2r0/µ.

5: else if ρ = ρLC then
6: Compute sample Fréchet mean η̂n using equation 9.

7: Compute L = ẽxpIm

(
l̃ogIm ◦ L (η̂n) + ṽecd

−1
(σv)

)
with σ = 2r0/µ.

8: Compute η̂dpn = LL⊤.
9: else if ρ = ρAI then

10: Compute sample Fréchet mean η̂n using Gradient Descent algorithm.
11: Compute η̂dpn = expp0

{
ι−1
p0

(
ιp0

[logp0
(η̂n)] + σv

)}
where ιp0

is defined in equation 12.
12: end if
13: Return: η̂dpn .

C.4 SAMPLING FROM EWG ON HYPERBOLIC SPACE

To sample from EWG with footpoint p0, tangent center η, and rate σ > 0 on Hd, we modifies the
approach described in Cho et al. (2022), which is stated below:

1. Map the tangent center η to Tp0Hd as logp0
(η).

2. Sample u ∼ N (0, σ2Id) and parallel transport the vector [0,u] to the tangent space Tp0
Hd,

ũ = PTe1→p0
([0,u]).

3. Map ũ+ logp0
(η) back to Hd via exponential map,

expp0
(ũ+ logp0

(η)).

D COMPUTATION TIME COMPARISON

Table 1: Computation time (seconds) comparison between RL and EWG mechanisms under the
affine-invariant metric. The RL mechanism is implemented with a burn-in size of 10,000. Results
from 10 Monte Carlo replications.

mechanism

EWG RL
size m mean SD mean SD

2 0.00248 0.00252 1.01774 0.05029
5 0.00160 0.00022 1.33547 0.07959
7 0.00166 0.00011 1.61042 0.08033
10 0.00204 0.00032 2.03352 0.10878
13 0.00241 0.00018 2.48609 0.09874
17 0.00329 0.00083 3.50102 0.29508
20 0.00402 0.00067 4.20360 0.13551
23 0.00460 0.00065 5.00708 0.12180
27 0.00761 0.00509 6.05043 0.10942
30 0.00709 0.00074 6.85141 0.10098
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Figure 4: Computation time comparison of EWG and RL Mechanisms under the affine-invariant
metric. The blue line with triangular symbols represents the RL mechanism, while the red line with
circular symbols represents the EWG mechanism. The RL mechanism is implemented with a burn-in
size of 10,000.

E COMPUTING RESOURCES

For simulations in section 4.1, refer to simulation gaussian.R and spd functions.R
for the affine invariant metric, simulation gaussian le.R and spd functions le.R
for Log-Euclidean metric, and simulation gaussian lc.R and spd functions lc.R
for Log-Euclidean metric. Simiarly, simulation gaussian hyperbolic.R and
hyperbolic functions.R are used for generating the results for hyperbolic space.

GDP plot.R, GDP le plot.R and GDP lc plot.R are for generating the result plots in Figure
1, while as GDP hyperbolic plot.R are for generating the result plots in Figure 2.

For the computation time comparison, refer to simulation gaussian time.R and
GDP time plot.R.

For the experiments on OCTMNIST dataset in Section 4.2, refer to octmnist data.R for generat-
ing covariance descriptors, octmnist gaussian.R for simulation on the covariance descriptors,
and octmnist GDP plot.R for generating the result plots in Figure 3.

The simulations were performed using R on a PC with a 12th Gen Intel Core i5-12600K CPU with
32 GB of RAM running Windows 11. Computation times for EWG and RL mechanisms are given in
Table 1 and Figure 4.
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