
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FIRST: FINETUNING ROUTER-SELECTIVE TRANS-
FORMERS FOR INPUT-ADAPTIVE LATENCY REDUC-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Auto-regressive Large Language Models (LLMs) demonstrate remarkable perfor-
mance across domanins such as vision and language processing. However, due
to sequential processing through a stack of transformer layers, autoregressive de-
coding faces significant computation/latency challenges, particularly in resource-
constrained environments like mobile and edge devices. Existing approaches in
literature that aim to improve latency via skipping layers have two distinct flavors
- 1) Early exit 2) Input-agnostic heuristics where tokens exit at pre-determined
layers irrespective of input sequence. Both the above strategies have limitations
- the former cannot be applied to handle KV Caching necessary for speed-ups in
modern framework and the latter does not capture the variation in layer impor-
tance across tasks or more generally, across input sequences. To address both
limitations, we propose FIRST, an algorithm that reduces inference latency by
using layer-specific routers to select a subset of transformer layers adaptively for
each input sequence - the prompt (during prefill stage) decides which layers will
be skipped during decoding. FIRST preserves compatibility with KV caching en-
abling faster inference while being quality-aware. FIRST is model-agnostic and
can be easily enabled on any pre-trained LLM. We further improve performance
by incorporating LoRA adapters for fine-tuning on external datasets, enhancing
task-specific accuracy while maintaining latency benefits. Our approach reveals
that input adaptivity is critical - indeed, different task-specific middle layers play
a crucial role in evolving hidden representations depending on task. Extensive
experiments show that FIRST significantly reduces latency while retaining com-
petitive performance (as compared to baselines), making our approach an efficient
solution for LLM deployment in low-resource environments.

1 INTRODUCTION

Large Language Models (LLM’s) have revolutionized the fields of Natural Language Processing and
Computer Vision achieving incredible performance on a diverse set of benchmark tasks. However,
the scale of these LLM’s characterized by billions of parameters hinder their adoption in resource-
constrained environments with memory, latency and compute serving as the main challenges. In this
work, we focus on the latency aspect which becomes the most significant bottleneck for tasks such as
machine translation, question answering, summarization particularly on devices, such as laptops and
mobile phones. As mentioned in (Schuster et al., 2022), the auto-regressive nature of decoding in
LLM’s further pronounces the latency bottleneck. Our main interest lies in the resource-constrained
on-device setting where resolving this bottleneck is of particular importance.

Transformer based LLMs have several stacks of layers (including attention and FFN layers) leading
to high latency and compute requirements, making inference very slow or even infeasible in resource
constrained settings. This is because of the sequential processing of tokens through all the layers
for every input sequence and task. However, it is important to note that in the real world, there is
a lot of heterogeneity in input sequences and tasks. (Schuster et al., 2022; Sun et al., 2022) noted
that the generations made by LLMs can have varying levels of difficulty and certain generations can
be solved with reduced compute, by exiting the transformer stack early. At the same time, it has
been noted in recent works (Wendler et al., 2024) that inference forward pass proceeds in phases

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

through the layers of transformer based models, with different types of information being extracted
or mapped at different phases (sequences of layers) for certain tasks such as translation. Motivated
by these and other related works, we hypothesize that different sequential combinations of layers
are important for different input sequences and tasks. Learning the right sequential combination
of layers can help reduce inference latency and compute for on-device scenarios. However, there
are several challenges. Any algorithm for determining the “right” combination of layers should
minimize any quality loss, be compatible with other latency reduction strategies such as KV cache
handling and batch inference, should not introduce any additional latency or compute and and be
learnable with minimal compute and training overhead.

In the last few years, several promising approaches have been proposed in literature that adaptively
prune layers at each decoding step. Token-level early exit proposed in (Schuster et al., 2022; Sun
et al., 2022) allow tokens to exit the transformer layer stack early based on different strategies to
compute the confidence or saturation level. (Elhoushi et al., 2024; Elbayad et al., 2020; Zhang et al.,
2019) extended this idea to incorporate layer skipping at a token level during training. While token
level early exit is a useful idea in theory, it suffers from a major limitation of incompatible KV
Caching in practice (Del Corro et al., 2023). The incompatibility stems from having to recompute
KV caches for preceding tokens if we have a delayed exit point for latter tokens often resulting in
loss of early exit advantages. Since KV cache is crucial in significantly speeding up auto-regressive
decoding, inappropriate handling of KV cache limits practical adoption.

Recently, (Liu et al., 2024; Del Corro et al., 2023) have proposed input-agnostic layer skipping at
token level, that handle KV cache appropriately as well as retain the advantage of adaptive partial
computation. In these solutions, tokens exit at pre-determined layers irrespective of the input se-
quence, and for all sequences in a batch, tokens at the same position in a sequence exit at the same
layer. Furthermore, tokens at latter parts of the sequence are constrained to exit earlier than the
previous tokens to ensure that there is no redundant KV cache re-computation. These solutions are
heuristic based and impose hard rules and constraints irrespective of input sequences, which can
lead to drop in output quality. Others (Jaiswal et al., 2024) have proposed circumventing the KV
cache issue entirely by skipping only FFN layers, but such a strategy cannot reduce redundancy in
transformer layer computations. Moreover, they propose an input adaptive skipping heuristic based
on cosine similarity of outputs: if two adjacent layers have a similarity greater than a threshold, then
all subsequent layers except the last few are skipped. However, such a strategy does not take into ac-
count that several middle layers are crucial (see (Liu et al., 2024)) and furthermore, final prediction
capability of full model is not taken into account while deciding which layers to skip.

Our goal is to design an input-adaptive learnable layer selection strategy with quality aware latency
gains that is also able to handle the KV Cache appropriately. Ideally, for every input sequence
and task, we want to predict the optimal (sequential) combination of layers at inference time, such
that quality loss is minimum and the latency gains are as high as possible. We want to do this
with expending very little compute/additional training, with no or minimal additional latency (for
inference) and handle KV cache appropriately. Since there are exponential number of possible
layer sequences, this seems like a hard goal computationally and otherwise - however, we have
addressed this layer selection challenge partially in this work. We propose an approach for learning
and predicting the layer selections based on the input sequence and task, via training routers. Based
on the output of each layer for a sequence, a router will decide whether or not to skip the subsequent
layer in the transformer architecture. Since the decision is at a sequence level, KV cache issues
do not arise, as all tokens in a sequence would pass through the same set of layers. Moreover, we
further generalize our approach to handle batch inference by making the layer selection unified for
all sequences in a batch. Finally, we fine-tune the model combined with trained routers using LoRA
adapters to improve the quality significantly while retaining the latency gains. As an added bonus,
LoRA finetuning smoothens the layer skipping 1, reduces the amount of performance degradation
and further highlights the varied importance of layers based on input sequence.

We summarize our contributions below:

1. We propose a training and inference algorithm FIRST that incorporates layer-specific routers for
selecting layers in an input-adaptive manner. The layer selection is uniform for all tokens in a

1Depending on the task, after LoRA finetuning, task-specific sequences skip a certain set of middle layers
significantly more than other middle layers

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

sequence, thus handling KV caching and batch decoding without introducing additional compute
and latency. This can be applied on top of any pre-trained model.

2. We further incorporate LoRA adapters on top of the router-based layer selection for finetuning on
external dataset - the goal is to improve the quality of performance of the router-augmented model
on the task-specific data while retaining latency gains. This further smoothens the layer selec-
tion and an important insight emerges: certain layers including several middle layers (sequence-
dependent) are significantly more important for evolving the hidden representation.

3. Finally, we demonstrate extensive experimental evidence on multiple datasets on Machine Trans-
lation and Summarization tasks answering the efficacy of FIRST in achieving good latency gains
while retaining comparable quality of performance.

2 RELATED WORK

Early Exit: Several works have been proposed in the early exit theme (Zhu, 2021; Zhou et al.,
2020; Xin et al., 2020; Liu et al., 2020; Li et al., 2020; Hou et al., 2020; Schuster et al., 2022)
where adaptive compute is used for different parts of the token sequence. While these approaches
have been popular for encoder-only models which processes the entire sequence as a whole, they
have faced challenges in generation tasks. The main limitation of these set of techniques are their
inability to handle KV caching appropriately which is crucial for multi-fold speed-ups in current
LLM architectures. We emphasize that in our work, we assign varying compute to sequences in
different batches but within the same sequence, we assign the same compute to every token.

Input Agnostic Heuristics: In Skip Decoding (Del Corro et al., 2023), initial tokens pass through
more layers than later ones, contradicting the observation that later tokens are harder to decode (Liu
et al., 2024). Additionally, Skip Decoding skips several bottom layers for most tokens, causing
undesirable sub-network imbalance. To address this, Unified Layer Skipping (Liu et al., 2024) pro-
poses a discrete skipping strategy that is uniform for all tokens in a sequence. Based on a latency
budget, retained layer ids are passed through by all tokens, ensuring KV Cache handling and retain-
ing key layers. However, the limitation of this approach is that skipping is independent of the input
sequence. In contrast, early exit strategies adapt layer skipping to the input sequence, offering more
flexibility. In (Fan et al., 2019), a method akin to dropout randomly skips layers during training,
but this leads to performance decline during the pre-fill stage. FFN-SkipLLM (Jaiswal et al., 2024)
constrains skipping to FFN layers to avoid KV Cache issues but fails to fully exploit redundancy as
discussed already.

Model Compression and Quantization Aware Training: Orthogonal approaches to explore the
latency/memory-performance trade-off in Large Language Models aim to build smaller models that
approximate the performance of larger ones with reduced memory and latency costs. Key techniques
include: 1) compressing model parameters into fewer bits (Frantar et al., 2022; Lin et al., 2024; Lee
et al., 2024; Saha et al., 2023); 2) pruning the network by removing components like attention heads
or neurons based on heuristics (Frantar & Alistarh, 2023; Ma et al., 2023); and 3) distilling the large
model into a smaller, faster counterpart (Agarwal et al., 2023; Gu et al., 2024). For further details,
we refer to the survey by (Zhu et al., 2023). A significant body of work (Dettmers et al., 2024; Liu
et al., 2023b; Peri et al., 2020; Li et al., 2023) has focused on quantization-aware training to reduce
memory footprints and mitigate performance loss, starting with QLoRA (Dettmers et al., 2024). In a
similar vein, our work proposes fine-tuning router-augmented models to improve layer skipping and
reduce performance degradation, as pre-trained models do not account for layer skipping, leading to
higher degradation with vanilla skipping.

3 PROBLEM STATEMENT

Our goal is to exploit the heterogeneity in inputs and tasks to selectively use LLM layers in a quality
aware manner for reducing inference latency and compute for on-device constraints. Ideally, we
want to select an optimal sub-sequence of layers within a transformer architecture for a given input
and task, such that the overall latency as well as expended computation are both low, while quality
is comparable to the un-modified case where every input sequence passes through every layer. For
ease of explanation, without loss of generality, we assume the task is same and simply consider an
input sequence for describing the problem.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Let us consider an an input sequence X = {x1, x2, . . . , xn} with n tokens. Let there be m trans-
former layers in the model, where the ith transformer layer is represented as the function ϕi().
As stated lucidly in (Wendler et al., 2024), X is first converted to an initial latent representation
H0 = {H1

0 , H
2
0 , . . . ,H

n
0 }, where H0

j ∈ RD,∀j ∈ [n] is a look-up from a learned embedding
dictionary corresponding to the jth token. Thereafter, every transformer layer ϕi() operates on the
latent vectors Hi to generate the embedding for the ith layer as follows. For the jth token,

Hj
i = Hj

i−1 + ϕi(H
1
i−1, H

2
i−1, . . . ,H

j
i−1) (1)

Let the (golden) output or generated sequence for an input sequence X that passed through all m
layers of the model with full computation be Y∗

X . Our hypothesis is that for a given input sequence
(and task), there exists an optimal subsequence of functions FOPT (X) out of the full sequence
{ϕi, i ∈ [m]} such that the output generated by passing through this subsequence: YOPT,X ≈ Y∗

X .
More formally, if Q is a quantitative quality measure on Y , and ϵ → 0 is tolerance in deviation in
quality from the golden output, then we hypothesize that there exists an optimal subsequence, using
the minimum number of layers, FOPT (X), such that:

Q (YOPT,X) ≥ (1− ϵ)Q (Y∗
X) ,∀X . (2)

The optimality above is with respect to the minimum subsequence of layers that can help achieve the
above, to minimize latency while keeping quality unaffected. Note that, the optimal subsequence
FOPT (X) need to be obey the same autoregressive computation on previous tokens as given in
Equation 1. Hence, any algorithm that determines the optimal subsequence, need to be compatible
with KV cache handling, to avoid the re-computation of values for tokens preceding the current
token (which is a drawback with some existing work, especially in the Early Exit literature, that
choose computation or layer skipping at token level).

The potential number of subsequences for m layers is 2m, hence a brute force approach is not only
infeasible, but would also beat the purpose of such a layer selection in the first place: reducing
latency and compute. In the absence of any known substructure in the behaviour of the latent layers
on each input sequence, it is difficult to arrive at such an optimal solution polynomially or with low
additional latency or compute, and in fact is likely to be NP-hard.

We propose to learn an approximation of the optimal subsequence of layers for any input sequence
with low additional latency and minimal training.

4 PROPOSED SOLUTION: FIRST

Let us first understand what it entails to learn an optimal subsequence of layers for any input. Con-
sider the full transformer sequence to be F ∗ = {ϕ1, ϕ2, . . . , ϕm}. Any optimal subsequence for
an input X : FOPT,X could be thought of as finding an optimal path through a binary tree of func-
tions. Formally, let every level in the binary tree correspond to a transformer layer and the 0th layer
corresponds to the initial embedding look up; i.e., at depth i ∈ [m], there would be 2i nodes, each
corresponding to either ϕi or ϕi, where the former denotes that a particular transformer layer is in-
cluded in the optimal path whereas the latter denotes that it is not included. Each (of the 2i−1 nodes)
ϕi or ϕi has two children, corresponding to the next transformer layer: ϕi+1 and ϕi+1 (See Figure 1).
In such a tree structure, for example, the path {ϕi−1, ϕi, ϕi+1, ϕi+2} indicates the subsequence of
transformer layers {ϕi, ϕi+2}. For any transformer layer ϕi in this tree, let Anc(ϕi) = k, 0 < k < i
denote the the lowest ancestor node where the corresponding transformer node ϕk is included in the
sequence. In the above example, Anc(ϕi+2) = ϕi−1.

For any such sequence of functions F , at level i, the autoregressive computations for the jth position
corresponding to the jth token in the input sequence, Equation 1, would now be modified as follows.

Hj
i =

{
Hj

k if ϕi /∈ F , k = Anc(ϕi)

Hj
k + ϕi(H

1
k , H

2
k , . . . ,H

j
k), if ϕi ∈ F , k = Anc(ϕi)

(3)

Our problem translates to navigating this binary tree to find the optimal path FOPT for any given
input sequence and task. Since there are 2m paths in this tree, we propose to approximate the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Binary Tree representation of the subsequence of layer selection.

optimal choice by making this decision in a greedy fashion at each node. Formally, we propose
to add a (lightweight and fast) router Ri before every transformer layer ϕi in the model, that will
predict whether ϕi will be selected or not.

Our aim is to learn to predict the layer choice at each level (myopically) so that the overall path
(or, sequence of functions) F(X) ≈ FOPT (X) for any given input sequence X (and task). We
want to decide this at a sequence level, and not at a token level to maintain compatibility with
the autoregressive computations and avoid re-computation of values (use KV cache efficiently).
Moreover, we want to spend minimal compute and training for learning these functions Ri and
finally, Ri functions should be lightweight and low compute so that that do not add any significant
latency to the overall computation, helping realize the latency gains.

Our proposed algorithm FIRST modifies any off-shelf pre-trained transformer based model by in-
corporating and training a router or probability function Ri before every transformer layer ϕi. For a
given input sequence X , the output of the router Ri is a probability score ρi denoting the probability
of selecting ϕi in the layer sequecne. We can think of layer i as a modified function ϕR

i ((X)) such
that the output is ρi ·ϕi(X)+(1−ρi) ·ϕi(X). Formally, the autoregressive computation in Equation
1 would now be modified as follows.

Hj
i = Hj

i−1 + ρi · ϕi(H
1
k , H

2
k , . . . ,H

j
k) + (1− ρi) · ϕi((H

1
k , H

2
k , . . . ,H

j
k)) (4)

The above equation, applied recursively would be approximating the Equation 3 for the optimal F
in a probabilistic, greedy manner. We train the functions ρi on datasets and task, and further fine
tune using LoRA adapters to make the layer selections smooth and improve the output quality. We
explain the framework for FIRST algorithm in details in the following section.

5 FIRST FRAMEWORK AND ALGORITHM

In this section we describe the training and inference frameworks and procedure for FIRST in de-
tails. We first describe how to train Routers to be adaptive to input sequences. Given an off-the-shelf
pre-trained LLM, we propose two training phases (Figure: 2). In the first phase, we train a router
for each layer that decides whether the tokens in the input sequence should skip the layer or not. In
the second phase, to tackle the issue of unseen skipping during pre-training, we fine-tune the router-
augmented LLM keeping router weights fixed using LoRA (low rank adapters) to ensure the model
learns to perform well on the target dataset without reducing the skipping level. In other words,
the LoRA fine-tuning ensures that the gap in performance with and without skipping is significantly
reduced when compared to the base model. Below, we provide the details of each phase.

5.1 ADAPTIVE ROUTER MODULE

The adaptive router module is a single-layer neural network without bias, positioned before every
layer in the model. During training of the router, all model parameters except the router weights
remain frozen. For the first layer, it takes the tokenized input, and for each of the subsequent layers,
it takes the output of the preceding layer as input. Mathematically speaking, for any layer i, given

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Layer diagram of the two training phases

a batch of B tokenized inputs sequences, where each sequence has n tokens and is embedded in
to RD, the adaptive router module takes as input a B × n × D tensor output of layer (i − 1) and
outputs a B × n× 1 tensor. Subsequently, corresponding to each value (or, token) in the B × n× 1
tensor, we apply a sigmoid function to ensure that all entries in the tensor are in the interval [0, 1].
Following this, we take a mean operation at the sequence level - we take a mean of all the weights
in a sequence to output a B × 1× 1 tensor. For each sequence in the batch, the corresponding entry
is the probability ρi with which the sequence passes through the layer i. The input sequence skips
the layer i with probability 1− ρi.

In summary, after applying router Ri to an input sequence at each layer i, a single probability value
ρi is produced, indicating whether to pass the sequence through the layer. During training, the output
of a layer is modified as in Equation 4 using a skip connection, incorporating the probability ρi (see
Figure: 3). The routers are trained to encourage skipping by reducing the probabilities ρ using a
regularizer, to approximate the optimal subsequence for minimizing the latency. Note that the entire
model is frozen except for the routers. The training task is modeled as a language modeling task,
specifically next token prediction. The total loss function comprises of 3 terms namely -

• Cross-entropy loss: This measures the difference between the actual and predicted probability
distributions, to ensure the quality of the generations. LCE = −

∑
x∈X Y∗

X log (Ŷ).
• Regularization loss: This adds a penalty term to the loss function so that the router parameters

are not too large, to minimize the added latency and training compute, as well as minimizing
overfitting to noise. LReg =

∑
i∈[m] ||Ri||2, where ||Ri||2 denotes the ℓ2 norm of the router

weights for the ith layer router, and there are m layers in the model.
• Non-skip Penalization loss: Summation of probability values across all layers of the model ar-

chitecture. It encourages the model to favor skipping at the cost of cross-entropy loss to reduce
latency, with the coefficient α, managing the extent of skipping to approximate the optimal trade-
off of quality and latency. LPP =

∑
i∈[m] ρi.

The total loss is a linear combination of these three terms namely L = LCE + λ · LReg + α · LPP.

5.2 LORA COMPENSATION MODULE

Selecting a subsequence of layers in a model to improve the latency during inference will naturally
come with some performance loss - especially so since the pre-trained model was not trained to skip
layers given any input sequence. To compensate for the loss in performance caused by skipping in
the model, we finetune the router-augmented pre-trained model on the downstream task. We are
inspired by Quantization Aware Training - QLoRA in particular - a training method which com-
pensates for performance loss due to model compression. To finetune, we use Low Rank Adapters
(LoRA) to modify the weights of the pre-trained model while keeping the router weights frozen.
While using LoRA, the difference in weights for each trainable weight matrix is restricted to be a
low rank matrix. During training, the router parameters are frozen while trainable LoRA adapters
are added to both the FFN (Feed-Forward Network) and the attention modules of each layer of the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Skip connection used for router training. With probability p, the sequence is processed by the layer
and with probability 1 − p, the layer is skipped. During inference, routers make the decision of whether a
sequence will skip a particular layer or pass through it.

pre-trained model. During the finetuning phase, to maintain the skipping level, we again add a sim-
ilar loss component as in phase 1, namely (α/3)LPP = (α/3)

∑
i∈[m] ρi. This is essential during

the LoRA finetuning even though the router weights are fixed in this phase - this is because the
finetuning mechanism alters the hidden representations of the input sequence in a manner such that
the probability score for each layer is always more than 0.5 implying that no layers are skipped.
We have noticed that the Non-skip Penalization Loss coefficient α scaled down by a factor of 3-4
is well-suited for the finetuning process while maintaining the same skipping level as in phase 1 of
the training. During training the LoRA adapters, responses are appended to the prompt to train the
model to predict tokens from the response. For inference, the model weights are merged with the
original weights to prevent any latency overhead.

5.3 INFERENCE FOR FIRST

During inference, given an input sequence, the decision to skip or pass through a layer is determined
by a threshold. For the input sequence, each router (corresponding to a layer) outputs a number
in the interval [0, 1]. If this number (corresponding to the probability of not skipping the layer) is
greater than or equal to 0.5, the sequence passes through the layer. On the other hand, if the output
from the router is less than 0.5, the sequence skips the layer (Figure: 3). Below, we describe some
salient points about the functioning of the router during inference to handle KV Cache appropriately
to retain the modern latency speed-ups:

1. Prefill phase handling: Skipping is not allowed during prefill phase. This ensures the first token
is generated correctly, which is crucial for WMT tasks, as they are highly sensitive to the correct
generation of the first token in the target language. It has been observed in prior works (Liu et al.,
2024) that skipping during prefill phase is detrimental to performance during inference.

2. Fixed router decisions during decoding and handling KV Cache: During the prefill phase,
the decisions made by the routers are cached. During the decoding phase, every token adheres
to the cached decision made during prefill. In other words, for a particular layer, if a router
outputs a number less than 0.5 during prefill, the number is fixed for the decoding steps and
therefore the same layer will be skipped by all tokens during decoding. Similarly, if the router
outputs a number more than 0.5 during prefill, the same layer will be processing all tokens during
decoding. Such a step ensures that for each decoding step and each layer that is not skipped,
the KV cache for all previous tokens is available for that layer - this is because a fixed set of
layers (decided during the prefill phase) will be skipped for all tokens during the decoding phase
of inference. This approach effectively addresses the caching issues encountered in early exit
strategies, ensuring consistent decisions across the decoding process.

6 EXPERIMENTS

We conduct experiments on two benchmark tasks: Machine Translation and Text Summarization on
several publicly available datasets demonstrating both robustness and scalability of FIRST.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6.1 DATASETS

Machine Translation: For translation tasks, namely English-to-Chinese and English-to-German,
we employ the WMT development sets from 2017 to 2020 for training/fine-tuning following the
methodology outlined in previous studies (Liu et al., 2023a; Jiao et al., 2023). Translation perfor-
mance is evaluated using the test set from the WMT 2022 dataset (Kocmi et al., 2022) which was
developed using recent content from diverse domains. These domains include news, social media,
e-commerce, and conversational contexts. (Details in Appendix: A.1, Table: 4).

Summarization: We use the popular CNN-DailyMail (CNN-DM) (Hermann et al., 2015) dataset
which is a large collection (over 300k) of text summarization pairs, created from CNN and Daily
Mail news articles. Each datapoint in this dataset comprises of an article (the body of the news arti-
cle with 683 words on average) and the corresponding highlights (article summary as written by the
article author). While the training set contains more than 287k samples, we have randomly chosen
4k samples for training both routers and LoRA. During training in our framework, the number of
trainable parameters is small in both phases - therefore a small subset of data points is sufficient for
training. Inference is performed on the standard test set with 11,490 samples.

6.2 EVALUATION METRICS

Quality-Based Metrics for Translation task:

• BLEU Score: BLEU (Bilingual Evaluation Understudy) scores are used to measure the quality
of translations. BLEU compares n-grams of the candidate translation to n-grams of the reference
translation, providing a score between 0 and 1, with higher scores indicating better translations.
In this evaluation, NLTK BLEU is employed, focusing on BLEU-1 and BLEU-2 scores.

• COMET: COMET (Cross-lingual Optimized Metric for Evaluation of Translation) is used to
assess translation quality further. COMET evaluates translations using a model trained to correlate
well with human judgments. Specifically, Unbabel/XCOMET-XL 2 is used in this evaluation.
COMET provides a more nuanced assessment of translation quality by considering the intricacies
of both source and target languages, beyond the n-gram matching used in BLEU.

Quality based Metrics for Summarization Task:

• BERTScore: This metric quantifies semantic similarity between texts by leveraging contextual
word embeddings. BERTScore captures meaning-based similarity rather than relying on exact
word matches, providing a nuanced evaluation of text generation quality.

• ROUGE: (Recall-Oriented Understudy for Gisting Evaluation) is a common metric - ROUGE-1
refers to overlap of unigrams between the system summary and reference summary. Similarly,
ROUGE-L measures longest matching sequence of words.

Finally, for benchmarking latency, we look at the TPOT (Time Per Output Token): This metric
evaluates the average time taken to produce each output token and is calculated for GPU to gauge
overall decoding performance.

6.3 TRAINING AND INFERENCE SETUP

• Training settings: For our experiments, we use Llama-3-8B base model from Meta, which com-
prises of 32 layers. Training of routers and LoRA adapters is conducted on A100 80GB GPUs,
with training/inference is performed in full precision to avoid performance degradation due to
quantization. The training process employs our custom loss function and continues for a fixed
number of epochs, terminating when the validation loss fails to improve over 4 consecutive steps.
The learning rate is set between 1e−4 and 3e−4 - a cosine scheduler is used to adjust the learn-
ing rate. Gradients are accumulated after 5 steps and the regularization coefficient λ is fixed at
0.01. For LoRA fine-tuning, we employ a rank of 8, a dropout rate of 0.1, and a scaling factor
(lora alpha) of 32. For translation, the maximum sequence length is set to 128 for router training
and 256 for LoRA training. Similarly, for summarization, the maximum sequence length is set to
500 and 700 respectively. Prompts for the different tasks regarding training/inference are shown
in Appendix A.2.

2https://github.com/Unbabel/COMET

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

• Inference settings: For both translation and summarization, we set the temperature to 0.8 and
enable top-k sampling over 10 tokens. The maximum number of tokens to be generated is set to
80 and 200 respectively. Caching is turned on during inference.

6.4 BASELINES FOR COMPARISON

• Original Model: We compare the performance of the base model (Llama-3-8B) with and without
LoRA fine-tuning as our baseline. We then train routers and the LoRA module for various values
of the coefficient α associated with the non-skip penalization loss. This allows us to report the
time per output token (TPOT) and quality at different levels of skipping, with and without LoRA.
Latency speedups are reported relative to the LoRA-fine-tuned model, which natively supports
key-value (KV) caching.

• Unified Skipping: This method relies on using a heuristic-based strategy for retaining layers at
fixed intervals. We replicate their algorithm (Liu et al., 2024)and compare performance both with
and without LoRA fine-tuning across various skipping percentages. We do not consider other
input-agnostic heuristic-based strategy for skipping layers since Unified Skipping has empirically
established itself to be the state-of-the-art.

6.5 DETAILED RESULTS

Layer-wise Skipping Patterns: First, we present some layer-wise skipping statistics across the 3
tasks that we experiment with. Note that layer-wise skipping significantly vary across tasks, indi-
cating that the importance of each layer depends on the nature of the task and dataset. For a 15%
skipping rate, we observe the following patterns. In the WMT Machine Translation task, for English-
to-German translation, layers 7–9 and 21 are fully skipped, while layer 18 is partially skipped. For
English-to-Chinese translation, layers 7–9, 16, and 21 are fully skipped, with partial skipping in
layer 20. In the summarization task, layers 20, 22, and 23 are fully skipped, and layers 19, 21, and
26 are partially skipped. Some layers are skipped less than 5% of the time, suggesting these layers
are only necessary for specific sequences, highlighting the input-dependent and task-specific nature
of layer importance. Detailed layer-wise skipping statistics can be found in Appendix A.3.

Now, we present detailed analysis of our experiments on the WMT Translation and CNN Summa-
rization datasets. We start with highlighting the salient points:

English-to-German:

1. We observe a performance degradation of less than 15% in COMET scores which accounts for
the semantics part of the translated text. Less than 10 % and 20% degradations are observed
in BLEU-1 and BLEU-2 (syntax-based metrics) respectively for approximately 15% skipping
(Table: 1). The corresponding latency improvement is 10% on TPOT. (Table: 2).

2. Our approach significantly outperforms the input-agnostic layer skipping method (Liu et al.,
2024), referred to as Unified Skipping. For approximately 15% skipping, our method achieves a
BLEU-1 score of 38.01, compared to 28.92 for the unified skipping approach (Table: 1). In terms
of COMET scores, our method attains a score of 82.14, while unified skipping achieves a score
of 59.34. This demonstrates the superiority of our approach in preserving semantic integrity.

English-to-Chinese:

1. For approximately 15% skipping, we observe a 12% improvement in TPOT (Table: 2), accom-
panied by a performance degradation of less than 20% in COMET scores. Concurrently, we
observe close to 15% and 25% degradation in BLEU-1 and BLEU-2 respectively (see Table: 1).

2. Our results for English-to-Chinese translation demonstrate competitive performance compared
to the Unified Skipping baseline - at 15% skipping, the evaluation metrics on BLEU-1, BLEU-2
and COMET scores for our FiRST framework are equivalent to the Unified Skipping baseline.

For more detailed results of the machine translation task, comprising of all four BLEU scores
(BLEU-1, BLEU-2, BLEU-3, BLEU-4), please refer to the Appendix A.4.

CNN/DailyMail Dataset:

1. There is an improvement in ROUGE-1, ROUGE-L scores (Table: 3) over LoRA fine-tuned base
model suggesting that strategically skipping certain layers may even led to improved model per-
formance. A 12% improvement in TPOT is observed for roughly 15% skipping. (Table: 2)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2. Our method outperforms Unified Skipping approach with more than 30% improvement in
ROUGE-1 and ROUGE-L scores at 15% skipping rate.

Our experiments conclude the optimal skipping rate is around 15%, which maintains more than
80% of the original model performance (for WMT English-to-German and CNN/DM) and 75% of
the original model performance for WMT English-to-Chinese - such a skipping level yields approx-
imately 10-12% improvement in TPOT.

Model Type ∼Skipping (%) English-to-German English-to-Chinese
BLEU-1 BLEU-2 COMET BLEU-1 BLEU-2 COMET

Original Model (no skip) Base + LoRA 0 41.78 21.74 93.00 56.94 35.56 82.66
Base 0 37.17 18.57 87.13 38.02 22.46 68.95

Unified Layer Skipping

R + L 15 28.92 10.64 59.34 46.61 25.01 69.58
R 15 23.24 7.85 59.26 27.28 13.35 54.57

R + L 25 15.67 3.36 31.69 34.90 15.75 50.59
R 25 12.58 2.65 32.15 17.74 7.35 38.74

R + L 35 6.44 0.77 22.05 7.51 2.10 20.25
R 35 3.92 0.51 22.88 3.87 1.05 21.24

Our Solution (FiRST)

R + L 15 38.01 17.89 82.14 48.35 26.57 68.63
R 15 28.83 11.80 67.74 17.55 8.68 42.76

R + L 25 17.84 4.14 34.95 35.79 15.66 56.92
R 25 9.67 1.37 26.01 11.01 3.23 25.45

R + L 35 6.39 0.42 19.96 15.66 3.95 26.8
R 35 3.70 0.14 21.41 6.13 1.54 22.89

Table 1: Quality Analysis on WMT (English-to-German and English-to-Chinese): BLEU-1, BLEU-2 and
COMET scores for varying skipping % have been reported. Here, R + L corresponds to Router Augmentation
followed by LoRA fine-tuning and R corresponds to router only (in the proposed FiRST framework). FiRST
with finetuning, improves upon the input-agnostic baseline of Unified Skipping for all skipping levels - the
improvement is more pronounced for English-to-German.

Model Type ∼ Skipping (%) English-to-German English-to-Chinese
TPOT TPOT

Base + LoRA 0 1x 1x
R + L 15 0.90x 0.88x
R + L 25 0.82x 0.83x
R + L 35 0.69x 0.68x

Model Type ∼Skipping (%) CNN/DM
TPOT

Base + LoRA 0 1x
R + L 15 0.88x
R + L 20 0.81x
R + L 27 0.76x

Table 2: TPOT variation on WMT (left) and CNN/DM (right) for FiRST. These values are relative to LoRA
fine-tuned base model. Fine-tuning is able to improve both TPOT and quality significantly.

Model Type ∼Skipping (%) BERT F1 Rouge-1 Rouge-L

Original Model (no skip) Base + LoRA 0 84.87 28.46 16.99
Base 82.29 23.49 14.66

Unified Layer Skipping

R + L 15 84.25 24.35 14.30
R 80.30 16.61 10.95

R + L 20 82.93 22.30 13.37
R 80.32 16.51 11.15

R + L 27 80.28 15.94 9.89
R 77.43 10.97 7.68

Our Solution (FiRST)

R + L 15 85.14 31.80 20.13
R 81.25 20.20 13.01

R + L 20 82.80 27.65 17.84
R 79.32 16.28 10.85

R + L 27 77.50 14.65 10.45
R 75.60 9.39 6.92

Table 3: Quality Analysis on Summarization (CNN/DM dataset): BERT F1, Rouge-1 and Rouge-L scores are
reported for varying skipping levels. FiRST with fine-tuning, improves upon Unified Skipping for all skipping
levels on both Rouge-1 and Rouge-L and is competitive on BERT F1.

7 CONCLUSION

We provide a new algorithm and framework FIRST for layer selection corresponding to input se-
quence and task towards reducing latency in a quality aware manner. This operates in a KV cache
compatible manner and handles batches of sequences, which are drawbacks in many existing work
on early exit. We show significant reduction in latency with low degradation of quality on multiple
tasks on well known open source datasets and demonstrate superior quality and latency over input
agnostic baselines. In the future, we would like to extend our method to 1) improve the optimality
of selection of layers, and 2) learn dynamically as new input sequences and tasks arrive.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier
Bachem. Gkd: Generalized knowledge distillation for auto-regressive sequence models. arXiv
preprint arXiv:2306.13649, 2023.

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, and Subhabrata
Mukherjee. Skipdecode: Autoregressive skip decoding with batching and caching for efficient
llm inference. arXiv preprint arXiv:2307.02628, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. In In-
ternational Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=SJg7KhVKPH.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large lan-
guage models. In The Twelfth International Conference on Learning Representations, 2024.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and compre-
hend. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782–9793, 2020.

Ajay Jaiswal, Bodun Hu, Lu Yin, Yeonju Ro, Shiwei Liu, Tianlong Chen, and Aditya Akella. Ffn-
skipllm: A hidden gem for autoregressive decoding with adaptive feed forward skipping. arXiv
preprint arXiv:2404.03865, 2024.

Wenxiang Jiao, Jen tse Huang, Wenxuan Wang, Zhiwei He, Tian Liang, Xing Wang, Shuming Shi,
and Zhaopeng Tu. Parrot: Translating during chat using large language models tuned with human
translation and feedback, 2023. URL https://arxiv.org/abs/2304.02426.

Tom Kocmi, R. Bawden, Ondřej Bojar, Anton Dvorkovich, Christian Federmann, Mark A. Fishel,
Thamme Gowda, Yvette Graham, Roman Grundkiewicz, Barry Haddow, Rebecca Knowles,
Philipp Koehn, C. Monz, Makoto Morishita, Masaaki Nagata, Toshiaki Nakazawa, Michal Novák,
Martin Popel, and Mikulas Popovic. Findings of the 2022 conference on machine translation
(wmt22). In Conference on Machine Translation, pp. 1–45, 2022.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Outlier-aware
weight quantization for efficient fine-tuning and inference of large language models. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 13355–13364, 2024.

Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li, Jie Zhou, and Xu Sun. Cascadebert: Accel-
erating inference of pre-trained language models via calibrated complete models cascade. arXiv
preprint arXiv:2012.14682, 2020.

11

https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SJg7KhVKPH
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://arxiv.org/abs/2304.02426

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. arXiv preprint
arXiv:2310.08659, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, and Qi Ju. Fastbert: a self-distilling
bert with adaptive inference time. arXiv preprint arXiv:2004.02178, 2020.

Yijin Liu, Xianfeng Zeng, Fandong Meng, and Jie Zhou. Instruction position matters in sequence
generation with large language models, 2023a. URL https://arxiv.org/abs/2308.
12097.

Yijin Liu, Fandong Meng, and Jie Zhou. Accelerating inference in large language models with a
unified layer skipping strategy. arXiv preprint arXiv:2404.06954, 2024.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Dheeraj Peri, Jhalak Patel, and Josh Park. Deploying quantization-aware trained networks using
tensorrt. In GPU Technology Conference, 2020.

Rajarshi Saha, Varun Srivastava, and Mert Pilanci. Matrix compression via randomized low rank
and low precision factorization. Advances in Neural Information Processing Systems, 36, 2023.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 35:17456–17472, 2022.

Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao Geng, Lingling Wu, Yilong He, Yuan Ni, Guo-
tong Xie, Xuanjing Huang, and Xipeng Qiu. A simple hash-based early exiting approach for
language understanding and generation. arXiv preprint arXiv:2203.01670, 2022.

Chris Wendler, Veniamin Veselovsky, Giovanni Monea, and Robert West. Do llamas work in En-
glish? on the latent language of multilingual transformers. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15366–
15394, 2024. URL https://aclanthology.org/2024.acl-long.820.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating bert inference. arXiv preprint arXiv:2004.12993, 2020.

Linfeng Zhang, Zhanhong Tan, Jiebo Song, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Scan:
A scalable neural networks framework towards compact and efficient models. Advances in Neural
Information Processing Systems, 32, 2019.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses pa-
tience: Fast and robust inference with early exit. Advances in Neural Information Processing
Systems, 33:18330–18341, 2020.

Wei Zhu. Leebert: Learned early exit for bert with cross-level optimization. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 2968–2980,
2021.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. arXiv preprint arXiv:2308.07633, 2023.

12

https://arxiv.org/abs/2308.12097
https://arxiv.org/abs/2308.12097
https://aclanthology.org/2024.acl-long.820

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 TRAINING AND TESTING SPLIT

WMT Summarization
English-to-German English-to-Chinese CNN-DM

Train 3505 8983 3400
Validation 876 998 600

Test 2038 2038 11490

Table 4: Train-Validation-Test split for WMT and CNN datasets

A.2 PROMPT DETAILS

The prompt structures used for both training and inference are as follows:

• For the machine translation task (English-to-German or English-to-Chinese), the following
general prompt structure is used to train the routers and during final inference:

Instruction:
Translate the following sentences from English to German.

Input:
{Text to be translated}

Response:

• For the summarization task (used in CNN/DailyMail dataset), the following prompt struc-
ture is utilized:

Instruction:
Summarize the news article in around 100-200 words.

Input:
{Article to be summarized}

Response:

During the training of the LoRA module, task-aware training is applied. The expected translation or
summary is appended after the ### Response section, making the model predict the response tokens
following the ”Response:\n”.

A.3 LAYER-WISE SKIPPING STATISTICS

Tables 5, 6, and 7 indicate the fraction of sequences that skip a particular block during the task. If
the corresponding cell in a row shows a value of 0.8, it implies that 80% of the sequences skip this
block. It is important to note that the decision regarding which block to skip varies across different
datasets and tasks. Additionally, partial skipping in some blocks, with varying percentages, suggests
that while some sequences consider the layer important, others do not and therefore skip it during
the decoding phase.

Figures 4, 5, and 6 illustrate how various blocks are skipped when the model is adjusted to skip
approximately 15% of the layers. These plots highlight which blocks are skipped more frequently,
depending on the specific task and dataset being used.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 4: Blockwise skipping statistics for 15% skipping on English-to-German

Figure 5: Blockwise skipping statistics for 15% skipping on English-to-Chinese

Figure 6: Blockwise skipping statistics for 15% skipping on CNN/DM

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Layer ↓ R R+L R R+L R R+L
α → 0.005 0.005 0.01 0.01 0.025 0.025

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 1 1 1 1 1 1
8 1 1 1 1 1 1
9 1 1 0 0 0.0010 0.0132
10 0 0 0 0 0.8925 0.7267
11 0 0 0 0 0 0
12 0 0 1 1 1 1
13 0 0 0 0 0 0
14 0 0 0 0.0059 0 0.0025
15 0 0 1 0.9995 1 0.9936
16 0 0 0.0010 0.0245 1 0.9995
17 0 0 0 0 0 0
18 0.9779 0.3224 1 1 1 1
19 0 0 0.9985 0.9117 1 0.9961
20 0 0 1 1 1 0.9946
21 0.9985 0.9872 1 1 1 1
22 0 0 0 0 0 0
23 0 0 0.2414 0.0079 0.9975 0.9166
24 0 0 0 0 0 0
25 0 0 0 0 0 0
26 0 0 0.5731 0.0245 1 0.8602
27 0 0 0 0 0 0
28 0 0 0 0 0 0.0005
29 0 0 0 0 0 0
30 0 0 0 0 0 0
31 0 0 0 0 0 0

Average Skipping 0.1555 0.1347 0.2754 0.2492 0.3716 0.3595

Table 5: English-to-German: Skipping variation with Non-skip Penalization Loss coefficient α

Layer ↓ R R+L R R+L R R+L
α → 0.01 0.01 0.015 0.015 0.02 0.02

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 1 1 1 1 1 1
8 1 1 1 1 1 1
9 1 1 1 1 1 1
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 1 1
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0.4882 0.2812 0.1300 0.0015
16 1 1 1 1 1 1
17 0 0 0.0005 0 1 0.9990
18 0 0 0.7478 0.5584 1 1
19 0 0 0 0 0.9971 0.8690
20 0.2640 0.2184 1 1 1 1
21 1 0.9975 1 1 1 1
22 0 0 0 0 0.0005 0.0255
23 0.0029 0.0172 0.9549 0.9833 0.9975 0.9539
24 0 0 0 0 0 0
25 0 0 0 0 0 0
26 0 0 0.6830 0.0029 1 0.9190
27 0 0 0 0 0 0
28 0 0 0 0 0.5226 0.0015
29 0 0 0 0 0 0
30 0 0 0 0 0 0
31 0 0 0 0 0 0

Average Skipping 0.1646 0.1635 0.2773 0.2446 0.3952 0.3678

Table 6: English-to-Chinese: Skipping variation with Non-skip Penalization Loss coefficient α

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Layer ↓ R R+L R R+L R R+L
α → 0.03 0.03 0.035 0.035 0.04 0.04

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0.4359 0.5547
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 0 0 0 0 0 0
17 0 0 0 0 0 0
18 0 0 0.1889 0.1284 0.9997 0.9996
19 0.4282 0.3282 0.9991 0.9920 1 1
20 0.9986 0.9984 1 1 1 1
21 0.6825 0.5485 1 1 1 1
22 0.9936 0.9867 1 1 1 1
23 1 1 1 1 1 1
24 0.0011 0.0044 0.3891 0.4346 0.9265 0.9225
25 0 0 0 0 0.0016 0.0053
26 0.9712 0.9638 0.9997 0.9995 1 1
27 0.0179 0.0138 0.1463 0.1427 0.3742 0.3577
28 0 0 0 0 0.0089 0.0105
29 0 0 0 0 0 0
30 0 0 0 0 0 0
31 0 0 0 0 0 0

Average Skipping 0.1592 0.1514 0.2101 0.2093 0.2733 0.2766

Table 7: CNN/DM: Skipping variation with Non-skip Penalization Loss coefficient α

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.4 DETAILED RESULT TABLE

Tables 8 and 9 present the detailed results of the machine translation task, reporting scores on all
four BLEU metrics (BLEU-1, BLEU-2, BLEU-3, BLEU-4) and COMET. These tables highlight the
performance across skipping percentages.

Table 10 indicates the improvement in average time to generate output tokens, specifically for the
TPOT on GPU under both the router-only and LoRA+router configurations. Note that the latency
improvement is significantly better in the LoRA+router case compared to the router-only case. Since
the router model is not fine-tuned for the specific task, the number of tokens generated may vary.

Given that our solution applies skipping only during decoding, observing token generation during
this phase is essential to evaluate TPOT improvements. Once LoRA is fine-tuned, the model gener-
ates more appropriate responses, resulting in a visible enhancement in TPOT.

Model Type ∼Skipping (%) BLEU-1 BLEU-2 BLEU-3 BLEU-4 COMET

Original Model (no skip) Base + LoRA 0 56.94 35.56 23.19 16.02 82.66
Base 0 38.02 22.46 13.85 9.14 68.95

Unified Layer Skipping

R+L 15 46.61 25.01 14.33 8.99 69.58
R 15 27.28 13.35 7.08 4.25 54.57

R+L 25 34.90 15.75 7.70 4.46 50.59
R 25 17.74 7.35 3.52 2.06 38.74

R+L 35 7.51 2.10 0.74 0.37 20.25
R 35 3.87 1.06 0.37 0.20 21.24

Our Solution (FiRST)

R+L 15 48.35 26.57 15.80 10.27 68.63
R 15 17.55 8.68 4.70 2.83 42.76

R+L 25 35.79 15.66 7.99 4.77 56.92
R 25 11.01 3.23 1.15 0.58 25.45

R+L 35 15.66 3.95 1.43 0.75 26.80
R 35 6.13 1.54 0.42 0.20 22.89

Table 8: English-to-Chinese: BLEU and COMET scores for varying skipping %

Model Type ∼Skipping (%) BLEU-1 BLEU-2 BLEU-3 BLEU-4 COMET

Original Model (no skip) Base + LoRA 0 41.78 21.74 12.30 6.93 93.00
Base 0 37.17 18.57 10.09 5.71 87.13

Unified Layer Skipping

R+L 15 28.92 10.64 4.60 1.95 59.34
R 15 23.24 7.85 3.25 1.39 59.26

R+L 25 15.67 3.36 1.01 0.33 31.69
R 25 12.58 2.65 0.85 0.23 32.15

R+L 35 6.44 0.77 0.12 0.02 22.05
R 35 3.92 0.51 0.07 0.01 22.88

Our Solution (FiRST)

R+L 15 38.01 17.89 9.18 4.78 82.14
R 15 28.83 11.80 5.66 2.93 67.74

R+L 25 17.84 4.14 1.35 0.36 34.95
R 25 9.67 1.37 0.33 0.05 26.01

R+L 35 6.39 0.42 0.07 0.01 19.96
R 35 3.70 0.14 0.01 0.00 21.41

Table 9: English-to-German: BLEU and COMET scores for varying skipping %

Model Type ∼ Skipping (%) TPOT GPU
Base + LoRA 0 1x

R+L 15 0.90x
R 15 1.04x

R+L 25 0.82x
R 25 0.92x

R+L 35 0.69x
R 35 0.77x

Model Type ∼Skipping (%) TPOT GPU
Base + LoRA 0 1x

R+L 15 0.88x
R 15 0.98x

R+L 25 0.78x
R 25 0.89x

R+L 35 0.68x
R 35 0.80x

Table 10: English-to-German (left) and English-to-Chinese (right) TPOT variation

17

	Introduction
	Related Work
	Problem Statement
	Proposed Solution: FiRST
	FiRST Framework and Algorithm
	Adaptive Router Module
	LoRA Compensation Module
	Inference for FiRST

	Experiments
	Datasets
	Evaluation Metrics
	Training and Inference Setup
	Baselines for comparison
	Detailed Results

	Conclusion
	Appendix
	Training and testing split
	Prompt Details
	Layer-wise Skipping Statistics
	Detailed Result Table

