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ABSTRACT

Large language models (LLMs) have shown promising advancements in lossless
compression due to their excellent next-token prediction capabilities. However,
there is a gap between LLM-based compressors and classical transform-based
codecs. Existing LLM-based compressors function solely as entropy coders, fo-
cusing on compressing redundant data in the raw domain. In contrast, classical
codecs typically transform raw data into more compact features in the latent do-
main before applying entropy coding. But LLM-based compressors have not dis-
cussed this case. To the best of our knowledge, this is the first work to introduce an
LLM-based entropy model for transform coding. Specifically, we propose a sim-
ple yet effective fine-tuning strategy, tested across various codecs for both images
and speeches. With less than 2% parameters are fine-tuned, the LLMs can serve as
highly effective entropy models for well-established transform-based compression
codecs. For instance, LLaMA3-8B paired with arithmetic coding compresses la-
tent image codes on Kodak to 4.62% and speech codes on LibriTTS to 42.53% of
their transformed sizes after fine-tuning. Our proposed methods achieve notable
BD-rate improvements of 54.07% over JPEG, 17.61% over VQGAN, and 34.61%
over SpeechTokenizer. These findings highlight the great potential of integrating
LLMs into codecs to significantly improve coding efficiency. Source codes will
be released upon acceptance.

1 INTRODUCTION

Large language models (LLMs) have achieved great success on various tasks and are highly-efficient
for probabilistic prediction. According to source information theory (Shannon, 1948), probability
prediction combined with entropy coding is equivalent to lossless data compression, as the minimum
bit length required to represent data is determined by its − log2 probability likelihood (MacKay,
2003). Therefore, by combining LLM’s predictive capabilities with entropy coding methods like
Huffman coding (Huffman, 1952) and arithmetic coding (Pasco, 1977; Rissanen, 1976), LLMs can
function as highly effective lossless compressors. Some works have already validated their compet-
itive compression performance by feeding the text, images and audio data directly into LLMs, such
as Valmeekam et al. (2023) and Deletang et al. (2024).

However, there is a clear gap between LLM-based compressors and classical transform-based
codecs. Existing LLM-based compressors (Deletang et al., 2024; Valmeekam et al., 2023) solely
play a role of entropy coders and process redundant data in its raw domain, while classical codecs
(Wallace, 1992; Esser et al., 2021; Cheng et al., 2020; Liu et al., 2023b; Zhang et al., 2024b; Du et al.,
2023) typically transform the data into latent feature domain, achieving more compact representa-
tions and then apply entropy coding to further improve compression efficiency. Hence in this paper,
we bridge the gap by integrating LLM-based entropy models with transform coding frameworks.
We first transform the data into compact latent domain and perform quantization. The quantized
discrete codes are then fed into LLMs for context probability prediction, followed by entropy cod-
ing to generate the binary bitstream, see Fig. 1. Leveraging the powerful prediction capabilities of
LLMs, we can further enhance the compression performance of classical transform-based codecs.

Although quantized latent codes can be treated as tokens for LLMs’ input, two key challenges still
remain. First, the latent codes are typically two- or multi-dimensional, which is incompatible with
the sequential one-dimensional input format required by LLMs. A reasonable flatten method needs
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Figure 1: Left: previous LLM-based compression methods (Deletang et al., 2024). Right: our proposed
transform-based codec that replaces the entropy model with LLMs. T and IT represent transform and inverse
transform, Q and IQ denote quantization and inverse quantization, and AE and AD stand for arithmetic encod-
ing and decoding, respectively.

to be considered to preserve the correlation for the latent features before feeding them into LLMs.
Second, the codes’ value ranges do not align with LLMs’ vocabulary size, leading to inconsistency
in LLMs’ probability predictions, as LLMs can only predict within their predefined vocabulary
range. Thus, we introduce a latent-codes arrangement module between quantization and LLM-based
entropy model. This module maps the quantized latent codes to a positive range and determines the
vocabulary size based on the value range. We only adjust the dimensions of LLMs’ input and output
layers to match the specified vocabulary size, then freeze the LLMs’ backbone and fine-tune the two
layers to better adapt to the characteristics of various codecs.

In this paper, we demonstrate that large language models are stronger entropy models for transform-
based codecs. We integrate LLMs into transform coding frameworks and apply simple fine-tuning
to adapt them for compression across various modalities. Experiments are conducted on three types
of codecs to validate our methods’ effectiveness: codecs using the classic discrete cosine transform
(DCT) and quantization like JPEG (Wallace, 1992), codecs using the neural network-based trans-
form and vector quantization (VQ) like VQGAN (Esser et al., 2021), and codecs using network-
based transform and residual vector quantization (RVQ), such as SpeechTokenizer (Zhang et al.,
2024b). Our method demonstrates satisfactory performance across all these codecs, notably im-
proving their compression efficiency.

Generally speaking, our contributions can be summarized as

• We extensively evaluate recently-released LLMs in lossless text compression and select
Llama3-8B (AI@Meta, 2024) as the backbone for our proposed entropy model.

• We propose a latent-codes arrangement module to align the dimension between LLMs and
latent codes, along with a simple yet effective fine-tuning strategy to adapt LLM-based
entropy models to various compressors.

• Experiments show that our LLM-based entropy model can significantly improve the com-
pression efficiency of image codecs like JPEG and VQGAN by 54.07% and 17.61%, and
enhance speech codecs like SpeechTokenizer by 34.61%.

2 RELATED WORKS

Classical Codecs Classical image and speech compression techniques have long relied on
transform-based coding frameworks. Image codecs like JPEG and BPG (Bellard, 2014) typically
use DCT to transform the raw data into latent domain, while speech codecs like Opus (Valin et al.,
2012), AMR-WB (Sjoberg et al., 2007), and AAC (iso, 2006) employ transforms like MDCT and
STFT. All these codecs reduce latent data redundancy through entropy coding methods like Huffman
or arithmetic coding. However, instead of dynamically estimating data probabilities, they rely on
pre-calculated frequency tables based on empirical data, which limits their compression efficiency.

Neural Codecs In recent years, modern deep learning methods like variational autoencoders
(VAE) (Kingma & Welling, 2022) and neural network-based codecs (Cheng et al., 2020; Liu et al.,
2023a; Zeghidour et al., 2021; Défossez et al., 2022; Du et al., 2023) have demonstrated promising
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Table 1: Compression performance of different LLMs on enwik9. Compression ratio represents the ratio of
compressed size to raw data size. Chinchilla is a closed-sourced, thus the data at * cannot be measured.

Compression Ratio (%)↓
Chinchilla RWKV-v6

ChatGLM3-6B GLM4-9B Llama2-7B Llama3-8B
Chunk Size 1B 7B 70B 1B6 3B

1024 * * * 10.80 10.59 18.03 9.37 9.81 8.96
2048 11.3 10.2 8.3 10.54 9.86 16.27 8.83 8.87 7.81
4096 * * * 10.08 9.4 14.67 8.07 8.30 7.34

performance in both speech and image compression. These methods utilize elaborate neural net-
works to transform raw data into latent domain, and employ sophisticated entropy models to predict
latent features’ distributions, thereby improving the compression efficiency. However, their entropy
models often require complex modality-specific design of network architectures, which poses chal-
lenges for developing a unified compression framework for multiple modalities.

LLM-based Compressors LLMs have been explored as effective tools for lossless data compres-
sion due to their strong probabilistic prediction capabilities. Valmeekam et al. (2023) directly lever-
ages LLMs’ text processing capability and proposes an efficient text compressor based on LLMs.
Deletang et al. (2024) further demonstrates that LLMs can serve as universal compressors on mul-
timodal data like text, image, and audio. However, these methods directly compress data in the
redundant raw data domain. In this paper, we further investigate the potential of LLMs as strong
entropy models within transform-based coding frameworks.

3 BACKGROUND AND BENCHMARK

3.1 BACKGROUND

Given a sequence of data x1:n with distribution p1:n, lossless compression methods aim to encode
the data into binary streams C(x1:n), minimizing its bit length lc(x1:n) while preserving the original
information. According to the source-coding theorem, the expected minimal lc(x1:n) is given by
its entropy Ex∼p[− log2 p]. In existing LLM-based compressors, x represents words, pixels, and
speech samples for text, image, and speech compression, respectively.

However, the actual data distribution is usually unknown during compression. Therefore, we au-
toregressively predict the distribution p̂1:n using LLMs during encoding and decoding, where the
probability space of is confined to the LLMs’ vocabulary size, requiring that both the input and
output layers of LLMs must match this dimensionality for accurate prediction. Upon applying arith-
metic coding, the generated bit length can be approximated via cross-entropy as

H(x) = Ex∼p̂

[
n∑

i=1

− log2 p̂ (xi | x1:i−1)

]
(1)

3.2 BENCHMARK

To select a suitable LLM as the backbone of the entropy model, we evaluate the compression ca-
pabilities of several recent LLMs on lossless text compression. Evaluations are conducted using
the pre-trained models and their corresponding tokenizers on the enwik9 dataset (Hutter, 2006). In-
volved open-source LLMs include LLaMA2-7B (Touvron et al., 2023), LLaMA3-8B (AI@Meta,
2024), RWKV-v6 (Peng et al., 2024), ChatGLM3-6B (Wang et al., 2023), and GLM4-9B (GLM
et al., 2024). For comprehensive comparison, we also assess the closed-source Chinchilla model
(Hoffmann et al., 2022), using its compression performance reported in Deletang et al. (2024).

Considering LLMs’ context limitations, the text tokens are divided into chunks before feeding into
LLMs for compression. Table. 1 represents the compression performance under various chunk
sizes. While all these LLMs demonstrate pleasing lossless text compression capabilities, Llama3-8B
stands out with the best compression efficiency and longer context supports (up to 8192), making it

3
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Figure 2: The proposed transform-based coding framework uses LLMs as the entropy model. Raw data is
transformed and quantized into compact latent codes, which are flattened and fed into the LLM-based entropy
model in chunks. The model, consisting of fine-tuned LLMs and arithmetic coding, compresses the data into a
bitstream. On the decoding side, the process is reversed to reconstruct the data.

the optimal backbone for our experiments. By contrast, other LLMs, limited to a maximum context
length of 4096, achieve relatively longer compression time and reduced compression efficiency.

4 PROPOSED METHOD

This section presents our LLM-based transform coding framework, demonstrating its effectiveness
across three types of codecs: (1) codecs using the classic DCT and quantization approach, such as
JPEG; (2) codecs using the neural network-based transform and vector quantization, like VQGAN;
(3) codecs using network-based transform and residual vector quantization, like SpeechTokenizer.

4.1 OVERALL FRAMEWORK

Workflow Fig. 2 illustrates the proposed LLM-based transform coding framework. On the encod-
ing side, raw data x is transformed by T (·) into latent features y. Then, Q(·) quantizes these features
into discrete latent codes ŷ with a distribution p. The process is described as:

ŷ = Q(T (x)) (2)

The latent codes are discrete integer values and can be directly treated as tokens for LLMs’ in-
put. However, the latent codes are typically multi-dimensional and not compatible with the one-
dimensional input format required by LLMs. Hence we first flatten the codes in raster order to
preserve spatial correlations. Due to LLMs’ context limitations, we split the flattened codes into
several chunks ŷ1:n of size n. Each chunk is fed into the LLMs sequentially, where the conditional
probability p̂(ŷi | ŷ1:i−1) is calculated based on its context. Arithmetic coding is then applied to
compress the latent codes to their entropy limit and optimize coding efficiency. The expected bit
length is determined by cross-entropy like eq. (1) and can be formulated as eq. (3).

H(ŷ) = Eŷ∼p̂

[
n∑

i=1

− log2 p̂ (ŷi | ŷ1:i−1)

]
(3)

On the other hand, the value ranges of latent codes do not align with the pre-trained LLMs’ original
vocabulary size, which causes inconsistencies in the LLMs’ probability predictions, as they are
restricted to the predefined vocabulary. Therefore, we introduce a latent-codes arrangement module
between quantization and LLM-based entropy model. This module maps the quantized latent codes
into positive ranges and defines the vocabulary size accordingly. We then adjust the LLMs’ input
and output dimensions to match the vocabulary size, freezing the LLMs’ backbone and fine-tuning
only the input and output layers to adapt it to different codecs.

On the decoder side, the latent codes ŷ are autoregressively decoded using the same fine-tuned
LLMs and an arithmetic decoder. After being reversed to the original formats, it is reconstructed to

4
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Figure 3: Proposed LLM-based entropy model on JPEG (Left) and VQGAN (Right).

x̂ through inverse quantization IQ(·) and inverse transform IT (·) as:

x̂ = IT (IQ(ŷ)) (4)

Latent-Codes Arrangement To align the LLMs’ input and output dimension (i.e., the vocabulary
size) with the latent codes’ value range, we design a latent-codes arrangement module between
quantization and proposed LLM-based entropy module. JPEG’s latent codes include both positive
and negative values, hence we add an offset to ensure all values are non-negative and generate the
LLMs’ vocabulary. For VQGAN, which uses VQ and has a predefined codebook, we directly use
the codebook as LLMs’ vocabulary. SpeechTokenizer employs RVQ with layers having distinct
codebooks, we assign a specific vocabulary for each layer.

Fine-tuning of LLMs Upon determining the vocabulary size based on latent codes’ value ranges,
we modify the LLMs’ input and output dimensions accordingly. To better adapt the modified LLMs
to each codec, we then freeze its backbone and fine-tune only the input and output layers. During
fine-tuning, the prediction likelihood is maximized by minimizing the cross-entropy loss, which
aligns with the goal of compression. Experiments demonstrate that with less than 1% parameters
updated, the fine-tuned LLMs can effectively capture the latent codes’ characteristics and achieve
satisfactory performance across various datasets.

4.2 IMAGE COMPRESSION WITH LLM-BASED ENTROPY MODEL

For image compression, we utilize the highly representative traditional codec JPEG and the widely
adopted image generation method VQGAN as anchor codecs, replacing their entropy models with
our proposed LLM-based entropy model, as shown in Fig. 3.

JPEG As shown in Fig. 3 (a), with JPEG as the anchor codec, raw images are divided into 8 × 8
patches and transformed into DCT domain. After scalar quantization, the latent codes are flattened
in raster order and an offset is added to ensure all values are non-negative before being fed into the
LLMs. Though JPEG’s latent codes do not have a fixed maximum value, tests on several datasets
reveal that most values fall between -127 and 128. Hence we empirically set the offset to 127 and the
maximum value to 255, with all exceeding values truncated to 255, which means that the generated
vocabulary size is 256. By altering the quality factors, variable bitrate compression can be achieved.

VQGAN When using VQGAN as the anchor codec, raw images are transformed into the latent
domain via a neural network without being divided into patches, as shown in Fig. 3 (b). Then, they
are mapped to discrete integer values using a fixed codebook through vector quantization. There-
fore, the LLMs’ vocabulary size is directly determined by VQGAN’s codebook. VQGAN supports
several architectures with different codebook sizes and corresponding different bitrates, hence we
also conduct experiments to compare the compression performance using different codebook sizes.
During fine-tuning, 256 × 256 input images are quantized into latent codes of size 16 × 16 and
flattened to length of 256 before being fed into LLMs. During inference, latent codes of different
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Figure 4: Framework of LLM-based entropy model on SpeechTokenizer. Layered RVQ indices are treated as
latent codes, quantized from latent features by several independent RVQs. RVQ indices of each layer make
latent-codes arrangements respectively.

images can be concatenated to fully leverage the LLMs’ contextual capability, enabling simultane-
ous compression of multiple images.

4.3 SPEECH CODING WITH LLM-BASED ENTROPY MODEL

When using speech codecs like SpeechTokenizer as anchor codecs, the raw speech is downsampled
and transformed by neural networks and then quantized hierarchically using residual vector quanti-
zation. The quantization layers share the same codebook but are mutually independent. Hence we
perform a separate latent-codes arrangement for each layer, as shown in Fig. 4.

Speech of length L is quantized into 8 equal-sized latent codes using eight-layer RVQ, with each
code containing N/320 values. We train separate LLMs for each layer, processing latent codes
sequentially. Typically, a single quantization layer produces fewer than 1024 latent codes, which
is situated within almost all LLMs’ context length. Hence it is unnecessary to chunk the input
speeches. During decoding, speeches are reconstructed by concatenating RVQ layers from the first
to the n-th. Changing the number of layers allows for variable speech quality, with the bitrate
adjusted accordingly. During inference, multiple speech inputs can be concatenated to maximize
the GPU utilization and enable simultaneous compression.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Implementation Details During LLMs’ training process, we freeze the LLMs’ backbone and fine-
tune only the input and output layers. We use AdamW optimizer (Loshchilov & Hutter, 2019) with
an initial learning rate of 2.5×10−4 and a cosine annealing scheduler with warm restarts. The β1 and
β2 values are set to 0.9 and 0.99, respectively, with a weight decay of 1×10−2 to prevent overfitting.
Automatic mixed precision training is employed to reduce GPU memory usage and accelerate both
training and inference. Fine-tuning runs for 5 epochs per dataset, with quantized latent codes pre-
extracted to further save GPU memory. All experiments are conducted on an NVIDIA GTX 4090
GPU with 24GB of memory.

Datasets We fine-tune the LLMs for image compression using a subset of ImageNet
database (Russakovsky et al., 2015) and cropped them into 13,830 samples with the size of 256
× 256. We evaluate performance on a validation subset of ImageNet, Kodak (Kodak, 1999) and
CLIC (CLIC, 2021) datasets. For speech compression, LLMs are fine-tuned on the LibriTTS train-
ing dataset (Zen et al., 2019), with compression performance assessed using the LibriTTS clean-test
and other-test dataset, high-quality LJSpeech (Ito & Johnson, 2017) dataset.
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Table 2: Compression performance of LLM-based entropy models in various codecs and datasets. “QF” and
”CB” are JPEG quality factor and VQGAN codebook size, respectively. ”RVQ-1:2” denotes the sum of the first
two layers. While ”CR” is the compression ratio of latent codes, ”BD-Rate” reflects the overall compression
efficiency of raw data. JPEG and VQGAN use chunk sizes of 2048 and 256, respectively. More details can be
seen in appendix A.1.

Anchor Codecs Settings Dataset CR(%)↓ BD-rate(%)↓ Avg.(%)

JPEG

QF-20
Imagenet-val

4.43
-53.05

-54.07

QF-50 6.98
QF-80 8.79
QF-20

Kodak
4.62

-53.49QF-50 7.58
QF-80 9.36
QF-20

CLIC
4.96

-55.66QF-50 7.45
QF-80 9.19

VQGAN

CB-1024
Imagenet-val

90.56
-17.42

-17.61

CB-16384 75.31
CB-1024

Kodak
90.70

-17.30
CB-16384 75.41
CB-1024

CLIC
89.78

-18.11
CB-16384 74.70

SpeechTokenizer

RVQ-1
LibriTTS-clean

42.53
-35.35

-34.61

RVQ-1:2 67.36
RVQ-1:8 89.59
RVQ-1

LibriTTS-other
49.57

-31.99RVQ-1:2 70.80
RVQ-1:8 91.20
RVQ-1

LJSpeech
42.17

-36.49RVQ-1:2 66.59
RVQ-1:8 89.39

Metrics We evaluate image compression performance using Fréchet Inception Distance (FID)
(Heusel et al., 2017) and Peak Signal-to-Noise Ratio (PSNR) distortion metrics. FID evaluates
the distributional distance between the reconstructed and original images, while PSNR measures the
pixel-level similarity. For speech compression, we use the Virtual Speech Quality Objective Listener
(VISQOL) (Hines et al., 2012) to assess perceptual quality and the Word Error Rate (WER) (Ali &
Renals, 2018) to measure transcription errors.

5.2 COMPRESSION PERFORMANCE

Table. 2 provides the compression performance of LLM-based entropy models across various anchor
codecs and datasets. Three quality factors (20, 50, 80) and two codebook sizes (1024, 16384) are
evaluated for JPEG and VQGAN, respectively. While ”RVQ-1” represents the first RVQ layer’s
compression performance, ”RVQ-1:2” denotes the cumulative performance of the first two layers.
”CR” is the lossless compression ratio of latent codes purely caused by the LLM-based entropy
model, ”BD-Rate (Bjontegaard, 2001; Pateux & Jung, 2007)” measures the overall compression
efficiency of raw data. Herein, JPEG and VQGAN are evaluated using chunk sizes of 2048 and 256,
respectively. The chunk size of SpeechTokenizer is set to 512.

For each anchor codec, we evaluate the performance on three datasets to prove its robustness. For
DCT-based codecs like JPEG, the latent codes are highly sparse. Hence our LLM-based entropy
model can compress them to less than 10% of the original size, achieving notable BD-Rate improve-
ments of 54.07%. By contrast, neural network-based codecs like VQGAN exhibit lower redundancy
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Figure 5: Compression performance on Kodak (Left) & CLIC (Right) dataset, using JPEG as an anchor codec.
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Figure 6: Compression performance of VISQOL(Left) and WER(Right) on speech datasets, using SpeechTo-
kenizer (ST) as an anchor codec. GT represents the ground truth, calculated from the original speech.

in the latent space, resulting in limited compression ratios (about 70%) of latent size and moderate
improvements of BD-Rate (17.61% on average). In SpeechTokenizer, which uses RVQ for quan-
tization, the first RVQ layer contains richer semantic information, leading to better compression
performance. As more layers are added, the compression efficiency declines. Varying layer depths
lead to different bit rates, with an overall BD-Rate gain of 34.61%.

The overall RD curves for JPEG codecs are illustrated in Fig. 5, the proposed LLM-based entropy
model significantly enhances JPEG’s compression performance, outperforming more advanced
codecs like JPEG2000 (Christopoulos et al., 2000), WebP (Si & Shen, 2016), and FactorizedPrior
structure in Ballé et al. (2018), even nearing the efficiency of BPG and HyperPrior structure in Ballé
et al. (2018). At the same bitrate, our enhanced JPEG codec achieves approximately 4dB improve-
ments over the original JPEG on both Kodak and CLIC datasets. In Fig. 6, it can be seen that
our entropy model improves the speech compression, as reflected by gains in VISQOL and WER
metrics, where the best efficiency is achieved in only compressing the first RVQ layer.

Table 3: Percentage of fine-tuned parameters for different vocabulary sizes in Llama3-8B.

Vocabulary Size 256 1024 2048 4096 8192 16384
Fine-tuned Param.(M) 2.1 8.4 16.8 33.6 67.1 134.2

Percentage(%) 0.026 0.105 0.210 0.419 0.839 1.678

5.3 DISCUSSIONS

Number of Finetuned Parameters To adapt the LLMs to various codecs, we modify their input
and output dimensions to newly defined vocabulary size and fine-tune these two layers. Table. 3
illustrates the percentage of parameters that requires fine-tuning for different vocabulary sizes. It can
be seen that the proportion of fine-tuned parameters remains below 2% even for a large vocabulary
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Figure 7: Effect of chunk size on different anchor codecs. ”PP” in (a) refers to processed pixels in a single
image chunk, ”IS” in (b) denotes the number of image samples, while ”SL” in (c) is the speech length.
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Figure 8: Inference time (ms) per latent code with dif-
ferent vocabulary sizes.

Table 4: Running Time (s) of different anchor codecs.
The size of processing image is 64×64 for JPEG, and
256×256 for VQGAN. Total running time is calcuated
by time per codes × chunk size × chunk number.

Running Time (s)Chunk
Size JPEG VQGAN VQGAN

Vocab-256 Vocab-1024 Vocab-16384
256 2.33 0.171 0.99
512 2.34 0.174 1.05

1024 2.37 0.180 1.25
2048 3.43 0.267 1.60
4096 4.92 0.354 2.10
8192 11.69 0.759 2.26

size of 16,384. Though only a small subset of parameters being fine-tuned, the updated LLMs still
exhibit well generalization across various codecs.

Effect of Chunk Size on Compression Ratio According to the latent size, our anchor codecs
fall into two categories. The first, like JPEG, generates latent codes matching the original image
size, requiring images to be split into multiple chunks due to LLMs’ context limitation. The second
type, such as VQGAN and SpeechTokenizer, transforms raw data into dowm-sampled latent codes,
allowing multiple tokens to be combined and compressed in a single input.

Fig. 7 illustrates the compression performance across chunk sizes from 256 to 8192. The boxplots
”PP”, ”IS”, and ”SL” in (a), (b), and (c) represent processed pixels per image chunk for JPEG, the
number of image samples in VQGAN, and speech length in SpeechTokenizer, respectively. Larger
chunk sizes allow LLMs to utilize more contextual information, significantly improving the com-
pression ratio of latent codes (shown on the right y-axis). For JPEG, the latent’s compression ratio
improves from 10.78% to 5.3% on Kodak and 9.56% to 5.02% on CLIC. For VQGAN and Speech-
Tokenizer, whose latent compression ratio are relatively higher, increasing the chunk size boosts the
compression ratio by about 1% and 5%, respectively.

Limitations in Compression Complexity Our LLM-based entropy model requires autoregressive
probability predictions during both encoding and decoding. Fig. 8 provides the inference time per
latent code for different vocabulary sizes and chunk sizes. As the vocabulary size increases, the
probability space for each latent code expands. resulting in significant increases in inference time.
Similarly, when the chunk size grows, each code’s prediction context becomes longer, which also
slows down the inference time. To ensure an acceptable encoding and decoding time, we typically
use chunk sizes less than 2048. Recent developments in lightweight LLMs (Abdin et al., 2024; Team
et al., 2024; Zhang et al., 2024a) also provide more options for our future work.

Table. 4 shows the running time required by our method to process a single image with different
anchor codecs and chunk sizes. The running time here refers to the sum of entropy encoding and

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

decoding time. Without parallel computation, the complexity of our autoregressive method is pro-
portional to the size of latent codes. Actually, recent neural codecs (Esser et al., 2021; Zhang et al.,
2024b; Cheng et al., 2020; Liu et al., 2023b) generate latent codes with a downsampled size relative
to the image size. By applying the LLM-based entropy model to latent codes instead of raw data, the
running time of the autoregressive LLM-based entropy model is reduced to a more practical level.

Effect of Flatten Order on Compression Ratio When using JPEG as the anchor codec, latent
codes are flattened in zigzag order and compressed using Huffman coding. However, LLMs’ inputs
are typically flattened in raster scan order. We compare the compression ratios of latent codes
flattened in either zigzag or raster order, using the proposed LLM-based entropy model. As shown

Patch 1

Patch 2

Patch 3

Patch 4

DCT

Figure 9: The visualization of 8 × 8 patches and
their corresponding DCT spectra of luminance chan-
nel, extracted from the Kodak dataset.

in Table. 5, raster order flattening con-
sistently yields more efficient compression
across all datasets and quality factors, with
the performance advantages becoming more
pronounced at higher bitrates (about 0.38%
to 0.49% at QF-20 on Kodak and CLIC). It
is likely because raster order preserves the
correlations of different frequencies (i.e., la-
tent codes), enabling LLMs to learn a more
accurate probability distribution and achieve
better compression efficiency. For instance,
it can be observed in Fig. 9 that DCT coeffi-
cients still have strong two-dimensional cor-
relations in frequency domain. Specifically,
each coefficient is correlated to its neighbor-
ing coefficients.

Table 5: Compression performance for latent codes flattened in Zigzag or Raster scan order on different image
datasets, using JPEG as anchor codec. Given that the input image is 256 × 256. Chunk size is set to 2048. ∆
represents the difference between compression ratio in zigzag order and that in raster order.

Compression Ratio (%)↓
Kodak CLIC

Scan Order QF-20 QF-50 QF-80 QF-20 QF-50 QF-80
Zigzag 5.11 7.79 9.44 5.34 7.68 9.33
Raster 4.62 7.58 9.36 4.96 7.45 9.19
∆ 0.49 0.21 0.08 0.38 0.23 0.14

Future Works Though this research has achieved notable BD-rate improvements on several clas-
sical speech and image codecs, we will continue to evaluate LLM-based entropy models on more
advanced SOTA codecs. We will enhance compression efficiency through improved training strate-
gies, and explore low-complexity LLMs design to build efficient multimodal data compressors.

6 CONCLUSION

To the best of our knowledge, this is the first work to explore the potential of large language models
as powerful entropy models in widely-used transform coding frameworks for images and speeches.
We introduce a latent code arrangement module, and propose a simple yet effective fine-tuning
strategy that adjusts less than 2% of the model parameters. We test our proposed method on various
types of image and speech codecs, including JPEG with traditional DCTs and scalar quantization,
VQGAN with neural transform and vector quantization, and SpeechTokenizer with neural transform
and residual vector quantization. Experiments show that LLaMA3-8B, combined with arithmetic
coding, reduces the latent size of image and speech codecs up to 4.62% on Kodak and 42.53% on
LibriTTS, respectively. Consequently, our approach achieves significant BD-Rate improvements,
outperforming classical codecs like JPEG, VQGAN, and SpeechTokenizer by 54.07%, 17.61%, and
36.61%, respectively.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

ISO/IEC 13818-7:2006 - Information technology – Generic coding of moving pictures and asso-
ciated audio information – Part 7: Advanced Audio Coding (AAC), 2006. Available: https:
//www.iso.org/standard/43345.html.

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Ahmed Ali and Steve Renals. Word error rate estimation for speech recognition: e-wer. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), pp. 20–24, 2018.
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A APPENDIX

A.1 DETAILED EXPLANATION ON COMPRESSION RATIO AND BD-RATE

Here, we provide a more detailed explanation of the results in Table. 2 on three different types of
codecs, JPEG, VQGAN, and SpeechTokenizer.

A.1.1 JPEG

Figure 10: Compression performance on raw data us-
ing original JPEG and JPEG with our proposed LLM-
based entropy model.

Table 6: Compression ratio on latent codes using Huf-
fuman coding of original JPEG and our LLM-based
entropy model, on Kodak dataset.

Bits Per Pixel (bpp)
Settings QF-20 QF-50 QF-80
Latent 8 8 8
JPEG

(Huffman)
0.72 1.27 1.52

CR(%)↓ 8.94 15.88 19.01
Ours

(LLMs)
0.370 0.606 0.749

CR(%)↓ 4.62 7.58 9.36
BD-rate(%)↓ -53.49

On JPEG, we test the compression ratio of the proposed LLM-based entropy model for latent codes
and its improvement over the compression performance of JPEG on raw data, quantified by BD-rate.
Specifically, as shown in Table. 6, the compression ratio here refers to the ratio of the compressed
bitstream size to the quantized latent code size. By comparing the compression of latent codes using
Huffman coding and our proposed LLM-based entropy model, we can observe the improvement
in JPEG compression performance in raw data with our LLM-based entropy model, as shown in
Fig. 10. Leveraging the two rate-distortion curves, we can quantify the improvement that our LLM-
based entropy model brings to the compression performance of anchor codecs on raw data using the
BD-rate.

By setting different quality factors, we can get the compression performance of the LLM-based
entropy model at different bpps. We construct a vocabulary for the quantized coefficients by adding
an offset of 128 and setting a maximum value of 255. In most image datasets, we find that the
processed quantized coefficients generally do not exceed 255. For special cases where they do, we
consider the loss accordingly. With a vocabulary size of 256, the bits per pixel of latent codes here
is 8.
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Figure 11: Compression performance on Kodak dataset in PSNR (Left) and MS-SSIM (Right), using JPEG as
an anchor codec.
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As shown in Fig. 11, in addition to PSNR, we also evaluate the compression performance of various
methods on the Kodak dataset using MS-SSIM. For clearer comparison, here we converted MS-
SSIM to −10 log10(1− MS-SSIM ).

A.1.2 VQGAN

In VQGAN, we achieve further compression of the VQ indices, with varying compression ratios
depending on the size of codebook, as shown in Table. 7 and Fig. 12. The bits per pixel of the VQ
indices here can be calculated with eq. (5):

bpp =
Num. of Indices × log2( Vocab. Size )

Num. of Pixels
(5)

Using VQs with different codebook sizes produces latent codes with varying quantization levels,
enabling variable bitrates in LLM-based transform coding under the VQGAN anchor. The BD-
rate here still reflects the improvement achieved by our proposed LLM-based entropy model in
compressing raw data via VQGAN.

Figure 12: Compression performance on raw data us-
ing original VQGAN and VQGAN with our proposed
LLM-based entropy model.

Table 7: Compression ratio on VQ indices by VQGAN
anchor using our proposed LLM-based entropy model,
on Imagenet-val dataset. ”CB-1024” denotes the code-
book size of VQGAN is 1024.

Bits Per Pixel (bpp)
Settings CB-1024 CB-16384
Latent 0.0391 0.0546
+Ours
(LLM)

0.0355 0.0412

CR(%) 90.56 75.31
BD-rate(%) -17.42

A.1.3 SPEECHTOKENIZER

Figure 13: Compression performance on raw data us-
ing original SpeechTokenizer and SpeechTokenizer
with our proposed LLM- based entropy model.

Table 8: Compression ratios on RVQ indices from dif-
ferent layers using LJSpeech dataset. ”RVQ-1:2” de-
notes the sum of first and second layer.

Bits Per Second (bps)
Settings RVQ-1 RVQ-1:2 RVQ-1:8
Latent 600 1200 4800
+Ours
(LLM)

253.02 799.08 4290.72

CR(%)↓ 42.17 66.59 89.39
BD-rate(%)↓ -36.49

On SpeechTokenizer, we further compress RVQ indices from different layers, as is shown in Ta-
ble. 8. Compression ratio here stands for the ratio of compressed bitstream to VQ indices size. The
indices from first layer of RVQ can be effectively compressed. Because the indices here contain
only semantic information.
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During decoding, by concatenating the RVQ indices from the first to the n-th layer, the raw speech
can be reconstructed. As is shown in Fig. 13, by reducing the number of concatenated layers,
speech with varying quality can be obtained. The bitrate used for reconstruction changes accord-
ingly, achieving variable bitrate for LLM-based transform coding under SpeechTokenizer anchor.
BD-rate shows the improvement of SpeechTokenizer in compressing raw data enhanced by our pro-
posed LLM-based entropy model.

A.2 COMPRESSION PERFORMANCE ON FREQCODEC (DU ET AL., 2023)

Apart from SpeechTokenizer, we also apply the proposed LLM-based entropy model to build speech
transform coding on FreqCodec. FreqCodec uses network-based transforms and 32-layer RVQs,
similar to SpeechTokenizer.

Table 9: Compression performance for latent codes of LLM-based entropy model on FreqCodec. ”RVQ-1:32”
denotes the sum from first layer to 32nd layer.

CR(%)
Settings LibriTTS-clean LibriTTS-other LJSpeech
RVQ-1 92.19 97.45 91.44

RVQ-1:2 95.60 98.73 95.22
RVQ-1:8 98.90 99.68 98.81
RVQ-1:32 99.73 99.92 99.70

As shown in Table. 9, the results demonstrate that the coding gain brought by the LLM-based entropy
model to FreqCodec is much smaller than that for SpeechTokenizer. This is because the acoustic and
semantic information are mixed in the RVQ indices obtained in each layer of FreqCodec. The gain
of the LLM-based entropy model primarily benefits latent codes that contain semantic information.
This is reflected in the satisfactory performance of our proposed entropy model on RVQ indices from
the first layer of SpeechTokenizer. It guides the output RVQ indices from the first layer to contain
semantic information through semantic distillation, separating it from the acoustic information.
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