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Abstract

In this work, we propose two novel methodologies to study temporal and morphological
phenotypic effects caused by different experimental conditions using imaging data. As a
proof of concept, we apply them to analyze drug effects in 2D cancer cell cultures. We
train a convolutional autoencoder on 1M images dataset with random augmentations and
multi-crops to use as feature extractor. We systematically compare it to the pretrained
state-of-the-art models. We further use the feature extractor in two ways. First, we apply
distance-based analysis and dynamic time warping to cluster temporal patterns of 31 drugs.
We identify clusters allowing annotation of drugs as having cytotoxic, cytostatic, mixed or
no effect. Second, we implement an adversarial/regularized learning setup to improve clas-
sification of 31 drugs and visualize image regions that contribute to the improvement. We
increase top-3 classification accuracy by 8% on average and mine examples of morpholog-
ical feature importance maps. We provide the feature extractor and the weights to foster
transfer learning applications in biology. We also discuss utility of other pretrained models
and applicability of our methods to other types of biomedical data.

Keywords: Self-supervised learning, regularized learning, time-series, distance-based anal-
ysis, classification, feature importance, explainability, interpretability, cancer research.

1. Introduction

Deep learning has been extensively applied to the analysis of biological images (Adam et al.,
2020; Kan, 2017; Meijering, 2020; Suganyadevi et al., 2021). Learning cellular features
from imaging data in an automated way, instead of designing them manually with expert
knowledge, resulted in a remarkable progress across many tasks, such as classification and
segmentation, object tracking and others (Moen et al., 2019).

Among many studies based on deep representation learning, Yang et al. (2020) investi-
gated cell trajectories in the feature space along the time axis. Lu et al. (2019) exploited
distance measures in the feature space to quantify similarity of cells. However, no study
applied distance-based analysis of temporal drug effects using learned representations. In
this study, we develop a workflow to analyze effects of anti-cancer drugs with time.

Many efforts have gone into improving interpretability of deep learning for biomedical
applications (Huff et al., 2021; Singh et al., 2020). Several methods have been used to
study cellular phenotypes using variational autoencoders (VAEs) and generative adversarial

c© 2022 A. Dmitrenko, M.M. Masiero & N. Zamboni.



Self-supervised learning for studying drug effects

networks (GANs) (Lafarge et al., 2019; Goldsborough et al., 2017). Here, we propose
another way to gain insights into morphological features of cells driving drug classification.
As a proof of concept, we apply it to improve classification of anti-cancer drugs and visualize
image regions contributing to that improvement. Therefore, our main contributions are:

• We train a convolutional autoencoder (ConvAE) on 1M cancer cell images using ran-
dom augmentations and multi-crops. We provide the source code and the model for
future transfer learning applications at https://github.com/dmitrav/pheno-ml.

• We propose a workflow to study temporal drug effects using learned representations
of images with distance-based clustering analysis.

• We propose an adversarial/regularized learning setup to improve multiclass classifica-
tion of drugs and visualize morphological features driving classifier decisions.

2. Related work

State-of-the-art (SOTA) general purpose pretrained models (e.g., ResNet-50 trained with
SwAV (Caron et al., 2021a) or DINO (Caron et al., 2021b)) are often used for transfer
learning applications (Chandrasekaran et al., 2021). However, their performance may drop
significantly on specific datasets such as ours (Grill et al., 2020). Models trained on biological
data are available, but they are usually trained on smaller datasets. Services and tools
exist to assist on biological image analysis (such as CellProfiler (Carpenter et al., 2006) or
DeepImageJ (Gómez-de Mariscal et al., 2021)). However, they are not designed to handle
high-throughput and often do not provide direct access to extracted feature vectors. In this
work, we train ConvAE on 1M image dataset comprising 21 cell lines and 31 cancer drugs on
5 concentrations. We use random augmentations and multi-crops, prove the representations
contain meaningful biological information and provide the trained model with minimal API
to extract features.

A number of approaches to improve interpretability of deep learning are based on au-
toencoders (Biffi et al., 2020; Hou et al., 2019). Often, they are used to localize and visualize
pathologies or lesions (Uzunova et al., 2019). Perhaps the closest approach to ours is the
one proposed by Chen et al. (2020). The authors train a VAE on healthy subjects and
then use it to detect outliers with MAP-based restoration. That is, the lesions are detected
as noise in the process of image restoration. The detected regions are then visualized by
calculating the difference between input and restored images. In this work, we use ConvAE
as a feature extractor in a regularized learning setup to train the lens model conceptually
introduced by Sajjadi et al. (2018). The resulting morphological feature importance maps
are then obtained by calculating the difference between the reconstructed and the lensed
images.

3. Data

We used advanced robotics, assay miniaturization and high-throughput imaging to acquire
a dataset comprising 1M phase-contrast images covering 21 cancer cell lines exposed to
31 experimental and FDA-approved clinical cancer drugs at 5 logs of concentration, where
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every condition was imaged every 2 hours for up to 6 days (Figure 1). Detailed description
of the data is given in Appendix C.

4. Methods

4.1. Learning representations
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Figure 1: Schematic of the dataset and the ex-
pected drug effects over time (on the right).

We adopted a convolutional autoen-
coder (ConvAE) to learn image rep-
resentations. We experimented with
architectures to achieve good recon-
struction quality and reasonable train-
ing time, as we used a single Nvidia
GeForce RTX 2060 with 6GB only. We
ended up with an architecture of 3 con-
volutional layers for encoder and de-
coder parts having a relatively large
receptive field (maps of 32 × 32 pix-
els in the bottleneck layer). The to-
tal number of parameters stayed rather
low (190k), which allowed faster train-
ing and feature extraction, as well as
lower memory consumption.

4.2. Augmenting and cropping strategies

Since we had naturally grayscale images, we only applied random resized crops (RRCs),
augmented with random Gaussian blur and horizontal flip. However, we tested a number
of cropping strategies. The initial 256× 256 images were randomly cropped and resized to
128× 128, but the scale of RRCs varied. We tested combinations of full images and square
crops of about half size and about quarter size (e.g., the following 3-crop strategy: 1 full
image, 1 square crop of random size between 128-256 pixels, 1 square crop of random size
between 64-128 pixels). We tested 12 cropping strategies, always having a full image and
up to 4 additional RRCs of different sizes.

4.3. Evaluation and comparison to the pretrained models

We compared image representations obtained with ConvAE and general-purpose SOTA
models pretrained on ImageNet: i) supervised ResNet-50, ii) self-supervised ResNet-50
(SwAV), iii) self-supervised ResNet-50 (DINO), iv) self-supervised ViT-B/8 (DINO). We
evaluated performance of each model on 3 downstream tasks using multiple metrics.

Similarity of biological replicates First, we analyzed similarity of biological repli-
cates in the latent space. For that, we picked the images of drugs at maximum concentra-
tions and latest time points, where the strongest effect must be observable if present. We
did that for each cell line and calculated distances between every pair of images of the same
drug. We used the following distances to estimate similarity: Euclidean, cosine, correlation
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and Bray-Curtis. Since biological replicates are expected to display the same effects, we
expected the distances to be lower for those methods that capture the similarity well.

Clustering of drug effects Next, we performed clustering of images within each cell
line. We retrieved latent representations, reduced dimensions with UMAP (McInnes et al.,
2020) and ran HDBSCAN (McInnes et al., 2017) clustering over multiple parameter sets.
Since the true labels of drug effects were not available in this study, we evaluated the quality
of partitions with the following metrics: percent of noise points, Silhouette score, Davies-
Bouldin measure, Calinski-Harabasz index. We picked the best clustering performance over
parameters sets and averaged them across cell lines.

Classification of drugs vs controls Finally, we formulated a classification problem
to differentiate between drugs and controls. We assigned label 1 to the images of maximum
drug concentrations and label 0 to the control (no drug) images. We trained two-layer
classifiers and calculated a few standard metrics: accuracy, recall, precision, specificity.
The resulting setting is only weakly supervised, since some drugs did not in fact provoke
any effect.

4.4. Analysis of temporal drug effects
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Figure 2: An overview of temporal analysis.

To characterize temporal drug effects, we
calculated distances between drug and con-
trol image representations at every time
point and clustered trajectories of distances
over time. More specifically, we aligned im-
ages of drugs and controls along the time
axis first. Then, we retrieved their latent
representations, averaged features across bi-
ological replicates and calculated distance
to control for each drug at every time point.
Finally, we normalized distances for each
experimental condition, applied dynamic
time warping (DTW) and k-means to clus-
ter temporal patterns (Figure 2). In this
setting, rapidly growing distance (fast di-
vergence from control) is expected for immediate strong drug effect. And vice versa, low
distance to control along the entire timeline is expected for no observable effect. We tested
several distance metrics as in section 4.3. For k-means, we incremented k by 1 to find the
minimum number of clusters covering the expected biological patterns.

4.5. Analysis of morphological drug effects

Following the idea of shortcut removal (Minderer et al., 2020), we leveraged an adversarial
learning setup to improve multiclass classification of drugs using the best pretrained model
as feature extractor (Figure 3). The lens was trained on the images of the highest drug
concentrations and the latest time points using the following loss function: L = Lrec−αLdisc,
where Lrec is the image reconstruction loss, Ldisc is the drug discrimination loss, and α is
an adversary coefficient. We used the same ConvAE architecture for the lens and ran grid
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search for α ∈ [−60, 60], evaluating classification accuracy on the lensed images. Negative
values of α correspond to the regularized learning.
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Figure 3: A schematic of the lens setup.

In cases of improved classification accu-
racy, we visualized regions on the images
perturbed by the lens. We did that by
plotting the absolute difference between the
lensed and the reconstructed images. The
resulting regions serve as morphological fea-
ture importance maps, as they highlight re-
gions of altered cell morphology important
for drug classification.

5. Results

5.1. Multi-crops improve performance on downstream tasks

Figure 4: Normalized performance on tasks
versus number of crops.

We experimented with scales of RRCs and
averaged their performance for each n-crop
strategy, where n ∈ {2, 3, 4, 5}. We used
multiple metrics corresponding to a partic-
ular task to average. We further normalized
performance on each task, so that the top
performance equals to 1.

As expected, we observed that increas-
ing number of multi-crops improves the per-
formance across tasks on average (Figure
4). However, different scales of RRCs some-
times led to sporadic drops in performance
on particular tasks. The best scores across
tasks were achieved by the following 5-crop
strategy: 1 full size image, 1 square crop of
random size between 128-256 pixels, 3 square crops of random size between 64-128 pixels.
That strategy was used for training ConvAE on the entire dataset and further evaluations.

5.2. Comparison of pretrained state-of-the-arts

We compared several pretrained models with the ConvAE on three downstream tasks as
described in section 4.3. We report median metrics in Table 1.

Table 1: Comparison of pretrained models. All metrics are the higher the better.

Similarity Clustering Classification
(Euclidean)−1 (Cosine)−1 Silhouette (Davies)−1 Accuracy F1

ResNet-50 0.10 ± 0.01 1.21 ± 0.03 0.25 ± 0.10 0.46 ± 0.18 0.59 ± 0.02 0.59 ± 0.05
ResNet-50 (SwAV) 2.75 ± 0.63 5.37 ± 2.39 0.47 ± 0.13 0.85 ± 0.71 0.77 ± 0.01 0.78 ± 0.01
ResNet-50 (DINO) 1.07 ± 0.02 1.12 ± 0.02 0.34 ± 0.11 0.52 ± 0.27 0.72 ± 0.00 0.73 ± 0.00
ViT-B/8 (DINO) 2.18 ± 0.42 4.57 ± 1.91 0.44 ± 0.12 0.70 ± 0.52 0.81 ± 0.00 0.82 ± 0.00
ConvAE (trained) 2.26 ± 0.68 1.53 ± 0.27 0.30 ± 0.11 0.39 ± 0.24 0.85 ± 0.05 0.85 ± 0.05
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Surprisingly, ResNet-50 pretrained on ImageNet with SwAV algorithm showed the best
performance on similarity and clustering tasks. That indicates high level of consistency of
the learned representations obtained with SwAV. On the other hand, the best classification
accuracy (drug vs control) and F1 score were shown by our model, followed by ViT-B/8
pretrained with DINO. Therefore, features extracted by the pretrained models lacked some
domain-specific information to better differentiate between drug and control images. No-
tably, a small model such as ours (ConvAE) can show rival performance with pretrained
state-of-the-arts when trained on a large enough dataset.

5.3. Proof-of-concept: studying temporal drug effects

First, we analyzed representations learned by ConvAE and made sure they exhibit expected
spatial and temporal separation patterns (see Appendix B). Then, we calculated Euclidean
distance to control for each experimental condition at each time point. We further scaled,
DTW-aligned and clustered the distances as described in section 4.4.
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Figure 5: Analysis of temporal drug effects.

We found three clear patterns: i) no response, where the distance between drug-treated
condition and control either stays constant or decays, so that both conditions become in-
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distinguishable; ii) temporary response (cytostatic effect), where an initial divergence from
control is observed, but ultimately reduced towards the end time points; iii) constant re-
sponse (cytotoxic effect), where the distance grows throughout the experiment (Figure
5A). Red lines are mean cluster representatives. Full clustering is given in Appendix E.

Analyzing these patterns, we were able to annotate concentration-dependent effects for
all drugs in the dataset (Figure 5B). Interestingly, we observed that some drugs (e.g.,
Cladribine) switched between cytostatic and cytotoxic modes of action, as the concentra-
tion was increased. Note that this was impossible to detect analyzing classical growth
curves, since the confluence was growing for all concentrations, but the highest (Figure
5B, bottom-right). Conversely, distance-based analysis of learned representations allowed
picking up another distinct response pattern (Figure 5B, top-right).

To validate such patterns, we visually inspected the corresponding images with time
as shown on Figure 5C for HT-29 cell line and three concentrations of Cladribine. The
first row shows no effect; images look identical to controls. In the last row, irregular cell
morphology features (such as granules and bubbles) associated with cytotoxic effect can be
seen. For 1.1 µM concentration in the middle, we indeed observed temporary proliferation
arrest accompanied with increased cell sizes. It proves that our method can distinguish
between different response patterns and allows for studying temporal drug effects.

5.4. Proof-of-concept: exploring morphological drug effects

padj< 0.006padj< 0.023

Figure 6: Multi-class classification accuracy
with no (α = 0), adversarial (α = 60) and
regularizing (α = −60) lens.

We used the trained ConvAE as feature ex-
tractor to train the lens, as described in sec-
tion 4.5. We observed negligible lens ef-
fects with |α| ≤ 1. Increasing |α| up to 60
we were able to obtain consistent improve-
ment of top-3 classification metrics (Figure
6). With α = −60, we were able to im-
prove classification accuracy by 8%, which
is significant. We looked into examples of
improved classification and plotted differ-
ences between the reconstructed and the
lensed images. By design, such differences
highlight regions on the image that caused
changes in the classification results.

We considered three cases of improved
classification with lens as the most useful to
study morphological drug effects: i) when
the classifier initially confused a drug with
a control, and the lens resolved the issue; ii) when the classifier initially confused a drug
with another drug, and the lens resolved the issue; iii) when the classifier initially had low
probability of correct class, and the lens dramatically increased that probability. Figure 7
gives examples of the first two cases.

An image of Topotecan (drug) was incorrectly classified as DMSO (control) without
the lens, likely due to high confluence (cell population density) on the crop (Figure 7A).
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The output probability for DMSO was quite low though. After the lens was applied, the
classifier got it right with very high confidence. Feature importance map highlights the
regions of altered cell morphology that improved classification. Figure 7B shows an image
with confluence below 50% corresponding to BPTES (drug) misclassified as Chlormethine
(another drug). However, the lens identified regions of altered morphology that led to the
correct classification with high confidence. We provide more examples for the increased
probability case in the Appendix A.

A B

Figure 7: Classification results and morphological feature importance maps.

6. Discussion

The applications in 5.3 and 5.4 were done using ConvAE pretrained on a large dataset
of drug-treated cancer cell lines. However, we were able to obtain temporal patterns sim-
ilar to those on Figure 5A for individual drugs using ResNet-50 pretrained with SwAV
(Appendix D). Thus, based on our empirical findings (Table 1), we speculate that ResNet-
50 pretrained with SwAV could be used instead of ConvAE to study temporal and morpho-
logical drug effects with minimum information loss at no additional training cost. Although
ViT-B/8 pretrained with DINO produced the closest to ConvAE classification results, us-
ing visual transformers may still be prohibitive because of their size. With Nvidia GeForce
RTX 2060, we estimated the forward pass of 1M images with ViT-B/8 to take around 200
hours, with ResNet-50 – 32 hours, with ConvAE – 40 minutes.

Although we demonstrated the utility of our methods on a single biological dataset only,
related works discussed earlier in this paper show comparable approaches applied to many
types of biomedical imaging data. Therefore, we hope our results will contribute broadly
to further development of deep learning methods for fundamental and clinical research.

7. Conclusion

In this work, we proposed two workflows to study phenotypic changes of experimental con-
ditions using pretrained models. As a proof of concept, we applied them to study temporal
and morphological drug effects on cancer cell lines. Besides, we trained a CNN model on
a 1M images dataset comprising 21 cancer cell lines and 31 drugs at 5 concentrations. We
validated the learned representations and provided the model to enable transfer learning
applications. Overall, our findings suggest that pretrained models can be used for efficient
and interpretable deep learning applications in biological and biomedical image analysis.
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Appendix A. Morphological feature importance maps

Figure 8: Morphological feature importance maps for increased classification probability.
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Figure 9: Morphological feature importance maps for increased classification probability.

Appendix B. Spatial and temporal separation of UMAP embeddings

We plotted UMAP embeddings of image representations. Taking the latest time points
only, we observed gradual transition from drug clusters of no effect to clusters of strong
cytotoxic drug effects. Taking UMAP embeddings of all time points, we saw spatial and
temporal separation of images even more clearly (Figure 10). Single drug tracks can be
seen in colors, and some of them diverged dramatically from the initial locus (points of time
< 0), demonstrating a variety of drug effects distinct in nature and intensity.

Appendix C. Description of the data

To cover a wide range of phenotypic effects in experimental and FDA-approved anticancer
drugs, we selected drugs that displayed at least 3 cell lines as resistant and 3 cell lines
sensitive in the NCI-60 cancer cell line panel (Table 2), with a threshold in the log10(GI50)
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Figure 10: UMAP embeddings over time for ACHN cell line.

of 1% between the sensitive and resistant groups. The list comprised 31 experimental and
FDA-approved anticancer drugs, covering several modes of action of clinical and research
interest (Table 3).

The cancer cell lines were grown in RPMI-1640 GlutaMax medium (ThermoFischer)
with supplementation of 1% of Penicylin-Streptomycin (Gibco), and 5% of dialyzed fetal
bovine serum (Sigma-Aldrich) at 37◦C in an atmosphere of 5% CO2. The seeding density
to achieve a confluence of 70% was determined in Nunc 96 well plates (ThermoFischer),
and that seeding density was used for experiments with a factor of four correction for the
reduction in area between the 96 and 384 well plates, where cells were seeded in 45 uL of
medium. Cells were incubated and imaged every two hours in the Incucyte S3 (Sartorious)
10x phase contrast mode from for up to 48 hours before drug addition, in order to achieve
optimal cell adherence and starting experimental conditions. To reduce evaporation effects,
the plates were sealed with Breathe-Easy sealing membrane (Diversified Biotech).

To allow a broad coverage of effects on time, we collected the time information about
when the drugs were treated for each cell line, and corrected the analysis based on the
drug treatment. Drugs were resuspended in the appropriate solvent (DMSO or water), and
the same amount of DMSO (check amount) was added across all wells, including controls.
The randomized 384 drug source plates were generated with Echo Liquid Handling Sys-
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Table 2: Cell lines and inoculation densities for 96 well plate format used in the study.

Cell line Panel Inoculation density

EKVX Non-Small Cell Lung 11000
HOP-62 Non-Small Cell Lung 9000

COLO 205 Colon 15000
HCT-15 Colon 12000
HT29 Colon 12000

SW-620 Colon 24000
SF-539 CNS 10000

LOX IMVI Melanoma 8500
MALME-3M Melanoma 8500

M14 Melanoma 5000
SK-MEL-2 Melanoma 10000
UACC-257 Melanoma 20000
IGR-OV1 Ovarian 10000
OVCAR-4 Ovarian 10000
OVCAR-5 Ovarian 15000

A498 Renal 3200
ACHN Renal 8200

MDA-MB-231/ATCC Breast 20000
HS 578T Breast 13000
BT-549 Breast 10000
T-47D Breast 15000

tem (Integra-Biosciences), and then transferred in 5uL of medium to Nunc 384 well plates
(ThermoFischer) with the AssistPlus liquid handler (Integra Biosciences).
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Table 3: Drugs, solvents, CAS registry numbers and maximum concentrations used in the
study. The other four concentrations for each drug were 10x serial dilutions of the maximum
concentration.

Drug Fluid CAS Concentration

Erlotinib DMSO 183321-74-6 10 µM
Irinotecan DMSO 100286-90-6 10 µM

Clofarabine DMSO 123318-82-1 10 µM
Fluorouracil DMSO 51-21-8 10 µM
Pemetrexed Water 150399-23-8 10 µM
Docetaxel DMSO 148408-66-6 1 µM
Everolimus DMSO 159351-69-6 1 µM

Chlormethine DMSO 55-86-7 10 µM
BPTES DMSO 314045-39-1 10 µM

Oligomycin A DMSO 579-13-5 1 µM
UK-5099 DMSO NA 10 µM

Panzem (2-ME2) DMSO 362-07-2 10 µM
MEDICA16 DMSO 87272-20-6 10 µM
Gemcitabine Water 122111-03-9 1 µM

17-AAG DMSO 75747-14-7 10 µM
Lenvatinib DMSO 417716-92-8 10 µM
Topotecan DMSO 119413-54-6 1 µM
Cladribine DMSO 4291-63-8 10 µM

Mercaptopurine DMSO 6112-76-1 10 µM
Decitabine DMSO 2353-33-5 10 µM

Methothexate DMSO 59-05-2 1 µM
Paclitaxel DMSO 33069-62-4 1 µM

Rapamycin DMSO 53123-88-9 0.1 µM
Oxaliplatin DMSO 61825-94-3 10 µM

Omacetaxine DMSO 26833-87-4 1 µM
Metformin Water 1115-70-4 10 µM

YC-1 DMSO 170632-47-0 10 µM
Etoximir DMSO 828934-41-4 10 µM

Oxfenicine DMSO 32462-30-9 2.5 µM
Trametinib DMSO 871700-17-3 1 µM

Asparaginase Water 9015-68-3 0.00066 units/µL

Appendix D. Similar temporal patterns obtained with different models

We repeated distance-based analysis described in section 4.4 for the Cladribine case empha-
sized on Figure 5B. This time, we used representations obtained with ResNet-50 pretrained
with SwAV on ImageNet. We observed many similarities between temporal patterns previ-
ously identified with ConvAE (Figure 11A) and the ones of ResNet-50 + SwAV (Figure
11B). Three lowest concentrations showed decrease of distance to control over time for both
models. The highest concentration, in turns, caused constant growth of distances. For the
1.1 µM concentration, both models produced an initial increase of the distance followed by
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the phase of decay. However, ResNet-50 + SwAV additionally presents an increase of the
distance in the latest timepoints. This artifact is likely caused by the ImageNet biases. We,
therefore, recommend to use general-purpose pretrained models to analyze more specific
datasets with caution.
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Figure 11: Temporal patterns of Cladribine obtained with different models.

Appendix E. Clustering of temporal patterns

In total, we found 8 clusters characterizing expected types of response, intensity and speed
of divergence from controls (Figure 12).
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Figure 12: Clusters of temporal drug effects.

We examined random cluster represen-
tatives to validate the analysis and interpret
identified patterns. We found that cluster 1
is associated with a strong cytotoxic effect,
as we observed a lot of cell deaths on the
corresponding images. Cluster 3 represents
cytostatic effect, as the images showed tem-
porary cell growth arrest. Clusters 2 and 6
are related to mixed effects, as the images
displayed both patterns.

We labeled clusters 0, 4, 5, 7 as showing
no effect. Images of cluster 7 stayed indis-
tinguishable to controls at all time points.
Clusters 4 and 5 had only 30% of images
showing weak cytotoxic or mixed effect.
Cluster 0 is an expected artifact of the distance-based analysis: when the cell popula-
tion density is low (images of early time points), the distance may be large due to varying
localization of cells on the crop. With growing cell population, the distance gradually drops
unless there is a drug effect.
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Appendix F. Selection of the ConvAE architecture

To be able to demonstrate novel applications in sections 5.3 and 5.4, we needed a compact
model trainable within limited resources (Nvidia GeForce RTX 2060 with 6 GB only). We
tested 10 other CNN architectures and compared them by reconstruction quality. The
architectures had the same number of layers as the final ConvAE, but differed in number
of neurons and pooling strategies to keep the same dimensionality of the bottleneck layer.
The choice of an architecture was constrained by the need to fit the data and the model
into the GPU memory (especially important for the framework, described in section 4.5).
Therefore, an integration test for each architecture was performed for the lens training
setup. The final architecture of ConvAE and the weights are now available on GitHub.
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