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Abstract

In this work, we adapt and analyze Neural Polar Decoders (NPDs) for end-to-end
communication systems. While prior work demonstrated the effectiveness of NPDs
on synthetic channels, this study extends the NPD to real-world communication
systems. First, the NPD is adapted to complete OFDM and single-carrier com-
munication systems. Then, to satisfy practical system requirements, the NPD is
extended to support any code length via rate matching, higher-order modulations,
and robustness across diverse channel conditions. Since the NPD operates directly
on channels with memory, it exploits their structure to achieve higher data rates
without requiring pilots and a cyclic prefix. Although the NPD entails higher
computational complexity than the standard 5G polar decoder, its neural network
architecture enables an efficient representation of channel statistics, resulting in
manageable complexity suitable for practical systems. Simulation results over
5G channels demonstrate that the NPD consistently outperforms the 5G polar
decoder in terms of BER, BLER, and throughput. These improvements are particu-
larly significant for low-rate and short-block configurations, which are prevalent
in 5G control channels. Furthermore, NPDs applied to single-carrier systems
offer performance comparable to OFDM with lower PAPR, enabling effective
single-carrier transmission over 5G channels. These results position the NPD as a
high-performance, pilotless, and robust decoding solution.

1 Introduction

Polar codes, introduced by Arıkan in 2009 [5], are the first class of codes proven to achieve the capacity
of binary-input symmetric memoryless channels under low-complexity decoding. In particular, the
proof relies on successive cancellation (SC) decoding. Their adoption for control channels in 5G
highlights their practical relevance in modern wireless systems.

In wireless communication, memory effects arise from intersymbol interference (ISI) due to multipath
propagation and time variations from user mobility. To handle these effects, 5G systems rely on
orthogonal frequency-division multiplexing (OFDM), interleaving, and equalization, which aim to
transform the channel into a memoryless channel. These methods, however, introduce additional
complexity such as channel estimation and equalization, as well as overhead from pilot symbols
and the cyclic prefix (CP). Consequently, 5G systems achieve reliability at the expense of spectral
efficiency and data rate.

In contrast, this work aims to tackle the problem by applying coding techniques directly over channels
with memory, specifically for 5G polar code scenarios. We build on Neural Polar Decoders (NPDs),
39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: AI and ML for
Next-Generation Wireless Communications and Networking (AI4NextG).



which were originally developed in [4, 3] for synthetic channels with relatively short memory
compared with the realistic channel models used in 5G. NPDs retain the recursive structure of
successive cancellation (SC) decoding but replace the core operations with neural networks (NNs).
Their complexity, O(dhN logN), is independent of channel memory, where d and h denote the input
and hidden dimensions, and they can be trained directly from input–output observations without
prior channel knowledge. These properties make NPDs promising candidates for improving spectral
efficiency and data rate in 5G polar code scenarios. However, prior works did not evaluate NPDs in
realistic 5G settings, nor did they address essential system features such as high-order modulation,
rate matching, or robustness across diverse channel conditions and SNRs.

In this work, we address these gaps by extending the NPD to fully support modern communication
system requirements. The proposed NPD handles high-order modulations, rate-matching, and
operates robustly across diverse channel conditions. We integrate the NPD into end-to-end OFDM
and single-carrier systems and evaluate it over standardized 5G TDL channels. Results show that the
NPD consistently outperforms the 5G polar decoder in BER, BLER, and throughput, even without
pilots and CP. Moreover, we show that NPDs enable reliable single-carrier communication over
5G channels, where single-carrier waveforms provide advantages over OFDM, including lower
peak-to-average power ratio (PAPR) and reduced hardware complexity. These gains come at the cost
of higher complexity and scenario-specific design, but remain practical for systems with sufficient
computational resources and strict reliability demands.

Our contributions are:

• We show how to adapt NPD for end-to-end communication systems.
• We develop rate-matching for NPD, enabling compatibility with any code lengths.
• We extend NPD to support high-order modulation schemes.
• We adapt the NPD architecture, training procedure, and design to achieve robustness.

2 Notations and Preliminaries

Throughout this paper, random variables (RVs) are denoted by capital letters, and their realizations
are denoted by lower-case letters, for example, X and x. Calligraphic letters denote sets, for example,
X . We use the notation Xj

i to denote the RV (Xi, Xi+1, . . . , Xj) and xj
i to denote its realization.

If i = 1, we may omit the index i to simplify the notation, that is, Xj . The probability Pr[X = x]
is denoted as PX(x). The Mutual information (MI) between two RVs X,Y is denoted by I(X;Y ).
G(di,h,do)
NN is class of neural networks with input di and output d0 dimensions and h ∈ N neurons.

Polar code: Let UN be formed by assigning information bits to indices in A and frozen bits to
indices in F . The codeword is XN = UNGN , Arıkan’s polar transform GN [5] with block length
N = 2n, and Y N is the channel output. A polar code can be described via a channel embedding E
and the core components of the successive cancellation (SC) decoder, F,G,H . The term E : Y → E
denotes the channel embedding, where E ⊂ Rd. The functions F : E ×E → E , G : E ×E ×X → E
denote the check-node and bit-node operations, respectively. We denote by H : E → R a mapping of
the embedding into an LLR value, that is, a soft-decision. For a memoryless channel W , the channel
embedding is the LLR E(y) = log W (y|1)

W (y|0) , assuming uniform inputs. SC decoding then applies the

recursive functions F (e1, e2) = −2 tanh−1(tanh e1
2 tanh e2

2 ), G(e1, e2, u) = e2 + (−1)ue1, and
H(e) = e, with hard decision h(l) = Il>0. Given channel outputs yN1 , the decoder computes the
LLR of synthetic channels

LUi|Ui−1
1 ,Y N

1
= log

PUi|Ui−1
1 ,Y N

1
(1|ui−1

1 , yN1 )

PUi|Ui−1
1 ,Y N

1
(0|ui−1

1 , yN1 )
(1)

for i ∈ A and estimates ûi accordingly. For further details, see [5, Sec. VIII]

Neural Polar Decoders: The NPD introduced in [4] performs SC decoding by replacing the functions
E,F,G,H with neural networks. Specifically, the embedding network EθE : Y → Rd maps the
channel outputs into a d-dimensional embedding space, where EθE ∈ G(1,h,d)

NN for Y ⊂ R and h
denotes the number of hidden neurons. The SC NPD components are defined as follows: the check-
node network FθF ∈ G(2d,h,d)

NN , the bit-node network GθG ∈ G(2d+1,h,d)
NN , and the embedding-to-LLR
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Figure 1: Block diagram of the NPD with code length N = 4.

network HθH ∈ G(d,h,1)
NN . Because the NPD preserves the structure of the SC decoder, it can be

naturally extended to successive cancellation list (SCL) and CRC-aided SCL (CA-SCL) decoding,
as shown in [3, 12]. The NPD with list-size L has a computational complexity of O(LhdN logN).
Figure 1 illustrates the NPD for code length of N = 4, where el,i denotes the embedding of the
i-th bit at decoding depth l, and vl,i is the corresponding ground-truth bit. E.g. vNn,1 = uN and
vN0,1 = xN .

3 Neural Polar Decoders for communication

This section extends the original NPD [4, 3] to practical communication systems. Enhancements
include support for higher-order modulation, robustness across diverse SNRs, and integration of rate
matching via puncturing. In addition, we adapt the decoder to both single-carrier and OFDM systems
and revise the training and design procedures for practical deployment.

Channel Embedding for Communication: We extend the original NPD channel embedding to sup-
port practical systems. For higher-order modulations, the embedding network outputs m embeddings
(each of dimension d) per received symbol, where m is the number of bits per symbol. To improve
robustness, the estimated noise variance N0 is included as an input, enabling adaptation across SNRs
without retraining. Formally, the embedding network is a function EθE : R2 × R+ → Rd·m, that
maps the real and imaginary parts of the received symbol and N0 to m embeddings of dimension d.

Rate Matching for NPD: Polar codes were originally defined for lengths equal to a power of 2,
whereas practical systems require support for arbitrary code lengths. To address this, we adapt
puncturing strategies for NPDs. For binary phase-shift keying (BPSK), we adopt the puncturing
scheme of [7], removing P bits according to the set P = (BN )P1 , where the BN is the bit-reversal
permutation matrix. For higher-order modulations, entire symbols are punctured based on the bit-
reversal order. For example, given N = 8, P = 4, and m = 2 bits per symbol, the bit-reversal order
is BN = (1, 5, 3, 7, 2, 6, 4, 8). Thus, bits 1 and 5 determine the symbols to puncture, leading us to
puncture the symbols containing bits {1, 2} and {4, 5}. Consequently, the puncturing set becomes
P = {1, 2, 4, 5}, indicating the bits that are not transmitted. This heuristic approach for higher-order
modulation achieved consistently good performance in our experiments, with potential enhancements
to be investigated in future work.

At the decoder, punctured symbols are represented by a learned constant embedding, Eco
θ ∈ Rd·m,

reshaped into m embeddings of dimension d. Each constant embedding corresponds to an LLR of
zero, consistent with classical puncturing. The training ensures that Hθ(E

co
θ (0)) = 0, for uniform

input bits. Further details are given in the training phase.

NPD-Based Communication Systems: We present NPD-based communication systems for OFDM
and single-carrier transmission. As shown in Fig. 2, both share the same encoder, rate matching,
Mapper, and NPD structure, differing only in the modulation/pulse-shaping block.

The input sequence bK is encoded by a polar encoder using the following steps. First, uN is formed
by inserting information bits in the information set and frozen bits in the frozen set, then the encoded
codeword is computed as xN = uNGN using the polar transform. After rate matching, the codeword
xNr is mapped to modulation symbols sNr/m and transmitted via OFDM or single-carrier waveforms.
At the receiver, demodulation yields the received sequence yNr/m. Decoding proceeds identically for
both systems. The embedding function Eθ∗ maps yNr/m to embedding vectors eNr/m

0,1 , rate recovery
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Figure 2: Block diagram of an end-to-end communication system integrating the proposed NPD.

reconstructs punctured positions using constant embeddings Eco
θ∗ , and NN SC decoding is performed

with Fθ∗ , Gθ∗ , Hθ∗ , yielding the estimate b̂K .

Training Phase: The NPD parameters are trained through an iterative procedure based on stochastic
gradient descent (SGD). In each iteration, a batch of channel input–output pairs is sampled and the
gradient of the loss function is used to update the parameter set θ. The objective is to learn θ so
that the NN SC outputs approximate the true LLRs LUi|Ui−1,Y N

(
yN , ui−1

)
, i ∈ [1 :N ] of the

synthesized channels, while also learning an embedding representation of the punctured bit positions
for the proposed rate-matching strategy.

As summarized in Algorithm 1, a block (xN , yN/m) is sampled and mapped to embeddings e0 via Eθ

using y and estimated noise variance N0, while eco0 is obtained from a constant channel embedding.
Two losses are then computed:LX = NPDLoss(e0, xN ; θ) and LY = NPDLoss(eco0 , xN ; θ). The
loss LY aligns the decoder output with the LLRs of the synthesized channels, whereas LX optimizes
the embedding representation of the punctured bit. The total loss L = LX + LY is minimized using
SGD. The NPDLoss, introduced in [4], can be computed in logN steps [3]. It is defined as the
normalized sum of cross-entropy terms:

NPDLoss(e0, xN ; θ) =
1

N(n+ 1)

n∑
j=0

N∑
i=1

Lθ
ce(ej,i, vj,i), (2)

where el,i represents the embedding of the i-th bit at the l-th decoding depth, and vl,i is the cor-
responding ground truth bit. The cross-entropy loss is given by Lθ

ce(e, v) = −v logHθ(e) − (1 −
v) log

(
1−Hθ(e)

)
. Further detailed in Appendix 6.3.

Code Design: The design phase determines the information set A and the frozen set F by estimating
the mutual information (MI) of the synthesized channels, Îθ∗(Ui;Y

N |U i−1), using the optimized
NPD parameters θ∗. The procedure, summarized in Algorithm 2, follows the approach in [3] and
relies on a modified version of the NPDLoss 2 algorithm, denoted ˜NPDLoss. Rather than computing
the loss, this algorithm outputs both the bits vn = uN and their corresponding embeddings en, which

Algorithm 1 NPD for communication training
input: Dataset DB , #of iterations Niters, learning rate
γ
output: Optimized θ∗

Initiate the weights of Eθ, E
co
θ , Fθ, Gθ, Hθ

for Niters iterations do
Sample xN , yN ∼ DB

Compute uN = xNGN

Compute e0 ← Eθ(y
N/m, N0)

Duplicate Eco
θ (0) to eco0

Compute LX = NPDLoss(eco0 , xN ; θ)
Compute LY = NPDLoss(e0, xN ; θ)
Update θ := θ − γ∇θ(LX + LY )

end for
return θ∗

Algorithm 2 Code Design for NPD
input: θ∗, k number of information bits
output: A,F

Generate xN ∼ Bern(0.5)
Apply rate matching to obtain xNr

Receive yNr/m

Compute eNr
0,1 using Eθ(y

Nr/m, N0)
if N ̸= NR then

Apply rate recovery to obtain eN0,1
end if
Compute [vn, en] = ÑPDloss

(
eN0,1, x

N ; θ∗
)

Compute Îθ∗
(
Ui;Y

N |U i−1
)

Compute QN
1 = Argsort

(̂
Iθ∗

)
return A = Qk−1

1 , F = QN
k
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are then used to estimate the MI as

Îθ∗(Ui;Y
N |U i−1) =

1

B

∑
(xN ,yNr/m)∈DB

(
1− Lθ

ce(en,i, vn,i)
)
. (3)

4 Experiments and insights

The experiments were conducted on single-input single-output (SISO) systems using both OFDM and
single-carrier transmissions. The communication channel based on the discrete-time baseband model
for the wireless channel presented in [13], using the 3GPP TDL profiles [11]. Our implementation was
developed in Python using TensorFlow [2] for NN modeling and the Sionna library for communication
system simulations [8]. Full setup details about the training and evaluation are in the Appendix. 6.1.

Performance of NPD vs. 5G Polar in OFDM Systems: We compare the proposed NPD with the
5G polar decoder over OFDM, considering both power-of-two and rate-matched non-power-of-two
code lengths, under BPSK and QPSK modulations. Simulations were conducted on a TDL-A channel
with 100 ns delay spread and user mobility of 0–8 m/s. The 5G decoder follows 3GPP rate matching,
while the NPD use the proposed NPD rate matching scheme.
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Figure 3: SNR required to achieve BLER = 10−3 under OFDM transmission over a TDL-A channel.

From Figures 3b and 3a, we can see that the NPD consistently outperforms the 5G polar decoder
across all code lengths and modulations (BPSK and QPSK). Notably, the NPD achieves this gain
without using pilot symbols and a CP, thereby reducing the transmission overhead, thus increasing
spectral efficiency. The performance advantage becomes increasingly pronounced as the code rate,
which operates in the low SNR regime. One possible reason for this gain is that the 5G Polar uses
least-squares (LS) channel estimation from the pilots, whereas the NPD can learn to extract better
channel estimates. Moreover, at low SNR, where channel memory dominates, the NPD achieves
additional gains by effectively mitigating these memory effects.

Throughput Comparison: This experiment compares the throughput of the NPD and the 5G polar
decoder under identical resource element (RE) allocations per frame to ensure a fair comparison.
Each frame consists of eight OFDM symbols, with the number of subcarriers determined by the
total RE budget. For instance, with 256 REs per frame, the system uses 32 subcarriers. In the 5G
polar decoder, the 1P2 and 2P2 configurations (Fig.6) introduce pilot overheads of 16 and 32 REs,
respectively. Throughput is computed as: Throughput = (1 − BLER) · k

T , where k = 32 is the
number of information bits, and T = 1

subcarrier spacing + Tcp denotes the total frame duration. For the
5G decoder, the CP duration is Tcp = 4.69µs, whereas the NPD operates without a CP (Tcp = 0).

These experiments, shown in Figure 4, present the throughput versus SNR results for both high- and
low-Doppler conditions across various REs per frame, and demonstrate that the NPD significantly
outperforms the 5G polar decoder in terms of throughput. This gain is attributed to the NPD’s superior
BLER performance, its ability to employ longer code lengths (since the 5G decoder reserves REs
for pilots), and its operation without a CP, which provides an additional throughput improvement of
approximately 7% compared to systems using a normal CP.

Specifically, Figure 4a (high-Doppler, user velocities 15–30m/s) shows that the 5G polar decoder
employs the 2P configuration to maintain robustness under rapid channel variation, whereas Figure4b
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Figure 4: Throughput vs. SNR for transmitted information bits k = 32 using different REs per frame.

(low-Doppler, velocities 0–8 m/s) shows the use of the 1P configuration to improve spectral efficiency.
In both scenarios, the NPD consistently delivers higher throughput across all SNR levels and RE
configurations.

Comparison of Single-Carrier and OFDM Systems: This experiment compares the performance
of the NPD and 5G polar decoder in single-carrier and OFDM-based systems. The systems use BPSK
modulation and a code length of N = 1024, with user mobility in the range of 0–8 m/s. For the
single-carrier waveform, a sinc filter was used for pulse shaping. This uses the same bandwidth as
the corresponding OFDM configuration to ensure a fair comparison.
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Decoder / System
NPD OFDM
5G Polar OFDM
5G Polar Single Carrier
NPD Single Carrier

Figure 5: Required SNR to achieve a target BLER of 10−3 for single-carrier and OFDM systems.

Figure 5 shows that the proposed NPD enables single-carrier systems to achieve decoding perfor-
mance comparable to that of OFDM, even under severe multipath conditions and without increasing
complexity. This is particularly impactful, given the inherent advantages of single-carrier waveforms,
such as lower PAPR and simpler hardware requirements. The reduced PAPR improves the power
amplifier efficiency under nonlinear conditions. These results highlight the potential of NPD-based
single-carrier systems as viable alternatives to OFDM.

Limitations: Despite the performance gains demonstrated in this work, several limitations should
be noted. First, the computational complexity of NPDs is higher than that of the classical 5G polar
decoder, though it remains practical on modern hardware. Second, the proposed approach requires
scenario-specific code design for each modulation and SNR regime, whereas 5G polar codes rely
on a universal reliability sequence defined by the standard. Finally, NPDs require an initial training
phase, which introduces additional computational overhead. However, once trained, inference can be
performed without pilots.

5 Conclusions

In this study, we presented extended NPDs tailored for practical communication systems. The
proposed NPD operates directly over memory channels without relying on pilots and CP. NPDs offer
a robust and reliable solution with a manageable decoding complexity. The NPD was enhanced
to support higher-order modulation, rate matching for any code lengths, and robust performance
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across various channel conditions. Evaluations over 5G channels show that the NPD consistently
outperforms the 5G polar decoder in terms of BER, BLER, and throughput. In particular, it shows
significant gains in the low rate and short code length that are typical of control channels. Moreover,
single-carrier systems with NPD achieve performance comparable to OFDM while benefiting from
lower PAPR and improved amplifier efficiency. Overall, the NPD offers a pilotless, high-performance
decoding solution with a strong potential for future wireless systems.
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6 APPENDIX

This appendix documents the experimental setup and implementation details used in the paper.
Section 6.1 specifies the training and evaluation configurations and hyperparameters (Table 1), the
OFDM frame structure and pilot patterns (Fig. 6), and the 5G polar system blocks (Fig. 7). Section 6.3
provides the full definition and step-by-step computation of NPDLoss used in both the training and
code-design phases.

6.1 Experiment Setup

This section describe the experiment configuration. Table 1 lists the parameters used for training and
evaluation.

Model Evaluation: Throughout the experiments, we compared the proposed NPD against the
standard 5G uplink polar code [1] that relies on conventional equalization and channel estimation,
both employing CRC-assisted list decoding (CA-SCL). Training was conducted using TDL-C power
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Table 1: Parameters Used for Training and Evaluation
Parameter Value

Training and Model Configuration
Power delay profile TDL-C (300 ns)
Noise variance range (uniform) –5 to 15 dB
Velocity range (uniform) 0 to 35 m/s
Batch size 100
Training iterations 106

code length 1024
Embedding dimension (d) 128
Neurons units (h) 300
Learning rate 10−3

Optimization algorithm Adam
OFDM Configuration

Carrier frequency 3.5 GHz
Subcarrier spacing 15 kHz

Classic System Configuration
OFDM channel estimation Least Squares
OFDM equalizer Linear MMSE
single-carrier channel estimation Perfect
single-carrier equalizer Zero Forcing
5G Polar configuration Uplink
Cyclic Prefix 4.69µs

Evaluation Configuration
Power delay profile TDL-A
List decoder size 16
CRC length 11

delay profiles, and evaluation was performed on TDL-A profiles to avoid overfitting to a specific
channel model.

A single model per modulation scheme and system waveform (OFDM or SC) was trained and used
across all channel conditions and code sizes in the evaluation, demonstrating the generalization
capability of the model without requiring retraining or fine-tuning.

Frame Structure: In OFDM experiments with BPSK and a code size of 1024, the system uses
eight OFDM symbols and 128 subcarriers. For smaller code sizes (864, 512, 432, 256, and 216), the
number of subcarriers was set to 108, 64, 54, 32, and 27, respectively. In the QPSK experiments, 64
subcarriers were used for a code size of 1024 and 32 for 512. In the 5G polar code OFDM-based
system, the CP is configured to maintain an approximate 7% overhead. For instance, with a code
size of 1024 and 128 subcarriers, a CP length of 9 yields Tcp = 4.68µ s, closely matching the 3GPP
normal CP of 4.69µ s at 15kHz spacing.

The 5G polar decoder was evaluated under four pilot configurations, as shown in Figure 6. In the "1P "
and "2P " settings, the pilots occupy all subcarriers in one or two OFDM symbols, respectively. In the
"1P2" and "2P2" settings, pilots are placed on every second subcarrier within the designated symbols.
Unless stated otherwise, the 2P configuration was used by default. All pilots were randomly generated
using QPSK modulation. Note that when comparing 5G polar and NPD at the same code length,
extra OFDM symbols were added for pilots in the 5G decoder based on the chosen configuration.
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ri

er

(a) Pilot pattern "1P "

OFDM symbol

Su
bc

ar
ri

er

(b) Pilot pattern "2P "

OFDM symbol
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ri
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(c) Pilot pattern "1P2"

OFDM symbol

Su
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ri

er

(d) Pilot pattern "2P2"

Figure 6: Pilot patterns used in simulations.

Design: The information set A for is found using the design phase of NPD for each SNR point,
modulation, and code length. It assumes knowledge of the design condition at the encoder for
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selecting the design. In contrast, the 5G decoder relies on a static reliability sequence as specified in
the 3GPP standard [1]. This provides a deployment advantage for the standard 5G decoder.

Training Configuration: This training configuration was carefully designed to balance performance
and robustness while maintaining a manageable computational complexity. A thorough exploration
of the training hyperparameters was conducted to determine an effective setup for the proposed NPD.
This investigation included variations in the embedding dimension, number of neurons, batch size
and learning rate.

To develop a robust model, training was performed under challenging conditions, including a delay
spread of 300ns, which resulted in a model capable of generalizing across a wide range of delay
spreads. To ensure resilience to varying SNRs, the training dataset was generated using noise
variances sampled uniformly from the range [−5, 10] dB. Furthermore, to improve robustness to
Doppler effects, the training channels included user velocities uniformly distributed between 0 and
35m/s.

CRC
Encoder

Input Bits
Interleaver

Subchannel
Allocation Polar Transform Sub-Block

Interleaver
Rate Matching Channel

Interleaver

Deinterleaver Rate Recovery Polar Decoder CA-SCL Input Bits
Deinterleaver

5G Polar Encoder

5G Polar Decoder

Figure 7: 5G Polar code system. Yellow, red, and orange blocks are implemented in downlink, uplink,
and both, respectively.

6.2 5G Polar Code

The 5G polar encoder begins with a cyclic redundancy check (CRC) encoder that appends a 24-
bit (downlink) or 11-bit (uplink) CRC to the input bits. In the downlink, an input-bit interleaver
is applied before subchannel allocation, which constructs the polar input vector uN by placing
the information and CRC bits in the information set A and zeros in the frozen set F . The polar
transform then generates the codeword xN = uNF⊗n. Notably, the bit-reversal permutation BN

is not included. The codeword is then passed through a subblock interleaver and a rate-matching
unit, which adjusts the length to the desired number of transmission bits Nr ≤ N via puncturing,
shortening, or repetition [10]. In the uplink, the bits are further permuted by a channel interleaver,
whereas in the downlink, this step is omitted.

In the 5G polar decoder, processing begins with a deinterleaver in the uplink, whereas this step is
omitted in the downlink. This is followed by a rate recovery stage that reconstructs the original
codeword length N , resulting in a length-N LLR vector. These LLRs are then decoded using CRC-
aided successive cancellation list (CA-SCL) decoding [9]. In the downlink, an additional input bit
deinterleaver is applied after decoding to restore the original bit order. For further details, refer to [1,
6].

6.3 NPDLoss

This subsection presents the algorithm used to compute the NPDLoss in O(logN) steps. The method
is based on the algorithm in [3], with the modification that the input is the embedding e0 rather than
yN . Consequently, the embedding function is applied outside the loss computation.

Given xN and the embeddings e0, the loss of the NPD is computed as follows. the log likelihood
ratios (LLRs) are computed as l0 = Hθ (e0). The loss of bits at stage 0 is then computed as

L0 (v0, e0; θ) =

− 1

N

N∑
i=1

v0,i log σ (l0,i) + v0,i log σ (l0,i), (4)
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Algorithm 3 NPDLoss
Input:

e0, x
N

Fθ, Gθ, Hθ ▷ NPD model
Output:
L(xN , yN ; θ) ▷ computed loss

Stage 0:
v0 ← xN

l0 ← Hθ (e0)

L0(v0, e0; θ) = −
1

N

N∑
i=1

v0,i log σ(l0,i) + v0,i log σ(l0,i)

▷ loss of stage 0
Stage 1:

v1 ← [vo
0 ⊕ ve

0 | ve
0]

e1 ← [Fθ(e
o
0, e

e
0) | Gθ(e

o
0, e

e
0,v

o
0 ⊕ ve

0)]
l1 ← Hθ(e1)

L1(v1, e1; θ) = −
1

N

N∑
i=1

v1,i log σ(l1,i) + v1,i log σ(l1,i)

▷ loss of stage 1
Stages 2 to n:
for j = 2 to n do

Compute v(j−1) and e(j−1) ▷ Equation (8)
Initiate v(j) = ∅, e(j) = ∅, l(j) = ∅
for each ṽj−1 ∈ v(j−1) and ẽj−1 ∈ e(j−1) do

Compute ṽj , ẽj and l̃j ▷ Equation (5)–(7)
v(j) ← v(j) ∪ ṽj , e(j) ← e(j) ∪ ẽj , l(j) ← l(j) ∪ l̃j

end for
Concatenate v(j), e(j), l(j) into ej , vj , lj

Lj(vj , ej ; θ) = −
1

N

N∑
i=1

vj,i log σ(lj,i) + vj,i log σ(lj,i)

▷ loss of stage j
end for
return L(e0, xN ; θ)← 1

n+1

∑n
j=0 Lj(vj , ej ; θ)

where x = 1 − x, σ(x) = 1
1+e−x is the logistic function and PUi|Ui−1,Y N

(
1|ui−1, yN

)
=

σ
(
LUi|Ui−1,Y N

(
ui−1, yN

))
.

At stage 1, the loss is computed in the following manner. First, v1 is computed by

v1 = [vo
0 ⊕ ve

0 | ve
0], (5)

where vo
0,v

e
0 ∈ F

N
2
2 contain the odd and even elements of v0, respectively. Next, e1 is computed as

follows:

e1 = [Fθ (e
o
0, e

e
0) | Gθ (e

o
0, e

e
0,v

o
0 ⊕ ve

0)], (6)

where Fθ (e
o
0, e

e
0) ,Gθ (e

o
0, e

e
0,v

o
0 ⊕ ve

0) ∈ RN
2 ×d, the operator [·|·] denotes the concatenation of

two matrices along the first dimension, and e1 ∈ RN×d. The loss of stage 1 is then computed by first
computing

l1 = Hθ (e1) , (7)
and then computing L1 (v1, e1; θ), as done in stage 0.

At stages j ∈ [2 : n], the same computations as in stage 1 are followed, but they are performed within
sub-blocks independently. Given ej−1 and vj−1, we first split them into collections:

v(j−1) = {vj−1,k}2
j−1−1

k=0

e(j−1) = {ej−1,k}2
j−1−1

k=0 , (8)
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where

vj−1,k = {vj−1,l}(k+1)2n−j+1

l=1+k2n−j+1

ej−1,k = {ej−1,l}(k+1)2n−j+1

l=1+k2n−j+1 ,

with vj−1,k ∈ F
N

2j−1 ×1

2 and ej−1,k ∈ R
N

2j−1 ×d. For every vj−1,k and ej−1,k, we repeat the
computations in Equations (5)–(6) to produce v′

j−1,k and e′j−1,k, which are then concatenated into
ej , vj . Next, ej , vj are used to compute Lj (vj , ej ; θ) and are passed to the next stage. The overall
loss is computed by

L (xn, yn; θ) =
1

n+ 1

n∑
j=0

Lj (vj , ej ; θ) , (9)

and the corresponding gradient is given by ∇θL (xn, yn; θ). The loss computation is summarized in
Algorithm 3.
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