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Abstract

Dataset Distillation (DD) aims to synthesize a small dataset
capable of performing comparably to the original dataset.
Despite the success of numerous DD methods, theoretical
exploration of this area remains unaddressed. In this pa-
per, we take an initial step towards understanding various
matching-based DD methods from the perspective of sample
difficulty. We begin by empirically examining sample diffi-
culty, measured by gradient norm, and observe that different
matching-based methods roughly correspond to specific dif-
ficulty tendencies. We then extend the neural scaling laws of
data pruning to DD to theoretically explain these matching-
based methods. Our findings suggest that prioritizing the
synthesis of easier samples from the original dataset can en-
hance the quality of distilled datasets, especially in low IPC
(image-per-class) settings. Based on our empirical obser-
vations and theoretical analysis, we introduce the Sample
Difficulty Correction (SDC) approach, designed to predom-
inantly generate easier samples to achieve higher dataset
quality. Our SDC can be seamlessly integrated into existing
methods as a plugin with minimal code adjustments. Ex-
perimental results demonstrate that adding SDC generates
higher-quality distilled datasets across 7 distillation meth-
ods and 6 datasets.

1. Introduction

In an era of data-centric AI, scaling laws [17] have shifted
the focus to data quality. Under this scenario, dataset dis-
tillation (DD) [36, 43–45] has emerged as a solution for
creating high-quality data summaries. Unlike data pruning
methods [1, 7, 13, 41, 42, 49] that directly select data points
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from original datasets, DD methods are designed to gener-
ate novel data points through learning. The utility of DD
methods has been witnessed in fields such as privacy pro-
tection [4, 6, 11, 26], continual learning [14, 29, 35, 50],
and neural architecture search [2, 31, 39]

Among the various DD techniques, matching-based
methods, particularly gradient matching (GM) [18, 23, 51,
52] and trajectory matching (TM) [3, 8, 12, 15], have
demonstrated outstanding performance. However, a gap re-
mains between their theoretical understanding and empiri-
cal success. To offer a unified explanation of these methods,
we aim to explore the following question:

Question 1: Is there a unified theory to explain existing
matching-based DD methods?

To address Question 1, we first empirically examine the
differences between matching-based distillation methods.
It is widely acknowledged that sample difficulty (Defini-
tion 1) is a crucial metric in data-centric AI that signifi-
cantly affects model performance, as seen in dataset prun-
ing [27, 28, 38, 40], and large language model prediction
[9, 24, 25]. To track the differences between current dis-
tillation methods, we follow [34] and analyze sample diffi-
culty using the GraDN metric (Definition 2). Surprisingly,
we discover that the GraDN score is increased in GM-based
methods (Figure 1(a)), while TM-based methods may re-
duce this metric (Figure 1(c)). These distinct trends indicate
that the difficulty of samples utilized in GM-based methods
is elevated (Figure 2(a)), whereas in TM-based methods, it
is reduced (Figure 2(b)) during the distillation process.

Motivated by these observations, we develop a theoreti-
cal explanation for current DD methods from the perspec-
tive of sample difficulty. Specifically, we draw upon the
neural scaling law in the data pruning theory [38] to con-
nect sample difficulty with performance. As shown in Fig-
ure 4(c), our theory indicates that in matching-based DD
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Figure 1. We conducted experiments of GM-based methods on the FashionMNIST dataset and TM-based methods on the CIFAR-100
dataset. (a) Average gradient norms of network parameters for different GM-based methods are enhanced during distillation. The shade
represents the gap before and after adding our SDC. (b) Test performance w/ and w/o our proposed SDC on different GM-based methods.
Our SDC are incorporated to improve all matching-based methods. (c) Average gradient norms of network parameters for different TM-
based methods are alleviated during distillation. (d) Test performance w/ and w/o our proposed SDC on different TM-based methods. Note
that the average gradient norms are smoothed using the exponential moving average. Best viewed in color.

methods, when the synthetic dataset is small—specifically,
when the images-per-class (IPC) is low—the optimal strat-
egy is to primarily focus on easier samples rather than
harder ones to enhance performance. Based on our theory,
we further explain why TM-based methods usually outper-
form GM-based methods in real scenarios.

Beyond developing a theoretical framework, we take
steps to explore solutions for improving current approaches.
This raises another key research question:

Question 2: Is it empirically feasible to identify a loss
function that surpasses the performance of the matching
loss by controlling the difficulty of learned patterns during
distillation?

To address Question 2, based on our empirical observa-
tions and theoretical analysis, we propose the novel Sample
Difficulty Correction (SDC) method to improve the syn-
thetic dataset quality in current matching-based distillation
methods. We do this by guiding the distillation method to
focus more on easy samples than hard samples, adding
an implicit gradient norm regularizer to enhance quality.

Our contributions are listed as follows:
• We empirically investigate sample difficulty from the per-

spective of gradient norm in distillation methods, linking
it to synthetic dataset quality. We propose that GM-based
methods focus on difficult samples during optimization,
while TM-based methods show no dominant preference
for difficulty. This may explain the poorer performance
of GM-based methods than TM-based methods.

• We theoretically elucidate the mechanism of matching-
based DD methods from the perspective of sample diffi-
culty. Adapting the neural scaling law theory from data
pruning [38] to distillation settings, we provide insights
into how matching strategies evolve with the size of the
synthetic dataset. Consequently, we propose that focus-
ing on matching easy samples is a better strategy when

the synthetic dataset is small.
• We introduce Sample Difficulty Correction (SDC) to

improve the quality of synthetic datasets in current
matching-based DD methods. Our method demonstrates
superior generalization performance across 7 distillation
methods (DC [52], DSA [51], DSAC [23], MTT [3], FTD
[12], TESLA [8], DATM [15]) and 6 datasets (MNIST
[10], FashionMNIST [47], SVHN [33], CIFAR-10/100
[19], and Tiny-ImageNet [21]).

2. Preliminaries and Related Work
Dataset distillation involves synthesizing a small, con-
densed dataset Dsyn that efficiently encapsulates the infor-
mational essence of a larger, authentic dataset Dreal.

Gradient Matching (GM) based methods are pivotal in
achieving distillation by ensuring the alignment of train-
ing gradients between surrogate models trained on both the
original datasetDreal and the synthesized datasetDsyn. This
method is first introduced by DC [52]. Let θt represent the
network parameters sampled from distribution Pθ at step t,
and C symbolizes the categories within Dreal. The cross-
entropy loss L, is employed to assess the matching loss by
comparing the gradient alignment over a time horizon of T
steps. The formal optimization objective of DC is:

argmin
Dsyn

E
θ0∼Pθ,c∼C

[
T∑

t=0

D
(
∇θLDc

real
(θt) ,∇θLDc

syn
(θt)

)]
,

(1)
where D measures the cumulative distances (e.g.,

cosine/L2 distance in DC) between the gradients of weights
corresponding to each category output. The parameter up-
dates for θ are executed in an inner loop via gradient de-
scent, with a specified learning rate η:

θt+1 ← θt − η · ∇θLDsyn (θt) . (2)
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Figure 2. Comparison of matching-based dataset distillation methods from a sample difficulty perspective. (a) Gradient matching-based
methods mainly utilize hard samples during synthesizing. (b) Trajectory matching-based methods do not explicitly take the difficulty of
samples into consideration. (c) Our SDC encourages matching-based methods to prioritize the synthesis of easy samples.

Building upon this, DSA [51] enhances DC by imple-
menting consistent image augmentations on both Dreal and
Dsyn throughout the optimization process. Moreover, DCC
[23] refines the gradient matching objective by incorporat-
ing class contrastive signals at each gradient matching step,
which results in enhanced stability and performance. Com-
bining DSA and DCC, DSAC [23] further introduces im-
provements by synergizing these techniques. The revised
optimization objective for DCC and DSAC is formulated
as:

argmin
Dsyn

E
θ0∼Pθ

[
T∑

t=0

D
(
Ec∈C

[
∇θLDc

real
(θt)

]
,

Ec∈C

[
∇θLDc

syn
(θt)

])]
.

(3)

Trajectory matching (TM) based approaches aim to
match the training trajectories of surrogate models by op-
timizing over both the real datasetDreal and the synthesized
dataset Dsyn. TM-based methods were initially proposed
in MTT [3]. Let term τDreal denote the expert training tra-
jectories, represented as a sequential array of parameters
{θDreal

t }Tt=0, obtained from training a network on the real
dataset Dreal. In parallel, θDsyn

t refers to the parameter set of
the network trained on Dsyn at step t. In each iteration, pa-
rameters θDreal

t and θDreal

t+M are randomly selected from the ex-
pert trajectory pool {τDreal}, serving as the initial and target
parameters for trajectory alignment, where M is a prede-
termined hyperparameter. TM-based methods enhance the
synthetic dataset Dsyn by minimizing the loss defined as:

argmin
Dsyn

E
θ0∼Pθ

T−M∑
t=0

D
(
θDreal

t+M , θ
Dsyn

t+N

)
D
(
θDreal

t+M , θDreal
t

)
 , (4)

where D is a distance metric (e.g., L2 distance in MTT)
and N << M is a predefined hyperparameter. θDsyn

t+N is de-
rived through an inner optimization using the cross-entropy
loss L with the learning rate η:

θ
Dsyn

t+i+1 ← θ
Dsyn

t+i − η∇θLDsyn(θ
Dsyn

t+i ), where θ
Dsyn

t := θDreal
t .

(5)
Similarly, TESLA [8] utilizes linear algebraic manipu-

lations and soft labels to increase compression efficiency,
FTD [12] aims to seek a flat trajectory to avoid accumu-
lated trajectory error, and DATM [15] considers matching
only necessary parts of trajectory with difficulty alignment.

3. Method
3.1. A Closer Look at Sample Difficulty

In this subsection, we aim to intuitively understand dataset
distillation through the concept of sample difficulty (Defi-
nition 1), which is pivotal in data-centric AI [5, 9, 24, 27,
28, 40, 48]. We begin by empirically observing the evo-
lution of sample difficulty during the distillation process.
Firstly, we introduce the commonly used definition of sam-
ple difficulty, namely the GraDN score (Definition 2), and
validate the reliability of this metric. Furthermore, we track
the GraDN score across current dataset distillation methods
to delve deeper into their underlying mechanisms.

Definition 1 (Sample Difficulty [30]). Given a training pair
(x, y) and a series of pretrained models at training time
t, the sample difficulty, denoted χ(x, y; Θt), is defined as
the expected probability of (x, y) being misclassified by an
ensemble of models θt ∈ Θt. Formally, it is presented as:

χ(x, y; Θt) = Eθt∈Θt
[1 (y ̸= θt(x))] , (6)

where 1 (z) is an indicator function that equals 1 if the
boolean input z is true, and 0 otherwise. In this case, the
indicator function equals to 1 if the sample (x, y) is misclas-
sified by the model with parameters θt, and 0 otherwise.

Definition 2 (GraDN Score [34]). Consider a training pair
(x, y), with L representing the loss function. At time t, the
GraDN score for (x, y) is calculated as the average gradi-
ent norm of the loss L across a diverse ensemble of models
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Figure 3. The statistical relationship between sample difficulty χ(x, y; Θt), gradient norm GraDN(x, y; Θt), and average validation loss
for each sample (x, y) on a series of models with θt ∈ Θt. We observe a significant positive correlation between sample difficulty and both
the gradient norm and the loss. Experiments were conducted using ResNet-18 on CIFAR-10 and ResNet-34 on CIFAR-100. Each score
was evaluated across 20 pretrained models. For CIFAR-100, 10 categories were randomly selected for visualization. The relationships
depicted are: (a) sample difficulty vs. gradient norm on CIFAR-10, (b) sample difficulty vs. loss on CIFAR-10, (c) sample difficulty vs.
gradient norm on CIFAR-100, and (d) sample difficulty vs. loss on CIFAR-100.

with parameters θt ∈ Θt:

GraDN(x, y; Θt) = Eθt∈Θt [∥∇θL(x, y; θt)∥2] , (7)

where∇θL(x, y; θt) denotes the gradient of loss L on sam-
ple (x, y) w.r.t. the model parameters θt, and ∥ · ∥2 denotes
L2 norm.

According to [30], the difficulty of each sample can be
assessed by the misclassification ratio across a series of pre-
trained models (Definition 1). Additionally, from an opti-
mization perspective, it can be represented by the gradient
norm of the loss on a series of pretrained models for this
sample (Definition 2). In our study, we adopt Definition 2 to
evaluate sample difficulty as interpreted by various match-
ing methods.

Empirical verification of the relationship between
sample difficulty and gradient norm. We conducted ex-
periments to verify the reliability of the GraDN score in
classifying the CIFAR-10 and CIFAR-100 datasets by train-
ing a set of models. As depicted in Figure 3, the GraDN
score shows a clear positive correlation with the sample dif-
ficulty. For easier samples, GraDN scores are generally
lower, exerting minimal impact on the network’s gradient
flow. Conversely, for harder samples, higher GraDN scores
indicate a significant impact on the optimization directions
of the models. We show detailed results of the relationships
between these metrics in Appendix 1.

Exploring sample difficulty across different distil-
lation methods. Beyond sample difficulty under clas-
sification scenarios, we now extend our observations to
matching-based distillation methods. Specifically, we ex-
amined the average gradient norm of the training cross-
entropy loss across network parameters during the distilla-
tion process. As shown in Figure 1(a)(c), we found that the

average gradient norm (corresponding to the GraDN score)
tends to increase in GM-based methods (signifying harder
samples), whereas it decreases in TM-based methods (indi-
cating easier samples). This unexpected phenomenon moti-
vates us to further theoretically explore matching-based dis-
tillation methods from the perspective of sample difficulty.

3.2. An Analytical Theory for Explaining Matching-
based Dataset Distillation

In Section 3.1, we empirically observed distinct trends in
sample difficulty across various dataset distillation meth-
ods. Here, we propose an analytical theory based on the
neural scaling law to formally analyze sample difficulty in
matching-based methods. We extend the theory of data
pruning presented by [38] and validate its applicability
within the context of DD using an expert-student percep-
tron model. Unlike data pruning, where the pruned dataset
is directly selected from the original dataset, DD involves
synthesizing a small, new, unseen dataset.

We start our analysis with tools from statistical me-
chanics [32]. Let us consider a classification problem
in dataset Dreal containing dreal samples {xi, yi}i=1,...,dreal

,
where xi ∈ Rd ∼ N (0, Id) are i.i.d. zero-mean, unit vari-
ance Gaussian inputs, and yi = sign(θD

⊤
realxi) ∈ {−1,+1}

are labels generated by an expert perceptron θDreal ∈ Rd.
Our analysis is within the high-dimensional statistics limit,
where d, dreal → ∞ while maintaining the ratio of total
training samples to parameters αtot = dreal/d at O(1). The
general distillation algorithm proceeds as follows:
1. Train a student perceptron on Dreal for a few epochs to

obtain weights θprobe. The gap between can be mea-
sured by the angle γ between the probe student θprobe

and the expert θreal. If θprobe ≈ θreal, we denote the
θprobe as a perfect probe (γ = 0). Otherwise, in imper-
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Figure 4. An analytic theory of dataset distillation. (a) Test error ε as a function of the synthetic samples per parameter αsyn and fraction of
data synthesized f in a perfect expert setting (γ = 0). (b) We show the difference in test accuracy in learning synthetic dataset by learning
from hard vs easy samples, revealing the change in distillation strategy. (c) Our theory suggests that when we synthesize small dataset
(small αsyn), the better distillation strategy is to utilize the easy samples.

fect probe cases, γ ̸= 0.

2. Compute the margin mi = θprobe
⊤
(yixi) for each

training example, categorizing large (small) margins as
easy (hard) samples.

3. Generate a synthetic dataset Dsyn of size dsyn = fdreal,
by learning from the hardest samples from Dreal for few
steps. The ratio of total samples of the synthetic dataset
to parameters is αsyn = dsyn/d.

4. Train a new perceptron θDsyn on Dsyn, aiming to clas-
sify training data with the maximal margin κ =

mini θ
D⊤

synyixi.
We analyze the test error ε of this final perceptron θDsyn

as a function of αsyn, f , and the angle γ between the probe
student θprobe and the expert θDreal . Similar to [38], we de-
fine θprobe as a random Gaussian vector conditioned to have
angle γ with the expert. Under this scenario, we can derive
an asymptotically exact analytic expression for ε(αsyn, f, γ)
(see Appendix 4 for details):

ε =
cos−1(R)

π
, where R =

θD
⊤
realθDsyn

∥θDreal∥2∥θDsyn∥2
(8)

Likewise in [38], we can solve R with saddle point equa-
tions in Appendix 4.1, enabling direct predictions of the test
error ε according to Eq (8).

Verification of the neural scaling law in dataset distil-
lation. We first evaluated the correctness of our theory in
the perfect expert-student setting (γ = 0). As shown in Fig-
ure 4(a), we observed an excellent match between our ana-
lytic theory (solid curves) and numerical simulations (dots)
of perceptron learning at parameters d = 200 in dataset
distillation. We also verify our theory in imperfect probe
settings when γ ̸= 0, as shown in Appendix 4.2.

The neural scaling law for dataset distillation. We fur-
ther investigate the relationship between the distillation ra-
tio (αsyn), the fraction of data synthesized (f ), and the fi-
nal accuracy of θDsyn under various distillation strategies,

such as synthesizing Dsyn from hard or easy samples.
Similar to data pruning, when f = 1 (no distillation), the
test error follows the classical perceptron learning power-
law scaling, ε ∝ α−1

syn. In other cases, our findings reveal
that for smaller αsyn (smaller synthetic datasets), learning
from the hard samples results in poorer performance than
no distillation. Conversely, for larger αsyn, focusing on the
hard samples yields substantially better outcomes than no
distillation. We find that in limited data regimes, matching
the easy samples, which have the largest margins, offers a
more effective distillation strategy. This finding highlights
that in most cases of DD (where dsyn << dreal), it is crucial
for the model to first learn from the basic characteristics in
Dreal; hence, prioritizing easy samples facilitates reaching
a moderate error level more swiftly.

Understanding GM-based and TM-based methods
with the neural scaling law. As depicted in Figure 1(a),
we observe that GM-based methods typically incorporate
the hard samples within the synthetic dataset. This trend
is due to the GM-based matching loss in Eq.( 1), which pre-
dominantly penalizes samples with large gradients (hard
samples) (shown in Figure 2(b)). However, in most DD
settings, the size of synthetic dataset Dsyn is usually small.
Therefore, according to our theory, we should mainly fo-
cus on synthesizing the dataset by matching easy samples
to achieve higher dataset quality. In contrast, the simplic-
ity of the synthetic samples generated by TM-based meth-
ods, as shown in Figure 1(a), is not directly concerned
through distillation. From Eq.( 4), it is evident that TM-
based methods prioritize parameter alignment, thus penal-
izing the matching term without explicitly targeting sample
difficulty (shown in Figure 2(c)). This approach results in a
synthetic dataset that may be generated by learning samples
of randomly vary in difficulty. We can provide a explana-
tion that TM-based methods generalize well in real scenar-
ios than GM-based methods because of they do not explic-
itly focus on synthesizing by matching hard samples.



3.3. Matching with Sample Difficulty Correction

Based on our theoretical analysis of matching-based dataset
distillation, we propose a novel method to enhance existing
techniques for synthesizing higher-quality distilled datasets.
Although TM-based methods have achieved relative suc-
cess on current benchmark datasets, they do not explicitly
consider sample difficulty, which could ensure higher syn-
thetic dataset quality.

A direct approach to impose constraints on sample dif-
ficulty is to calculate the gradient norm for each sample as
a metric to determine its utility. Let us consider the case
of GM-based methods. At step t, a batch of real samples
Bcreal ∼ Dc

real of class c ∈ C is to be matched with the gra-
dients of a synthetic batch Bcsyn ∼ Dc

syn. To decide whether
to utilize each sample in Bcreal, it is natural to compute the
gradient norm of each sample and utilize those with a score
smaller than a predefined threshold τ . Specifically, a sample
(x, y) is utilized if ∥∇θL(x, y; θt)∥2 ≤ τ . Consequently,
the modified loss for matching only easy samples is:

LB̃c
real

= E(x,y)∈B̃c
real

[L(x, y; θt)] ,

LB̃c
syn

= E(x,y)∈B̃c
syn
[L(x, y; θt)] ,

(9)

where B̃creal = {(x, y)|(x, y) ∈ Bcreal, ∥∇θL(x, y; θt)∥2 ≤
τ} denotes the modified batch with only easy samples, and
B̃csyn denote a sampled batch from Dc

syn with the same size
as B̃creal. The corresponding matching loss should be:

L̃(θt) = D
(
∇θLB̃c

real
(θt) ,∇θLB̃c

syn
(θt)

)
, (10)

However, the computational cost of constructing reduced
easy sample batch B̃creal from Bcreal is unrealistic in real-
world scenarios because it requires calculating the gradient
norm for each sample independently, resulting in a tenfold
or greater increase in time. Besides, determining the dif-
ficulty threshold τ is also ad-hoc and challenging for each
sample. Therefore, we take an alternative approach, i.e., we
consider adding the overall sample difficulty of the whole
batch Bcsyn as an implicit regularization term in the matching
loss function. Our proposed methods, named Sample Dif-
ficulty Correction (SDC), can be incorporated into current
matching methods with minimal adjustment of code imple-
mentation. Specifically, for a single-step GM, we have the
following modified loss:

Lλ(θt) = D
(
∇θLBc

real
(θt) ,∇θLBc

syn
(θt)

)
︸ ︷︷ ︸

Gradient Matching Loss

+ λ
∥∥∥∇θLBc

syn

∥∥∥
2︸ ︷︷ ︸

Gradient Norm Regularization

(11)

For TM-based methods that do not explicitly focus on sam-
ple difficulty during distillation, we compute the average

gradient norm of the whole dataset Dsyn during the opti-
mization of the student network θ

Dsyn

t w.r.t. the training loss
as the regularization term. Specifically, we have:

Lλ(θ
Dsyn

t ) = D
(
θDreal

t+M , θ
Dsyn

t+N

)
/D
(
θDreal

t+M , θDreal
t

)
︸ ︷︷ ︸

Trajectory Matching Loss

+ λ
∥∥∇θLDsyn

∥∥
2︸ ︷︷ ︸

Gradient Norm Regularization

(12)

By adding the gradient norm regularization, we can im-
plicitly enforce current matching-based methods to mainly
concentrate on synthesizing easy samples to achieve bet-
ter synthetic data quality. We provide the algorithm pseu-
docodes for GM- and TM-based methods in Appendix 2.3.

4. Experiments
4.1. Basic Settings

Datasets and baselines. For GM-based methods, we fol-
lowed previous works to conduct experiments on MNIST
[10], FashionMNIST [47], SVHN [33] datasets. We uti-
lized current GM-based methods, including DC [52], DSA
[51], and DSAC [23] as baselines. For TM-based methods,
we followed the recent papers to use CIFAR-10, CIFAR-
100 [19], and Tiny ImageNet [21] datasets. We performed
experiments on current baselines including MTT [3], FTD
[12], TESLA [8], and DATM [15]. We added our Sam-
ple Difficulty Correction (SDC) for all these baseline meth-
ods. To ensure a fair comparison, we employed identical hy-
perparameters for GM-based and TM-based methods with
and without SDC while keeping all other variables constant,
such as model architecture and augmentations. As per con-
vention, for TM-based methods, we used max test accuracy,
while for GM-based methods, we utilized the test accuracy
from the last iteration. We also compared our methods with
classical data pruning algorithms including Random, Herd-
ing [46], and Forgetting [41]. All hyperparameters are de-
tailed in Appendix 2.1.

Neural networks for distillation.We used ConvNet as
default to conduct experiments. Consistent with other pre-
vious methods, we used 3-layer ConvNet for CIFAR-10,
CIFAR-100, MNIST, SVHN, and FashionMNIST, and 4-
layer ConvNet for Tiny ImageNet.

4.2. Main Results

GM-based methods on MNIST, FashionMNIST, and
SVHN. As presented in Table 1, we report the results of
three GM-based methods applied to MNIST, FashionM-
NIST, and SVHN datasets. Each method was evaluated
with IPC (images-per-class) values of 1, 10, and 50. No-
tably, adding SDC improves the test accuracy of baseline
methods across all datasets and IPC values, demonstrating



Table 1. Comparison of test accuracy (%) results of GM-based dataset distillation methods w/ and w/o SDC on MNIST, FashionMNIST,
and SVHN datasets.

Dataset MNIST FashionMNIST SVHN
IPC 1 10 50 1 10 50 1 10 50

Ratio (%) 0.02 0.2 1 0.2 2 10 0.2 2 10

Random 64.9±3.5 95.1±0.9 97.9±0.2 51.4±3.8 73.8±0.7 82.5±0.7 14.6±1.6 35.1±4.1 70.9±0.9
Herding 89.2±1.6 93.7±0.3 94.8±0.2 67.0±1.9 71.1±0.7 71.9±0.8 20.9±1.3 50.5±3.3 72.6±0.8

Forgetting 35.5±5.6 68.1±3.3 88.2±1.2 42.0±5.5 53.9±2.0 55.0±1.1 12.1±1.7 16.8±1.2 27.2±1.5

DC 91.8±0.4 97.4±0.2 98.5±0.1 70.3±0.7 82.1±0.3 83.6±0.2 31.1±1.3 75.3±0.6 82.1±0.2
+SDC 92.0±0.4 97.5±0.1 98.9±0.1 70.7±0.5 82.4±0.3 84.7±0.2 31.4±1.2 76.0±0.5 82.3±0.3

DSA 88.9±0.8 97.2±0.1 99.1±0.1 70.1±0.4 84.7±0.2 88.7±0.2 29.4±1.0 79.2±0.4 84.3±0.4
+SDC 89.2±0.4 97.3±0.1 99.2±0.4 70.5±0.5 84.8±0.2 88.9±0.1 30.6±1.0 79.4±0.4 85.3±0.4

DSAC 89.2±0.7 97.7±0.1 98.8±0.1 71.8±0.7 84.9±0.2 88.5±0.2 47.5±1.8 80.1±0.5 87.3±0.2
+SDC 89.7±0.7 97.8±0.1 98.9±0.1 72.2±0.6 85.1±0.1 88.7±0.1 48.1±1.6 80.4±0.3 87.4±0.2

Whole Dataset 99.6±0.0 93.5±0.1 95.4±0.1

the effectiveness of our approach. Notably, adding SDC to
the original method improved the test accuracy of DSA by
1.2% on the SVHN dataset with IPC = 1, and by 1% with
IPC = 50. For DC on the FashionMNIST dataset with IPC
= 50, the test accuracy was increased by 1.1% with SDC.
All hyperparameters are detailed in Table 4.

TM-based methods on CIFAR-10/100 and Tiny Ima-
geNet. As shown in Table 2, we present the results of four
TM-based methods trained on CIFAR-10, CIFAR-100 and
Tiny ImageNet. By incorporating the average gradient norm
as a regularization term during matching with SDC, the re-
sulting test accuracy was generally improved. Notably, em-
ploying SDC improved the test accuracy of FTD on CIFAR-
10 by 1.2% with IPC = 10 and 1.1% with IPC = 50, and
enhanced the test accuracy of DATM on Tiny ImageNet by
0.6%. For FTD, we used EMA (exponential moving aver-
age) just as in the original method[12]. All hyperparameters
are detailed in Tables 5, 6, 7, and 8.

Generalization performance to other architectures.
We evaluated the generalizability of synthetic datasets gen-
erated through distillation. We used DSAC and DATM,
which are current SOTA methods in GM-based and TM-
based distillation, respectively. After distillation, the syn-
thetic datasets were assessed using various neural networks,
including ResNet-18 [16], VGG-11 [37], AlexNet [20],
LeNet [22] and MLP. As shown in Table 3, even though our
synthetic datasets were distilled using ConvNet, it general-
izes well across most networks. Notably, for the experiment
of DATM on CIFAR-10 with IPC = 1, employing SDC re-
sulted in an accuracy improvement of 4.61% when using
AlexNet. Employing SDC to DSAC led to an accuracy im-
provement of 0.9% on SVHN with IPC = 10 when using
MLP. Additional results can be found in Appendix 3.1.

4.3. Further Discussions

Discussion of SDC coefficient λ. The selection of the reg-
ularization coefficient λ is pivotal for the quality of the dis-
tilled dataset. Our theory suggests that a larger λ typically
produces better synthetic datasets for smaller IPC values.
Ideally, for low IPC settings, it is better to employ a large λ
to strongly penalize sample difficulty, whereas, for high IPC
settings, the required λ can be small or even close to zero in
extreme cases. For simplicity and to maintain consistency
across different datasets and baseline methods, we have set
λ = 0.002 as the default value in most of our experiments.
As demonstrated in Figure 5, this choice of λ aligns with
the IPC values. Results for FTD and TESLA are based on
CIFAR-10, results for DSA are based on SVHN, and results
for DSAC are based on MNIST. Additionally, we further
show that the choice of λ is not sensitive in Appendix 3.3.

Adaptive sample difficulty correction by adaptively
increasing λ during distillation. While our SDC seeks
simplicity in regularization, DATM [15] claims that the
matching difficulty is increased through optimization. In-
spired by their observation, we implemented a strategy
where λ increases progressively throughout the matching
phases. This method is designed to incrementally adjust the
focus from easier to more complex patterns. Inspired by
their observation, we applied an Adaptive Sample Difficulty
Correction (ASDC) strategy in our experiments with a TM-
based method on the CIFAR-100 with IPC = 1 and with
a GM-based method on the FashionMNIST with IPC = 1.
The λ of DATM was initialized to 0.02 and logarithmically
increased to 0.08 over 10,000 iterations and DSAC was ini-
tialized to 0.002 and logarithmically increased to 0.008 over
10,000 steps. For DATM, we use max test accuracy, while
for DSAC, we use test accuracy. Experimental results of
ASDC validate its potential to significantly enhance learn-



Table 2. Comparison of test accuracy (%) results of TM-based dataset distillation methods w/ and w/o SDC on CIFAR-10, CIFAR-100,
and Tiny ImageNet datasets.

Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 1 10 50 1 10 50 1 10 50

Ratio (%) 0.02 0.2 1 0.2 2 10 0.2 2 10

Random 14.4±2.0 26.0±1.2 43.4±1.0 4.2±0.3 14.6±0.5 30.0±0.4 1.4±0.1 5.0±0.2 15.0±0.4
Herding 21.5±1.2 31.6±0.7 40.4±0.6 8.4±0.3 17.3±0.3 33.7±0.5 2.8±0.2 6.3±0.2 16.7±0.3

Forgetting 13.5±1.2 23.3±1.0 23.3±1.1 4.5±0.2 15.1±0.3 30.5±0.3 1.6±0.1 5.1±0.2 15.0±0.3

MTT 45.8±0.3 64.7±0.5 71.5±0.5 23.9±1.0 38.7±0.4 47.3±0.1 8.3±0.4 20.6±0.2 28.0±0.3
+SDC 46.2±0.7 65.3±0.3 71.8±0.5 24.3±0.3 38.8±0.3 47.3±0.2 8.5±0.2 20.7±0.2 28.0±0.2

FTD 46.7±0.7 65.2±0.5 72.2±0.1 25.1±0.4 42.5±0.1 50.3±0.3 10.9±0.1 21.8±0.3 -
+SDC 47.2±0.7 66.4±0.4 73.3±0.4 25.4±0.3 42.6±0.1 50.5±0.3 11.2±0.1 22.2±0.2 -

TESLA 47.4±0.3 65.0±0.7 71.4±0.5 23.9±0.3 35.8±0.7 44.9±0.4 - - -
+SDC 47.9±0.7 65.3±0.4 71.8±0.2 24.2±0.2 35.9±0.2 45.0±0.4 - - -

DATM 46.1±0.5 66.4±0.6 75.9±0.3 27.7±0.3 47.6±0.2 52.1±0.1 17.1±0.3 30.1±0.3 39.7±0.1
+SDC 46.4±0.4 66.6±0.4 76.1±0.2 28.0±0.2 47.8±0.2 52.5±0.2 17.4±0.2 30.7±0.2 39.9±0.2

Whole Dataset 84.8±0.1 56.2±0.3 37.6±0.4

Table 3. Cross-architecture evaluation was conducted on the dis-
tilled dataset with (a) IPC = 1 for the TM-based method (DATM)
and (b) IPC = 10 for the GM-based method (DSAC), both w/ and
w/o SDC. Adding SDC improves performance on unseen networks
compared to current SOTA methods.

(a)

Dataset Method ResNet-18 VGG-11 AlexNet LeNet MLP

CIFAR-10 DATM 29.62 25.12 19.38 23.41 23.08
+SDC 31.29 25.99 23.99 23.65 22.90

CIFAR-100 DATM 11.52 8.74 1.95 6.71 6.47
+SDC 12.10 8.78 3.73 6.84 6.51

Tiny ImageNet DATM 4.36 5.93 4.33 2.42 2.29
+SDC 4.74 6.45 4.34 2.79 2.32

(b)

Dataset Method ResNet-18 VGG-11 AlexNet LeNet MLP

MNIST DSAC 97.44 96.88 95.30 95.31 90.62
+SDC 97.65 97.13 95.73 95.67 90.93

FashionMNIST DSAC 82.17 82.59 80.73 79.82 80.09
+SDC 82.87 82.73 81.15 79.96 80.36

SVHN DSAC 70.59 76.44 49.66 55.98 39.11
+SDC 71.03 76.63 49.78 56.27 40.03

ing by finetuning regularization according to the complexity
of the learned patterns. Figure 6 illustrates that ASDC fur-
ther improves our method within SOTA matching methods.
Additional results are provided in Appendix 3.2.

5. Conclusion
In this study, we empirically examine the matching-based
dataset distillation method in relation to sample difficulty,
observing clear trends as measured by gradient norm. Ad-
ditionally, we adapt a neural scaling law from data pruning
to theoretically explain dataset distillation. Our theoretical
analysis suggests that for small synthetic datasets, the opti-
mal approach is to generate data using easier samples from
the original dataset rather than harder ones. To facilitate
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Figure 5. Optimal λ values for various matching-based distil-
lation methods with SDC, performed on datasets with different
IPC values.
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Figure 6. Flexibly adjusting sample difficulty correction with an
adaptive increase in λ results in higher accuracy compared to stan-
dard SDC and baseline methods. We present the results of (a) DATM
and (b) DSAC.

this, we propose a simplicity-centric regularization method,
termed Sample Difficulty Correction (SDC), aimed at
improving synthetic data quality by predominantly utilizing
easier samples in the data generation process. This method
can be easily incorporated to existing matching-based
methods, and can be implemented with a few lines of



code. Experimental results underscore the importance
of proper regularization within the optimization process
for dataset distillation. We anticipate that this work will
deepen the theoretical understanding of dataset distillation.
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Not All Samples Should Be Utilized Equally: Towards Understanding and
Improving Dataset Distillation

Supplementary Material

1. More Result on the Relationships between
Sample Difficulty, Gardient Norm, and
Loss

In this section, we present further findings on the relation-
ships between sample difficulty χ(x, y; Θt), gradient norm
GraDN(x, y; Θt), and the average validation loss for each
sample (x, y) across a range of models characterized by
θt ∈ Θt. The experiments were conducted using ResNet-18
on CIFAR-10 and ResNet-34 on CIFAR-100. Each metric
was evaluated across 20 pretrained models. We randomly
selected 1000 samples for each category in CIFAR-10, and
100 samples for each category in CIFAR-100. For CIFAR-
100, 10 categories for visualization were randomly selected
for visualization purposes. As shown in Figure 7, Figure 8,
Figure 9, Figure 10, Figure 11, Figure 12, it reveals a signifi-
cant positive correlation between sample difficulty, gradient
norm and loss.

2. More Details of Experiments
2.1. Parameter Tables

2.1.1 GM-based Methods

Regarding the GM-based methods, Table 4 provides the cor-
responding λ values after applying SDC. All results are ob-
tained from a single experiment, and evaluated 20 times.
Baseline results are obtained using identical configurations
with the original methods’ implementations (please refer
to DC and DSA1, and DCC2). Experiments with our SDC
share consistent hyperparameters with the corresponding
baselines.

2.1.2 TM-based Methods

The hyperparameters used in our TM-based methods differ
slightly from the original methods (see original implemen-
tations of MTT3, DATM4, TESLA5, and FTD6), particu-
larly in terms of synthesis steps, number of evaluations, and
evaluation interval. Our baseline results used the settings
in Table 5, Table 6, Table 7 and Table 8. The experiments

1https : / / github . com / VICO - UoE /
DatasetCondensation

2https://github.com/Saehyung-Lee/DCC
3https : / / github . com / GeorgeCazenavette / mtt -

distillation
4https://github.com/NUS-HPC-AI-Lab/DATM
5https://github.com/justincui03/tesla
6https://github.com/AngusDujw/FTD-distillation

of applying SDC were conducted in the same setting as in
the baselines. In Table 6, and Table 7, we report the op-
timal hyperparameters using the ConvNetD3 network. All
combinations in Table 7 and Table 8 used the ZCA.

2.2. Limitation

Computational Cost: Similar to other methods, we have
not yet addressed the large computational cost associated
with the dataset distillation. Our experiments were con-
ducted on a mix of RTX 2080 Ti, RTX 3090, RTX 4090,
NVIDIA A100, and NVIDIA V100 GPUs. The cost in
terms of computational resources and time remains signif-
icant for large datasets and high IPC experiments. For ex-
ample, distilling Tiny ImageNet using DATM with IPC =
1 requires approximately 150GB of GPU memory, and for
IPC = 50, a single experiment can take nearly 24 hours to
complete.

Hyperparameter Tuning: The selection of the λ re-
quires manual adjustment, which may involve additional
costs. The extensive training durations and substantial GPU
memory requirements make it challenging to conduct ex-
haustive experiments with multiple λ values to identify the
global optimum, given our computational resource limita-
tions. By exploring a wider range of λ values, it is possible
to obtain better results.

2.3. Pseudocodes of adding SDC on Matching-based
Distillation Methods

We provide detailed pseudocodes for GM-based methods
and TM-based methods. We take DC as the standard GM-
based method, and MTT as the standard TM-based method.
The detailed pseudocodes are shown in Algorithm 1 for
GM-based methods and Algorithm 2 for TM-based meth-
ods.

3. Exploring the Effectiveness of SDC in Addi-
tional Experiments

3.1. More Results on the Cross-architecture Evalu-
ation

To evaluate the performance of distilled datasets on differ-
ent network architectures using SDC (marked as +SDC in
the tables) and other methods (DATM and DSAC), we con-
ducted cross-architecture evaluation experiments. We com-
pared the effects of DATM and SDC on CIFAR-10, CIFAR-
100, and Tiny ImageNet datasets, and the effects of DSAC
and SDC on MNIST, FashionMNIST, and SVHN datasets.

https://github.com/VICO-UoE/DatasetCondensation
https://github.com/VICO-UoE/DatasetCondensation
https://github.com/Saehyung-Lee/DCC
https://github.com/GeorgeCazenavette/mtt-distillation
https://github.com/GeorgeCazenavette/mtt-distillation
https://github.com/NUS-HPC-AI-Lab/DATM
https://github.com/justincui03/tesla
https://github.com/AngusDujw/FTD-distillation
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Figure 9. The statistical relationship between sample difficulty χ(x, y; Θt) and gradient norm GraDN(x, y; Θt) for each sample (x, y) on
a series of ResNet-18 models with parameters θt ∈ Θt on CIFAR-10. 1000 samples were randomly selected for each category.

Finally, we further evaluated the performance differences
between DSAC and SDC methods on MNIST, Fashion-
MNIST, and SVHN datasets with IPC = 50. The cross-
architecture evaluation experiments for DSAC and DATM,
as well as the use of the SDC method on datasets with IPC =
1 of DATM and IPC = 10 of DSAC, can be found in Table 3.

The results of evaluating distilled datasets learned
through DATM and SDC methods on CIFAR-10, CIFAR-
100, and Tiny ImageNet datasets using ResNet-18, VGG-
11, AlexNet, LeNet, and MLP networks are presented in
Table 9. For instance, on the CIFAR-100 dataset, the accu-
racy of the VGG-11 network improved by 1.46%. It can be
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Figure 10. The statistical relationship between sample difficulty χ(x, y; Θt), gradient norm GraDN(x, y; Θt) for each sample (x, y) on a
series of ResNet-34 models with parameters θt ∈ Θt on CIFAR-100. 100 samples were randomly selected for each category.
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Figure 11. The statistical relationship between gradient norm GraDN(x, y; Θt) and average validation loss for each sample (x, y) on a
series of ResNet-34 models with parameters θt ∈ Θt on CIFAR-100. 100 samples were randomly selected for each category.
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Figure 12. The statistical relationship between sample difficulty χ(x, y; Θt) and gradient norm GraDN(x, y; Θt) for each sample (x, y)
on a series of ResNet-34 models with parameters θt ∈ Θt on CIFAR-100. 100 samples were randomly selected for each category.

observed that the performance after applying SDC is gener-
ally better than DATM.

In our evaluation of distilled datasets learned through
DSAC and SDC methods on MNIST, FashionMNIST, and
SVHN datasets using the same network architectures, as
detailed in Table 10, the results show that performance af-
ter applying SDC is superior to the DSAC method across
datasets and network architectures. For example, on the

MNIST dataset, the accuracy of the VGG-11 network im-
proved by 1.37%, and on the SVHN dataset, the accuracy
of the ResNet-18 improved by 0.61%.

Additionally, similar evaluation results on MNIST, Fash-
ionMNIST, and SVHN datasets with an IPC value of 50
are summarized in Table 11. For example, on the SVHN
dataset, the accuracy of the LeNet network improved by
1.0%. It can be seen that with an increase in IPC value,



Table 4. The λ used for GM-based methods

Dataset MNIST FashionMNIST SVHN

IPC 1 10 50 1 10 50 1 10 50

DC 0.001 0.0005 0.001 0.0002 0.001 0.01 0.001 0.0005 0.0002
DSA 0.001 0.00002 0.001 0.0002 0.002 0.001 0.005 0.0005 0.01

DSAC 0.001 0.02 0.02 0.002 0.02 0.02 0.005 0.02 0.02

Table 5. Optimal hyperparameters for MTT. A synthesis batch size of “-” means that we used the full support set at each synthesis step.

Dataset Model IPC ZCA
Synthetic

Steps
(N)

Expert
Epochs
(M†)

Max Start
Epoch
(T+)

Synthetic
Batch
Size

Learning
Rate

(Pixels)

Learning
Rate

(Step Size)

Starting
Synthetic
Step Size

Num
Eval

Eval
Iteration λ

CIFAR-10 ConvNetD3
1 Y 50 2 2 - 102 10−7 10−2 5 100 0.0005
10 Y 30 2 20 - 102 10−4 10−2 5 100 0.02
50 N 30 2 40 - 103 10−5 10−3 5 100 0.0002

CIFAR-100 ConvNetD3
1 Y 20 3 20 - 103 10−5 10−2 5 100 0.001
10 N 20 2 20 - 103 10−5 10−2 5 100 0.02
50 Y 80 2 40 125 103 10−5 10−2 5 100 0.002

Tiny
ImageNet ConvNetD4

1 N 10 2 10 - 104 10−4 10−2 5 100 0.005
10 N 20 2 40 200 104 10−4 10−2 3 200 0.02
50 N 20 2 40 300 104 10−4 10−2 3 200 0.02

Algorithm 1 Gradient Matching with Sample Difficulty
Correction
Input: Training set Dreal, category set C, classification cross-

entropy loss L, probability distribution for weights Pθ , dis-
tance metric D, regularization coefficient λ, number of steps
T , learning rate η for network parameters.

1: Initialize distilled data Dsyn ∼ Dreal.
2: for each distillation step... do
3: ▷ Initialize network θ0 ∼ Pθ

4: for t = 0 → T do
5: for c = 0 → C − 1 do
6: ▷ Sample a mini-batch of distilled images: Bc

real ∼
Dc

real

7: ▷ Sample a mini-batch of original images: Bc
syn ∼

Dc
syn

8: ▷ Compute LBc
syn

= E(x,y)∈B̃c
real

[L(x, y; θt)],
LBc

real
= E(x,y)∈B̃c

real
[L(x, y; θt)]

9: ▷ Compute gradient matching loss L =

D
(
∇θLBc

real
,∇θLBc

syn

)
+ λ

∥∥∇θLBsyn

∥∥2

2

10: ▷ Update Dsyn w.r.t. L
11: end for
12: ▷ Update network w.r.t. classification loss: θt+1 =

θt − η∇LDsyn(θt)
13: end for
14: end for
Output: distilled data Dsyn

the performance after applying SDC remains better in most
cases, further demonstrating the superiority of the SDC
method in dataset distillation.

Algorithm 2 Trajectory Matching with Sample Difficulty
Correction
Input: Set of expert parameter trajectories trained on Dreal {τ∗

i },
the number of updates between starting and target expert
params M , the number of updates to student network per dis-
tillation step N , differentiable augmentation function A, max-
imum start epoch T+ < T , learning rate η for network param-
eters, regularization coefficient λ, classification cross-entropy
loss L.

1: Initialize distilled data Dsyn ∼ Dreal.
2: for each distillation step... do
3: ▷ Sample expert trajectory: τ∗ ∼ {τ∗

i } with τ∗ =
{θDreal

t }T0
4: ▷ Choose random start epoch, t ≤ T+

5: ▷ Initialize student network with expert params: θDsyn
t :=

θ
Dreal
t

6: for n = 0 → N − 1 do
7: ▷ Sample a mini-batch of distilled images: Bsyn ∼

Dsyn

8: ▷ Update student network w.r.t. classification loss:
θ
Dsyn

t+n+1 = θ
Dsyn

t+n − η∇LA(Bsyn)(θ
Dsyn

t+n )
9: end for

10: ▷ Compute loss between ending student and expert

params: L =
∥θDsyn

t+N
−θ

Dreal
t+M

∥22
∥θDreal

t+M
−θ

Dreal
t ∥22

+ λ
∥∥∇θLDsyn

∥∥2

2

11: ▷ Update Dsyn w.r.t. L
12: end for
Output: distilled data Dsyn

3.2. More Results on the Adaptive Sample Difficulty
Correction

The dynamic adjustment of SDC, when applied to both
DSA and FTD, consistently outperforms both the baseline



Table 6. Optimal hyperparameters for TESLA. A synthesis batch size of “-” means that we used the full support set at each synthesis step.

Dataset IPC
Matching

Steps
Teacher
Epochs

Max Start
Epoch

Synthetic
Batch
Size

Learning Rate
(Pixels)

Learning
Rate

(Step Size)

Starting
Synthetic
Step Size

ZCA λ

CIFAR-10
1 50 2 3 - 102 10−7 10−2 Y 0.01

10 30 2 20 - 102 10−4 10−2 Y 0.002
50 26 3 40 - 103 10−5 10−3 N 0.02

CIFAR-100
1 20 3 20 - 103 10−5 10−2 Y 0.001

10 13 3 30 - 103 10−5 10−2 N 0.002
50 50 2 40 100 103 10−5 10−2 Y 0.0002

Table 7. Optimal hyperparameters for FTD. A synthesis batch size of ‘-’ means that we used the full support set at each synthesis step.

Dataset IPC
Synthetic

Step
Expert
Epoch

Max Start
Epoch

Synthetic
Batch
Size

Learning
Rate

(Pixels)

Learning
Rate

(Step Size)

Learning
Rate

(Teacher)

Balance
coefficient

EMA
Decay λ

CIFAR-10
1 50 2 2 - 100 10−7 0.01 0.3 0.9999 0.002

10 30 2 20 - 100 10−5 0.001 0.3 0.9995 0.002
50 30 2 40 - 1000 10−5 0.001 1 0.999 0.0002

CIFAR-100
1 40 3 20 - 1000 10−5 0.01 1 0.9995 0.002

10 20 2 40 - 1000 10−5 0.01 1 0.9995 0.0002
50 80 2 40 1000 1000 10−5 0.01 1 0.999 0.002
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Figure 13. The application of ASDC on (a) FTD and (b) DSA.
Gradually increasing λ gives better results than the baseline and
the method after applying SDC.

methods and the baseline methods with SDC applied. As
shown in Figure 13, we logarithmically increased the λ co-
efficient for DSA from 0.0002 to 0.002 over 1000 steps and
for FTD from 0.002 to 0.008 over 10,000 iterations. The re-
sults clearly demonstrate that ASDC yields superior perfor-
mance. Flexibly adjusting the sample difficulty correction
by adaptively increasing λ yields higher accuracy compared
to the standard SDC and baseline methods.

3.3. Sensitivity Analysis of SDC coefficient .

In this section, we conducted extensive experiments to study
the sensitivity of the hyperparameter λ. Specifically, we
conducted experiments of DSA on SVHN dataset with IPC
= 1, and DC on SVHN dataset with IPC = 10. As shown in
Figure 14, the choice of λ is not sensitive among different

matching-based dataset distillation methods.

SDC coefficient λ
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u
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 (

%
)

SOTA

SDC coefficient λ

SOTA

(a) DSA (b) DC

Figure 14. Sensitivity analysis of SDC coefficient λ on different
distillation methods. We evaluated the sensitivity across different
λs, and showed that the choice of λ did not severely affect the final
test performance. (a) DSA on SVHN dataset with IPC = 1 (b) DC
on SVHN dataset with IPC = 10.

4. Analytical Theory for Dataset Distillation
In this section, we introduce a theory, adapted from data
pruning [38], to the context of dataset distillation within
an expert-student perceptron framework, utilizing the tools
of statistical mechanics. We investigate the challenge
of classifying a dataset Dreal consisting of dreal samples
{xi, yi}i=1,...,dreal

, where the inputs xi ∼ N (0, Id) are i.i.d.
zero-mean, unit-variance random Gaussian variables, and
the labels yi = sign(θD

⊤
realxi) are generated by an expert

perceptron θDreal ∈ Rd. We assume that the expert percep-
tron θDreal is randomly drawn from a uniform distribution



Table 8. Optimal hyperparameters for DATM.

Dataset Model IPC
Synthetic

Step
Expert
Epoch

Min Start
Epoch

Current
Max Start

Epoch

Max Start
Epoch

Synthetic
Batch Size

Learning
Rate

(Label)

Learning
Rate

(Pixels)

Num
Eval

Eval
Iteration λ

CIFAR-10 ConvNetD3
1 80 2 0 4 4 10 5 100 5 500 0.0002

10 80 2 0 10 20 100 2 100 5 500 0.0005
50 80 2 0 20 40 500 2 1000 5 500 0.002

CIFAR-100 ConvNetD3 1 40 3 0 10 20 100 10 1000 5 500 0.02

Tiny ImageNet ConvNetD4
1 60 2 0 15 20 200 10 10000 5 500 0.002

10 60 2 10 50 50 250 10 100 3 500 0.002
50 80 2 40 70 70 250 10 100 3 500 0.002

Table 9. Cross-architecture evaluation. We evaluated distilled datasets with IPC = 10 learned through DATM w/ and w/o SDC on different
networks.

Dataset Method ResNet-18 VGG-11 AlexNet LeNet MLP

CIFAR-10 DATM 36.48 37.32 33.19 32.56 27.21
+SDC 38.33 38.22 34.56 33.17 27.62

CIFAR-100 DATM 17.87 14.71 15.09 11.76 11.52
+SDC 18.97 16.17 15.73 12.44 11.87

Tiny ImageNet DATM 6.33 8.67 6.18 3.65 3.34
+SDC 7.20 9.13 6.89 3.88 3.40

on the sphere θDreal ∼ Unif(Sd−1(
√
d)). Our analysis is

situated within the high-dimensional statistics limit where
d, dreal →∞ but the ratio αreal = dreal/d remains O(1).

Specifically, consider synthesizing a dataset by matching
only the samples with the smallest margin |zi| = |θprobe

⊤
xi|

along a probe student θprobe. The distilled dataset will
then follow a distribution p(z) in the direction of θprobe

while remaining isotropic in the null space of θprobe. We
assume, without loss of generality, that θprobe has devel-
oped some overlap with the expert, quantified by the angle

γ = cos−1
(

θprobe⊤θDreal

∥θprobe∥2∥θDreal∥2

)
.

Once the dataset has been distilled, we consider training
a new student θDsyn from scratch on this distilled dataset.
A typical training algorithm aims to find the solution θDsyn

which classifies the training data with maximal margin
κ = mini(θ

D⊤
synyixi). Our goal is to compute the gener-

alization error ε of this student, governed by the overlap be-
tween the student and the expert: ε = cos−1(R)/π, where

R = θ
D⊤

synθDreal

∥θDsyn∥2∥θDreal∥2
.

We provide saddle point equations for the cosine similar-
ity R between the probe θDprobe and the expert θDreal , which
will be discussed in Section 4.1 and Section 4.2. For our
simulations, we set the parameter dimension d = 200 for
perfect probe settings, and set d = 50 for imperfect probe
settings. We averaged 100 simulation results to verify the

theory.

4.1. Perfect Expert-Teacher Settings

The solution is given by the following saddle point equa-
tions for perfect expert-teacher settings, i.e., γ = 0. For
any given αsyn, these equations can be solved for the order
parameters R, κ. From these parameters, the generalization
error can be computed as ε = cos−1(R)/π.

R =
2αsyn

f
√
2π
√
1−R2

∫ κ

−∞
Dt exp

(
− R2t2

2(1−R2)

)
×
[
1− exp

(
−γ(γ − 2Rt)

2(1−R2)

)]
(κ− t)

1−R2 =
2αsyn

f

∫ κ

−∞
Dt

[
H

(
− Rt√

1−R2

)
−H

(
− Rt− γ√

1−R2

)]
(κ− t)2

Where H(x) = 1
2

(
1− 2√

π

∫ ( x√
2

)
0 e−t2 dt

)
. This cal-

culation produces the solid theoretical curves shown in Fig-
ure 4, which exhibit an excellent match with numerical sim-
ulations. Please refer [38] for detailed deductions.



Table 10. Cross-architecture evaluation. We evaluated distilled datasets with IPC = 1 learned through DSAC w/ and w/o SDC on different
networks.

Dataset Method ResNet-18 VGG-11 AlexNet LeNet MLP

MNIST DSAC 88.58 79.58 83.63 83.46 72.78
+SDC 88.70 80.95 83.92 83.66 73.51

FashionMNIST DSAC 71.60 68.03 66.03 67.09 63.85
+SDC 71.70 68.82 66.47 67.19 64.93

SVHN DSAC 33.04 32.32 14.63 20.89 13.32
+SDC 33.65 33.84 17.18 22.40 13.86

Table 11. Cross-architecture evaluation. We evaluated distilled datasets with IPC = 50 learned through DSAC w/ and w/o SDC on different
networks.

Dataset Method ResNet-18 VGG-11 AlexNet LeNet MLP

MNIST DSAC 97.97 98.53 97.95 97.58 94.70
+SDC 97.95 98.57 97.97 97.62 94.75

FashionMNIST DSAC 86.92 87.03 85.61 84.96 83.56
+SDC 86.96 87.20 85.58 85.36 83.78

SVHN DSAC 86.10 85.62 83.47 77.92 62.68
+SDC 86.32 85.86 83.85 78.92 63.47

4.2. Imperfect Expert-Teacher Settings

We have shown the perfect student settings in Section 4.1.
When the probe student does not exactly match the expert,
an additional parameter θ characterizes the angle between
the probe student and the expert. Furthermore, an addi-
tional order parameter ρ = θD

⊤
realθDsyn represents the typical

student-probe overlap, which must be optimized. Conse-
quently, we derive three saddle point equations.

R − ρ cos γ

sin2 γ
=

αsyn

πΛ

〈∫ κ

−∞
dt exp

(
−

∆(t, z)

2Λ2

)
×(κ − t)⟩z

1 −
ρ2 + R2 − 2ρR cos γ

sin2 γ
= 2αsyn

〈∫ κ

−∞
dt

e
− (t−ρz)2

2(1−ρ2)

√
2π
√

1 − ρ2

×H

(
Γ(t, z)√
1 − ρ2Λ

)
(κ − t)

2

〉
z

ρ − R cos γ

sin2 γ
= 2αsyn

〈∫ κ

−∞
dt

e
− (t−ρz)2

2(1−ρ2)

√
2π
√

1 − ρ2

×H

(
Γ(t, z)√
1 − ρ2Λ

)(
z − ρt

1 − ρ2

)
(κ − t)

〉
z

+
1

2πΛ

〈
exp

(
−

∆(t, z)

2Λ2

)
×
(

ρR − cos γ

1 − ρ2

)
(κ − t)

〉
z

Where,

Λ =

√
sin2 γ −R2 − ρ2 + 2ρR cos γ,

Γ(t, z) = z(ρR− cos γ)− t(R− ρ cos γ),

∆(t, z) = z2
(
ρ2 + cos2 γ − 2ρR cos γ

)
+ 2tz(R cos γ − ρ) + t2 sin2 γ.

The notation ⟨·⟩z denotes an average over the pruned
data distribution p(z) for the probe student. For any given
αsyn, p(z), γ, these equations can be solved for the order pa-
rameters R, ρ, κ. From these parameters, the generalization
error can be readily obtained as ε = cos−1(R)/π. Our sim-
ulation results are shown in Figure 15. Please refer [38] for
detailed deductions.

5. Visualization Results
Additionally, we show our visualization of distilled datasets
by adding SDC into current matching-based methods, as
shown in Figure 16, Figure 17, Figure 18, Figure 19, and
Figure 20.
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Figure 15. Test error ε as a function of the synthetic samples per parameter αsyn and fraction of data synthesized f in (a) the perfect expert
setting (γ = 0) (b) the perfect expert setting (γ = 10◦) (c) the perfect expert setting (γ = 20◦).

Figure 16. (FTD + SDC, CIFAR-10, IPC = 10) Visualization of distilled images.



Figure 17. (DATM + SDC, Tiny ImageNet, IPC = 1, 1 / 2) Visualization of distilled images.



Figure 18. (DATM + SDC, Tiny ImageNet, IPC = 1, 2 / 2) Visualization of distilled images.



Figure 19. (DSA + SDC, SVHN, IPC = 10) Visualization of distilled images.



Figure 20. (DC + SDC, FashionMNIST, IPC = 10) Visualization of distilled images.
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