
Hadamard Representations: Augmenting Hyperbolic
Tangents in RL

Jacob E. Kooi
Department of Computer Science

Vrije Universiteit Amsterdam
Amsterdam, Netherlands.

j.e.kooi@vu.nl

Mark Hoogendoorn
Department of Computer Science

Vrije Universiteit Amsterdam
Amsterdam, Netherlands.
m.hoogendoorn@vu.nl

Vincent François-Lavet
Department of Computer Science

Vrije Universiteit Amsterdam
Amsterdam, Netherlands.
v.francoislavet@vu.nl

Abstract

Activation functions are one of the key components of a deep neural network.
The most commonly used activation functions can be classed into the category of
continuously differentiable (e.g. tanh) and linear-unit functions (e.g. ReLU), both
having their own strengths and drawbacks with respect to downstream performance
and representation capacity through learning (e.g. measured by the number of dead
neurons and the effective rank). In reinforcement learning, the performance of
continuously differentiable activations often falls short as compared to linear-unit
functions. We provide insights into the vanishing gradients associated with the
former, and show that the dying neuron problem is not exclusive to ReLU’s. To
alleviate vanishing gradients and the resulting dying neuron problem occurring
with continuously differentiable activations, we propose a Hadamard representation.
Using deep Q-networks and proximal policy optimization in the Atari domain, we
show faster learning, a reduction in dead neurons and increased effective rank.

1 Introduction

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 S

co
re

Atari

Tanh

ReLU

Figure 1: Normalized performance training DQN
in the Atari domain where the nonlinear activation
function of the representation, defined as the final
hidden layer, is either ReLU or tanh. A strong
performance discrepancy due to a relatively small
architectural change can be observed.

Out of all activation functions, the Rectified Lin-
ear Unit (ReLU) [Fukushima, 1969, Nair and
Hinton, 2010] and its variants [Xu et al., 2015,
Klambauer et al., 2017] have emerged as the
most widely used and generally best-performing
activation functions up until this day [Jarrett
et al., 2009, Goodfellow et al., 2016]. The
strength of the ReLU activation lies in its ability
to naturally avoid vanishing gradients when used
in deeper networks, in contrast to the continu-
ously differentiable activation functions, such as
the sigmoid and the hyperbolic tangent [Glorot
and Bengio, 2010].

A common drawback of using the ReLU activa-
tion is its limited expressivity in the context of

17th European Workshop on Reinforcement Learning (ewrl 2024).

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow Tanh, Loss = 13.39

Target
Tanh Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow ReLU, Loss = 128.48

Target
ReLU Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow Tanh (HR), Loss = 1.71

Target
Tanh (HR) Network

Figure 2: A regression of three shallow neural network architectures on a random complex sinusoidal
function (y = 10∗ torch.sin(7∗x)+15∗ torch.sin(10∗x)+5∗ torch.cos(5∗x)). The Tanh (HR)
network emerges as the strongest function approximator, even while having less trainable parameters
(501 vs 601 for Tanh & ReLU). To make a fair comparison, the Tanh and ReLU networks have one
single hidden layer of size 200, while the Tanh (HR) network has a hidden layer of size 100. For the
Tanh (HR) network however, we use two parallel linear layers preceding the hidden layer in order to
be able to use the single hidden layer as the Hadamard product of two activations (see Section 3). For
experiments comparing deeper networks, we refer the reader to Appendix C.1.

shallow networks (see Figure 2), as well as the phenomenon known as the dying ReLU problem [He
et al., 2015, Lu et al., 2019]. As training progresses, the number of dying ReLU’s tend to increase,
resulting in a dying network and losing network capacity [Dubey et al., 2022].

In reinforcement learning (RL) [Sutton and Barto, 2018], even though training results in a large
number of dying ReLU’s [Gulcehre et al., 2022, Sokar et al., 2023], the ReLU function still remains
the most popular activation for performance reasons [Henderson et al., 2018]. Similar to general deep
learning [Teney et al., 2024], continuously differentiable activation functions such as the hyperbolic
tangent are therefore not commonly used in RL (see Fig. 1). However, one might argue that their
symmetrical, bounded shape and smooth gradient landscape has optimization advantages that the
ReLU falls short of. Recent findings also indicate that a hidden layer activated by a hyperbolic
tangent displays a high effective rank and thus a high layer expressivity [Kumar et al., 2021, Gulcehre
et al., 2022]. Despite being a theoretically sound candidate, its lack of success in RL has not been
thoroughly investigated.

We therefore aim to provide insights into the hyperbolic tangent’s suboptimality, revealing that the
vanishing gradient problem leads to dying neurons and under-utilization of the full network capacity.
Based on these insights, we mitigate said effects by augmenting the original architecture. Specifically,
we focus our research on the activations of the compressed representation of an encoder, defined
as the final hidden layer, and provide an alternative to the conventional parameterization of this
representation. Our contributions can be summarized as follows:

• We show that dying hyperbolic tangents are a phenomenon of a similar scale as the dying
ReLU problem.

• A Hadamard representation (HR) is proposed, defining a latent representation as the
Hadamard product of two separate, individually parameterized activation vectors.

• We empirically show that, without hyperparameter tuning or the use of auxiliary losses, a
Hadamard representation yields significant performance gains over a standard hyperbolic
tangent in the Atari domain, and reveal how it decreases dying neurons and increases the
internal representations’ effective rank.

2

2 Preliminaries

We consider an agent acting within its environment, where the environment is modeled as a discrete
Markov Decision Process (MDP) defined as a tuple (S,A, T,R, γ). S is the state space, A is the
action space, T : S × A → S is the environment’s transition function, R : S × A → R is the
environment’s reward function and γ ∈ [0, 1) is the discount factor. A replay buffer B is used to
store visited states st ∈ S that were followed by actions at ∈ A and resulted in the rewards rt ∈ R
and the next states st+1. One entry in B contains a tuple of past experience (st, at, rt, st+1). The
agent’s goal is to learn a policy π : S → A that maximizes the expectation of the discounted return
V π(s) = Eτ [

∑∞
t=0 γ

tR(st, at) | st = s], where τ is a trajectory following the policy π.

Furthermore, we examine the setting where a high-dimensional state (st ∈ Rv) is compressed into
lower-dimensional activations zt ∈ Z = Rw where we call Z the representation space with w ≤ v.
This is done by means of a neural network encoding e : S → Z where e represents the encoder.

3 Augmenting Hyperbolic Tangents

Continuously differentiable activations such as the hyperbolic tangent (tanh) and the sigmoid (σ)
activations are fundamentally different than the ReLU or its Linear-Unit descendants, which are
non-symmetric and have a large part of the input space mapped to zero (leading to sparsity). The
hyperbolic tangent and the sigmoid output values in the ranges [−1, 1] and [0, 1], respectively. These
functions are defined as:

tanh(x) =
ex − e−x

ex + e−x
, σ(x) =

1

1 + e−x
(1)

Both functions have the advantage of being differentiable everywhere, as well as being bounded.
Furthermore, the sigmoid is well suited for output probabilities, while the tanh is convenient when
requiring a zero-centered symmetrical output. However, both functions exhibit the vanishing gradient
problem for saturating activations [Glorot and Bengio, 2010, Goodfellow et al., 2016].

Dying Hyperbolic Tangents

Although common literature has focused on the dying ReLU problem [He et al., 2015, Lu et al., 2019,
Gulcehre et al., 2022, Sokar et al., 2023], we find that hidden layers activated by hyperbolic tangents
similarly show strong dying neuron behavior. When using a hyperbolic tangent in a deep neural
network, a single neuron αi, i ∈ Rw, with w the layer dimension, can be classified as dying if:

|αi| ≈ 1 ∀ st ∈ B (2)

Where st is an observation in buffer B. Note that an absolute value is used, as a hyperbolic tangent
can either saturate towards -1 or 1. Given that the hyperbolic tangent is an asymptotic function near
its saturation point, an approximate equality must be considered, as the classification of its saturation
will always remain qualitative (|αi| ̸= 1 ∀ st ∈ B) . To approximate the condition given in Eq. 2,
the amount of dying hyperbolic tangents is calculated by using a kernel density estimation (KDE)
[Silverman, 1986] on the activations αi, i ∈ Rw of each individual neuron in the activation layer.
In order to visualize activations in a hidden layer, a fixed subset of the KDE’s of the neurons αi is
taken. A visualization of dying hyperbolic tangents in the Atari Breakout environment can be seen by
analyzing sixteen individual neuron KDE’s in Fig. 3.

More details on the KDE calculation and dying neuron classification can be found in Appendix B.

Hadamard Representations (HR)

As Fig. 3 indicates that the activation of zt with a hyperbolic tangent leads to saturation and dying
neurons, an augmentation of the representation architecture is proposed. In the conventional encoder
setting, the networks’ final hidden layer is defined as zenc(x) = f(A1x + B1), with Ai and Bi

representing weight and bias parameters, the function f() representing a nonlinear activation function
while x is the set of activations from the previous layer. In order to reduce the information dependence

3

0

5

De
ns

ity

0

10

0

10

0

5

0

5
De

ns
ity

0

10

0

10

0

5

0

5

De
ns

ity

0

10

0

20

0

5

1 0 1
0

5

De
ns

ity

1 0 1
0

5

1 0 1
0

10

1 0 1
0

10

(a) Tanh - 106 iterations

0

1

D
e
n
si
ty

0.0

0.5

0.0

2.5

0

1

0

500

D
e
n
si
ty

0

1000

0

200

0

2

0

5

D
e
n
si
ty

0

2

0.0

0.5

0

1

1 0 1
0

10000

D
e
n
si
ty

1 0 1
0

1

1 0 1
0

20

1 0 1
0

200

(b) Tanh - 107 iterations

Figure 3: Kernel Density Estimations (KDE) over a subset of 16 neurons in the compressed repre-
sentation zt after training DQN Mnih et al. [2015] in the Breakout environment using a hyperbolic
tangent activation for zt. Each neuron represents one dimension of the representation zt ∈ R512. Red
outlines represent dying neurons, where a near infinite sized density spike occurs at either 1 or -1.

on a single set of neurons, we propose using a Hadamard representation that augments the original
representation with a parallel representation layer z∗. This can be interpreted as using a single
highway layer with a closed carry gate [Srivastava et al., 2015]. The final representation is defined
as the Hadamard product between the aforementioned activations z(x) = zenc(x) · z∗(x), where
z∗(x) = f(A2x+B2). A visualization of the proposed architecture can be found in Fig. 4.

Preventing Dying Neurons

Our key hypothesis is that the Hadamard representation can prevent saturation, hence alleviating
vanishing gradients and dying neurons (See Eq. 2). To support our hypothesis, we investigate the
derivative of a product of two functions. For the product of two arbitrary functions g(x) · h(x), the
derivative is defined as g′(x)h(x) + g(x)h′(x). In the context of using a sigmoid activation function
for f(x), the derivative of z(x) becomes:

z′(x) = A1σ(A1x+B1)(1− σ(A1x+B1))σ(A2x+B2)

+A2σ(A1x+B1)σ(A2x+B2)(1− σ(A2x+B2))

If a neuron from f(A1x+ B1) = 0 ∀ x, the gradient of the product becomes 0 while if a positive
saturation is experienced i.e. f(A1x+B1) = 1 ∀ x, z′(x) can remain nonzero. For a product of two
hyperbolic tangent functions, the derivative is defined as:

h′(x) = A1sech2(A1x+B1) tanh(A2x+B2) +A2sech2(A2x+B2) tanh(A1x+B1)

1 0 1

Figure 4: A visualisation of the Hadamard Representation architecture combined with the nature
DQN architecture applied on a snapshot of the ‘SpaceInvaders’ Atari environment [Mnih et al.,
2015]. Vertical and horizontal bars represent convolutional and linear layers, respectively. A parallel
linear layer providing independently parameterized hidden layer activations is integrated, where
the Hadamard product of the two activations represents the final latent representation zt used for
downstream learning.

4

where sech2 is the derivative of a hyperbolic tangent. When using a hyperbolic tangent, the key
difference with a sigmoid is that for any saturating value of g(x), it will consistently keep the second
part of the equation nonzero and dominated by h(x), due to the hyperbolic tangents’ saturation into
strictly nonzero values. This means that during saturation of a neuron in g(x), the non-saturated
function h(x) is still able to maintain a non-trivial gradient in the product derivative h′(x), thus
providing a mechanism to avoid vanishing gradients. We visualize the kernel densities during training
in Fig. 5. The individual representations before taking the Hadamard product can be found in
Appendix B.

Taking a more formal approximation of neuron collapse, we define the probability of a single neuron
saturating as p. Furthermore, in the case of a sigmoid or hyperbolic tangent, we assume symmetric
saturation probabilities to both ends, defining the probability of a neuron saturating to one end of the
spectrum as 0.5p. Under these assumptions, we show that interpreting a neuron as the product of two
individual neurons will change saturation probabilities depending on the neuron activation function.

0

1

D
e
n
si
ty

0.0

0.5

0

1

0

1

0

1

D
e
n
si
ty

0

2

0

1

0

20

0

2

D
e
n
si
ty

0.0

0.5

0

1

0

1

1 0 1
0

2

D
e
n
si
ty

1 0 1
0

2

1 0 1
0.0

0.5

1 0 1
0

1

(a) Tanh (HR) - 106 iterations

0.0

0.5

De
ns

ity

0

1

0

2

0

1

0

1

De
ns

ity

0

1

0.0

0.5

0

2

0.0

2.5

De
ns

ity
0

1

0

1

0

5

1 0 1
0

1

De
ns

ity

1 0 1
0

2

1 0 1
0

2

1 0 1
0

1

(b) Tanh (HR) - 107 iterations

Figure 5: Kernel Density Estimations (KDE) over a subset of 16 neurons in the compressed represen-
tation zt after training ’nature’ DQN in the Breakout environment using a Hadamard representation
(HR) with hyperbolic tangents. The Hadamard representation tends to more quickly utilize the full
range of the hyperbolic tangent while also mitigating dying neurons.

Hyperbolic Tangent: In the case of the hyperbolic tangent, product saturation only occurs if strictly
both neurons are saturated. This results in a probability of p ·p = p2. Taking a product of hyperbolic
tangent activated neurons thus reduces the probability of neuron saturation from p to p2.

Table 1: Predicted dying neuron probabilities with and without a Hadamard representation.

Activation Function Dying Neuron Probability Probability with HR Difference

Hyperbolic Tangent p p2 −(p− p2)
Sigmoid p p 0
ReLU p 2p− p2 +(p− p2)

Sigmoid: For the sigmoid function, product saturation occurs in two scenarios: Either one of the
neurons is saturated towards zero or both neurons are saturated towards 1. The probability that a
single neuron does not saturate towards zero is (1 − 0.5p), and subsequently the probability that
neither neuron saturates towards zero is (1 − 0.5p)2. The probability that at least one of the two
neurons saturates to zero is therefore 1− (1−0.5p)2 = p−0.25p2. Adding the probability that both
neurons saturate towards 1, which is (0.5p)2 = 0.25p2, the final probability of the neuron product
saturation is p − 0.25p2 + 0.25p2 = p. Taking a product of sigmoid activated neurons therefore
does not reduce the probability of neuron collapse.

Rectified Linear-Unit: In the case of a ReLU activation, we also assume the probability of a single
neuron dying to be p. As we look at the product of two neurons, the probability that one of the two
neurons does not saturate is therefore 1− p, and the probability that both neurons do not saturate is

5

(1− p)2. The probability that at least one neuron saturates is thus equal to 1− (1− p)2 = 2p− p2.
As the ReLU saturation results in strict zeroes, this results in the product also being zero. Taking a
product of ReLU activated neurons therefore increases the final neuron saturation probability from p
to 2p− p2. For an overview, we refer the reader to both Table 1 and the corresponding empirical
evidence in Appendix C.3.

4 Experiments

The main experiments and discussion are conducted with the value-based DQN algorithm [Mnih
et al., 2015] in Atari, and complemented by an evaluation on the policy-based proximal policy
optimization algorithm (PPO) [Schulman et al., 2017]. In all experiments, we build on the strong
baseline implementations from cleanrl [Huang et al., 2022]. For more details on the PPO and
DQN implementation, we refer the reader to Appendix A.1. For both DQN and PPO, we define the
representation zt ∈ R512 as the last hidden layer of the network, which serves as the compressed
representation of the original pixel observation st (see Fig. 4).

We perform all experiments on 8 common, non-exploration driven Atari games. We aim to show the
effect of a Hadamard representation on the representations’ fraction of dying neurons, its effective
rank and its downstream performance. The dying neurons and the effective rank are calculated
according to Appendix. B.1 and Appendix. B.2, respectively. The performance is aggregated over 8
environments and normalized using the ReLU baseline scores. Additionally, we show in Appendix D.1
that human-normalized scores tend to provide an even higher evaluation score for our algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
Tanh
Sigmoid
Tanh (HR)
ReLU

(a) Dead Neurons

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

100

150

200

250

300

350

400

450

Ef
fe

ct
iv

e
Ra

nk

Atari

Tanh
Sigmoid
Tanh (HR)
ReLU

(b) Effective Rank

Figure 6: The average fraction of dead neurons (a) and the average effective rank [Kumar et al.,
2021] (b) of the representation zt when training DQN in the Atari domain for 10M iterations (40M
frames). Similar to the well-known dying ReLU problem, hyperbolic tangent and sigmoid activations
also exhibit strong dying neuron behavior during training. A Hadamard product of hyperbolic tangents
reduces dead neurons in zt and subsequently increases the effective rank of the representation.

Mitigating dying Hyperbolic Tangents

As mentioned in Section 3 and defined in Eq. 2, the number of dead neurons is equal to the amount
of neurons that display the same saturated output for any given observation st. The amount of dead
neurons over time when training on Atari can be seen in 6a. For the ReLU activation, around 60%
of the neurons in the representation zt end up dead, while for the sigmoid and hyperbolic tangent
activation this number is around 40%. When using a hyperbolic tangent Hadamard representation, a
reduction in dead neurons as compared to using a single hyperbolic tangent can be observed. We
credit this to the inherent ability of a Hadamard product of hyperbolic tangents to minimize long-term
activation saturation, as explained in Section 3. Quantitative results of dead neurons can be found in
Table 2, which is correlated with earlier predictions from Table 1.

More corresponding dying neuron graphs for individual activations can be found in Appendix C.3.
This reduction of long-term dead hyperbolic tangents when using an HR is remarkable as it is also

6

coinciding with a stronger divergence of values in the initial stages of training (see Fig. 5), which is
usually a precursor to gradient saturation.

Increasing Effective Rank

We additionally calculate the effective rank [Kumar et al., 2021] of the representation zt during
training, which can be seen in Fig. 6b. As observed by Gulcehre et al. [2022], a representation
activated by a hyperbolic tangent or a sigmoid, already has a relatively high effective rank compared
to a representation activated by a ReLU. Furthermore, as can additionally be seen in supervised
learning (see Fig. 2), using a Hadamard representation notably improves the effective rank, which
can be seen as a measure of network ‘expressivity’.

Analyzing Performance in Atari

The influence of a Hadamard representation on downstream performance can be seen in Fig. 7. A
significant improvement of nearly 60% over the standard hyperbolic tangent baseline is obtained, as
well as an improvement over the default ReLU baseline. Note that no hyperparameter or architectural
tuning has been employed in these experiments.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Atari
Tanh
ReLU
Tanh (HR)
Sigmoid

(a) Normalized Score

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Sc
or

e
Atari

Tanh
LayerNorm
Tanh (HR)
Latent Dim 1024

(b) Ablations

Figure 7: Normalized performance with the standard deviation over the means in the Atari domain,
after training DQN for 10M iterations (40M Frames). In (a), the Tanh (HR) stronly outperforms a the
baseline Tanh. In (b), several ablations including layer normalization [Ba et al., 2016] on hyperbolic
tangent activations are shown. Notably, the decrease in performance when using a conventional
representation with twice as much neurons (zt ∈ R1024) shows that more parameters are not always
desirable. Additional experiments combining the ReLU activation with a Hadamard representation
can be found in Appendix C.4.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Atari
Tanh (HR)
SELU
Tanh (+)
Tanh (2HR)

Figure 8: Additional ablations run on DQN in
the Atari domain. Tanh (+) represents an addition
rather than a Hadamard product, and Tanh (2HR)
uses a triple Hadamard product.

Examining further ablations in Fig. 8 shows that
using a sophisticated Linear-Unit function such
as the SELU activation [Klambauer et al., 2017]
or using an addition rather than a product of
hyperbolic tangents seems detrimental to per-
formance. Furthermore, taking a product of 3
hyperbolic tangents (2HR) also appears to en-
hance performance, though there seems to be
a negative effect in the early stages of training
as compared to using a single Hadamard prod-
uct. We hypothesize that this is the result of
increased contracting behavior in the early stage
of training due to increasing multiplication of
hyperbolic tangent activations whose absolute
values are < 1.

7

Table 2: Dying neuron fractions with and without a Hadamard representation (HR).

Activation Function Dead Neuron Fraction Dead Neuron Fraction (HR) Difference
Hyperbolic Tangent 0.39 0.30 -23%
Sigmoid 0.44 0.45 +2%
ReLU 0.62 0.73 +18%

Evaluating Hadamard representations on PPO

To evaluate results on a policy-based algorithm, additional experiments are run using the PPO
algorithm [Schulman et al., 2017]. For PPO, the internal architectural difference with DQN is that the
compressed representation zt precedes both a critic and an actor network, and thus receives policy
and value gradients (see Appendix A.2). The results can be found in Fig. 9. Similarly to the results
on DQN, the Tanh (HR) exhibits the highest effective rank and the best performance. The Tanh (HR)
and the ReLU also seem to have consistent strong performance across both algorithms, whereas the
pure hyperbolic tangent and sigmoid activations seem relatively unreliable across algorithms.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Sc

or
e

Atari
Tanh
ReLU
Sigmoid
Tanh (HR)

(a) Normalized Score

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

280

300

320

340

360

380

400

420

Ef
fe

ct
iv

e
Ra

nk

Atari

Tanh
ReLU
Sigmoid
Tanh (HR)

(b) Effective Rank

Figure 9: Normalized performance (a) and effective rank (b) in the Atari domain for 10M iterations
(40M Frames) when training the PPO algorithm [Schulman et al., 2017].

Interestingly, it seems that the ReLU activations’ performance is less correlated to its low effective
rank and high amount of dying neurons than the continuously differentiable activations. As also
indicated by Teney et al. [2024], the exact reasons for the broad success of the ReLU activations are
not yet fully understood. A qualitative overview of our results can be found in Table 3.

Table 3: High-level summary of the strengths of a Hadamard representation.

Activation function Performance RL Few dead neurons Effective rank
Tanh (HR) ++ ++ ++
Tanh - - +
ReLU + -- --
Sigmoid - - -

Increasing Representation Dimensionality

A Hadamard representation increases the amount of trainable parameters in the encoder without
increasing the dimension of the representation zt ∈ R512. This is an important feature as simply
increasing the dimension of the representation to R1024 is not often effective (see Fig. 7b). Even
though the fraction of dying ReLU’s decreases and the effective rank increases when using zt ∈ R1024,

8

it seems that the ’relative’ effective rank, defined as the ratio rank
dim(zt)

, actually goes down (See
Appendix. C.2). We therefore hypothesize that trying to reduce dying neurons and to increase a
representations’ effective rank is only superficially solved by increasing representation dimensionality.

5 Related Work

Network Capacity in RL. Liu et al. [2019] investigated the need for sparse representations in
the continuous control domain. Gulcehre et al. [2022] analyzed network expressiveness in RL by
measuring the effective rank [Kumar et al., 2021] of the compressed representation, and found that
hyperbolic tangent representations generally maintain high rank and do not suffer strongly from rank
decay as training continues. Related work used normalization techniques and action penalization
to counteract high variance in pixel-based robotic control [Bjorck et al., 2022]. Other work by Lyle
et al. [2022] investigated capacity loss in RL and similarly found that, as training progresses, the
inherent network capacity of RL algorithms decays. Further research by Nikishin et al. [2022] used
network resets to counteract the primacy bias and Sokar et al. [2023] evaluated and mitigated the
dying ReLU phenomenon in DQN, both operating in the sample efficiency setting. Nikishin et al.
[2023] further studied plasticity injection for long-term training. In another related direction, recent
work has investigated network sparsity in RL, showing that a large part of network capacity might be
unnecessary when training reinforcement learning [Arnob et al., 2021, Graesser et al., 2022, Sokar
et al., 2022, Tan et al., 2023, Obando-Ceron et al., 2024]. This provides further insights into why a
ReLU can achieve strong performance despite resulting in a significant number of dead neurons.

Network Architecture in RL The origin of network optimization problems with hyperbolic
tangents and sigmoids were empirically investigated by Glorot and Bengio [2010], where, according
to the authors, a lot of mystery still surrounds the subject. Work by Srivastava et al. [2015] in
supervised learning first looked at the idea of using products of hidden layers together with a ’gate’
that determined the amount of information flow [Hochreiter and Schmidhuber, 1997]. Using these
ideas, the Resnet was invented [He et al., 2016] and also showed strong performance in combination
with RL [Espeholt et al., 2018]. Further work by Henderson et al. [2018] showed differences in RL
performances over different network architectures and nonlinear activations. Work by Abbas et al.
[2023] successfully applied ReLU concatenation [Shang et al., 2016] to improve continual learning
while keeping a similar performance when training from scratch. Finally, recent work by Grooten
et al. [2024] investigated raw pixel masking for distractions in RL using a parallel CNN input layer.

6 Conclusions and Discussion

This paper analyzed issues with continuously differentiable activations in RL and demonstrated that
these activation functions also suffer from the dying neuron problem. In response, we propose a novel
representation architecture, the Hadamard Representation (HR), which enhances an encoder’s final
hidden layer by taking the Hadamard product with a parallel, independently parameterized activation
layer. We further discussed and empirically showed that applying the Hadamard representation with
hyperbolic tangents reduces the occurrence of dead neurons in the representation and increases layer
expressiveness. Notably, this approach significantly improved performance in Atari games compared
to both standard representation parameterizations and merely increasing the representation dimension.

As investigated by Kumar et al. [2021], a compressed representation activated by a hyperbolic tangent
attains a much higher effective rank than when activated by a ReLU, and will therefore yield stronger
network expressiveness. In light of this, the hyperbolic tangent can potentially replace the ReLU in a
variety of architectures where expressiveness is required without using deeper networks.

Future work could focus on further identifying the intricacies of hyperbolic tangents in an attempt to
push the potential of continuously differentiable activations in reinforcement learning or even in a
supervised learning setting (see Fig. 2). Also, we believe that an implementation of Hadamard-style
architectures in a continual learning setting with similar evaluations as in Abbas et al. [2023] could
be promising.

9

7 Limitations

Our work has focused on the encoders’ final hidden layer in reinforcement learning. Both preliminary
experiments and literature suggest that convolutional layers have a very strong preference for rectified
activations [Jarrett et al., 2009], possibly due to a low-frequency bias [Ramasinghe and Lucey,
2022, Teney et al., 2024]. We have therefore not conducted experiments integrating Hadamard
representations in the convolutional section of our encoder architectures. A hyperparameter search
could further strengthen our results, since the baseline is specifically tuned for the ReLU activation.
Furthermore, as we perform experiments on DQN and PPO, integration of a Hadamard representation
into more sophisticated algorithms and architectures such as Rainbow [Hessel et al., 2018] and Impala
[Espeholt et al., 2018] would be interesting.

References
Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado. Loss of plasticity in

continual deep reinforcement learning. In Sarath Chandar, Razvan Pascanu, Hanie Sedghi, and Doina Precup,
editors, Proceedings of The 2nd Conference on Lifelong Learning Agents, volume 232 of Proceedings of
Machine Learning Research, pages 620–636. PMLR, 22–25 Aug 2023. URL https://proceedings.mlr.
press/v232/abbas23a.html.

Samin Yeasar Arnob, Riyasat Ohib, Sergey M. Plis, and Doina Precup. Single-shot pruning for offline reinforce-
ment learning. CoRR, abs/2112.15579, 2021. URL https://arxiv.org/abs/2112.15579.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL http://arxiv.
org/abs/1607.06450. cite arxiv:1607.06450.

Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Is high variance unavoidable in RL? a case study
in continuous control. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=9xhgmsNVHu.

Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation functions in deep learning: A
comprehensive survey and benchmark. Neurocomputing, 503:92–108, 2022. ISSN 0925-2312. doi: https:
//doi.org/10.1016/j.neucom.2022.06.111. URL https://www.sciencedirect.com/science/article/
pii/S0925231222008426.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad
Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA: Scalable distributed
deep-RL with importance weighted actor-learner architectures. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1407–1416. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/
v80/espeholt18a.html.

Kunihiko Fukushima. Visual feature extraction by a multilayered network of analog threshold elements. IEEE
Transactions on Systems Science and Cybernetics, 5(4):322–333, 1969. doi: 10.1109/TSSC.1969.300225.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249–256,
Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL https://proceedings.mlr.press/
v9/glorot10a.html.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive computation and machine learning. MIT
Press, 2016. ISBN 9780262035613. URL https://books.google.co.in/books?id=Np9SDQAAQBAJ.

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in deep
reinforcement learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages 7766–7792. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/graesser22a.html.

Bram Grooten, Tristan Tomilin, Gautham Vasan, Matthew E. Taylor, A. Rupam Mahmood, Meng Fang, Mykola
Pechenizkiy, and Decebal Constantin Mocanu. Madi: Learning to mask distractions for generalization in
visual deep reinforcement learning. In International Conference on Autonomous Agents and Multiagent
Systems, AAMAS, 2024.

10

https://proceedings.mlr.press/v232/abbas23a.html
https://proceedings.mlr.press/v232/abbas23a.html
https://arxiv.org/abs/2112.15579
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=9xhgmsNVHu
https://openreview.net/forum?id=9xhgmsNVHu
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://proceedings.mlr.press/v80/espeholt18a.html
https://proceedings.mlr.press/v80/espeholt18a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://proceedings.mlr.press/v162/graesser22a.html

Caglar Gulcehre, Srivatsan Srinivasan, Jakub Sygnowski, Georg Ostrovski, Mehrdad Farajtabar, Matthew
Hoffman, Razvan Pascanu, and Arnaud Doucet. An empirical study of implicit regularization in deep offline
RL. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL https://openreview.
net/forum?id=HFfJWx60IT.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on computer
vision, pages 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. In
Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’16, pages 770–
778. IEEE, June 2016. doi: 10.1109/CVPR.2016.90. URL http://ieeexplore.ieee.org/document/
7780459.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep
reinforcement learning that matters. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI
Symposium on Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press,
2018. ISBN 978-1-57735-800-8.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Hor-
gan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining improvements
in deep reinforcement learning. In Sheila A. McIlraith and Kilian Q. Weinberger, editors, AAAI, pages
3215–3222. AAAI Press, 2018. URL http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#
HesselMHSODHPAS18.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997. doi: 10.1162/neco.1997.9.8.1735.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta,
and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep reinforcement learning
algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL http://jmlr.org/papers/
v23/21-1342.html.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best multi-stage
architecture for object recognition? In 2009 IEEE 12th International Conference on Computer Vision, pages
2146–2153, 2009. doi: 10.1109/ICCV.2009.5459469.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 971–980, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization inhibits
data-efficient deep reinforcement learning. In International Conference on Learning Representations, 2021.

Vincent Liu, Raksha Kumaraswamy, Lei Le, and Martha White. The utility of sparse representations for control
in reinforcement learning. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence
and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019. ISBN 978-
1-57735-809-1. doi: 10.1609/aaai.v33i01.33014384. URL https://doi.org/10.1609/aaai.v33i01.
33014384.

Lu Lu, Yeonjong Shin, Yanhui Su, and George E. Karniadakis. Dying relu and initialization: Theory and
numerical examples. CoRR, abs/1903.06733, 2019. URL http://dblp.uni-trier.de/db/journals/
corr/corr1903.html#abs-1903-06733.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in reinforcement
learning. In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=ZkC8wKoLbQ7.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2 2015. doi: 10.1038/nature14236.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In ICML
2010, pages 807–814, 2010.

11

https://openreview.net/forum?id=HFfJWx60IT
https://openreview.net/forum?id=HFfJWx60IT
http://ieeexplore.ieee.org/document/7780459
http://ieeexplore.ieee.org/document/7780459
http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#HesselMHSODHPAS18
http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#HesselMHSODHPAS18
http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html
https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
https://doi.org/10.1609/aaai.v33i01.33014384
https://doi.org/10.1609/aaai.v33i01.33014384
http://dblp.uni-trier.de/db/journals/corr/corr1903.html#abs-1903-06733
http://dblp.uni-trier.de/db/journals/corr/corr1903.html#abs-1903-06733
https://openreview.net/forum?id=ZkC8wKoLbQ7
https://openreview.net/forum?id=ZkC8wKoLbQ7

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The primacy bias in
deep reinforcement learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 16828–16847. PMLR, 17–23 Jul 2022.

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney, and Andre Barreto.
Deep reinforcement learning with plasticity injection. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages
37142–37159. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/
paper/2023/file/75101364dc3aa7772d27528ea504472b-Paper-Conference.pdf.

Johan Obando-Ceron, Aaron Courville, and Pablo Samuel Castro. In deep reinforcement learning, a pruned
network is a good network. arXiv preprint arXiv:2402.12479, 2024.

Sameera Ramasinghe and Simon Lucey. Beyond periodicity: Towards a unifying framework for activations in
coordinate-mlps. In European Conference on Computer Vision, pages 142–158. Springer, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. ArXiv, abs/1707.06347, 2017. URL https://api.semanticscholar.org/CorpusID:
28695052.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and improving convolutional
neural networks via concatenated rectified linear units. In Maria Florina Balcan and Kilian Q. Weinberger,
editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings
of Machine Learning Research, pages 2217–2225, New York, New York, USA, 20–22 Jun 2016. PMLR.
URL https://proceedings.mlr.press/v48/shang16.html.

Bernard W Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall, 1986.

Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone. Dynamic
sparse training for deep reinforcement learning. In Lud De Raedt, editor, Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI-22, pages 3437–3443. International Joint
Conferences on Artificial Intelligence Organization, 7 2022. doi: 10.24963/ijcai.2022/477. URL https:
//doi.org/10.24963/ijcai.2022/477. Main Track.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phenomenon in deep
reinforcement learning. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_
files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second
edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.html.

Yiqin Tan, Pihe Hu, Ling Pan, Jiatai Huang, and Longbo Huang. Rlx2: Training a sparse deep reinforcement
learning model from scratch. CoRR, abs/2205.15043, 2023. URL https://arxiv.org/abs/2205.15043.

Damien Teney, Armand Mihai Nicolicioiu, Valentin Hartmann, and Ehsan Abbasnejad. Neural redshift: Random
networks are not random functions. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4786–4796, June 2024.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in convolutional
network. CoRR, abs/1505.00853, 2015. URL http://arxiv.org/abs/1505.00853.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/75101364dc3aa7772d27528ea504472b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/75101364dc3aa7772d27528ea504472b-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://proceedings.mlr.press/v48/shang16.html
https://doi.org/10.24963/ijcai.2022/477
https://doi.org/10.24963/ijcai.2022/477
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2205.15043
http://arxiv.org/abs/1505.00853

A Implementation Details

A.1 Hyperparameters

To evaluate, 8 different Atari environments are tested, using 5 different random seeds. For the mean scores, we
take the mean over the eight environments. Our normalized score is calculated according to our baseline, the
original implementation using a ReLU activation.

All the hyperparameters used in our experiments for DQN and PPO, respectively, are as reported in cleanrl
[Huang et al., 2022]. The hyperparameters can be found in Table 1 and Table 2.

Table 4: DQN Hyperparameters
Hyperparameter Value Description

Learning Rate 1× 10−4 Learning rate for the optimizer
Discount Factor (γ) 0.99 Discount for future rewards
Replay Memory Size 1,000,000 Size of the experience replay buffer
Mini-batch Size 32 Number of samples per batch update
Target Network Update Frequency 1000 Update frequency for the target network
Initial Exploration 1.0 Initial exploration rate in ϵ-greedy
Final Exploration 0.1 Final exploration rate in ϵ-greedy
Final Exploration Frame 1,000,000 Frame number to reach final exploration
Exploration Decay Frame 1,000,000 Frames over which exploration rate decays
Action Repeat (Frame Skip) 4 Number of frames skipped per action
Reward Clipping [-1, 1] Range to which rewards are clipped
Input Dimension 84 x 84 Dimensions of the input image
Latent Dimension 512 Dimension of the latent representation
Input Frames 4 Number of frames used as input
Training Start Frame 80,000 Frame number to start training
Loss Function Mean Squared Error Loss function used for updates
Optimizer Adam Optimization algorithm used
Optimizer ϵ 10−5 Adam Epsilon

Table 5: PPO Hyperparameters
Hyperparameter Value Description

Learning Rate 2.5× 10−4 Learning rate for the optimizer
Discount Factor (γ) 0.99 Discount factor for future rewards
Number of Steps 128 Number of steps per environment before update
Anneal LR True Whether to anneal the learning rate
GAE Lambda 0.95 Lambda parameter for GAE
Number of Minibatches 4 Number of minibatches to split the data
Update Epochs 4 Number of epochs per update
Normalize Advantage True Whether to normalize advantage estimates
Clipping Coefficient 0.1 Clipping parameter for PPO
Clip Value Loss True Whether to clip value loss
Entropy Coefficient 0.01 Coefficient for entropy bonus
Value Function Coefficient 0.5 Coefficient for value function loss
Maximum Gradient Norm 0.5 Maximum norm for gradient clipping
Target KL None Target KL divergence between updates
Latent Dimension 512 Dimension of the latent representation
Optimizer Adam Optimization algorithm used
Optimizer ϵ 10−5 Adam Epsilon

13

Reinforcement Learning

In DQN, the action at is chosen following an ϵ-greedy policy. With probability ϵ, a random action is selected,
and with (1− ϵ), the action maximizing the Q-value is chosen. The target Yt is defined as:

Yt = rt + γQ′(zt+1, argmax
a∈A

Q(zt+1, a)), (3)

where Q′(z, a) denotes the target Q-network, an auxiliary network that stabilizes the learning by providing a
stable target for Q(z, a). The parameters of Q′ are updated less frequently to enhance learning stability. The
loss function for training the network is:

LQ =
∣∣Yt −Q(zt, a)

∣∣2. (4)

Proximal Policy Optimization (PPO) operates on a different principle, utilizing policy gradient methods for
policy improvement. PPO seeks to update the policy by maximizing an objective function while preventing large
deviations from the previous policy through a clipping mechanism in the objective’s estimator. The clipped
policy gradient loss LCLIP is defined as:

LCLIP (θ) = E
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
, (5)

where rt(θ) represents the ratio of the probabilities under the new policy versus the old policy, and Ât is the
advantage estimate at timestep t. This clipped surrogate objective ensures gradual and stable policy updates.

A.2 PPO Architecture

1 0 1

Figure 10: A visualisation of the Hadamard representation (HR) architecture combined with the
PPO architecture applied on a snapshot of the ’SpaceInvaders’ Atari environment. A parallel linear
layer providing an independent representation is integrated, where the Hadamard product of the two
parallel representations represents the final representation zt.

14

B Kernel Density Estimations

As discussed in Section 3, we hypothesize that the differences between a hyperbolic tangent with and without an
HR are due to the increased ability of the product of hyperbolic tangents being able to negate dying neurons. We
further see this phenomenom when plotting a random selection of neurons from both the mask and the base
representation in Fig. 11a.

0

1

De
ns

ity

0

2

0

10

0

1

0

1

De
ns

ity

0

1

0

1

0

2500

0

200

De
ns

ity

0.0

2.5

0

2

0

2

1 0 1
0

2

De
ns

ity

1 0 1
0

50

1 0 1
0.0

2.5

1 0 1
0

1

(a) Tanh (HR) - 5 · 106 iterations

0.0

0.5

D
e
n
si
ty

0

1

0

2

0.0

0.5

0

1

D
e
n
si
ty

0

1

0

1

0

5

0.0

2.5

D
e
n
si
ty

0.0

0.5

0

2

0

5

1 0 1
0

1

D
e
n
si
ty

1 0 1
0

20

1 0 1
0

2

1 0 1
0.0

0.5

(b) Final Tanh (HR) - 5 · 106 iterations

0

1

D
e
n
si
ty

0.0

0.5

0

2

0

2

0

250

D
e
n
si
ty

0

10

0

25

0

2

0

2

D
e
n
si
ty

0

10

0.0

0.5

0

1

1 0 1
0

1000

D
e
n
si
ty

1 0 1
0

1

1 0 1
0

500

1 0 1
0

5000

(c) Tanh (no HR) - 5 · 106 iterations

Figure 11: Kernel Density Estimations (KDE) over a subset of 16 neurons in the representations zenct
and z∗t in (a), the resulting Hadamard product zt in (b) and the representation zt when training without
an HR (c). These representations are obtained after training DQN in the ’Breakout’ environment.
Red outlines represent dead (collapsed) neurons. In (a), a closer look at neurons 3, 8 and 9 shows
that when one of the representations saturates, the other is able to compensate, leading to a non-dead
neuron in their product zt in (b).

B.1 KDE calculation

Firstly, to stabilize the KDE computation and avoid singularity issues, a small noise ϵ, following a normal
distribution, is added to each neuron’s activations:

α′
i = αi + ϵ, ϵ ∼ N (0, σ2)

where σ2 = 1× 10−5. The bandwidth for KDE, crucial for the accuracy of the density estimate, is calculated
using Scott’s rule, adjusted by the standard deviation of the jittered activations:

bw = n− 1
5 · std(α′

i)

where n is the number of samples in αi. The density of activations is then estimated using a Gaussian kernel:

f(x) =
1

n · bw

n∑
j=1

K

(
x− α′

ij

bw

)
Here, K denotes the Gaussian kernel function. In order to finally determine if a neuron is dead, the maximum
value of the estimated density function f(x) is compared against a predefined threshold:

max(f(x)) ≥ ω

15

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Values

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Latent Kernel Density Estimation

(a) Tanh - 107 iterations

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Values

0.0

0.5

1.0

1.5

2.0

De
ns

ity

Latent Kernel Density Estimation

(b) Tanh (HR) - 107 iterations

0.0 0.2 0.4 0.6 0.8 1.0
Values

0

2

4

6

8

10

12

14

De
ns

ity

Latent Kernel Density Estimation

(c) Sigmoid - 107 iterations

0.0 0.2 0.4 0.6 0.8 1.0
Values

0

2

4

6

8

10

12

14

De
ns

ity

Latent Kernel Density Estimation

(d) Sigmoid (HR) - 107 iterations

Figure 12: Kernel Density Estimations of the final representation zt after training DQN for 107
iterations in the Breakout environment. A hyperbolic tangent Hadamard representation allows the
representation to avoid strong saturation, keeping sufficient kernel density in the central sections of
the hyperbolic tangent. As a sigmoid can saturate into zero, using a Hadamard representation remains
less effective into preventing saturation.

where ω represents the predetermined threshold. In practice, after analyzing the individual neuron KDE’s, using
an ω of 20 provides a strong approximation of actual dead neurons.

B.2 Effective Rank calculation

In line with Kumar et al. [2021], the effective rank of a feature matrix for a threshold δ (δ = 0.01), denoted as
srankδ(Φ), is given by srankδ(Φ) = min

{
k :

∑k
i=1 σi(Φ)∑d
i=1 σi(Φ)

≥ 1− δ
}

, where {σi(Φ)} are the singular values
of Φ in decreasing order, i.e., σ1 ≥ · · · ≥ σd ≥ 0. Intuitively, the effective rank of a feature matrix represents the
number of “effective” unique components that form the basis for linearly approximating the resulting Q-values.
The calculation in Python is done as follows:

def compute_rank_from_features(feature_matrix, rank_delta=0.01):
sing_values = np.linalg.svd(feature_matrix, compute_uv=False)
cumsum = np.cumsum(sing_values)
nuclear_norm = np.sum(sing_values)
approximate_rank_threshold = 1.0 - rank_delta
threshold_crossed = (cumsum >= approximate_rank_threshold * nuclear_norm)
effective_rank = sing_values.shape[0] - np.sum(threshold_crossed) + 1
return effective_rank

16

C Additional Experiments

C.1 Shallow and Deep Function Approximation

To further showcase the effect of activations on complex function approximation, we compare the single hidden
layer Tanh (HR) network from Fig. 2 with a deep ReLU and Tanh network containing three hidden layers each.
The comparison with shallow networks can be found in Fig. 13a and a comparison with deep networks can be
found in Fig. 13b.

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow Tanh, Loss = 13.39

Target
Tanh Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow ReLU, Loss = 128.48

Target
ReLU Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow Tanh (HR), Loss = 1.71

Target
Tanh (HR) Network

(a) Comparison of shallow networks for a nonlinear regression task. The Tanh and ReLU networks have a
single hidden layer of 200 neurons, while the Tanh (HR) has a single hidden layer of 100 neurons but two
preceding linear layers. The Tanh and ReLU networks have 601 parameters, while the Tanh (HR) network
has 501 parameters. As found by Gulcehre et al. [2022], a shallow network activated by ReLU has a lower
effective rank and consequently reduced network expressivity as compared to a Tanh activated network. Using a
Hadamard representation, we achieve better function approximation while using less parameters.

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Deep Tanh, Loss = 81.70
Target
Tanh Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30

Deep ReLU, Loss = 7.83

Target
ReLU Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow Tanh (HR), Loss = 1.71

Target
Tanh (HR) Network

(b) Comparison of two deep networks and one shallow network for the same nonlinear regression task. The Tanh
and ReLU networks have 3 hidden layers of 200 neurons each, while the Tanh (HR) network remains shallow.
In line with common observations in deep learning, the ReLU activation thrives in deeper networks, in contrast
to the Tanh activation. Interestingly, the shallow Tanh (HR) network still achieves better function approximation
with only 0.6% of the deeper networks’ parameters (81001 vs 501). No hyperparameter tuning or architecture
search has been applied. Additional tests using deep Tanh (HR) networks gave similar function approximation
as compared to the shallow Tanh (HR) network.

17

C.2 Increasing Representation Parameters

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Sc
or

e

Atari
Tanh
Tanh (HR)
Latent Dim 1024

(a) Performance

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.1

0.2

0.3

0.4

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
Latent Dim 1024
Tanh
Tanh (HR)

(b) Dead Neurons

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0

100

200

300

400

500

600

700

800

Ef
fe

ct
iv

e
Ra

nk

Atari

Tanh
Tanh (HR)
Latent Dim 1024

(c) Effective Rank

Figure 14: Comparison of a normal hyperbolic tangent (Tanh), a hyperbolic tangent with a higher
representation dimension zt ∈ R512→1024 and a Hadamard representation using hyperbolic tangents.
Comparisons are done on Performance (a), the fraction of dead neurons (b) and the effective rank of
the representation zt (c). Naturally, increasing the representation dimension zt increases the effective
rank of the representation, but using a larger representation dimension is not always preferable as it
can negatively impact actual convergence.

18

C.3 Validating dying neuron probability derivations

As discussed in Section 3, the effect of using a Hadamard representation strongly depends on the activation
function. These derivations are empirically validated by the results in Fig. 15. In practice, since a neural network
prefers symmetry, a sigmoid saturates slightly faster to 0 than to 1. This could explain the very slight increase in
dead neurons when using an HR with activations.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
Sigmoid
Sigmoid (HR)

(a) Sigmoid with and without HR

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
Tanh
Tanh (HR)

(b) Tanh with and without HR

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
ReLU
ReLU (HR)

(c) ReLU with and without HR

Figure 15: By evaluating the effect of an HR on dying neurons through the lens of probability theory,
we predicted that only the hyperbolic tangent benefits in this metric. Specifically, only a hyperbolic
tangent was speculated to have a decrease in dying neurons. Using an HR with sigmoid activations
would have no notable difference, and for an HR with ReLU activations an increase in dead neurons
was expected. This empirically validates our hypotheses in Section 3.

19

C.4 ReLU activated Hadamard representation

Additional Atari experiments are provided comparing a ReLU activation with and without an HR. The normalized
scores, dying neurons and the effective rank during training can be seen in fig. 16.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Atari
ReLU
ReLU (HR)

(a) Normalized Score

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
ReLU
ReLU (HR)

(b) Dead Neurons

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

50

100

150

200

250

Ef
fe

ct
iv

e
Ra

nk

Atari

ReLU
ReLU (HR)

(c) Effective Rank

Figure 16: As a Rectified Linear Unit creates sparse representations, it does not benefit from using
an HR, since the final representation will consist of the Hadamard product between two sparse
representations. Therefore, a decrease in both performance and effective rank and an increase in dead
neurons can be expected.

20

D Atari

D.1 Evaluation Details

We normalize performance with respect to the ReLU baseline in cleanrl Huang et al. [2022]. The minimum
and maximum score of the ReLU baseline are taken for each environment, and the normalized score for each
environment is calculated as follows:

Normalized Score =
Score − Min Score

Max Score − Min Score
(6)

where Score refers to the raw performance score of the model being evaluated, Min Score is a single value
representing the lowest score obtained by the ReLU baseline (usually equivalent to random policy or even
slightly worse), and Max Score is a single value representing the highest score achieved by the ReLU baseline in
the same environment. To average, we sum the normalized scores for every run and take the mean.

The more official Human-Normalized Score, as referenced in Mnih et al. [2015], is calculated similarly but using
human and random performance benchmarks:

Human-Normalized Score =
Score − Random Score

Human Score − Random Score
(7)

where Human Score and Random Score refer to the scores recorded by human players and random agents,
respectively. Calculating our performance according to the Human-Normalized Score leads to the plot seen in
Fig. 17. Due to taking a subset of the full atari domain, the VideoPinball environment is extremely dominant in
the Human-Normalized Score calculation. For a more realistic comparison of the methods, we therefore decided
to use baseline-normalized scores in the main paper.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0

10

20

30

40

50

60

70

No
rm

al
ize

d
Sc

or
e

Atari
Tanh
ReLU
Tanh (HR)
Sigmoid

Figure 17: Human-Normalized performance (in multiples) with the standard deviation over the means
in the Atari domain for 10M iterations (40M Frames).

21

D.2 Individual Environments

0.0 0.5 1.0
Iterations 1e7

0

100

200

300

Sc
or

e

AmidarNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

200

400

Sc
or

e

BreakoutNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

20

10

0

10

Sc
or

e

PongNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

5000

10000

15000

Sc
or

e

QbertNoFrameskip-v4
Tanh
ReLU
Tanh (HR)

0.0 0.5 1.0
Iterations 1e7

0

2000

4000

6000

Sc
or

e

SeaquestNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

500

1000

1500

Sc
or

e

SpaceInvadersNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

200000

400000

Sc
or

e

VideoPinballNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

10000

20000

30000

Sc
or

e

AsterixNoFrameskip-v4

Figure 18: DQN Performance comparison on the individual Atari Environments. Plotted lines
represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.
Eight popular Atari games in the RL community that are non-exploration driven were chosen due to
computational limitations. No other games were tested.

22

0.0 0.5 1.0
Iterations 1e7

0

200

400

600

800

Sc
or

e

Amidar-v5

0.0 0.5 1.0
Iterations 1e7

0

100

200

300

400

Sc
or

e

Breakout-v5

0.0 0.5 1.0
Iterations 1e7

20

10

0

10

Sc
or

e

Pong-v5

Tanh (HR)
ReLU
Tanh

0.0 0.5 1.0
Iterations 1e7

0

5000

10000

15000

Sc
or

e

Qbert-v5

0.0 0.5 1.0
Iterations 1e7

0

500

1000

1500

2000

Sc
or

e

Seaquest-v5

0.0 0.5 1.0
Iterations 1e7

250

500

750

1000

Sc
or

e

SpaceInvaders-v5

0.0 0.5 1.0
Iterations 1e7

0

20000

40000

60000

Sc
or

e

VideoPinball-v5

0.0 0.5 1.0
Iterations 1e7

0

2000

4000

Sc
or

e

Asterix-v5

Figure 19: PPO Performance comparison on the individual Atari Environments. Plotted lines
represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.
Eight popular Atari games in the RL community that are non-exploration driven were chosen due to
computational limitations. No other games were tested.

23

	Introduction
	Preliminaries
	Augmenting Hyperbolic Tangents
	Experiments
	Related Work
	Conclusions and Discussion
	Limitations
	Implementation Details
	Hyperparameters
	PPO Architecture

	Kernel Density Estimations
	KDE calculation
	Effective Rank calculation

	Additional Experiments
	Shallow and Deep Function Approximation
	Increasing Representation Parameters
	Validating dying neuron probability derivations
	ReLU activated Hadamard representation

	Atari
	Evaluation Details
	Individual Environments

