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Abstract

With the development of large language mod-001
els (LLMs), there has been an increasing need002
for significant advancements in handling long003
contexts. To enhance long-context capabil-004
ities, constructing high-quality training data005
with long-range dependencies is crucial. Ex-006
isting methods to select long-context data often007
rely on sentence-level analysis, which can be008
greatly optimized in both performance and effi-009
ciency. In this paper, we propose a novel token-010
level framework, LongAttn, which leverages011
the self-attention mechanism of LLMs to mea-012
sure the long-range dependencies for the data.013
By calculating token-level dependency strength014
and distribution uniformity of token scores,015
LongAttn effectively quantifies long-range de-016
pendencies, enabling more accurate and effi-017
cient data selection. We filter LongABC-32K018
from open-source long-context datasets (ArXiv,019
Book, and Code). Through our comprehensive020
experiments, LongAttn has demonstrated its021
excellent effectiveness, scalability, and effi-022
ciency. We will release our code and the high-023
quality long-context training data LongABC-024
32K upon acceptance.025

1 Introduction026

Large language models (LLMs) have achieved027

impressive performance across a broad spectrum028

of traditional natural language processing tasks029

(Touvron et al., 2023). To effectively address030

real-world applications, these models further re-031

quire enhanced capabilities in handling longer con-032

texts, particularly in key areas such as in-context033

learning (Brown et al., 2020), real-world question-034

answering based on lengthy documents (Wang035

et al., 2024b), long-context dialogue with historical036

context (Packer et al., 2023), and comprehensive037

document summarization (Koh et al., 2022).038

To enhance LLMs’ long-context processing ca-039

pabilities, data engineering remains fundamental.040

Simple methods to construct long-context datasets041

are through naive methods like concatenating short 042

texts or randomly sampling existing sources (e.g., 043

CommonCrawl, GitHub). However, studies by 044

de Vries (2023) and Chen et al. (2024a) empha- 045

size that data obtained through such approaches 046

fail to effectively improve long-context capabili- 047

ties of LLMs because the data lack meaningful 048

long-range dependencies. Inspired by this, a line 049

of studies focus on exploring the identification and 050

selection of high-quality long-context with consid- 051

eration of relations between text segments were 052

proposed. ProLong (Chen et al., 2024a) measures 053

long-range dependencies between segments based 054

on the relative perplexity and relative distance. Lv 055

et al. (2024) develop a set of metrics including 056

complexity, coherence, and cohesion based on vari- 057

ous kinds of text segments (i.e., sliding windows, 058

sentences, paragraphs) to measure the quality of 059

long texts. However, these methods have two main 060

drawbacks: (1) Linguistic metrics do not fully align 061

with the underlying mechanisms of LLMs, as they 062

often fail to capture fine-grained token-level rela- 063

tionships. (2) They are computationally expensive 064

and inefficient. For example, ProLong reports that 065

the speed of a 7B parameter model is roughly 1/16 066

of that of a 350M parameter model, making such 067

methods challenging to scale for LLMs. 068

Attention mechanisms have been proven to effec- 069

tively model context understanding (Beltagy et al., 070

2020; Zaheer et al., 2020). Some studies focusing 071

on attention mechanisms and positional encoding 072

have shown that they can significantly improve a 073

model’s long-context ability (Peng and Quesnelle, 074

2023; Peng et al., 2023). Motivated by this, we 075

propose to address the limitations of sentence-level 076

selection methods leveraging the rich information 077

provided in the attention mechanism. Specifically, 078

we propose LongAttn, a simple yet effective frame- 079

work that leverages the attention patterns of LLMs 080

to analyse token-level dependency for long-context 081

data selection. 082
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Figure 1: (a) How to measure long-range dependencies at the token level by using the self-attention mechanism.
DST indicates that the tokens in this data have strong long-distance dependencies, while DUT prevents negative
impacts from individual tokens’ high scores. (b) The comparison of long-context retrieval capabilities of models
trained with different scales of tokens selected randomly, with sentence-level ProLong, and with LongAttn (ours).

LongAttn utilizes the long-range dependency in-083

dicator, LSDT , to measure the strength of depen-084

dencies between tokens separated by a distance of085

at least k, which we define as the minimum to-086

ken distance. We break down the indicator into087

two scores: dependency strength(DST ) and dis-088

tribution uniformity(DUT ). As shown in Figure089

1a, DST measures the strength of dependencies090

between tokens separated by a distance of at least091

k, and DUT serves as a correction term, ensuring a092

consistent distribution of token scores and prevent-093

ing individual tokens with excessively high atten-094

tion scores from skewing the overall dependency095

assessment. To enhance computational efficiency096

and avoid the Attention Sink (Xiao et al., 2023),097

we use the attention score calculated by the first098

decoder layer of LLaMA (Dubey et al., 2024). To099

better integrate DST and DUT , we normalize them100

to the same value range and then multiply the distri-101

bution uniformity (DUT ) by a correction factor α.102

In this way, our framework effectively quantifies103

the degree of contextual information aggregation104

at the token level, providing a reliable criterion for105

selecting high-quality long-context data.106

Through comprehensive experiments, the Lon-107

gAttn framework has demonstrated significant ad-108

vantages. We selected Arxiv, Book, and Code109

as the long-context datasets to be studied. Af-110

ter pre-processing, we used the LongAttn frame-111

work to make selections, and the resulting data is112

referred to LongABC-32K. Datasets selected us-113

ing the ProLong framework (Chen et al., 2024a)114

and random selection mechanism are designated 115

as ProLong-32K and Random-32K, respectively. 116

As shown in Figure 1b, we compare the long- 117

context retrieval abilities of models trained on these 118

datasets across different token scales. The experi- 119

mental results demonstrate that models trained on 120

LongABC-32K consistently perform the best, even 121

surpassing those trained on 20B tokens from the 122

randomly selected dataset, despite using only 5B 123

tokens. Through further experiments, we found 124

that, in addition to its effectiveness (As seen in 5), 125

LongAttn exhibits excellent scalability (Performs 126

better with attention map from larger models, as 127

seen in 6.2) and efficiency (As seen in 6.3). Our 128

contributions are summarized as follows: 129

• We propose LongAttn, a framework which is the 130

first to analyze long-range dependencies at the 131

token level by using self-attention mechanisms. 132

• We will release LongABC-32K, a high-quality 133

long-context dataset with strong long-range de- 134

pendencies. 135

• Through comprehensive experiments, we have 136

demonstrated LongAttn’s excellent effectiveness, 137

scalability, and efficiency. 138

2 Related Work 139

Long-context LLMs The ability to process ex- 140

tensive contextual information is a crucial aspect 141

of language models, with context length serving as 142

a key determinant of their processing capacity. To 143

enable models to accommodate longer inputs and 144

outputs, numerous methodologies have been de- 145
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veloped to modify the model’s architecture. Some146

approaches focus on altering positional encoding147

techniques. For instance, Chen et al. (2023a) intro-148

duced Positional Interpolation, while PoSE (Zhu149

et al., 2023) simulates longer texts by modifying150

positional encodings during training. Similar meth-151

ods include YaRN (Peng et al., 2023) and Lon-152

gRoPE (Ding et al., 2024). Other strategies involve153

modifying the attention mechanism. For example,154

STRING (An et al., 2024) shifts well-trained posi-155

tions to overwrite originally ineffective positions156

during inference, and SelfExtend (Jin et al., 2024)157

extends the context window of Large Language158

Models (LLMs) by constructing bi-level attention159

information. Besides the methods used, the train-160

ing data is also crucial. Below are related works on161

data.162

Pre-training data Training data that exhibits163

long-range dependency patterns is crucial for en-164

hancing the model’s ability to handle extended con-165

textual information. For post-training data, numer-166

ous methodologies have been explored to generate167

synthetic long-context data (Wang et al., 2024a;168

Chen et al., 2024b; Bai et al., 2024; Wu et al., 2024).169

Conversely, for pre-training data, the predominant170

approach involves the curation and selection of171

relevant text from existing corpora, which is exem-172

plified by prominent models including Qwen (Bai173

et al., 2023a) and LLaMA (Touvron et al., 2023).174

While scaling laws suggest that a model’s capabili-175

ties improve with more data (Kaplan et al., 2020),176

large volumes of data bring about high resource177

demands. Therefore, optimizing data utilization178

more effectively should become a key area of re-179

search. ProLong (Chen et al., 2024a) proposes180

a framework for calculating long-distance depen-181

dencies of data at the sentence level. LongWanjuan182

(Lv et al., 2024) also designed metrics and filtered183

data based at the sentence level. However, Xiong184

et al. (2023) assert that the key factor affecting the185

long-context ability of LLMs is the positional en-186

coding’s capacity to aggregate information from187

distant tokens. Our method focuses on token-level188

long-distance dependencies to select high-quality189

long-context data.190

3 Methodology191

As shown in Figure 2, our proposed method can192

be divided into three steps. Firstly, we gather and193

preprocess the data to a predetermined length. Sub-194

sequently, we employ the self-attention mechanism195

of a LLM to compute the long-distance depen- 196

dency score for each data instance. Finally, we 197

filter the data based on the score and utilize the 198

refined dataset for continued pre-training of the 199

model. 200

3.1 Data Collection and Preprocessing 201

To ensure the training data is suitable for long- 202

context modeling, we carefully curate and prepro- 203

cess our dataset. We choose books, code, and Arxiv 204

papers as our primary sources of long-context data, 205

drawing from open-source pre-training datasets 206

such as RedPajama (Weber et al., 2024) and Dolma 207

(Soldaini et al., 2024). These sources are known 208

for their rich content and long sequences, which are 209

essential for training models with extended context 210

windows. 211

Given that the computational complexity of 212

self-attention layers grows quadratically with se- 213

quence length, we set the context length to 32k 214

tokens in this work. This length strikes a bal- 215

ance between capturing long-range dependencies 216

and maintaining reasonable computational com- 217

plexity. To segment/divide the data into 32k-token 218

chunks/segments, we employ a sliding-window ap- 219

proach, which is more effective than naive trunca- 220

tion in preserving the integrity of the information. 221

Let the total number of tokens in a text be n. The 222

sliding-window strategy is as follows: 223

• If 32768(32k) < n ≤ 65536(64k), take both 224

the front and back windows. 225

• If 65536(64k) < n ≤ 98304(96k), take the 226

front, back, and middle windows. 227

• If n > 98304(96k), iteratively take the front and 228

back windows until one of the two conditions 229

above is met. 230

The detailed algorithm is presented in Appendix 231

A. After preprocessing, we obtain the long-context 232

pre-training dataset LongABC-32K-Raw, which 233

we denote as D. 234

3.2 Assess Long-distance Dependency via 235

Token-level Attention 236

To effectively select high-quality long-context data, 237

we need to accurately measure the long-range de- 238

pendencies within the data. In this section, we 239

detail the process of assessing long-distance de- 240

pendencies in the data using token-level attention 241

mechanisms. 242
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LongAttn Framework

Figure 2: LongAttn Framework: After preprocessing the data, the long-distance dependency strength at the token-
level is analyzed using the self-attention mechanism of an LLM. This analysis serves as the basis for filtering the
data, which is then used for continual pre-training of a base model that initially lacks long-context capabilities,
resulting in our LongAttn model

3.2.1 Token-level Dependency Strength243

Given a data instance s ∈ D, we input it into an244

LLM and extract the masked self-attention matrix245

M from the first transformer decoder layer to quan-246

tify the long-range dependencies within the data.247

The choice of using the first layer is driven by two248

primary reasons: (1) It is computationally efficient,249

requiring approximately 1/32 of the inference time;250

(2) Due to the Attention Sink phenomenon (Xiao251

et al., 2023), deeper layers of the model tend to252

disproportionately focus on the initial tokens, irre-253

spective of their semantic relevance to the language254

modeling task. Consequently, leveraging the shal-255

low layers of the model’s decoder is more optimal256

for capturing the contextual dependencies among257

tokens in the data.258

Define Am,n as the cumulative attention score259

assigned by n to the first m tokens (i.e., tokens260

from position 1 to m):261

Am,n =

m∑
i=1

Mi,n (1)262

where Mi,n represents the attention score assigned263

by the n-th token to the i-th token. Since the self-264

attention matrix M has been normalized by the265

softmax function, it follows that An,n = 1. For266

the n-th token in the data, where n > k, An−k,n 267

represents the sum of attention scores of all tokens 268

located at least k positions ahead of it. We de- 269

fine the contextual dependency strength of the n-th 270

token as: 271

DSn
T =

An−k,n

An,n
= An−k,n (2) 272

which quantifies the proportion of attention scores 273

assigned to tokens at least k positions prior to the 274

n-th token, relative to the total attention scores. For 275

cases where n ≤ k, we define DSn
T = 0 to account 276

for insufficient context. Finally, the token-level 277

contextual dependency strength of the entire data 278

instance is defined as the average of DSn
T over all 279

tokens: 280

DST =
1

L

L∑
i=1

DSi
T (3) 281

=
1

L

L∑
i=k+1

DSi
T (4) 282

=
1

L

∑
Mt (5) 283

where L is the total number of tokens in the data 284

and Mt represents the lower triangular matrix in 285
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the bottom left corner of matrix M :286

Mt =


Mk+1,1 0 · · · 0
Mk+2,1 Mk+2,2 · · · 0

...
...

. . .
...

ML,1 ML,2 · · · ML,L−k

 (6)287

3.2.2 Distribution Uniformity of Token Scores288

While DST provides a measure of dependency289

strength, it is important to ensure that individual290

tokens with high scores do not disproportionately291

influence the overall dependency assessment. For292

example, In the previously mentioned Attention293

Sink phenomenon, the first token’s scores very high294

in deeper decoder self-attention layers, which can295

have a significantly negative impact. Instead, the296

scores across the entire data segment should be297

consistently high. To achieve this, we introduce298

the distribution uniformity of token scores DUT to299

measure the uniformity of the score distribution:300

DUT = −V ariance(Mt) (7)301

This correction term helps to prevent individual302

tokens with excessively high attention scores from303

skewing the overall dependency assessment.304

3.2.3 Collaborative Ensemble305

To obtain a comprehensive measure of long-306

range dependencies, we combine the dependency307

strength DST and the distribution uniformity DUT .308

Due to the differences in the magnitudes of DUT309

and DST , as shown as Appendix E, we compute310

DUT and DST for all data and then standardize311

them to independent normal distributions. We then312

use the following formula to calculate the final313

long-distance dependency score:314

LDST = Std(DST ) + α · Std(DUT ) (8)315

where α is a correction factor that balances the con-316

tributions of DST and DUT , and Std represents317

Z-Score standardization.318

4 Experimental Setup319

4.1 LongAttn Setup and Training Details320

In the process of filtering data using LongAttn,321

we utilize the first transformer decoder layer of322

LLaMA-3.1 to calculate long-distance dependency323

score. The length of each data segment L is 32768324

and the minimum token distance k is set to L/4325

(i.e., 8192). We set the correction factor α in the326

Eq.8 to 0.5.327

We adopt Adjusted Base Frequency (ABF) 328

(Xiong et al., 2023) to continual pretrain LLaMA- 329

3, extending the context window size to 32,768 by 330

adjusting the RoPE theta parameter. The contin- 331

ued pre-training is based on the Megatron training 332

framework (Shoeybi et al., 2019), utilizing 8x8 333

H800 GPUs. Detailed parameters can be found in 334

the Appendix B.1. 335

4.2 Continual Pre-trained Datasets 336

We form the following datasets by combin- 337

ing short-context data with selections made 338

through random sampling, the ProLong 339

framework, LongAttn based on LLaMA-3.1- 340

8B, and LongAttn based on LLaMA-3.1- 341

70B: DRx(x ∈ {1, 3, 5, 10, 20}), DPx(x ∈ 342

{1, 3, 5, 10}), DAx,8B(x ∈ {1, 3, 5, 10}), and 343

DAx,70B(x ∈ {1, 3, 5, 10}), with x representing 344

the data size in Billions. 345

To ensure the diversity of the filtered data, we 346

apply the filtering process within each category of 347

datasets separately. For detailed data composition, 348

please refer to the Appendix C. 349

4.3 Baselines 350

Data-Scale Comparison To demonstrate the 351

effectiveness of LongAttn, We conduct a data- 352

scale comparison of the long-context retrieval 353

capabilities of models continued pre-trained 354

on DRx(x ∈ {1, 3, 5, 10, 20}), DPx(x ∈ 355

{1, 3, 5, 10}), DAx,8B(x ∈ {1, 3, 5, 10}), and 356

DAx,70B(x ∈ {1, 3, 5, 10}). 357

Fixed-Scale Method Comparison To demon- 358

strate the superiority of LongAttn, we conduct 359

fixed-data method comparison of the models 360

trained on DRx(x ∈ {5, 10, 20}), DP5, DA5,8B , 361

and DA5,70B . Additionally, we compare them with 362

similarly sized models that have excellent long- 363

context capabilities. Details of the baselines can be 364

found in Appendix F. 365

4.4 Evaluation Tasks 366

We assess the capability of the base model, contin- 367

ually pre-trained within the current window length, 368

based on the following long-context and short- 369

context criteria: (1) The best reflection of the base 370

model’s long-context capabilities is its long-context 371

retrieval ability, followed by its performance on 372

other long-context tasks. (2) No degradation in 373

short-context performance. The evaluation tasks 374

can be divided into the following parts: 375
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Method Tokens
Niah-Single Niah-Multikey Niah-Mult- Niah-Mult- Avg.

Sigle-1 Sigle-2 Sigle-3 MK-1 MK-2 MK-3 Value Query Score

Random

1 B

99.8 100.0 93.4 91.0 11.6 11.4 91.7 93.2 74.0
ProLong 99.4 99.8 92.4 89.2 10.8 24.0 91.6 93.6 75.1
LongAttn-8 100.0 100.0 91.4 88.6 16.2 19.2 90.3 93.4 74.9
LongAttn-70 100.0 100.0 95.4 88.0 29.0 35.0 90.4 92.4 78.8

Random

3 B

100.0 100.0 86.2 92.8 62 8.6 70.0 95.9 76.9
ProLong 100.0 99.8 79.6 93.8 60.4 32.0 85.9 95.0 80.8
LongAttn-8 100.0 100.0 88.8 92.2 60.0 31.2 79.7 94.7 80.8
LongAttn-70 100.0 100.0 91.6 93.6 57.4 19.8 88.8 96.2 80.9

Random

5 B

100.0 99.8 81.8 94.8 56.4 11.8 84.4 96.5 78.2
ProLong 100.0 100.0 78.0 92.8 64.8 40.4 77.8 95.9 81.2
LongAttn-8 100.0 99.8 81.6 92.4 62.6 37.2 87.6 97.3 82.3
LongAttn-70 100.0 100.0 83.8 92.8 84.8 46.8 78.8 95.2 85.2

Random

10 B

100.0 100.0 84.0 92.6 58.2 14.2 90.9 96.9 79.6
ProLong 100.0 100.0 83.4 92.8 74.4 32.2 88.7 95.5 83.4
LongAttn-8 100.0 100.0 87.4 93.0 72.2 23.0 93.1 96.8 83.2
LongAttn-70 100.0 100.0 86.8 92.4 80.6 34.4 92.0 96.5 85.3

Random 20 B 100.0 100.0 84.6 91.0 66.2 22.4 93.3 96.5 81.8

Table 1: Models trained with different methods for selecting varying scales of tokens were evaluated on complex
NIAH tasks. Random, ProLong, LongAttn-8, and LongAttn-70 represent random selection, selection based on the
ProLong framework, selection based on LongAttn with LLaMA-3.1-8B, and selection based on LongAttn with
LLaMA-3.1-70B, respectively. And bold number is used to highlight the better-performing models within each data
size category.

Model Trained
Short-Context Task

Avg.
Dataset MMLU HS HE OBQA

† 65.9 49.9 25.0 72.0 53.2

LLaMA
DR5 61.8 52.4 19.5 81.8 53.9

-3-Base
DP5 61.0 38.3 23.2 79.4 50.5
DA5,8B 61.6 47.1 25.6 82.6 54.2
DA5,70B 61.0 52.8 28.1 80.4 55.6

Table 2: The short-context fundamental capabilities
of our continued pre-trained models and LLaMA-3-
base. † indicates no training. MMLU, HS, HE, and
OBQA stand for the MMLU, HellaSwag, HumanEval,
and OpenBookQA tasks, respectively.

Long-context Retrieval Retrieval ability is the376

most crucial and best reflects the model’s long-377

context ability before post-training. The ‘Needle378

In A Haystack’ task analysis in-context retrieval379

ability of long-context LLMs. The original ‘needle380

in a haystack’ task was relatively simple. RULER381

(Hsieh et al., 2024) introduced a more detailed and382

complex ‘needle in a haystack’ task, and we use383

RULER with a length of 32k to comprehensively384

evaluate long-context retrieval ability.385

Long-context Benchmark In addition to re-386

trieval ability, we also want to evaluate the model’s387

performance on formal long-context tasks. Long-388

Bench (Bai et al., 2023b) is the first proposed bilin- 389

gual long-context benchmark, which includes a to- 390

tal of 21 tasks categorized into 6 main types, with 391

task lengths ranging from about 0 to 20k. RULER 392

provides longer, variable-length evaluations across 393

13 complex tasks. Here, we will evaluate the tasks 394

at the 32k length to assess changes in the model’s 395

long-context capabilities. 396

Fundamental Abilities of LLMs. We use Hu- 397

manEval (Chen et al., 2021) to assess code evalua- 398

tion capability and OpenBookQA (Mihaylov et al., 399

2018) to assess book knowledge extraction ability. 400

Additionally, we use Hellaswag(Zellers et al., 2019) 401

and MMLU (Hendrycks et al., 2020) to assess its 402

broader short-context fundamental capabilities. 403

5 Experimental Results 404

We validate the effectiveness, scalability, and high 405

efficiency of LongAttn through a series of data- 406

scale and Lateral comprehensive experiments. 407

5.1 Performance on Retrieval Ability 408

We evaluate the retrieval capabilities of models 409

trained with LongAttn-selected data and com- 410

pare them with models trained on randomly se- 411

lected data and ProLong-selected data. The results 412

are shown in Table 1. The models trained with 413
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Figure 3: (a) and (b) show the performance of other
long-context LLMs and LongAttn-trained models on
the RULER and complex NIAH tasks. (c) and (d) show
the performance of models trained with different meth-
ods on the same tasks. Toge. and LLORA represent
Together and LongLORA, respectively. 5B-LA and
10B-LA represent models trained on 5B and 10B tokens
selected by LongAttn. LA-8 and LA-70 represent Lon-
gAttn based on 8B and 70B models, respectively.

LongAttn-selected data consistently outperform414

those trained on randomly selected or ProLong-415

selected data across all data scales, demonstrating416

the effectiveness of LongAttn in improving data417

quality for long-context modeling.418

Notably, models trained on a smaller amount419

of data filtered using our method even outperform420

those trained on a larger amount of randomly se-421

lected data in retrieval tasks. For example, the422

model trained on just 5B tokens filtered by Lon-423

gAttn outperforms models trained on 10B or even424

20B randomly selected tokens. This indicates that425

LongAttn can significantly enhance the efficiency426

of data usage for long-context pre-training.427

5.2 Performance on Fundamental Abilities428

The results in Table 2 indicate that data selected429

by LongAttn not only maintains the model’s short-430

context capabilities but enhances them in specific431

domains. For example, the LongABC-32K-Raw432

dataset includes book and code data, and our model433

performs well on short-context tasks such as Open-434

BookQA (Mihaylov et al., 2018) and HumanEval435

(Chen et al., 2021).436

However, there is a slight decline in performance 437

on MMLU (Hendrycks et al., 2020). This is ex- 438

pected, as we do not include such data during con- 439

tinual pre-training, so the base model experienced 440

some forgetting in these areas. 441

5.3 Performance on Long-context Benchmark 442

As shown in Figure 3a and 3c, models trained on 443

data filtered by LongAttn outperform those trained 444

on equivalent amounts of data selected randomly or 445

by ProLong. LongAttn’s performance is also com- 446

parable to models trained on larger data volumes. 447

Additionally, on the RULER-32K benchmark, Lon- 448

gAttn outperforms all other long-context models of 449

similar parameter sizes. 450

As shown in Table 3, we compare model perfor- 451

mance on LongBench, which consists of 21 eval- 452

uation tasks. We calculate the average score for 453

each of the six categories to represent overall per- 454

formance. The results show that LongAttn outper- 455

forms models trained on equivalent data selected 456

randomly or by ProLong in almost all tasks and 457

even surpasses models trained on larger amounts of 458

randomly selected data. However, while 5B data se- 459

lected by LongAttn-70 outperforms 10B randomly 460

selected data, it does not perform as well as 5B 461

data selected by LongAttn-8. We speculate this is 462

because the average context length in LongBench 463

is far below 32k, thus not effectively showcasing 464

the advantage of 5B data selected by LongAttn-70. 465

6 Analysis 466

6.1 Ablation Study 467

To investigate the impact of the constraint factor α 468

and the correction term DUT on regulating LDST , 469

we conduct ablation experiments on the DA3 and 470

DA5 datasets using retrieval tasks. The default 471

setting of the constraint factor α is 0.5. 472

As shown in the table 4, we can see that the 473

correction term DUT plays a positive role in the 474

data selection results. In addition, the constraint on 475

the dependency strength DST by DUT should not 476

be too large, which suggests that the constraint on 477

DST by DUT should be moderate to avoid over- 478

correction. 479

6.2 The Scalability of LongAttn 480

Figures 3c and 3d show that LongAttn significantly 481

improves performance when using stronger models. 482

This indicates that more powerful models can bet- 483

ter analyze the dependencies between long-context 484
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Method
Number of Single-Doc Multi-Doc Summri- Few-shot Synthetic Code Com- Avg.

Tokens Trained QA QA zation Learning Tasks pletion Score

Trained on 5B Tokens from Different Methods

Random 5B 10.11 6.57 13.72 64.10 1.83 65.05 24.46
ProLong 5B 11.95 12.59 17.87 63.33 4.15 65.01 26.93
LongAttn-8 5B 13.01 11.20 18.96 64.62 5.12 65.06 27.46
LongAttn-70 5B 12.39 9.33 19.72 64.1 3.42 65.03 26.78

Trained on over 5B Tokens Selected Randomly

Random 10B 9.41 8.93 19.30 63.89 4.83 65.57 26.27
Random 20B 11.45 11.72 20.41 64.13 9.67 66.51 28.23

Table 3: The performance of models continued pre-trained using data filtered by different methods on LongBench.
Random, ProLong, LongAttn-8, and LongAttn-70 represent data selected randomly, data selected using the ProLong
framework, data selected by the LongAttn framework with LLaMA-3.1-8B, and data selected by the LongAttn
framework with LLaMA-3.1-70B, respectively.

Model RULER-NIAH-32K

LongAttnDA3 80.83
w/ α = 1 79.49(-1.34)
w/o DUT 78.28(-2.55)

LongAttnDA5 82.30
w/ α = 1 81.05(-1.25)
w/o DUT 82.11(-0.19)

Table 4: Ablation experiments on the constraint factor
α and the correction term DUT were conducted on the
RULER-NIAH-32K task.

tokens. It can be envisioned that using LongAttn485

with larger models could yield even stronger per-486

formance.487

However, in works like ProLong, computational488

efficiency is constrained by the approach, making489

it unfeasible to use larger models. This unique490

advantage of LongAttn highlights its tremendous491

growth potential.492

6.3 The Efficiency of LongAttn493

Compared to sentence-level methods like ProLong,494

LongAttn is significantly more efficient. ProLong495

divides the data into sentence segments and calcu-496

lates the relative perplexity and distance between497

each segment, which is computationally expensive,498

especially for LLMs. As a result, only smaller mod-499

els are used in their work. In contrast, LongAttn500

only requires a single inference pass to obtain rela-501

tive scores between all tokens, using just the first502

layer of the LLM’s decoder. This approach is far503

more efficient and scalable.504

Table 5 compares the GPU hours consumed by505

the two methods using models of different sizes on506

the LongABC-32K-Raw dataset. LongAttn, even507

Method Model GPU Hours

ProLong OPT-350M 30
LLaMA-3.1-8B 600

LongAttn LLaMA-3.1-8b 50
LLaMA-3.1-70b 100

Table 5: Compared the GPU hours used by different
methods on LongABC-32K-Raw, using H800 GPUs.
For implementation simplicity, we used the traditional
attention computation method in LongAttn. If efficient
methods like Flash-attn were adopted, the speed would
further improve.

with the traditional attention computation method, 508

is much faster than ProLong. If more efficient meth- 509

ods like Flash-attention were adopted, the speed of 510

LongAttn could be further improved. 511

7 Conclusion 512

In this paper, we introduce LongAttn, a framework 513

evaluates long-range dependencies at the token 514

level. LongAttn is effective as the self-attention 515

mechanism captures relationships between all to- 516

ken contexts during inference. This approach to 517

measuring long-range dependencies aligns better 518

with the underlying operating principles of LLMs. 519

We validate the effectiveness, scalability, and high 520

efficiency of LongAttn through a series of compre- 521

hensive experiments. Additionally, our research 522

contributes to the previously limited study of high- 523

quality long-context training data. This finding 524

suggests promising directions for future research, 525

and we anticipate further advancements in this do- 526

main through subsequent investigations. 527
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Limitations528

Although LongAttn has demonstrated satisfactory529

performance, there is still room for improvement.530

Specifically, we used the traditional attention map531

calculation method, which is inefficient. While its532

efficiency is satisfactory, there is still significant po-533

tential for enhancement. In future work, we hope to534

overcome the shortcomings, refine our method fur-535

ther, and advance the development of long-context536

capabilities in LLMs.537

Ethics Statement538

This work fully complies with the ACL Ethics Pol-539

icy. We declare that there are no ethical issues in540

this paper, to the best of our knowledge.541
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A Algorithm for Pre-process737

Algorithm 1 Sliding Window Sample Algorithm
1: function SLIDINGWINDOW(data,W )
2: if len(data) < W then
3: return ∅
4: end if
5: l← 0
6: r ← len(data)
7: S ← ∅
8: while r − l > 3W do
9: S ← S ∪ {data[l : l +W ]}

10: l← l +W
11: S ← S ∪ {data[r −W : r]}
12: r ← r −W
13: end while
14: ∆← r − l
15: if W < ∆ ≤ 2W then
16: S ← S ∪ {data[l : l +W ], data[r −W : r]}
17: else if 2W < ∆ ≤ 3W then
18: m← l + ⌊(∆−W )/2⌋
19: S ← S ∪ {data[l : l + W ], data[m : m +

W ], data[r −W : r]}
20: end if
21: return S
22: end function

The Algorithm 1 demonstrates how we perform738

sliding window pre-processing on the data. The739

length of the data processed using this method will740

remain consistent with the window size, and com-741

pared to the truncation method, this algorithm bet-742

ter preserves the completeness of the original infor-743

mation.744

B Training Details745

B.1 Training Parameters746

The specific experimental parameters for continual747

pre-training using Megatron (Shoeybi et al., 2019)748

are shown in Table 6.

Params Methods

Random ProLong LongAttn

learning rate(lr) 1×10−5 1×10−5 1×10−5

lr decay style cosine cosine cosine
GPUs (H800) 64 64 64

mbs 1 1 1
gas 8 8 8

tp size 8 8 8
pp size 1 1 1
dropout 0.1 0.1 0.1

seq length 32768 32768 32768

Table 6: Parameter settings for continual pre-training by
different methods based on the Megatron framework.

749

B.2 Training Dataset 750

When continuing pre-training, we use the data ra- 751

tios shown as Table 7, where ArXiv, Book, and 752

Code data refer to the data selected through dif- 753

ferent methods (random selecting, based on the 754

ProLong (Chen et al., 2024a) framework, or based 755

on the LongAttn framework).

Types length Source Ratio

Wiki Short Dolma (Soldaini et al., 2024) 3%

Github Short Pile (Gao et al., 2020) 3%

Web Short Refinedweb (Penedo et al., 2023) 4%

ArXiv Long LongABC-Arxiv 30%

Book Long LongABC-Book 30%

Code Long LongABC-Code 30%

Table 7: The types of data and their proportions used dur-
ing the continuation of pre-training. LongABC-Arxiv,
LongABC-Book, and LongABC-Code refer to the types
of data selected using different methods from LongABC-
32K-Raw.

756

C Details of Continual Pre-train Dataset 757

As shown as Figure 8, LongABC-32K-Raw is a 758

dataset obtained by quantitatively sampling long 759

text data and then preprocessing it as mentioned in 760

3.1. 761

LongABC-32K-Raw serves as the data source. 762

We filter it using different methods, including ran- 763

dom selecting, selecting based on the ProLong 764

framework, and selecting based on the LongAttn 765

framework. The filtered data is then combined 766

with quantified short-context data to form our pre- 767

training dataset, as shown in Table 7. 768

Category Source Scale

ArXiv ArXiv (Clement et al., 2019) 12B Tokens

Book Dolma (Soldaini et al., 2024), 12B Tokens
RedPajama (Weber et al., 2024)

Code Dolma (Soldaini et al., 2024) 12B Tokens

Table 8: Data source of LongABC-32K-Raw and com-
position of its various parts.

D Other Experimental Results 769

The evaluation results on RULER for models 770

trained with data selected from LongABC-32K- 771
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Method Tokens Retrival VT
Aggregation QA Avg.

Avg. CWE FWE Avg. QA1 QA2 Avg. Score

Trained on 5B Tokens from Different Methods

Random

5B

78.2 40.6 31.4 66.7 49.0 55.2 43.8 49.5 66.4
ProLong 81.2 51.8 13.0 65.4 39.2 57.2 43.4 50.3 67.7
LongAttn-8 82.3 50.3 19.8 71.0 45.4 53.4 44.0 48.7 69.0
LongAttn-70 85.2 43.4 16.8 68.5 42.7 55.6 43.0 49.3 69.9

Trained on 10B Tokens from Different Methods

Random

10B

79.6 48.8 53.3 74.2 63.7 55.4 43.6 49.5 70.2
ProLong 83.4 55.1 19.4 76.8 48.1 54.6 44.6 49.6 70.6
LongAttn-8 83.2 52.1 21.8 77.9 49.9 54.6 43.8 49.2 70.4
LongAttn-70 85.3 55.6 31.9 67.4 49.7 55.4 44.0 49.7 72.1

Trained on 20B Tokens Selected Randomly

Random 20B 81.8 47.4 51.9 87.9 69.9 51.9 56.0 46.4 73.0

Table 9: The performance of models continued pre-trained using data filtered by different methods on RULER.
Random, ProLong, LongAttn-8, and LongAttn-70 represent data selected randomly, data selected using the ProLong
framework, data selected by the LongAttn framework with LLaMA-3.1-8B, and data selected by the LongAttn
framework with LLaMA-3.1-70B, respectively.

Raw using different methods are shown in Table772

9. RULER includes 13 tasks, categorized into four773

major types: retrieval ability, multi-hop tracking774

ability, information aggregation ability, and ques-775

tion answering ability. The retrieval ability has776

been thoroughly evaluated earlier, so only the aver-777

age score is presented here.778

E Distribution of DST and DUT779

Statistical Arxiv Book Code

Indicators DST DUT DST DUT DST DUT

Min Val. 0.25 2.2×10−7 0.21 1.6×10−7 0.18 9.7×10−8

Max Val. 0.50 1.8×10−6 0.59 4.9×10−6 0.54 2.4×10−6

Mean 0.43 8.5×10−7 0.40 4.8×10−7 0.39 6.1×10−7

Table 10: Statistical indicators of DST and DUT af-
ter evaluating LongABC-32K-Raw using the LongAttn
framework based on LLaMA-3.1-70B

The distribution DST and DUT measured by Lon-780

gAttn based on LLaMA-3.1-70B is shown in Ta-781

ble 10. They are distributed across different value782

ranges.783

F Baselines784

The specific models and baselines for our data-785

scale and fixed-data method comparison experi-786

ments are detailed in Table 11.787
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Comparison Method Base Model Trained Dataset Selected Method Tokens

DRx Selected Randomly x ∈ {1B, 3B, 5B,10B,20B}

Data-Scale LLaMA-3
DPx ProLong x ∈ {1B, 3B, 5B, 10B}

DAx,8B LongAttn-8 x ∈ {1B, 3B, 5B, 10B}

DAx,70B LongAttn-70 x ∈ {1B, 3B, 5B, 10B}

DRx Selected Randomly x ∈ {5B, 10B, 20B}

LLaMA-3
DPx ProLong x ∈ {5B, 10B}

DAx,8B LongAttn-8 x ∈ {5B, 10B}

Fixed-Scale Method DAx,70B LongAttn-70 x ∈ {5B, 10B}

Yarn † † †
(Peng et al., 2023)

LWM † † †
(Liu et al., 2024)

Together † † †
(Together.Ai, 2023)

LongLORA † † †
(Chen et al., 2023b)

Table 11: The experiments compared different models and baselines. Selected Method indicates the method used to
filter the current training set, and Tokens represents the number of tokens used for training. † indicates the absence
of a given option. ProLong, LongAttn-8, and LongAttn-70 represent the ProLong framework, LongAttn based on
LLaMA-3.1-8B, and LongAttn based on LLaMA-3.1-70B, respectively.
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