
The Hardness Analysis of Thompson Sampling for
Combinatorial Semi-bandits with Greedy Oracle

Fang Kong1 Yueran Yang1 Wei Chen2 Shuai Li1⇤
1Shanghai Jiao Tong University 2Microsoft Research

{fangkong,yangyr99,shuaili8}@sjtu.edu.cn weic@microsoft.com

Abstract

Thompson sampling (TS) has attracted a lot of interest in the bandit area. It was
introduced in the 1930s but has not been theoretically proven until recent years. All
of its analysis in the combinatorial multi-armed bandit (CMAB) setting requires
an exact oracle to provide optimal solutions with any input. However, such an
oracle is usually not feasible since many combinatorial optimization problems
are NP-hard and only approximation oracles are available. An example [30] has
shown the failure of TS to learn with an approximation oracle. However, this oracle
is uncommon and is designed only for a specific problem instance. It is still an
open question whether the convergence analysis of TS can be extended beyond
the exact oracle in CMAB. In this paper, we study this question under the greedy
oracle, which is a common (approximation) oracle with theoretical guarantees to
solve many (offline) combinatorial optimization problems. We provide a problem-
dependent regret lower bound of order ⌦(log T/�2) to quantify the hardness of
TS to solve CMAB problems with greedy oracle, where T is the time horizon
and � is some reward gap. We also provide an almost matching regret upper
bound. These are the first theoretical results for TS to solve CMAB with a common
approximation oracle and break the misconception that TS cannot work with
approximation oracles.

1 Introduction

Stochastic multi-armed bandit (MAB) problem [20, 5, 3] is a classical online learning framework.
It has been extensively studied in the literature and has a wide range of applications [13, 12, 20].
The problem is modeled by a T -round game between the learning agent and the environment. The
environment contains an arm set and each arm is associated with a reward distribution. At each
round t, the agent first selects an arm, while the environment generates a random reward for each arm
from its reward distribution. The agent then obtains the reward of the selected arm. The objective
of the agent is to accumulate as many expected rewards over T rounds, or equivalent to minimizing
the cumulative expected regret, which is defined as the cumulative difference between the expected
reward of the optimal arm and the selected arms over T rounds. To achieve this long-horizon goal,
the learning agent has to face the dilemma of exploration and exploitation in each round. The former
aims to try arms that have not been observed enough times to get a potentially higher reward, the
latter focuses on the arm with the best observed performance so far to maintain a high profit. How to
balance the tradeoff between exploration and exploitation is the main focus of the MAB algorithms.

One of the most popular bandit algorithms is the upper confidence bound (UCB) algorithm [5]. The
algorithm aims to construct confidence sets for unknown expected rewards and selects arms according
to their highest upper confidence bounds. The UCB-type algorithms have been widely studied
and provided theoretical guarantees with regret upper bound of order O(log T/�), where � is the

⇤Corresponding author

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

minimum gap between the expected reward of the optimal arm and any suboptimal arms. Thompson
sampling (TS) [3, 26] is another popular method to solve MAB problems. It is a randomized algorithm
based on the Bayesian idea, which maintains an iteratively updated posterior distribution for each
arm and chooses arms according to their probabilities of being the best one. The TS algorithm
was introduced in the 1930s [28], but its theoretical analysis is open until recent years [15, 2]. It
was proven that the regret upper bound of the TS algorithm is of the same order of O(log T/�) in
MAB problems [3]. Benefited from the advantages of easier implementation and better empirical
performance compared to UCB, the TS-type algorithms attract more attentions in recent years.

Despite its importance, the MAB framework may fail to model many real applications since the
agent’s action is usually not a single arm but a combination of several arms. This motivates the
study on the combinatorial MAB (CMAB) problem [11, 9, 17, 31, 7, 29, 30, 24]. In the CMAB
framework, the agent selects a combination of base arms as an action to play in each round. All
outcomes of these selected arms are then revealed to the agent, which is called semi-bandit feedback

and is widely studied in the literature [7, 29, 32, 30, 14, 24]. Such CMAB framework can cover many
real application scenarios including probabilistic maximum coverage (PMC) [6], online influence
maximization (OIM) [29], multiple-play MAB (MP-MAB) [17] and minimum spanning tree (MST).

TS-type algorithms have recently attracted a lot of interest in CMAB problems [17, 30, 14, 24]. All
of these works need an exact oracle to provide the optimal solution with sampled parameters as
input in each round. However, such oracles are usually not feasible since many offline combinatorial
optimization problems, such as the offline problem of PMC and OIM [16], are NP-hard and only
approximation oracles are available. With an example [30] illustrating the non-convergent regret of
TS with an artificial approximation oracle designed for a specific problem instance, whether TS can
work well in CMAB problems with common approximation oracles is still an open problem.

One of the most common oracles for offline combinatorial optimization problems with a theoretical
guarantee is the greedy algorithm. It sequentially finds the current optimal arm, or the optimal
collection of multiple arms according to the structural correlations, to maximize the current total
expected reward. When the termination condition is met, it will return the set of all arms found in
previous steps as the solution. The termination condition is usually formulated by a constraint on
the number of steps. For example, in the PMC, OIM, and MP-MAB problems, such a process is
limited to continue K steps. The greedy algorithm can provide approximate solutions for offline
problems of PMC [8] and OIM [16], and exact optimal solutions for offline problems of MP-MAB
[17] and MST [18]. In general, as long as the expected reward in a problem satisfies the monotonicity
and submodularity on the action set, the greedy algorithm serves as an offline oracle to provide an
approximate solution [23].

In this paper, we first formulate the CMAB problems with greedy oracle, which is general enough and
covers PMC, MP-MAB, and many other problems. In this framework, the objective of the learning
agent is to minimize the cumulative greedy regret, defined as the cumulative difference between
the expected reward of the selected action and that of the greedy’s solution in the real environment.
Focusing on a specific PMC problem instance, we derive the hardness analysis of the TS algorithm
with the greedy oracle to solve CMAB problems. Due to the mismatch between the estimation gaps
that need to be eliminated by exploration and the actual regret the algorithm needs to pay for each
such exploration, the TS algorithm with greedy oracle in this CMAB problem cannot achieve as good
theoretical performance as previous MAB algorithms. A problem-dependent regret lower bound of
order ⌦(log T/�2) is provided to illustrate such hardness, where T is the time horizon and � is
some reward gap. By carefully exploiting the property of the greedy oracle, we also provide an almost
matching problem-dependent regret upper bound, which is tight on that PMC problem instance and
also recovers the main order of TS when solving MAB problems [3]. These results are the first
theoretical results of TS with approximation oracle to solve CMAB problems, which show that the
linear regret example in [30] does not hold for every approximation oracle.

2 Related Work

CMAB problems have been widely studied in the literature [11, 6, 7, 29, 30, 24, 32, 21, 14]. Here
we mainly focus on the most relevant works. Gai et al. [11] first study the CMAB problem with
linear reward, where the reward of an action is linear in the reward of base arms included in it. They
introduce a UCB-type algorithm to solve such problems and allow approximation algorithms to

2

serve as offline oracles. Later, Chen et al. [6, 7, 29] generalize this framework by considering a
larger class of rewards and the case with probabilistically triggered arms (CMAB-T). This framework
only assumes the expected reward satisfies the monotonicity and Lipschitz condition on the mean
vector of base arms. The combinatorial UCB (CUCB) algorithm is proposed to solve such general
CMAB problems, which works with any offline oracle with approximation guarantees. When only
approximation oracles are available, the goal of the algorithm is relaxed to minimize the cumulative
approximation regret, which is defined as the difference between the expected reward of the selected
action and that of the scaled optimal solution. The CUCB algorithm achieves the regret upper bound
of order O(log T/�min) [29], where �min is the minimum reward gap from the scaled optimal
solution over all suboptimal actions.

Compared with UCB-type algorithms which need to compute upper confidence bounds for unknown
means of base arms [6, 7, 29], TS-type algorithms do not require the reward function to satisfy the
monotonicity on the mean vector of base arms. Benefited from this and other advantages of easier
implementation and better practical performances, TS-type algorithms have recently attracted a lot
of interest in CMAB problems. Komiyama et al. [17] consider using the TS algorithm to solve the
MP-MAB problem, where the agent needs to select K from m arms to maximize the sum of rewards
over these selected K arms. They provide an optimal regret upper bound of order O(log T/�K,K+1)
for the TS algorithm to solve this problem, where �K,K+1 is the reward gap between the K-th
and (K + 1)-th optimal arm. Later, Wang and Chen [30] consider using TS to solve more general
CMAB problems where only the Lipschitz condition is assumed to be satisfied. Their regret upper
bound of order O(log T/�min) matches the main order of the CUCB [29] in the same setting. The
coefficient of this upper bound was recently improved by Perrault et al. [24], who study the same
CMAB setting. Huyuk et al. [14] extend the analysis of [30] and consider using the TS algorithm
to solve the problem of CMAB-T. However, the current regret upper bound is O(1/p⇤) worse than
CUCB [29], where p

⇤ is the minimum triggering probability.

All of the above TS-based works need an exact oracle to provide the optimal solution with sampled
parameters in each round. However, the exact oracles are usually not feasible as many combinatorial
optimization problems, such as the offline problem of OIM and PMC, are NP-hard [16]. Wang and
Chen [30] have constructed a problem instance and designed an approximation offline oracle for this
problem instance. The analysis has shown that the TS algorithm suffers the linear regret of order
O(T) when working with such an approximation oracle. However, this oracle is uncommon and
artificial, thus cannot represent the performance of TS when working with common approximation
oracles. It is still a significant open problem that whether TS can perform well with approximation
oracles.

The greedy algorithm is one of the most important methods with approximation guarantees to
solve combinatorial optimization problems. When the mean vector is known beforehand, we call
the problem of finding the action with the best expected reward as offline problem. Using the
greedy algorithm to solve offline combinatorial problems has been studied for decades, including
the problem of shortest spanning subtree [18], shortest connection networks [25], set coverage [8],
influence maximization [16], and general submodular optimization [23]. There is also a line of studies
considering using greedy to solve online problems [4, 19, 10, 27, 22], some of them require the exact
reward function forms as prior knowledge. Among these works the most related to ours is [22], both
aiming to solve a general class of online problems. Lin et al. [22] consider using the online greedy
strategy to make decisions based on UCB-type estimators. The algorithm sequentially selects a unit
to maximize the current expected reward until no feasible unit can be selected in each round. In their
setting, a unit conditioned on a set of previously selected units is regarded as an arm and the marginal
reward of selecting this unit is the expected reward of this arm. Since the number of combinations
of units is usually exponentially large, there is an exponential number of arms to explore, making
the algorithm pay exponential memory cost in practical applications. Based on this framework, the
algorithm needs to observe the marginal reward after the decision of each step to update the estimate
on the arm. However, such observation may be not available as many combinatorial problems treat
the action composed of several units as a whole and select them together. Compared to this work, our
framework only needs polynomial memory cost and does not require the observation of the marginal
reward.

In this paper, we study the problem of CMAB with the common (approximation) greedy oracle and
hope to answer the question of whether the TS algorithm can work well in this setting.

3

3 Setting

The combinatorial multi-armed bandit (CMAB) problem is formulated by a T -round learning game
between the learning agent and the environment. The environment contains m base arms and the
arm set is denoted by [m] = {1, 2, . . . ,m}. Each arm i 2 [m] is associated with a distribution Di on
[0, 1]. We consider a combinatorial setting where the agent can select several base arms at a time.
In many applications, different arms usually have structural correlations in the selection decision of
the agent. For example, in the PMC problem, base arms (edges) starting from the same node must
be selected together. Thus the base arm set [m] can be further divided into n units, with each unit
containing several base arms and a unit of arms will be selected together. Let U be the collection of
all units and |s| be the number of base arms contained in unit s for any s 2 U .

In each round t = 1, 2, . . ., the learning agent selects an action St 2 S = {S ✓ U : |S| = K}

to play. Here S is the set of all candidate actions containing K units. For any action S, denote
[S = {i 2 s for some s 2 S} as the set of base arms that belong to units contained in S. The
environment then draws a random output of all base arms Xt = (Xt,1, Xt,2, . . . , Xt,m) from the
distribution D = D1 ⇥D2 ⇥ . . .⇥Dm. For any t, Xt,i is independent and identically distributed on
Di with expectation µi, for any base arm i. Let µ = (µi)i2[m] be the mean vector. We study the semi-
bandit feedback [30, 7, 29] where the agent can observe feedback Qt = {(i,Xt,i) | i 2 [St}, namely
the output of all base arms in units contained in St. Denote Ht = {(S⌧ , Q⌧) : 1 ⌧ < t} as the
history of observations at time t. The agent finally obtains a corresponding reward Rt = R(St, Xt)
in this round, which is a function of action St and output Xt. We assume the expected reward satisfies
the following two assumptions, which are standard in CMAB works [7, 30, 14, 24, 29].

Assumption 1. The expected reward of an action S only depends on S and the mean vector µ. That

is to say, there exists a function r such that E [Rt] = EXt⇠D[R(St, Xt)] = r(St, µ).

Assumption 2. (Lipschitz continuity) There exists a constant B such that for any action S and mean

vectors µ, µ
0
, the reward of S under µ and µ

0
satisfies

|r(S, µ)� r(S, µ0)| B

X

i2[S

|µi � µ
0
i| . (1)

When the mean vector µ is known beforehand, finding the optimal action containing K units is called
the offline problem. However, the offline problems are usually NP-hard and enumerating all actions
to find the best one is not feasible as the number of actions is exponentially large. The Greedy
algorithm (presented in Algorithm 1) is a common method to solve such offline problems, which is
simple to implement and can provide approximate solutions for OIM [16] and PMC [8], and exact
solutions for MP-MAB[17]. More specifically, as long as the reward function satisfies monotonicity
and submodularity on the action set, the Greedy algorithm can provide solutions with approximate
guarantees [23]. Moreover, the Greedy algorithm is also popular to serve as a heuristic method in
real applications and has good practical performance even without a theoretical guarantee.

Algorithm 1 Greedy algorithm
1: Input: base arm set [m] and mean vector µ = (µi)i2[m], unit set U , action size K

2: Initialize: Sg = ;

3: for k = 1, 2, · · · ,K do
4: sk = argmaxs2U\Sg

r(Sg [{s} , µ)
5: Sg = Sg [{sk}

6: end for
7: Output: Sg

We mainly study the CMAB problem with the Greedy oracle. With input µ = (µi)i2[m], it sequen-
tially selects K units to maximize the current expected reward. To simplify, we assume the Greedy’s
solution Sg(µ), abbreviated as Sg , is unique, or equivalently the optimal unit in each step k (Line 4
in Algorithm 1) is unique. The general case with multiple solutions can also be solved and would be
discussed later. The objective of the learning agent is to maximize the cumulative expected reward
over T rounds, or equivalently to minimizing the cumulative expected regret with respect to the

4

Greedy’s solution Sg , which we call cumulative greedy regret [22] defined by

Rg(T) = E
"

TX

t=1

max {r(Sg, µ)� r(St, µ), 0}

#
, (2)

where the expectation is taken from the randomness in observations and the online algorithm.

We call Greedy an ↵-approximate oracle if r(Sg(µ0), µ0) � ↵ · r(S⇤(µ0), µ0) for any input µ0, where
S
⇤(µ0) is the optimal action under µ0. Note when Greedy is ↵-approximate, the upper bound for

greedy regret also implies the upper bound for the ↵-approximate regret defined by the cumulative
distance between scaled optimal reward ↵ ·r(S⇤(µ), µ) and r(St, µ) over T rounds. The approximate
regret is adopted in previous CMAB works based on UCB-type algorithms [7, 29, 32, 21]. It is much
weaker than greedy regret as it relaxes the requirements for online algorithms and only needs them
to return solutions satisfying the relaxed approximation ratio. We discuss more on challenges in
analyzing the ↵-approximate regret with TS-type algorithms in Section 6.1.

An example of CMAB: probabilistic maximum coverage (PMC) The input for the PMC prob-
lem is a weighted bipartite graph G = (L,R,E), where each edge (u, v) 2 E is associated with a
weight µ(u,v). Denote µ = (µ(u,v))(u,v)2E as the edge weight vector. The goal is to find a node set
S ✓ L with |S| = K to maximize the number of influenced nodes in R, where each node v 2 R can
be influenced by u 2 S with independent probability µ(u,v). The advertisement placement problem
can be modeled by PMC, where L is the web page set, R is the user set and µ(u,v) represents the
probability that user v clicks the advertisement on web page u. In this application, the user click
probabilities are unknown and need to be learned during iterative interactions. The PMC problem
fits our CMAB framework with each edge being a base arm and edges starting from the same node
forming a unit. The expected reward of an action S is the expected number of nodes finally influenced
by it, which is defined as

r(S, µ) =
X

v2R

0

@1�
Y

(u,v)2E,u2S

�
1� µ(u,v)

�
1

A . (3)

It is proved that the reward function satisfies Assumption 2 [7] and the Greedy oracle can provide an
approximate solution with approximation ratio (1� 1

e) for any input [23].

4 Algorithm

In this section, we introduce the combinatorial Thompson sampling (CTS) algorithm with Beta priors
and Greedy oracle (presented in Algorithm 2) for CMAB problems.

Algorithm 2 CTS algorithm with Beta priors and Greedy oracle
1: Input: base arm set [m], unit set U , action size K

2: Initialize: 8i 2 [m], ai = bi = 1
3: for t = 1, 2, · · · do
4: 8i 2 [m] : Sample ✓t,i ⇠Beta(ai, bi). Denote ✓t = (✓t,1, ✓t,2, · · · , ✓t,m)
5: Select action St = Greedy([m], ✓t,U ,K) and receive the observation Qt

6: //Update
7: for (i,Xt,i) 2 Qt do
8: With probability Xt,i, Yt,i = 1; with probability 1�Xt,i, Yt,i = 0
9: Update ai = ai + Yt,i, bi = bi + (1� Yt,i)

10: end for
11: end for

The algorithm maintains a Beta distribution with parameters ai and bi for each base arm i 2 [m]. In
the beginning, it initializes ai = bi = 1, 8i 2 [m] (Line 2). In each round t, the algorithm first samples
a parameter candidate ✓t,i from Beta(ai, bi) representing the current estimate for µi (Line 4). Then
the Greedy oracle outputs the solution St according to the input vector ✓t = (✓t,1, ✓t,2, · · · , ✓t,m)
(Line 5). Based on the observation feedback, the algorithm then updates the corresponding Beta
distributions for observed base arms (Line 7-10).

5

5 Lower Bound

We investigate the hardness of the CTS algorithm to solve CMAB problems with Greedy oracle by
proving a problem-dependent regret lower bound.

First, we introduce some notations that will be used in the regret analysis. Recall Sg is the solution
returned by the Greedy oracle when the input is µ. We denote it as Sg = {sg,1, sg,2, . . . , sg,K},
where sg,k is the k-th selected unit by Greedy. Further, define Sg,k = {sg,1, sg,2, . . . , sg,k} as the
sequence containing the first k units for any k 2 [K]. Similarly, let St = {st,1, st,2, . . . , st,K} and
St,k = {st,1, st,2, . . . , st,k}. Note Sg,0 = St,0 = ;. The corresponding gaps are defined to measure
the hardness of the task and the performance of the algorithm.
Definition 1. (Gaps) For any unit s 2 U and index k 2 [K] such that s /2 Sg,k�1, define the marginal

reward gap

�s,k = r(Sg,k, µ)� r(Sg,k�1 [{s} , µ)

as the reward difference between Sg,k and Sg,k�1 [{s}. According to the Greedy algorithm,

we have �s,k > 0 for any k such that s /2 Sg,k. And for any action S 2 S, define �S =
max {r(Sg, µ)� r(S, µ), 0} as the reward difference from the Greedy’s solution Sg . Let

�min
s = min

S2S:s2S
�S , �max

s = max
S2S:s2S

�S

be the minimum and maximum reward gap of actions containing unit s, respectively. Denote

�max = maxS2S �S as the maximum reward gap over all suboptimal actions.

We take the following PMC problem (shown in Figure 1) as the instance to carry out the hardness
analysis. Each edge in the graph is a base arm and the set of all outgoing edges from a single node
forms a unit. The action size is set to K = 2. The weight µ(u,v) of each edge (u, v) is listed on the
edges, where we assume 0 < � 0.04. The expected reward r(S, µ) of an action S under µ is
defined as Eq (3). For example, when u1 and u2 are selected, the probability of v1 being influenced is
1� (1� µ(u1,v1))(1� µ(u2,v1)) = 0.592 and the probability that v2 is influenced is µ(u2,v2) = 0.3.
The expected reward of S = {u1, u2} is r(S, µ) = 0.592 + 0.3 = 0.892. For simplicity, we also
assume the output of each base arm in each round is exactly its mean. This assumption still satisfies
the above properties and is also adopted in previous lower bound proofs [3] to simplify the analysis.

u1

u2

u3

u4

v1

v2

0.49

0.2

0.3

0.3

0.2��

0.48

Figure 1: The underlying graph of the PMC instance used to derive the hardness analysis.

For convenience, we first list the expected reward of each action in this problem in Table 1. We can
find that the greedy solution is Sg = {u2, u1} with sg,1 = u2, sg,2 = u1, and r(Sg, µ) = 0.892,
while the optimal action is {u1, u4}. The corresponding marginal reward gaps of each unit can be
then computed as follows.

�u1,1 = 0.01 ;

�u3,1 = �, �u3,2 = 0.012 + 0.7� ;

�u4,1 = 0.02, �u4,2 = 0.056 .

6

Action Expected Reward Action Expected Reward
{u1} 0.49 {u1, u2} 0.892

{u2} 0.5 {u1, u3} 0.843��

{u3} 0.5�� {u1, u4} 0.97

{u4} 0.48 {u2, u3} 0.88� 0.7�

{u3, u4} 0.884� 0.52� {u2, u4} 0.836

Table 1: The expected rewards of actions in the problem instance shown in Figure 1.

In the following, we mainly focus on unit u3 and take it as an example to derive the hardness analysis.
According to Table 1, all actions containing u3 are suboptimal actions compared to Sg and �min

u3
=

�{u3,u4} = 0.52�+0.008. Thus to avoid regret generation, the algorithm should avoid incorporating
u3 in the action St. Intuitively, u3 should be explored at least ⌦

�
log T/�2

u3,1

�
= ⌦

�
log T/�2

�

times to be distinguished from sg,1 = u2 and thus can avoid being selected as the first unit by
Greedy. However, in each round of exploration for u3, the algorithm needs to pay a constant regret
of at least 0.52�+ 0.008. Thus the estimation gap � needs to be eliminated by exploration on the
denominator of ⌦

�
log T/�2

�
cannot be canceled by the actual regret paid in each exploration round.

Such mismatch would cause the greedy regret at least of order ⌦
�
log T/�2

�
.

We give the formal lower bound for both the expected number of selections of each unit and the
cumulative greedy regret in the following Theorem 1.
Theorem 1. (Lower bound) Using the CTS algorithm with Gaussian priors and Greedy oracle to

solve the CMAB problem shown in Figure 1, when T is sufficiently large, we have

E [NT+1,s] = ⌦

log T

�2
s,1

!
, (4)

for any s 6= sg,1 = u2, where NT+1,s =
PT

t=1 1{s 2 St} is the number of rounds when s is

contained in the selected action set St.

Further, the cumulative greedy regret satisfies

Rg(T) = ⌦

log T

�2
u3,1

!
= ⌦

✓
log T

�2

◆
. (5)

The proof of Theorem 1 follows directly the intuition of the above hardness analysis. Due to the space
limit, we include the detailed proof in Appendix B. The reason why we consider using Gaussian priors
to derive the lower bound analysis is that we hope to use its concentration and anti-concentration
inequalities. The analysis can directly apply to other types of prior distributions if similar inequalities
can be provided. The main operations of CTS with Gaussian priors are very similar to that of
Algorithm 2, while the only difference is on the prior distribution for unknown parameters and the
corresponding updating mechanism. To be self-contained, we also present the detailed CTS algorithm
with Gaussian priors in Appendix B.

Lin et al. [22] also show a lower bound for greedy regret of order ⌦(log T/�2) with � 2 (0, 1/4).
However, the problem instance used to derive this lower bound is not a CMAB problem and thus
their result is not comparable with Theorem 1.

6 Upper Bound

By investigating the properties of the CTS algorithm and the Greedy oracle, we also provide a
problem-dependent regret upper bound for Algorithm 2 to solve general CMAB problems.
Theorem 2. (Upper bound) The cumulative greedy regret of Algorithm 2 can be upper bounded by

Rg(T)
X

s 6=sg,1

max
k:s/2Sg,k

6B2
|s|

2 �max
s log T

(�s,k � 2B |[Sg| ")
2 +

X

k2[K]

C

"2

✓
C

0

"4

◆|sg,k|
�max

7

+

✓
|[Sg|

✓
2 +

8

"2

◆
+ 4m

◆
�max (6)

=O

0

@
X

s 6=sg,1

max
k:s/2Sg,k

B
2
|s|

2 �max log T

�2
s,k

1

A , (7)

for any " such that 8s 6= sg,1 and k satisfying s /2 Sg,k, �s,k > 2B |[Sg| ", where B is the

coefficient of the Lipschitz continuity condition, |[Sg| is the number of base arms that belong to the

units contained in Sg , C and C
0

are two universal constants.

Due to the space limit, we provide the proof sketch of Theorem 2 in Section 6.2 and defer the formal
proof to Appendix C. In order to better compare the upper and lower bounds, we also analyze the
greedy regret of the CTS algorithm with Gaussian priors in Appendix D, which achieves the same
order of the upper bound with Theorem 2 only up to some constant factors.

6.1 Discussions

Challenges in analyzing the ↵-approximate regret with CTS The ↵-approximate regret is first
brought up in analyzing UCB-type algorithms [6, 7, 29]. Under UCB, benefiting from the mono-
tonicity between the true parameter µ and the UCB parameter µ̄, the ↵-approximate regret can be
deducted as

↵ · r(S⇤
, µ)� r(St, µ) ↵ · r(S⇤

, µ̄)� r(St, µ) r(St, µ̄)� r(St, µ)
X

i2[St

|µ̄i � µi| ,

where S
⇤
2 argmaxS2S r(S, µ) is an exact optimal action under real parameter µ. Thus it only

needs to bound the number of selections of bad action St to get an upper bound for the ↵-approximate
regret. However, under CTS, since there is no monotonicity between the true parameter µ and the
surrogate parameter ✓, the approximate regret can only be deducted as

↵ · r(S⇤
, µ)� r(St, µ) ↵ · r(S⇤

, µ)� ↵ · r(S⇤
, ✓) + ↵ · r(S⇤

, ✓)� r(St, µ)

 ↵ · r(S⇤
, µ)� ↵ · r(S⇤

, ✓) + r(St, ✓)� r(St, µ)

 ↵

X

i2[S⇤

|✓i � µi|+
X

i2[St

|✓i � µi| .

To get an upper bound for the RHS, it requires a sufficient number of selections of the exact optimal
action S

⇤, which may not be the case with approximate oracles like the example shown in Theorem
1. Thus the ↵-approximate regret may not well fit TS-type algorithms.

Tightness of the upper bound We now discuss the tightness of the regret upper bound in Theorem
2 based on the problem instance shown in Figure 1. Specific to this problem, we have |s| 2
for all s since each node has no more than 2 outgoing edges. And based on [21, Theorem 4], the
coefficient of the Lipschitz condition in this problem is B = 1. When 0 < � 0.04, we have
�s,1 = mink:s/2Sg,k

�s,k for any s 6= sg,1 = u2, and �max = �{u2,u4} = 0.056 is a constant. Thus
our regret upper bound in this problem instance is of order

O

0

@
X

s 6=sg,1

max
k:s/2Sg,k

B
2
|s|

2 �max log T

�2
s,k

1

A = O

0

@
X

s2{u1,u3,u4}

log T

�2
s,1

1

A = O

✓
log T

�2

◆
,

where the last equality holds since �u1,1 = 0.01,�u4,1 = 0.02 are constants and �u3,1 = �.

We can see our regret upper bound matches the lower bound of (5) in Theorem 1 only up to some
constant factors in this specific problem instance.

Comparison with MAB When each unit contains only one base arm and the action size is K = 1,
our CMAB framework recovers the MAB problem and the Greedy oracle can provide the exact
optimal solution. Thus we can also compare our regret upper bound with the theoretical results of the
TS algorithm in MAB problems. In the MAB problem, the expected reward of each action is exactly
the mean of the base arm contained in this action. Thus the Lipschitz coefficient is just B = 1 and
|s| = 1 for any unit s. The optimal action is Sg = Sg,1 with |[Sg| = 1. And for any unit s 6= sg,1,

8

we have �max
s = �s,1. Thus, according to (6) of Theorem 2, the regret upper bound of Algorithm 2

in MAB problems is of order O
⇣P

s 6=sg,1
log T
�s,1

⌘
, which recovers the main order of the regret upper

bound of TS for MAB problems [3].

Comparison with [22] Though Lin et al. [22] also study greedy regret, the results are not directly
comparable in general since the setting studied in [22] is not a CMAB setting. We find that the
PMC problem under a bar graph in these two settings can be equivalent, where a bar graph is a
special bipartite graph with each left node’s outdegree being 1 (indegree being 0) and each right
node’s indegree being 1 (outdegree being 0). In this case, our greedy regret upper bound is of order
O(m log T/�2) and theirs is O(mK log T/�2). So ours is O(K) better than theirs. Even in this
case, their algorithm needs to estimate O(m · 2m) parameters, while Algorithm 2 is more efficient
and only needs to estimate O(m) parameters.

The definition of the marginal reward gap Recall that the Greedy oracle provides approximate
solutions for problems whose expected reward satisfies monotonicity and submodularity on the
action set. Formally, the submodularity means for any action S ✓ T and unit s /2 T , there is
r(S [{s} , µ) � r(S, µ) � r(T [{s} , µ) � r(T, µ), which characterizes the phenomenon of
diminishing returns. One may concern that in these problems, due to the submodularity, the marginal
reward gap �s,k for larger k may become much smaller and the main order of the upper bound thus
blows up. We clarify that the submodularity cannot imply the relationships among marginal reward
gaps �s,k for different k 2 [K]. The problem instance in Figure 1 satisfying submodularity [16]
indicates that the marginal reward gap �s,k does not necessarily decrease with the increase of k.

6.2 Proof Sketch

In this section, we briefly introduce the proof idea of Theorem 2. At any step k 2 [K], for any unit
s /2 Sg,k, the selection of s in action St may force the Greedy oracle to choose a worse action in
subsequential steps and make CTS suffer constant regret. A sufficient condition for generating zero
greedy regret in round t is that each unit st,k selected in step k is actually sg,k for any k 2 [K]. Thus
to bound the cumulative greedy regret, we sequentially analyze whether sg,k is appropriately selected
at each step k.

Recall that under the framework of the CTS algorithm, the Greedy oracle sequentially selects st,k
for k 2 [K] based on ✓t sampled from posterior distributions in round t. Focusing on step k = 1,
to ensure st,1 = sg,1, the algorithm needs to guarantee the accurate estimations ✓t,s for any unit
s 2 U such that r({s} , ✓t) < r(Sg,1, ✓t), 8s 6= sg,1, where ✓t,s is the projection of ✓t on unit s. We
first assume sg,1 is already estimated well. Then based on this assumption, when all of the other
units s 6= sg,1 have been explored O(log T/�2

s,1) times and thus estimated accurately, sg,1 would
be selected at the first step with high probability. But if after any other unit s 6= sg,1 has already
been estimated well, sg,1 is still not selected appropriately, we can conclude that the estimations
for sg,1 are not accurate enough. In this case, the Beta posterior for sg,1 tends to be uniformly
distributed. When CTS sample ✓t,sg,1 from its Beta posterior, with constant probability there would
be r(Sg,1, ✓t) > r({s} , µ) ⇡ r({s} , ✓t) for any unit s 6= sg,1. Thus after some rounds, sg,1 would
be selected for enough times and also estimated accurately. In the following rounds, sg,1 would
be selected appropriately at the first step with high probability. Above all, the expected number of
misselections at the first step can be bounded.

The above analysis can apply to other cases when k = 2, 3, . . . ,K. Based on the correct selections
in the first k � 1 steps, the misselection of st,k also comes from the bad estimations for both sg,k

and other units s /2 Sg,k. To distinguish r(Sg,k�1 [{s} , ✓t) from r(Sg,k, ✓t), those units need to be
explored at least O(log T/�2

s,k) times.

According to the above analysis, for each unit s 6= sg,1, we define the exploration price as

L(s) = O

max

k:s/2Sg,k

log T

�2
s,k

!
. (8)

To avoid being incorrectly selected at some step k, each unit s /2 Sg,k needs to be explored for at
least L(s) times. The sum of L(s) over all units s 6= sg,1 leads to the main order of the regret upper
bound in Theorem 2.

9

6.3 Extension to Multiple-solution Case

We can also extend the analysis of the regret upper bound to the case where multiple solutions may be
returned by Greedy with input µ, or equivalently the optimal unit in each step k (Line 4 in Algorithm
1) may not be unique. Let

�K =

(
{s1, s2, . . . , sK} : s1 2 argmax

s
r({s} , µ), . . . , sK 2 argmax

s/2{s1,...,sK�1}
r({s1, . . . , s} , µ)

)

be the set of all actions that are possibly returned by the Greedy oracle when the input is µ. Here we
do not care how Greedy breaks the tie at each step and regard this process as a black box. In order
to take into account the worst case where Greedy always returns a solution with minimum reward
compared to other possible solutions, we define Sg 2 argminS2�K

r(S, µ) as one of Greedy’s
possible solutions with the minimum expected reward and consider the cumulative greedy regret
defined in Eq (2).

The regret analysis of Algorithm 2 in this case is similar to the proof of Theorem 2. A sufficient
condition for generating zero regret in round t is that the selected action St falls into the set �K . Thus
to bound the cumulative greedy regret, we sequentially analyze whether the unit st,k selected in each
step k is an optimal unit conditioned on the previously selected units St,k�1. For completeness, we
include the regret upper bound as well as the detailed proof for this case in Appendix E.

7 Conclusion

In this paper, we aim to answer the question of whether the convergence analysis of TS can be
extended beyond exact oracles in the CMAB area. Taking the common offline (approximation)
Greedy oracle as an example, we derive the hardness analysis of CTS for CMAB problems based on
a constructed CMAB problem instance. When using CTS with Greedy oracle to solve this problem,
we find that the algorithm needs to explore at least ⌦(log T/�2) rounds to distinguish suboptimal
units from the optimal unit at some step. However, at least constant regret needs to be paid for each
exploration round. The mismatch between the gap to be distinguished and the actually paid regret
forces the algorithm to pay the cumulative greedy regret of order ⌦(log T/�2). We also provide an
almost matching problem-dependent regret upper bound for the CTS algorithm with Greedy oracle
to solve CMAB problems. The upper bound is tight on the constructed problem instance only up to
some constant factors and also recovers the main order of TS when solving MAB problems.

An interesting future direction is to extend the current CMAB framework to the case with proba-
bilistically triggered arms (CMAB-T). The CMAB-T framework can model the OIM problem on
general social networks. As shown in [21], using UCB-type algorithms to solve such a problem
may face great challenges on the computation efficiency. This problem is expected to be avoided
by TS-type algorithms since TS would sample candidate parameters to escape the computation of
complicated optimization problems. However, the current proof idea based on each selection step of
the Greedy oracle (proof of Lemma 1) cannot directly apply to this setting as different units may
probabilistically trigger some common base arms. New proof techniques are required to derive the
theoretical guarantee of the TS algorithm with the Greedy oracle in this framework.

10

Acknowledgement

The corresponding author Shuai Li is supported by National Natural Science Foundation of China
(62006151, 62076161). This work is sponsored by Shanghai Sailing Program.

References
[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas,

graphs, and mathematical tables. 1964.

[2] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit
problem. In Proceedings of the 25th Annual Conference on Learning Theory, pages 1–26, 2012.

[3] Shipra Agrawal and Navin Goyal. Further optimal regret bounds for thompson sampling. In
Proceedings of the 16th International Conference on Artificial Intelligence and Statistics, pages
99–107, 2013.

[4] Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Minimax policies for combinatorial
prediction games. In Proceedings of the 24th Annual Conference on Learning Theory, pages
107–132, 2011.

[5] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2):235–256, 2002.

[6] Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework
and applications. In Proceedings of the 30th International Conference on Machine Learning,
pages 151–159, 2013.

[7] Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. Combinatorial multi-armed bandit and
its extension to probabilistically triggered arms. The Journal of Machine Learning Research,
pages 1746–1778, 2016.

[8] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations

research, 4(3):233–235, 1979.

[9] Richard Combes, Sadegh Talebi, Alexandre Proutière, and Marc Lelarge. Combinatorial bandits
revisited. In Advances in Neural Information Processing Systems, pages 2116–2124, 2015.

[10] Victor Gabillon, Branislav Kveton, Zheng Wen, Brian Eriksson, and S Muthukrishnan. Adaptive
submodular maximization in bandit setting. In Advances in Neural Information Processing

Systems, pages 2697–2705, 2013.

[11] Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. Combinatorial network optimization with
unknown variables: Multi-armed bandits with linear rewards and individual observations.
IEEE/ACM Transactions on Networking, 20(5):1466–1478, 2012.

[12] Dorota Głowacka. Bandit algorithms in information retrieval. Now Publishers, 2019.

[13] Dorota Głowacka. Bandit algorithms in recommender systems. In Proceedings of the 13th ACM

Conference on Recommender Systems, pages 574–575, 2019.

[14] Alihan Huyuk and Cem Tekin. Analysis of thompson sampling for combinatorial multi-
armed bandit with probabilistically triggered arms. In Proceedings of the 22nd International

Conference on Artificial Intelligence and Statistics, pages 1322–1330, 2019.

[15] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: an asymptotically
optimal finite-time analysis. In Proceedings of the 23rd international conference on Algorithmic

Learning Theory, pages 199–213, 2012.

[16] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the 9th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 137–146, 2003.

11

[17] Junpei Komiyama, Junya Honda, and Hiroshi Nakagawa. Optimal regret analysis of thompson
sampling in stochastic multi-armed bandit problem with multiple plays. In Proceedings of

the 32nd International Conference on International Conference on Machine Learning, pages
1152–1161, 2015.

[18] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

[19] Branislav Kveton, Zheng Wen, Azin Ashkan, Hoda Eydgahi, and Brian Eriksson. Matroid
bandits: fast combinatorial optimization with learning. In Proceedings of the 30th Conference

on Uncertainty in Artificial Intelligence, pages 420–429, 2014.

[20] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[21] Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, and Wei Chen. Online influence maximization
under linear threshold model. In Advances in Neural Information Processing Systems, 2020.

[22] Tian Lin, Jian Li, and Wei Chen. Stochastic online greedy learning with semi-bandit feedbacks.
In Advances in Neural Information Processing Systems, pages 352–360, 2015.

[23] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions—i. Mathematical programming, 14(1):265–294,
1978.

[24] Pierre Perrault, Etienne Boursier, Vianney Perchet, and Michal Valko. Statistical efficiency
of thompson sampling for combinatorial semi-bandits. In Advances in Neural Information

Processing Systems, 2020.

[25] R. C. Prim. Shortest connection networks and some generalizations. The Bell System Technical

Journal, 36(6):1389–1401, 1957.

[26] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial
on thompson sampling. Foundations and Trends R� in Machine Learning, 11(1):1–96, 2018.

[27] Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular
functions. In Advances Neural Information Processing Systems, pages 1577–1584, 2008.

[28] William R Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[29] Qinshi Wang and Wei Chen. Improving regret bounds for combinatorial semi-bandits with
probabilistically triggered arms and its applications. In Advances in Neural Information

Processing Systems, pages 1161–1171, 2017.

[30] Siwei Wang and Wei Chen. Thompson sampling for combinatorial semi-bandits. In Proceedings

of the 35th International Conference on International Conference on Machine Learning, pages
5114–5122, 2018. https://arxiv.org/abs/1803.04623.

[31] Zheng Wen, Branislav Kveton, and Azin Ashkan. Efficient learning in large-scale combinatorial
semi-bandits. In Proceedings of the 32nd International Conference on International Conference

on Machine Learning, pages 1113–1122, 2015.

[32] Zheng Wen, Branislav Kveton, Michal Valko, and Sharan Vaswani. Online influence maxi-
mization under independent cascade model with semi-bandit feedback. In Advances in Neural

Information Processing Systems, pages 1–24, 2017.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Please see Abstract and Section 1.

12

(b) Did you describe the limitations of your work? [Yes] Please see the future work part in
Section 7.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This
work mainly focuses on the online learning theory, which does not have any potential
negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Please see

Section 3.
(b) Did you include complete proofs of all theoretical results? [Yes] Please see all sections

in Appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	Setting
	Algorithm
	Lower Bound
	Upper Bound
	Discussions
	Proof Sketch
	Extension to Multiple-solution Case

	Conclusion
	Notations
	Proof of Theorem 1
	Proof of Theorem 2
	Technical Lemmas

	Analysis of CTS with Gaussian Priors and Greedy Oracle
	Regret Analysis for the Case of Multiple Greedy Solutions under
	Technical Lemmas

