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Abstract

Machine learning has shown recent promise in advancing001
toxicologic pathology image analysis during non-clinical002
safety assessment stages of drug development. However,003
there exist notable challenges towards implementing these004
models in real-world scenarios, where datasets are se-005
quentially acquired over extended periods across weeks or006
months in an Investigational New Drug study. A particu-007
lar issue that arises in this process is the need for contin-008
uous adaptation to new data classes relevant to new tissue009
types being scanned, or new animal models being incorpo-010
rated, and so on. Data retention is often hindered by privacy011
concerns, legal constraints, and storage limitations. Fur-012
thermore, existing deep networks are prone to catastrophic013
forgetting when trained on new tasks, resulting in a sub-014
stantial loss of previously acquired knowledge. Therefore,015
there is an urgent need for algorithms that are resilient to016
forgetting and capable of generalizing to new data without017
the necessity of retaining large volumes of past examples or018
datasets. To address these challenges, we introduce a novel019
replay methodology that leverages generative models, aug-020
mented by a knowledge regularization approach utilizing021
attention embeddings from prior tasks. Our method inte-022
grates attention-based regularization, which prioritizes the023
relative spatial importance of features, with generative la-024
tent replay. This synergistic approach enables the model025
to retain and reinforce critical information from previous026
tasks while adapting to new data. We empirically demon-027
strate the superior continual learning performance of our028
method in non-stationary data environments, as evidenced029
by its application to a representative toxicologic pathology030
image analysis task.031

1. Introduction032

A key component of non-clinical safety evaluations in phar-033
maceutical drug discovery pertains to analysis of tissue034
morphologies in animal models subsequent to administra-035

tion of the candidate drug in an Investigational New Drug 036
(IND) validation process. Toxicologic pathology is a spe- 037
cialized field that integrates the study of toxicology (the 038
science of poisons) and pathology (the study of disease) to 039
understand and evaluate the effects of various agents on liv- 040
ing organisms. This discipline is crucial in the regulatory 041
safety assessment process for predicting human and animal 042
responses to drugs, chemicals, and therapeutic devices, in- 043
cluding their potential to cause adverse physiological and 044
functional effects. Toxicologic pathologists analyze tissue- 045
level alterations to distinguish between incidental and test 046
article-related findings, crucial for accurate safety assess- 047
ments in drug discovery. They identify alterations at the 048
cellular, subcellular, and molecular levels, considering fac- 049
tors such as aging, genetics, and nutrition. This process 050
integrates toxicology and pathology to evaluate drug safety 051
and efficacy, predict human toxicities, and identify safety 052
liabilities early in development. Approximately 70% of the 053
toxicity-related attrition occurs in the preclinical phase [5], 054
making it essential to establish a preclinical safety margin 055
for viable drug candidates from the perspective of regula- 056
tory guidance and the downstream feasibility of the candi- 057
date. 058

The advent of deep learning has catalyzed significant ad- 059
vancements in toxicologic pathology research, enabling un- 060
precedented analytical capabilities. However, the integra- 061
tion of these technological advances into clinical practice is 062
fraught with substantial hurdles, including the continuous 063
accumulation of large datasets over time and formidable 064
constraints related to privacy, storage, and data quality, 065
which impede the preservation of historical data. Contem- 066
porary transfer learning techniques, despite their potential, 067
are often plagued by the phenomenon of catastrophic for- 068
getting [4]. This occurs when a model’s performance on 069
initially learned tasks dramatically declines as it is exposed 070
to new tasks, thereby compromising its reliability in deploy- 071
ment environments and hindering its ability to adapt con- 072
tinually to evolving data streams. Moreover, the storage 073
of even meticulously curated subsets of past samples is of- 074
ten untenable due to stringent privacy regulations, logistical 075
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impediments, and ethical considerations [14]. These chal-076
lenges underscore the need for innovative approaches that077
enable machine learning systems to learn continuously from078
streaming data while preserving and leveraging knowledge079
acquired from previous tasks.080

In this paper, we introduce a novel, storage-free ap-081
proach to continual learning in the analysis of animal histol-082
ogy images sourced from prior drug safety studies, designed083
to overcome the aforementioned challenges. Our method-084
ology synergistically integrates two core components. We085
employ a generative model to facilitate incremental-time re-086
play from past data distributions. This model learns a la-087
tent space representation of previously encountered data,088
enabling the sampling of synthetic data points that are in-089
terspersed with new data during the learning of subsequent090
tasks. This strategy obviates the need for explicit stor-091
age of past data, thereby circumventing privacy and stor-092
age constraints. Concurrently, we preserve a snapshot of093
the most salient regions from prior classes by constructing094
class-specific attention embeddings. These embeddings en-095
capsulate the most informative spatial features pertinent to096
the model’s decision-making process for a given task at time097
point t. During the learning of new tasks at time t+1, these098
attention embeddings are employed for regularization, en-099
suring that the model retains and leverages the most critical100
aspects of previously acquired knowledge.101

This dual framework introduces a novel pathway for102
integrating the most relevant regions into the model’s103
decision-making process when learning representations for104
tasks at a given time point. The representations thus formed105
encapsulate a snapshot of previously encountered classes,106
which is presented to the model alongside sampled data107
points from the latent space learned via the generative108
model. While knowledge distillation methods have been109
exploited in prior continual learning systems, the augmen-110
tation of learned representations of prior tasks using the111
most contextually important subsets of inputs, or a latent-112
space replay for past data distributions, remains largely un-113
explored. Drawing inspiration from the notion that inter-114
pretability techniques encode the subsets of the image space115
most influential in model inference, we posit that prior-116
itizing and amplifying the preservation of such informa-117
tive spatial features during incremental learning sessions on118
novel classes or data can significantly enhance the model’s119
ability to retain the most vital subsets of previously seen120
data. Our approach is underpinned by a robust theoret-121
ical framework and is meticulously evaluated on a range122
of digital pathology datasets, encompassing both histology123
images and toxicologic pathology data. Through exten-124
sive experimentation, we demonstrate that our method not125
only mitigates catastrophic forgetting but also enhances the126
model’s adaptability, robustness, and generalization capa-127
bilities in dynamic real-world clinical settings. Further-128

more, we show that our approach outperforms state-of-the- 129
art continual learning techniques, thereby establishing its 130
potential as a vital tool for toxicologic pathology and be- 131
yond. 132

In the subsequent sections, we delve into the intricacies 133
of our proposed methodology, elucidate the experimental 134
setup, present a comprehensive analysis of the results, and 135
discuss the broader implications of our work. We con- 136
clude by highlighting avenues for future research, empha- 137
sizing the potential of our approach to revolutionize con- 138
tinual learning in data-constrained environments. Our ap- 139
proach is found to improve continual learning for health- 140
care, ensuring that models can adapt to new data without 141
compromising the knowledge gained from previous tasks, 142
thus maintaining high performance and reliability. 143

2. Prior Work 144

While digital pathology in the clinical realm has seen a 145
surge of research seeking to integrate various machine 146
learning approaches towards enhanced understanding of 147
pathology imaging data, such approaches in preclinical 148
safety evaluations have been relative nascent. There has 149
been an emerging interest in evaluating deep learning for 150
regulatory toxicologic pathology applications [22], with 151
some recent studies documenting the automated identifica- 152
tion of histopathologic lesions in whole slide images (WSIs) 153
from regulatory toxicity studies, utilizing pixel-based man- 154
ual annotations. Kuklyte et al. [11] employed various con- 155
volutional neural network (CNN) architectures to detect and 156
quantify histopathologic lesions in toxicity studies. Their 157
methodology involved training algorithms with pixel-based 158
annotations of a substantial number of histopathologic le- 159
sions across five different organs. A comparable approach 160
was adopted to identify proliferative lesions in the positive 161
control group of Tg-RasH2 mouse carcinogenicity studies 162
[16]. Shimazaki et al. [20] developed a customized U-Net 163
architecture trained with pixel-based annotations of seven 164
distinct liver lesions. In contrast, Zehnder et al. utilized 165
an unsupervised approach [23], leveraging generative ad- 166
versarial networks (GANs) and autoencoder architectures 167
trained on normal liver samples to minimize the anomaly 168
score for normal data. Consequently, exposing the model to 169
abnormal data results in reconstruction and discrimination 170
failures, leading to elevated anomaly scores. With the emer- 171
gence of foundation models for digital pathology, exten- 172
sions towards self-supervised representation learning per- 173
tinent to regulatory toxicity evaluations have been proposed 174
for the discovery of morphomolecular signatures [7], and 175
also for more general applications towards building down- 176
stream tasks for preclinical safety assessments [6]. 177

Efforts to address steep declines in model validation per- 178
formance with non-stationary learning schedules has seen 179
the emergence of methods: a) based on preserving weights 180
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like EWC [10], or freezing parameter subsets and progres-181
sively expanding for new data[17], which causes compu-182
tational and memory overheads; b) knowledge-based regu-183
larization using distillation [13] for providing a glimpse of184
learnt representations from past tasks to enable the model185
finetuning during incremental adaptation to account for new186
and old tasks’ knowledge; c) rehearsal methods that use187
generative models to recreate batches of previously seen188
data points [8]. Consolidation methods have struggled to189
scale to complex real-world datasets in clinical imaging [8],190
and replay approaches often require a storage of original in-191
puts from past classes or tasks in a buffer for batch-mixing192
during new task learning. Recently, buffer-free methods193
have been explored in medical imaging [15, 21], primarily194
using stored features or separate replay modules, sharing of195
which causes regulatory complexities in hospital systems196
[21]. At the time of writing, we came across a recent work197
proposing a latent replay regime similar to ours[12], but198
uses non-public datasets and focuses mainly on domain in-199
cremental learning without considering the role of attention200
in regularization of future learning by prioritising salient201
features of past classes.202

Most explainability methods image analysis seek to203
identify subregions of images most influential to specific204
model decisions. Usage of these ideas in continual learn-205
ing regimes was explored in [2], but was limited to using206
image-level combinations for creating past subsets. We pro-207
pose to directly use information from explainability work-208
flows to enhance learnt task representations towards enforc-209
ing stronger distillation-driven regularization. To accom-210
plish a buffer-free replay of samples pertinent to prior tasks,211
we retain a latent representation of the classes from past212
tasks to allow incremental time sampling using a genera-213
tive model as an alternative to replay using retained origi-214
nal samples from past learning stages. To our knowledge,215
the question of continual learning for toxicologic pathology216
evaluations in drug discovery has not been explored despite217
the clear existence of data acquisition regimes that are tem-218
porally spaced in the non-clinical stages of pharmaceutical219
development. This is crucial from an image analysis stand-220
point as the deployment of machine learning for the preclin-221
ical discovery workflows requires adaptation of algorithms222
over the weekly or monthly arrivals of data, as well as from223
different tissue types and animal models in the course of an224
Investigational New Drug evaluation.225

Our work proposes a continual learning methodology for226
the development of robust and adaptable models for toxico-227
logic pathology image analysis, with implications for im-228
proving the accuracy of safety assessments and enhancing229
the understanding of tissue responses to pharmacological,230
chemical, or environmental agents. By mitigating catas-231
trophic forgetting and enhancing the model’s ability to gen-232
eralize to new data, our approach has the potential to fa-233

ciliate more widespread adoption of deep learning based 234
image analysis for regulatory toxicologica pathology work- 235
flows, which would help accelerate non-clinical safety eval- 236
uation stages in preclinical development and enable expe- 237
dited timelines for drug development in pharmaceutical set- 238
tings. 239

3. Methodology 240

3.1. Datasets 241

We utilized the toxicologic pathology imaging dataset cu- 242
rated by Serna et al. [19] to validate our continual learning 243
protocol, as it effectively models the practical requirement 244
of multi-task tissue recognition over extended periods using 245
the multi-magnification whole slide image (WSI) dataset 246
contained therein. The dataset comprises nine preclinical 247
rat studies with tissue processing conducted at three distinct 248
contract research organization (CRO) laboratories. All stud- 249
ies were performed on Wistar Han rats and Sprague-Dawley 250
rats. The original acquisition protocols, adhering to Swiss 251
regulations and approved by the Cantonal Ethical Commit- 252
tee for Animal Research, ensured ethical compliance and 253
rigorous experimental standards. The WSIs in this study 254
encompass organs both with and without histopathologi- 255
cal findings, and include scans from Hamamatsu (ndpi) and 256
Aperio (svs) scanners. The studies were intentionally se- 257
lected to incorporate significant staining variations, thereby 258
facilitating the development and validation of algorithms ro- 259
bust to real-world settings where diverse scanning, staining, 260
and storage protocols may be encountered during investiga- 261
tional new drug studies. The associated metadata for the or- 262
gans included in each WSI were derived from internal pro- 263
tocols specifying the grouping of different organs per WSI. 264

The resulting dataset comprises N=320 whole slide im- 265
ages, featuring the following organs: liver, kidney, thyroid 266
gland, parathyroid gland, urinary bladder, salivary gland, 267
mandibular lymph node, and others (negative class). The 268
liver and kidney were prioritized due to their critical rele- 269
vance in preclinical safety assessments. Additionally, or- 270
gans frequently embedded with them, such as submandibu- 271
lar lymph nodes and salivary glands (embedded with liver), 272
and urinary bladder (embedded with kidneys), were in- 273
cluded. The thyroid and parathyroid glands were also incor- 274
porated to evaluate the detection of small, closely situated 275
organs. To enhance the positive selection of desired organs, 276
various confounding organs from nine organ sets were in- 277
cluded as a negative class for model training (class “other”): 278
adrenal glands, aorta, and ureters; lung and heart; stom- 279
ach and intestine; skeletal muscle, sciatic nerve, mammary 280
gland, and skin; prostate and seminal vesicles; testis and 281
epididymis; eye and harderian glands; bone with bone mar- 282
row; and spinal cord. This comprehensive approach ensures 283
a robust and versatile dataset for advancing regulatory tox- 284
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Figure 1. An abridged, representative toxicologic pathology and image analysis workflow in a pharmaceutical drug development context,
with digitisation and deep learning approaches built in for preclinical safety evaluations.

icologic pathology image analysis. It is noted that the con-285
founding tissue presence with the main tissues under study286
are not treated as separate independent classes in the contin-287
ual learning settings proposed, since the simulation of such288
a setup requires us to have multiple tasks that are tempo-289
rally spaced, but the tasks themselves need to include well-290
defined classes being studied per task. This is a shortcoming291
of incremental task learning protocols for continual adapta-292
tion to new data streams in toxicologic pathology studies,293
and can be alleviated potentially through compute-efficient294
adaptations of online learning or similar approaches, which295
would be a non-trivial exercise given the significant mem-296
ory and computational overheads involved in processing of297
large whole slide images typically involved in such pathol-298
ogy studies and the requirement for several sequential anal-299
ysis steps to be conducted over a large number of animal300
models per study.301

3.2. Problem Definition302

We explore a setting where a model is to be trained in an
M -stage protocol, where every stage is a classification task
with classes as Xt = {Xt,i}Qt

i=1, t ∈ [1,M ], with each X
being a class representing its samples (i.e., xt ∈ Xt), and
Qt being the number of classes at stage t. At stage t, the
classifier from previous stage t − 1 is incrementally opti-
mized over the classes at current stage. The objective of the
learning is that, given a small threshold ϵ, after the t stage
optimization, the reductions in the inference accuracies over
validation sets from all previous stages D = {D1, .., Dt−1}

meet the following criteria:

∀d ∈ D, d < ϵ

We design this as an incremental learning experiment with 303
four classes in the initial training stage and four subsequent 304
classes in the incremental stage (M = 2, Q1 = Q2 = 4). 305
This study is modelled as a sequential learning task over sets 306
of classes as above, with a proportion of classes being learnt 307
as base classes during an initial training stage. Next, the re- 308
maining classes are learnt as incremental classes in a sub- 309
sequent learning stage, leading to a multistage learning sys- 310
tem over a temporal interval. The base classes are the liver 311
(LI), kidney (KD), Thyroid gland (TG) and urinary gland 312
(UG). The incrementally learnt classes include parathyroid 313
gland (PG), salivary gland (SL), mandibular lymph nodes 314
(MLN) and Other classes (BG). The former are used to op- 315
timize for the initial task (task 1) and the latter are used 316
to adapt the model trained over base classes for the incre- 317
mental task (task 2), thus simulating a continual learning 318
scenario. In the first stage, where task 1 is performed, a 319
Resnet-50 derived model is used to conduct a classification 320
task for the initial set of classes. The result of the first stage 321
using a cross-entropy loss is p = softmax(z) ∈ RQ1 , where 322
z is the set of logits. The classification loss in the first stage 323
is defined as: 324

LC(y, p) = −
Q1∑
i=1

yi · log(pi) (1) 325
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Figure 2. Our overall pipeline for computing attention embeddings and creating the GMM library for the latent replay operations during
incremental learning over subsequent dataset arrivals corresponding to the new tissue classes.

where pi is the predicted probabilities of classes in the ini-326
tial task, yi is the corresponding ground truth represented as327
a one-hot encoding.328

3.3. Latent Replay329

Many continual learning (CL) approaches employ a replay330
buffer to selectively retain samples from previous tasks,331
which are then mixed with data from current classes in a332
process known as rehearsal. This technique is designed333
to mitigate catastrophic forgetting, where the model loses334
the ability to perform well on previously learned tasks as it335
adapts to new ones. However, storing actual samples from336
past tasks can be problematic due to memory constraints337
and potential privacy concerns, particularly in sensitive do-338
mains such as medical imaging. To address these chal-339
lenges, we propose a novel latent replay method that per-340
forms rehearsal without the need to store any actual sam-341
ples from previous tasks. Instead, our approach involves342
sampling from a learned latent space that represents past343
classes. This is achieved by constructing Gaussian Mixture344
Models (GMMs) for each class during each training session.345
The GMMs capture the statistical distribution of the data,346
allowing us to generate synthetic samples that closely re-347
semble the original data without retaining any of the actual348
samples. In the context of deep learning models, the initial349
layers are typically responsible for extracting low-level fea-350
tures from the input data, such as edges, textures, and sim-351
ple patterns. These features are generally applicable across352
a wide range of tasks and datasets. Through pre-training353
on initial datasets, the weights of these early layers stabi-354
lize and can be effectively repurposed for various applica-355

tions, including complex tasks like medical image process- 356
ing. For instance, Srivastava et al. [21] demonstrated the 357
efficacy of transfer learning in medical imaging, where pre- 358
trained models were fine-tuned for specific medical tasks, 359
achieving state-of-the-art performance. Conversely, the lay- 360
ers closer to the classification head of the model are tasked 361
with extracting high-level, discriminative features that are 362
specific to the classes and tasks at hand. These layers re- 363
quire fine-tuning to optimize the model’s accuracy for the 364
target task. To leverage this hierarchical feature extraction 365
process, we propose to extract fine-grained features from an 366
intermediate layer of the model, which we designate as the 367
replay layer. 368

Our method involves training generators using the ac- 369
tivations from this replay layer. Instead of storing raw 370
histopathology samples in a buffer memory, we only store 371
the generators. This approach significantly reduces mem- 372
ory requirements and mitigates potential privacy violations, 373
as the generators do not contain any actual patient data. 374
During the initial training phase for each class, we retain 375
the layer preceding the last batch normalization layer of a 376
ResNet50 backbone as the averaged representation of every 377
class per task stage. This averaged representation serves as 378
a compact and informative summary of the class-specific 379
features, which can be used to generate synthetic samples 380
for rehearsal during subsequent training sessions. By do- 381
ing so, we ensure that the model maintains its performance 382
on previously learned tasks while adapting to new ones, all 383
without the need to store any actual samples from past tasks. 384
A GMM is constructed using these representations per class 385
for a task session, similar to the protocol proposed by [12]. 386
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After each task session, we learn session-specific GMMs387
per class using aggregated features obtained during train-388
ing from the ResNet50 backbone. For the tth session and389
ith class, the generator includes K multivariate Gaussians390
g1,g2, ...,gK in the mixture with probability density func-391
tion (PDF) as:392

p(ft) =

K∑
k=1

wk · N (ft|µk,Σk) (2)393

where µk = 1
Nt

∑Nt

n=1 f
n
t and Σk = 1

Nt

∑Nt

n=1(f
n
t −394

µk)(f
n
t − µk)

T Here, Nt is the number of samples in ses-395
sion t for a class, N (ft|µk,Σk) is the PDF of the kth com-396
ponent with mean µk and covariance Σk. The value of397
K ∈ [1,Kmax] is estimated using Bayesian Information Cri-398
terion approaches in cluster analysis [3]. For each K, pa-399
rameters of the mixture are computed by an EM algorithm400
[1]. Finally, the fitted model Bi

t enables generation of ran-401
dom samples for session i and class t. Over sequential task402
sessions, a library of session-specific GMMs are accumu-403
lated to allow the creation of representations from any past404
classes and sessions or task stages for replay.405

3.4. Attention Guidance Regularization406

The optimization of neural architectures has predominantly407
relied on the empirical risk minimization framework facil-408
itated by gradient-based weight adaptation, conceptualiz-409
ing the learning dynamics as analogous to the hill-climbing410
problem. In this paradigm, the reduction of loss, defined411
as the discrepancy between actual and predicted labels, is412
akin to descending a gradient slope [10]. Theoretically, this413
process can be interpreted as the movement of gradient val-414
ues within a conservative field, suggesting that the transition415
from a loss value L1 to a lower minimum L2 is independent416
of the specific parameter changes during the process and is417
solely contingent on the initial and final parameter sets [4].418

In practical terms, this implies that during transfer learn-419
ing across new distributions, there is no inherent regulariza-420
tion governing how parameter configurations may adapt to421
optimize for the new task. Conversely, it is computation-422
ally infeasible to control shifts in the majority of the net-423
work’s parameters. A potential compromise involves prior-424
itizing input features that exert a disproportionate influence425
on model outcomes, thereby indirectly enforcing regular-426
ization on the most critical model parameters. This insight427
forms the basis of our approach, which incorporates atten-428
tion embeddings into the continual learning process.429

While the computation of such embeddings and their430
integration into sequential learning processes has been431
sparsely explored in the literature, we investigated a rela-432
tively straightforward paradigm. In this approach, we assess433
the suitability of attention embeddings as auxiliary branches434
appended to the standard pre-softmax logits retained from435

previous learning instances. 436
While the generative latent replay stage allows sampling 437

from a latent space relying only on the mean and variance of 438
the learnt representations, the incorporation of a notion of 439
feature importance towards relaying the most salient parts 440
of a data distribution is crucial towards enabling past tasks’ 441
regularization during incremental training on new classes. 442
This is achieved by ‘attentive distillation’, where we re- 443
inforce past task embeddings for distillations with task- 444
relevant attention vectors. We use class activation map- 445
ping [18] for interpreting the model outputs in terms of a 446
heatmap of most relevant regions of the images used for 447
prediction. Such a step is carried out for the top-25% of 448
the instances in classes in the initial task, in the interest of 449
a trade-off between the expressiveness of the model repre- 450
sentation and real-time memory constraints. For individual 451
images per class in the training data subset, we use the at- 452
tention module to compute corresponding activation maps. 453

The class activation heatmaps so obtained are then vec- 454
torized corresponding to the image representations of such 455
instances as projected in the penultimate fully-connected 456
layers of the model. The attention embeddings are then 457
cast into the dimensionality of the image representation log- 458
its obtained in pre-softmax layers using average-pooling 459
operations, and a dot product operation is performed be- 460
tween the attention vectors and relevant image embeddings. 461
This enables boosting of the most salient subsets of the 462
image space in the final representation. Finally, the class- 463
specific embeddings that reflect both the image representa- 464
tion and corresponding activations are obtained for usage in 465
the distillation-based regularization steps. Considering the 466
initial task logits prior to the superimposition of the atten- 467
tion embeddings as wold, the inclusion of the attention em- 468
bedding aold results in the overall old class logits as zold, 469
which are weighted and used in the distillation objective for 470
incremental new tasks. In subsequent sessions, a distilla- 471
tion term is used in the objective to allow inclusion of past 472
knowledge in the optimization (y′ are final class probabili- 473
ties for new task classes prior to softmax operation): 474

Ldistillation(zold, y
′) = −

N∑
i=1

softmax(
zold

T
) · log(softmax(

y′i
T
)) (3) 475

Logits and predictions are scaled with a temperature hy- 476
perparameter T in a softening process. It helps reduce the 477
disparity between the class label with the highest confidence 478
score in the probability vector with respect to other class la- 479
bels and helps better reflect inter-class relationships at the 480
representation learning stage. Considering the overall logit 481
vector for old classes, after weighting as zold, class-specific 482
logits are weighted to obtain a sum of class-weighted logits 483
as: 484

zold =

K1∑
i=1

ui · zi (4) 485

486
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Table 1. Accuracy (%) for task 1/stage 1 classes, after task 1 is trained for, and after task 2 is incrementally added in stage 2. The difference
in accuracies on validation sets of task 1 classes represents forgetting on task 1 classes due to task 2 addition. AM - Attention Modulated,
wKD - weighted Knowledge Distillation, FT- simple Finetuning, ’+’ indicates combined usage

Stage Stage 1 (for task 1, T1) Stage 2 (for task 2, T2) ∆Acc
T2-T1LI KD TG UG Avg(T1) LI KD TG UG Avg(T2)

Our(AM+wKD) 82.45 80.77 78.36 79.44 80.26 78.65 76.84 74.22 76.91 76.66 3.61
Our(AM+KD) 82.45 80.77 78.36 79.44 80.26 73.62 72.46 70.81 70.21 71.77 8.49
Our (KD) 82.45 80.77 78.36 79.44 80.26 66.37 61.78 59.34 62.51 62.50 17.76
Our (AM+FT) 82.45 80.77 78.36 79.44 80.26 65.03 58.14 56.77 60.31 60.06 20.20
Ours (FT) 82.45 80.77 78.36 79.44 80.26 45.11 37.95 36.53 40.91 40.12 40.14
LwF.ewc [9] 82.45 80.77 78.36 79.44 80.26 61.75 58.37 53.82 57.26 57.80 22.46
Priv [21] 82.45 80.77 78.36 79.44 80.26 65.47 63.04 56.71 61.07 61.57 18.69
PCL [12] 82.45 80.77 78.36 79.44 80.26 65.29 63.78 56.32 60.02 61.35 18.91
MT [15] 82.45 80.77 78.36 79.44 80.26 65.98 63.17 58.43 62.33 62.48 17.78
DGR [21] 82.45 80.77 78.36 79.44 80.26 63.18 59.82 56.74 60.12 59.97 20.29

The logits from individual classes zi, i ∈ [1, Q1] are cal-487
culated by averaging pre-softmax probability values (after488
sigmoid activation) for examples from each of Q1 classes.489
The weights (u1, u2, . . . , uQ1

) are computed as inverse490
of class-specific accuracy on validation sets of the initial491
classes. The idea is to boost logits from classes which are492
inherently difficult to learn for the model (lower the class-493
specific accuracy, higher the class weight). This reduces494
the disparity among classes in their contribution towards the495
overall sessional representation vector to be saved as an im-496
print of stage 1 learning. Overall, the net incremental task497
training objective for learning beyond initial sessions then498
becomes (γ = 0.5):499

L = γLcrossent + (1− γ)Ldistillation (5)500

4. Experiments and Discussions501

The experiment is split into two sequential tasks, labeled502
task 1 and task 2. The initial task proceeds with a cross-503
entropy loss and task 2, the incremental task utilizes a joint504
loss with a cross-entropy and a distillation term with a505
ResNet-50 feature extractor. The pre-softmax layer gener-506
ates probability scores by a sigmoid operation. An 80:20507
split is used for train:test split on datasets. Input images508
are resized to 224x224 and a batch size of 25 is used with509
a learning rate of 0.0001 and Adam optimization. task 1510
models are trained for 250 epochs on a (N,label) set for all511
N frames. In task 2, models are trained for 250 epochs512
on (N’,label,logit) tuples, where the logit is the attention-513
modulated version of logits obtained in pre-softmax layers514
after the initial task. We set T = 5.0 after grid search in515
T ∈ [1, 10]. Two 32 GB Nvidia V100 GPUs, 512MB RAM516
were used for training using the ResNet-50 base models517
(˜24.8 million parameters, implemented in Python 3.7.1 and518
Tensorflow 2.0), with an average training time of 102s per519
epoch observed in both tasks. In terms of the computational520

landscape, the primary usage of floating point operations 521
stems from the model training procedures over the datasets 522
from each of the tasks involved. The computation of the at- 523
tention maps, and the generation of the class-level sampled 524
embeddings from the GMMs in the library defined per task 525
session, account for a minority of the computational budget. 526

4.1. Results 527

To design the incremental learning setup in the context of 528
toxicologic pathology, Task 2 is initiated with four incre- 529
mental classes following the completion of Task 1, where 530
four initial classes were trained. The top 25% of sam- 531
ples per class are processed through the attention modules 532
to generate attention maps. These maps are then vector- 533
ized, pooled, and transformed into embeddings with di- 534
mensions comparable to those obtained for corresponding 535
images processed through the model. The dot product be- 536
tween image embeddings and their corresponding attention 537
embeddings is aggregated over selected images per class to 538
derive class-level embeddings. These embeddings are inte- 539
grated into the net representation used for regularization in 540
the distillation loss terms during the second stage of training 541
for Task 2. 542

The inclusion of the most informative regions from the 543
top quartile of correct predictions in prior tasks, along 544
with sampling from the generators in the Gaussian Mix- 545
ture Model (GMM) library constructed for the initial data, 546
ensures robust task and class-level knowledge availability 547
during incremental training. Notably, Task 1 classes exhibit 548
consistent accuracies across compared baselines and pro- 549
posed methods, as identical backbones are employed in a 550
pure classification task for the initial stage. 551

In Table 1, evidence of catastrophic forgetting is ob- 552
served, marked by a sharp decline in Task 1 validation ac- 553
curacy following sequential optimization over Task 2 data 554
(∆Acc), when no intervention is applied to mitigate it. 555
The implementation of our combined latent replay with 556
attention-informed embeddings to preserve prior knowl- 557
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edge effectively mitigates such steep performance declines.558
This is evident when comparing relative reductions in ac-559
curacy (∆Acc) for methods that employ end-stage distilla-560
tion alone. The dynamic interplay of attention-modulated561
weighted distillation with intermediate concatenations of562
generative representations significantly reduces accuracy563
declines, as measured by validation performance on Task564
1 holdout sets before and after training on new task classes.565
We adapted recent buffer-free methods in clinical datasets566
to compare our joint approach of generative replay and at-567
tentive distillation in our class-incremental setting. Our568
method outperforms strategies such as feature retention and569
generative replay alone, indicating a non-trivial influence570
of enhancing the visibility of the most salient image-level571
features for past tasks’ logit vectors used for regularization572
in incremental training phases for the new classes’ data.573
We evaluated knowledge regularization settings involving574
class-weighted and non-weighted configurations, including575
versions that utilize attention embeddings, with the former576
demonstrating performance gains across attention and re-577
play configurations.578

Interestingly, measures to address past task forgetting579
also improve classification accuracies on new classes (Fig.580
3), likely due to enhanced regularization causing forward581
transfer effects which are potentially a result of more op-582
timal initializations of the parameter spaces during the ini-583
tial optimization task. Overall, incorporating insights from584
spatial feature importance over past inputs, along with gen-585
erative latent rehearsal, shows clear gains in the model’s586
learning regime, enforcing generalization when optimized587
on new tasks’ data in toxicologic pathology applications.588

Figure 3. Model performance on new classes after incremental
adaptation showing positive forward transfer effects.

5. Conclusion589

We present novel methods for continual learning for regu-590
latory safety applications in drug discovery, using a public591
toxicologic pathology dataset. Using attention embeddings592
with a generative replay of samples in concordance with593
previous data distributions is found to enhance the represen-594
tative power of the most salient input subsets without requir-595
ing storage of actual prior instances over time, and shown to596

mitigate forgetting during cross-distillation based continual 597
adaptations on incremental tasks. This work represents an 598
early effort towards examining the question of tissue-level 599
image analysis in drug development contexts through the 600
lens of continual learning as a means towards performing 601
efficient machine learning based drug safety assessments in 602
the light of temporally-spaced arrivals of datasets during the 603
toxicologic pathology process. In future, we will adapt our 604
methods on systems reliant on transformer architectures and 605
similar approaches, study computational complexities of 606
scaling attention and generation modules on larger datasets 607
and any resultant scaling properties that might become evi- 608
dent in the process, and integrate multimodal data relevant 609
to histopathological evaluations in clinical and preclinical 610
pathology workflows, including but not limited to, multi- 611
omics data and associated metadata that may contain salient 612
information about diagnostic states under study. 613
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[19] Citlalli Gámez Serna, Fernando Romero-Palomo, Filippo 698
Arcadu, Jürgen Funk, Vanessa Schumacher, and Andrew 699
Janowczyk. Mmo-net (multi-magnification organ network): 700
A use case for organ identification using multiple magnifica- 701
tions in preclinical pathology studies. Journal of Pathology 702
Informatics, 13:100126, 2022. 3 703

[20] Taishi Shimazaki, Ameya Deshpande, Anindya Hajra, Tijo 704
Thomas, Kyotaka Muta, Naohito Yamada, Yuzo Yasui, and 705
Toshiyuki Shoda. Deep learning-based image-analysis al- 706
gorithm for classification and quantification of multiple 707
histopathological lesions in rat liver. Journal of Toxicologic 708
Pathology, 35(2):135–147, 2022. 2 709

[21] S. Srivastava, M. Yaqub, K. Nandakumar, Z. Ge, and D. Ma- 710
hapatra. Continual domain incremental learning for chest x- 711
ray classification in low-resource clinical settings. In MIC- 712
CAI Workshop on Domain Adaptation and Representation 713
Transfer, pages 226–238, 2021. 3, 5, 7 714

[22] Oliver C Turner, Famke Aeffner, Dinesh S Bangari, Wanda 715
High, Brian Knight, Tom Forest, Brieuc Cossic, Lauren E 716
Himmel, Daniel G Rudmann, Bhupinder Bawa, et al. Society 717
of toxicologic pathology digital pathology and image analy- 718
sis special interest group article*: opinion on the application 719
of artificial intelligence and machine learning to digital tox- 720
icologic pathology. Toxicologic Pathology, 48(2):277–294, 721
2020. 2 722

[23] Philip Zehnder, Jeffrey Feng, Reina N Fuji, Ruth Sullivan, 723
and Fangyao Hu. Multiscale generative model using regu- 724
larized skip-connections and perceptual loss for anomaly de- 725
tection in toxicologic histopathology. Journal of Pathology 726
Informatics, 13:100102, 2022. 2 727

9


	Introduction
	Prior Work
	Methodology
	Datasets
	Problem Definition
	Latent Replay
	Attention Guidance Regularization

	Experiments and Discussions
	Results

	Conclusion

