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ABSTRACT

Language model post-training has enhanced instruction-following and perfor-
mance on many downstream tasks, but also comes with an often-overlooked cost
on tasks with many possible valid answers. On many tasks such as creative writ-
ing, synthetic data generation, or steering to diverse preferences, models must
cover an entire distribution of outputs, rather than a single correct answer. We
characterize three desiderata for conditional distributional modeling: in-context
steerability, valid output space coverage, and distributional alignment, and docu-
ment across three model families how current post-training can reduce these prop-
erties. In particular, we disambiguate between two kinds of in-context learning:
ICL for eliciting existing underlying knowledge or capabilities, and in-context
steerability, where a model must use in-context information to override its priors
and steer to a novel data generating distribution. To better evaluate and improve
these desiderata, we introduce SPECTRUM SUITE, a large-scale resource compiled
from >40 data sources and spanning >90 tasks requiring models to steer to and
match diverse distributions ranging from varied human preferences to numerical
distributions and more. We find that while current post-training techniques elicit
underlying capabilities and knowledge, they hurt models’ ability to flexibly steer
in-context. To mitigate these issues, we propose SPECTRUM TUNING, a post-
training method using SPECTRUM SUITE to improve steerability and distribu-
tional coverage. We find that SPECTRUM TUNING often improves over pretrained
and typical instruction-tuned models, enhancing steerability, spanning more of the
output space, and improving distributional alignment on held-out datasets.

1 INTRODUCTION

Current post-training recipes (Rafailov et al., 2024; Tie et al., 2025; Wang et al., 2025) have made
language models (LLMs) easier to use via instruction-following (Ouyang et al., 2022), improved
safety, and led to performance increases across many tasks, especially those with a single correct
answer (e.g., mathematical reasoning, programming, chat preferences, etc.). However, the effect of
current post-training on tasks requiring steerability and distribution matching is less studied. We
show that current post-training can also negatively impact three related desiderata for conditional
distributional modeling: in-context steerability, output coverage, and distributional alignment.

In this paper, we contribute: 1) an outline of these related desiderata, including the novel concept of
in-context steerability; 2) SPECTRUM SUITE, a dataset for evaluating and enhancing these desider-
ata; 3) a novel finding that while current post-training helps at many objective tasks, it can hurt
LLMs’ in-context steerability; and 4) empirical evidence from our and related work that current
post-training hurts output coverage and distributional alignment. To alleviate these weaknesses, we
contribute 5) SPECTRUM TUNING, a post-training technique utilizing SPECTRUM SUITE to improve
these desiderata, and 6) show that our method enhances these properties compared to pretrained and
current instruction-tuned models. To our knowledge, our method is the first to improve distributional
alignment over pretrained models.
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2 DESIDERATA FOR CONDITIONAL DISTRIBUTIONAL MODELING

Before the age of post-training, in-context learning was necessary to reliably get pretrained language
models to perform tasks such as sentiment classification, translation, entailment, summarization, etc.
(Brown et al., 2020; Dong et al., 2024). Let us call this use of in-context learning capability elic-
itation, as its main purpose is to elicit some latent knowledge or capability of a language model
(Min et al., 2022b). As post-training methods have increased LLMs’ instruction-following capabil-
ity, zero-shot instruct models have even surpassed their few-shot pretrained counterparts (Wei et al.,
2022; Sanh et al., 2022; Ouyang et al., 2022), obviating the need for in-context capability elicitation.

In-Context Steerability. In contrast to knowledge elicitation, many tasks require steering, or mod-
ifying output probabilities, based on novel information at inference time. For example, if a user
wants an LLM to write an email in their style, it needs to either see examples of their writing or have
an in-depth description of their style, and be able to effectively leverage this information to change
its output distribution. This is distinct from pure capability/knowledge elicitation on unambiguous
tasks, where the model can place a sharp prior on the “correct” answer. Instead, the model must 1)
maintain a prior over many possible generation functions and 2) maximally leverage in-context in-
formation in a well-calibrated way to form a posterior. Let us term this ability in-context steerability.
For example, this steerability is necessary for predicting a particular user’s preferences or estimating
an unknown numerical distribution from draws. In-context steerability can also be seen as implicit
Bayesian reasoning (Qiu et al., 2025) or as a subset of in-context learning/instruction-following tasks
where the model must utilize novel information in-context.

Valid Output Coverage. Many prompts entail multiple valid responses. For example, in creative
story-writing, hypothesis proposal, and synthetic data generation, the number of possible valid out-
puts can be thousands or more. While in some cases it may be sufficient to produce one reasonable
output, more value may lie in producing many outputs so that a user can select the most interesting
story, test all possible hypotheses, or otherwise span the entire task space. In the words of Wilson
& Izmailov (2022), “we want the support of the model to be large so that we can represent any
hypothesis we believe to be possible, even if it is unlikely.”

Distributional Alignment. Sometimes, a user may not want a particular output, but rather a distri-
bution over outputs (Meister et al., 2024). For example, Sorensen et al. (2024b) propose distribu-
tional pluralism for modeling or representing a population by matching their opinion distribution. In
addition, distributional alignment can simulate stochastic processes and estimate uncertainty. Dis-
tinct from valid output coverage, distributional alignment includes a target probability mass function.

3 DATASET AND METHOD

3.1 SPECTRUM SUITE
Output Type Percentage (seqs)

Multiple Choice 47.2%

Free-Text 41.6%

Numeric 11.2%

Split # Seqs
Train 38.8k

Test 11.3k

Figure 1: Task composition from SPECTRUM SUITE. Individual
modeling tasks (data from the same person) are shaded.

To measure and elicit these
properties, we compile datasets
that either 1) exhibit natural
person-to-person variation (e.g.,
opinion modeling, chat prefer-
ences, subjective NLP tasks);
2) involve a large collection
of interchangeable texts drawn
from a particular distribution
(e.g., synthetic data, poems in a
particular format); 3) are i.i.d.
draws from a random distribu-
tion (e.g., draws from a normal
distribution); or 4) involve rea-
soning under uncertainty. We draw from >40 data sources in order to make >90 separate tasks.
We unify each task data into a common format including: description: a natural language de-
scription of the task, input: any given information for a particular data instance, and output:
the output sequence which we would like the model to learn. Some tasks require an input associ-
ated with each output (e.g., the question asked in a survey is needed to contextualize the answer),
while other tasks consist of only outputs. In particular, we focus on individual modeling data on
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tasks with human variation. We do so for a couple of reasons: many use cases involve steering to a
particular individual at inference time; and these data sources are very rich as modeling each person
involves a different data generation task. These data comprise 50.1k distinct sequences consisting
of a description followed by multiple inputs/outputs. For summary statistics and task
breakdown of SPECTRUM SUITE, see Figure 1. For information on all data sources, see App. C.
We split SPECTRUM SUITE into non-overlapping train and test tasks, with held-out test tasks drawn
from separate data sources to ensure generality.

3.2 SPECTRUM TUNING

Let Ti ∈ T be some task (or, data generation process) that we want to model. Let Yi be the output
space to approximate, Xi be any known covariates (optional input), and Zi be a latent context for
the task (optional description). Ti : Xi, Zi → P (Yi) maps to a probability distribution over
potential outputs. This is the classic meta-learning formulation (Hospedales et al., 2020), except that
the target is a distribution over P (Y i) instead of a single yi. Because the task Ti may be difficult to
directly observe, we may instead wish to learn it from data (e.g., Monte Carlo samples).

Algorithm 1 SPECTRUM TUNING

Inputs: Pretrained LM mθ; train task distribution T train; to-
kenizer t(·) with template for description/input/output;
terminal token ⟨END⟩; loss ignore index idrop; descrip-
tion drop probability pdrop (default 0.2).

Output: Finetuned parameters θ′
1: for each task T ∼ T train do ▷ Sample a task
2: Sample description z and support set S =
{(xj , yj)}nj=1.

3: Randomly permute indices π of {1, . . . , n}.
4: if Uniform(0, 1) > pdrop then ▷ Keep description
5: seq← t(z)∥t(xπ[0])∥t(yπ[0])∥⟨END⟩
6: labels ← idrop(t(z)∥t(xπ[0]))∥t(yπ[0])∥⟨END⟩

▷ Loss on first output, no loss on description/output
7: else ▷ Description dropout w/ prob. pdrop
8: seq← t(xπ[0])∥t(yπ[0])∥⟨END⟩
9: labels← idrop(t(xπ[0])∥t(yπ[0]))∥⟨END⟩) ▷ No

loss on first output if description is missing
10: end if
11: for j in π[1 :] do ▷ Add remaining
12: seq← seq ∥ t(xj) ∥ t(yj) ∥ ⟨END⟩
13: labels← labels ∥ idrop(t(xj)) ∥ t(yj) ∥ ⟨END⟩ ▷

Loss on output, no loss on input
14: end for
15: L← CrossEntropy(mθ(seq), labels)
16: θ ← θ − η∇θL
17: end for ▷ Train for one epoch
18: return θ′ ← θ

The method (Algorithm 1) is simple:
for a collection of tasks, tokenize the
task context/description zi followed
by (randomly ordered) in-context ex-
amples xij , yij , then perform super-
vised finetuning calculating cross-
entropy loss only on the output to-
kens. Because cross-entropy loss on
Monte Carlo samples from a distribu-
tion encourages a well-calibrated es-
timate of the underlying distribution
in the underfit regime (≤1 epoch, Ji
et al. 2021) the optimal model solu-
tion is to approximate the true under-
lying distribution P (Yi).

To build intuition on how SPECTRUM
TUNING supports the desiderata, let
us consider a few cases. When a
model predicts the first output, it
must rely only on the description, and
shift its probabilities to outputs fit-
ting the description. Because there
can be many possible valid outputs
and the model has no information
about which output to expect, it is in-
centivized to cover the entire possi-
ble distribution of outputs. Addition-
ally, if the distribution over valid out-
puts is skewed in some predictable
way (e.g., an opinion distribution),
the model is further incentivized to match said distribution. On subsequent outputs, the model must
steer its output distribution, utilizing in-context examples to update its beliefs in a well-calibrated
way. Additionally, SPECTRUM SUITE tasks allow the model to utilize assumptions which don’t
apply to the pretraining distribution: predictions are invariant to output ordering,1 the underlying
generative process remains constant, and the model can concentrate all probability mass on valid
outputs instead of on other possible text continuations. In many ways, SPECTRUM TUNING is simi-
lar to supervised fine-tuning on instruction data (Zhang et al., 2025c), as loss is calculated only on an
output. However, it differs in several important respects: 1) many identically-distributed outputs are
included in-context, encouraging meta-learning; 2) training on data that is distributional in nature;
3) sole focus on distribution fitting instead of chat-style data; and 4) inputs are optional, unlike chat
user messages which are always required.

1i.e. “exchangeable” in Bayesian analysis (Kokolakis, 2010), as the posterior is invariant to sample order.
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3.3 IMPLEMENTATION DETAILS

We train models from three families using SPECTRUM TUNING on the train tasks from SPEC-
TRUM SUITE: gemma-3-12b (Team et al., 2025), Llama-3.1-8B (Grattafiori et al., 2024),
and Qwen3-14B (Yang et al., 2025). We refer to pretrained or base models as PT mod-
els and instruction-tuned post-trained models as IT models, and utilize each family’s provided
PT/IT model as baselines. To match our meta-learning task setup (as opposed to chat), we
adapt each model’s chat template to use the description/input/output roles instead of
system/user/assistant (cf. Fig. A2). For SPECTRUM TUNING, we initialize with the PT
model weights, except for the uninitialized (un/)embedding weights for the two or three special
format tokens which we initialize from the IT model. See App. F for more training details.

4 IN-CONTEXT STEERABILITY
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Figure 2: Change in accuracy on SPECTRUM SUITE
from the pretrained to instruction-tuned model. Cur-
rent instruction-tuning hurts in-context steerability.

We use SPECTRUM SUITE to evaluate mod-
els’ ability to steer to varied generation
tasks. We measure k-shot learning by 1)
fitting the description and examples from
a single task into context, 2) measuring
the loss (negative log-likelihood) of each
output conditioned on the prior exam-
ples under the model mθ: NLLmθ

(yk) =
− log pmθ

(yk|z, y0, · · · , yk−1). Addition-
ally, for multiple-choice datasets, we cal-
culate the accuracy of the output: whether
the greedily-decoded model response re-
sults in the correct answer. For each task,
we choose Kmax such that it maximizes the
total number of examples that we can eval-
uate when we restrict to only sequences
with at least Kmax examples that fit into
a 1024-token context-window. In order to
maximize sample efficiency and evaluate a
model’s ability to steer for varied k, we re-
port the average loss and accuracy for k-
shot learning for k ∈ {1, · · · ,Kmax}.
First, we ask: how does current instruction-
tuning impact in-context steerability?
For the PT models, we use the same
prompt template for all models, with
Description:/Input:/Output:
delineated by newlines. To ensure we are
leveraging maximum performance from
the IT models, we test each IT model’s
performance on both the PT prompt and two chat-style ICL prompts, and report results for the best
performing prompt template (see App. L). We evaluate in-context steerability on all of SPECTRUM
SUITE for the PT/IT models. We include the entire suite of results in Appendix J, and highlight the
principal results below.

Current instruction-tuning hurts in-context steerability. First, let’s examine the change in accu-
racy for the IT models. We report accuracy for all categorical data (multiple-choice + small support
numeric distributions) in Figure 2. Out of 76 model family/task comparisons, instruction-tuning
significantly decreases accuracy in 35 cases, doesn’t significantly affect accuracy in 33 cases, and
significantly increases accuracy in only 7 cases. Additionally, two of the seven comparisons where
instruction-tuning helped were on predicting an individual’s chatbot preferences—which is adjacent
to precisely what instruct models are optimized for (chat). The performance drop is even more stark
on loss: for Gemma and Qwen, loss is higher on 50/50 comparisons, while on Llama loss is worse
in 11 cases, the same in 11 cases, and better in 3 cases. Loss results are similar on the free-text
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SPECTRUM SUITE datasets: out of 144 comparisons, IT loss is worse than PT loss in 117 cases, tied
in 25 cases, and better only in 2 cases.
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Figure 3: Current instruction-tuning gener-
ally helps on capability benchmarks.

ICL for general capability elicitation is not de-
graded by instruction-tuning. To disambiguate in-
context steerability from general capability elicita-
tion, we also run the exact same experiment with
eight general capability task datasets (Fig. 3). In
contrast with the SPECTRUM SUITE datasets, accu-
racy increases in 8 of 24 cases, is the same in 13
cases, and decreases in 2 cases.

All in all, we believe that this characterizes a differ-
ence in behavior for IT models—while they main-
tain the ability to utilize in-context demonstrations
for general capability elicitation, they seem to strug-
gle to adapt at tasks that require heavy in-context
steerability. Limited prior work has suggested that
instruction-tuned models sometimes perform better
without in-context examples (Asai et al., 2024; Lam-
bert et al., 2025); however, to our knowledge, ours is
the first work to empirically characterize this in-context learning performance degradation for in-
context steerability tasks.

What explains this difference? While we leave an in-depth exploration of this phenomenon to future
work, we hypothesize that it could be due to some combination of 1) instruction-tuning inducing very
strong priors that are difficult to override even with in-context demonstrations, 2) over-optimization
on tasks with a single ground truth, or 3) overfitting to particular benchmarks.

4.1 SPECTRUM TUNING AND IN-CONTEXT STEERABILITY ON HELD-OUT TASKS

We have characterized that current instruction-tuned models struggle at in-context steerability, but
how does our method compare? We evaluate Spectrum-Tuned (ST) models on SPECTRUM SUITE
test tasks and compare them to their PT and IT counterparts (Table 1). Note that the test task data
sources have no overlap with the train split, requiring generalization.

gemma-3-12b Qwen3-14B Llama-3.1-8B

Multiple-Choice Datasets Metric ST (ours) PT IT ST PT IT ST PT IT

habermas individual categorical (Kmax=2, N=1000) Loss 2.47 2.50 10.5 1.97 2.62 9.10 1.99 2.58 2.74
Acc 23.8 24.4 22.4 23.5 20.3 22.0 20.8 20.2 19.0

wvs individual (Kmax=21, N=1000) Loss 1.36 1.50 4.10 1.48 1.74 4.35 1.42 1.57 1.76
Acc 42.6 42.1 40.4 44.3 41.1 40.6 41.7 41.6 39.4

numbergame individual (Kmax=25, N=592) Loss .639 .705 1.80 .621 .697 1.28 .618 .864 .770
Acc 70.2 64.3 65.6 70.6 69.8 71.0 69.1 62.5 67.5

chatbotarena individual prefs (Kmax=3, N=725) Loss 1.43 1.62 4.94 1.34 1.47 4.39 1.39 1.76 1.77
Acc 38.6 38.0 44.6 51.4 52.0 46.3 38.9 36.0 39.5

flight (Kmax=9, N=200) Loss 1.09 1.32 4.06 1.08 1.29 2.92 1.12 1.45 1.41
Acc 39.8 41.2 40.6 43.7 43.7 40.8 33.4 42.0 40.2

Free-Text Datasets Metric ST (ours) PT IT ST PT IT ST PT IT

novacomet hypothesis (Kmax=11, N=155) Loss 104 104 135 106 106 129 107 106 112
novacomet premise (Kmax=55, N=51) Loss 27.7 28.0 35.5 28.1 27.5 38.0 27.8 27.7 28.6
habermas question (Kmax=29, N=30) Loss 23.8 23.1 41.4 23.8 24.0 31.8 23.8 23.8 24.8
habermas opinions (Kmax=2, N=186) Loss 930 928 1070 948 949 1070 943 944 991
habermas individual (Kmax=2, N=1000) Loss 164 164 203 168 168 210 166 167 176
numbergame perc (Kmax=24, N=182) Loss 4.23 4.22 6.68 4.22 4.24 5.61 4.24 4.43 4.41
globaloqa (Kmax=8, N=231) Loss 14.0 14.4 21.5 14.0 14.4 20.9 14.2 14.7 15.6
chatbotarena prompts (Kmax=3, N=988) Loss 70.2 69.4 117 69.1 68.2 97.8 72.0 72.0 77.6
chatbotarena assistant (Kmax=5, N=716) Loss 127 125 259 124 124 169 134 133 149
chemistry esol (Kmax=8, N=59) Loss 8.94 8.37 12.9 8.07 8.47 11.8 8.28 8.51 8.55
chemistry oxidative (Kmax=9, N=101) Loss 7.57 7.58 11.6 7.64 7.84 10.2 7.64 7.72 7.84

Table 1: In-context steerability on held-out SPECTRUM SUITE-Test. SPECTRUM TUNING generally
matches or improves upon the pretrained model performance. Best values (and ties, failing to find a
significant difference at α = .05) are bolded.
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Expected Calibration Error (ECE, ↓) gemma-3-12b Qwen3-14B Llama-3.1-8B

Multiple-Choice Dataset ST (ours) PT IT ST (ours) PT IT ST (ours) PT IT

habermas individual categorical 0.116 0.069 0.239 0.032 0.05 0.198 0.037 0.084 0.055
wvs individual 0.006 0.015 0.223 0.017 0.02 0.191 0.005 0.012 0.024
numbergame individual 0.015 0.029 0.163 0.027 0.026 0.108 0.028 0.024 0.017
chatbotarena individual prefs 0.020 0.041 0.194 0.048 0.046 0.189 0.046 0.075 0.049
flight 0.011 0.040 0.271 0.038 0.035 0.228 0.046 0.070 0.038

Table 2: Calibration on SPECTRUM SUITE-Test, binning label token probabilities every decile for
expected calibration error (ECE =

∑B
b=1

nb

N |acc(b)−conf(b)|, where B = 10 bins, nb is the number
of samples in bin b, acc(b) is the accuracy in bin b, and conf(b) is the average confidence in bin b).
SPECTRUM TUNING (ST) usually results in the best calibration (9/15 cases).

SPECTRUM TUNING usually matches, and sometimes improves upon, PT steerability. Out of
15 multiple-choice (MC) loss comparisons, ST ties with PT models in one case and achieves lower
loss compared to PT models in 14 cases. On MC accuracy, ST matches/improves/worsens on 10/3/2
comparisons. On the free-text datasets, ST matches PT in 28 cases, is worse in 1 case and is better
in 4 cases. In most cases, SPECTRUM TUNING matches (but does not beat) the very strong baseline
of a pretrained model at in-context steerability, but does improve performance more often than it
hurts performance.

Models trained with SPECTRUM TUNING most often have the best calibration. We report cali-
bration in Table 2. In 9/15 cases, the ST models have the best calibration. Additionally, the Gemma
and Qwen IT models have worse calibration in 10/10 cases than their pretrained counterparts, show-
ing another side effect of heavy instruction-tuning (cf. Tian et al. 2023; OpenAI et al. 2024).

5 SPANNING THE OUTPUT SPACE (OR; DIVERSITY VS. VALIDITY)

To measure how each model trades off validity and diversity, we create 22 generation tasks for
which there can be many valid values and we can programmatically verify correctness (1correct).
Given a prompt, we generate 100 completions o1, · · · , o100 (temperature = 1 here and throughout)
from each model, and report the following statistics: the percentage of outputs which are valid
(
∑100

i=1 1correct(oi)), the percentage of valid generations that are unique ( |dedup({oi:1correct(oi)=1})|∑100
i=1 1correct(oi)

), and
the number of distinct valid generations (or, yield: |dedup({oi : 1correct(oi) = 1})|). We perform
deduplication with exact string matching. Yield is a particularly important metric for settings such
as synthetic data generation, ideation, or creative writing where you want to cover a space as much
as possible within some requirements. Additionally, we evaluate each model under three settings:
zero-shot with a task description, three-shot with no task description, and three-shot with a task
description (also see App. M). Results can be found in Fig 4. Tasks are the same across models.

Instruction-tuned models have high validity but low diversity. IT models produce valid outputs
> 70% of the time, even in the zero-shot setting. However, this comes at the price of diversity,
resulting in fewer than 30 unique valid generations in few-shot settings. Yield is even lower in the
zero-shot setting—Qwen and Gemma average yields of only 5–6, while Llama averages only 24.

Pretrained models are more diverse, but rely on few-shot examples for validity. Pretrained
models do not suffer from the same mode collapse, and consistently have higher diversity (> 40%
of valid generations are unique). However, this comes at a trade-off with validity, where their gener-
ations are universally less valid than the IT models’. The pretrained models also rely heavily on the
few-shot examples to elicit valid generations, achieving a validity of < 20% in the zero-shot case.
However, in the few-shot cases, they have a significantly higher yield than the instruction-tuned
models due to their higher coverage of the space.

SPECTRUM TUNING offers a Pareto improvement on diversity and validity, matching or ex-
ceeding pretraining yield. In eight of nine model/setting comparisons, SPECTRUM TUNING offers
either a Pareto or strict improvement over the PT/IT models on validity/diversity. In all eight settings
with a Pareto improvement, this also leads to a higher yield—i.e., for a fixed generation budget,
SPECTRUM TUNING generates the most unique valid generations.

SPECTRUM TUNING achieves much higher yield in the zero-shot setting. Focusing in on the
zero-shot setting, SPECTRUM TUNING particularly shines. The IT models are able to follow the
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Open-Ended Chat PromptsVerifiable Generation Tasks

Figure 4: Diversity vs. Validity. Left: Results on 22 verifiable tasks across 100 generations. Right:
Human-annotated validity results on two sets of 100 open-ended prompt sets (Gemma). SPECTRUM
TUNING generally offers a Pareto improvement on diversity-validity over PT/IT models. In partic-
ular, SPECTRUM TUNING increases the yield (# of unique usable generations) in the zero-shot case
and on NoveltyBench-Curated. Error bars are 95% confidence intervals over the SEM, and asterisks
(∗) show the best in family performance (within 95% confidence).

description and produce a valid output, but have very low diversity (∼30% for Llama, ∼5% for
Qwen and Gemma). Meanwhile, the pretrained models are unable to consistently generate valid
outputs (< 20% validity). ST models, however, are able to follow the instructions and produce
valid outputs > 60% of the time while maintaining 50% diversity. This leads to much higher yields
compared to PT and IT models (Gemma: 40.5 vs. 6.2; Qwen: 32.2 vs. 10.1, Llama: 37.4 vs. 24.0).

SPECTRUM TUNING’s gains hold across temperature values. One way to trade-off validity for
diversity for a given model is sweeping temperature. To ensure that our results hold across temper-
atures, we ran the same experiment with T = [10, 5, 2, 1.5, 1, .9, .7, .5]. We found that SPECTRUM
TUNING A) still expanded the Pareto frontier and B) gave the highest possible yield when choosing
an optimal temperature (see App. D for more details).

5.1 HUMAN EVAL

We extend the verifiable task experiments with a human evaluation on open-ended chat prompts:
NoveltyBench-Curated (100 prompts, Zhang et al. 2025d) and Infinite-Chats-Eval (100 prompts,
yet to be published, obtained from the authors). However, SPECTRUM TUNING does not opti-
mize for chat capabilities, but rather for fitting to description/input/output. In order
to elicit chat capabilities in-context, we try two approaches: zero-shot chat, where we prompt
with description: You are a helpful AI assistant, input: <prompt>;
and few-shot chat, where we utilize the same description and four examples of prompt inputs and
chat responses as outputs. Additionally, we use a similar prompt for the pretrained model as a base-
line, with the description, a prefix for the prompt of User:, and an output prefix of Assistant:,
zero-shot and with the same four few-shot examples (similar to URIAL, Lin et al. 2023). More
details in App. M.

For each prompt, we generate four completions from the model. We recruit annotators to judge
whether a given generation is a valid response to the prompt. Each generation is annotated by four
annotators, and we count the generation as valid if three of four annotators marked it as valid.
Overall, annotators had a 73% pairwise agreement rate. Due to the cost of the evaluation, we
only annotate generations for one model family, gemma-3-12b. For additional evaluation de-
tails, see App. H. For calculating diversity, we follow NoveltyBench’s approach and utilize their
deberta-v3-large-based model for assigning two generations as duplicates. We report the
Pairwise Uniqueness %, or the probability that any two valid generations are not considered dupli-
cates, along with yield. Results are in Tab. 4.

Few-shot pretrained models improve yield over instruct models. While lagging in validity, pre-
trained models produce much more diverse responses than their instruct counterparts, and are able to
achieve >40% validity from few-shot chat examples, improving yield and offering a strong baseline.

SPECTRUM TUNING offers a Pareto improvement on diversity/validity and improves yield
over baselines on NoveltyBench-Curated. On NoveltyBench-Curated, our method offers higher
validity than the pretrained model, while offering substantially higher diversity than the instruct
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model. This improvement results in a statistically significant increase in yield over the baselines.
On Infinite-Chats, the pretrained models and our models do not perform significantly differently,
covering roughly the same space on the Pareto frontier and on yield. While disambiguating the
reason for the differing performance may require further investigation, we do note that many of
the Infinite-Chat eval prompts have specific requirements, such as “In five words”, “In a couple of
paragraphs,” etc., which our models often fail to adhere to. In contrast, the NoveltyBench-Curated
prompts are far more open-ended. It may be that our model performs best at generating shorter
outputs, and future work may be needed to enhance precise instruction-following while maintaining
diversity. However, on both datasets, the instruct model has significantly lower yield and diversity.

6 DISTRIBUTIONAL ALIGNMENT AND PLURALISM

Next, we evaluate our system’s ability to steer to match a target distribution. We utilize seven held-
out datasets 2 mainly focusing on human response distributions and a synthetic random draws task.
We prompt models zero-shot with a description of the setting and a target question. We then calculate
the probability of each possible valid output, normalize, and calculate Jensen-Shannon divergence
from the target distribution. We also measure coverage, or the total probability mass on the set of
valid answers. Results are in Table 3, and takeaways are as follows. (More details in App. N.)

Distributional Alignment: JS-Divergence ↓ gemma-3-12b Qwen3-14B Llama-3.1-8B

Dataset ST (ours) PT IT ST (ours) PT IT ST (ours) PT IT

Machine Personality Inventory (N=120, |Y |=6) 0.083 0.126 0.347 0.100 0.093 0.405 0.063 0.087 0.131
Rotten Tomatoes (N=1000, |Y |=2) 0.032 0.032 0.134 0.028 0.028 0.122 0.035 0.035 0.086
NYTimes Books (N=940, |Y |=4) 0.051 0.063 0.328 0.070 0.088 0.344 0.046 0.061 0.247
GlobalOQA (N=1000, |Y |≤6) 0.077 0.094 0.270 0.090 0.088 0.274 0.091 0.108 0.163
Urn (N=1000, |Y |≤6) 0.021 0.071 0.185 0.051 0.059 0.198 0.032 0.124 0.086
Habermas (N=658, |Y |=7) 0.149 0.147 0.436 0.123 0.127 0.434 0.151 0.155 0.242
Number Game (N=1000, |Y |=2) 0.051 0.049 0.138 0.052 0.043 0.131 0.055 0.060 0.094

Table 3: Distributional alignment results. Instruction-tuning drastically hurts distributional align-
ment. SPECTRUM TUNING generalizes to unseen tasks and improves or matches distributional
alignment compared to the pretrained model. Best result (within 95% statistical significance) in
bold. N is the number of distinct instances, |Y | is the number of possible outputs.

Instruction-tuned models have higher distributional divergence than pretrained models. In
line with prior work (Sorensen et al., 2024b), we find that instruction-tuned models show higher
distributional divergence than pretrained models on all tasks. We believe that this is in large part
due to their low-entropy, spiky distributions. In other words, for distribution matching, current
instruction-tuning categorically hurts performance compared to the pretrained model.

SPECTRUM TUNING generally improves distributional alignment over pretrained models. Out
of 21 model/dataset comparisons, SPECTRUM TUNING improves distributional alignment in 10
cases, matches PT models in 10 cases, and degrades performance in 1 case. Pretrained models are
a strong baseline—the pretraining objective entirely consists of trying to estimate a well-calibrated
distribution over the next token. To our knowledge, ours is the first method to improve distributional
alignment on unseen datasets over pretrained models.
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Distributional Alignment: Probability Mass on Valid Answer  (Zero-shot)

Figure 5: Valid answer coverage (↑).

SPECTRUM TUNING improves coverage of valid an-
swers over pretrained models and roughly matches
instruction-tuned models. For each of the datasets, there
is a limited set of valid answers. Pretrained models often
struggle to shift their probability mass based on instruc-
tions in a zero-shot manner to only cover the valid output
distribution, achieving∼ 50% coverage in our evaluation.
In contrast, SPECTRUM TUNING achieves > 90% coverage, nearly matching the instruction-tuned
model coverage (Fig 5).

2Machine Personality Inventory (Jiang et al., 2023), Rotten Tomatoes (u/Business-Platform301, 2024), NY-
Times Books (Meister et al., 2024), GlobalOQA (Durmus et al., 2023), Urn (ours, new contribution), Habermas
(Tessler et al., 2024), Number Game (Bigelow & Piantadosi, 2016; Tenenbaum, 1999).
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Ablation Components ICL Steerability Dist. Align. Valid Output Coverage

Abl. Weight Special Tokens Train on # Train Loss only MC Loss MC Acc Free-text Dist. Align. Yield - Yield - Yield - 3-shot
# Init Embedding Init SPECTRUM SUITE Seqs Outputs (Norm.) (Norm.) Loss (Norm.) JS-Div. Description 3-shot + Description

A - Default: 1) Spectrum Tuning, 2) Pretrained, and 3) Instruction-Tuned
1 PT IT ✓ 38.8k ✓ 1.00 1.00 1.00 .069 36.7 42.1 49.2
2 PT - × (PT prompt) - - 1.19 0.99 1.00 .083 5.8 37.2 44.2
3 IT IT × (IT prompt) - - 2.62 0.98 1.30 .228 11.7 21.5 20.7

B - Training method ablations: 1) Default; 4) Loss only first output (Instruct-SFT on S-Suite); 5) Loss only last output (Meta-ICL on S-Suite); 6) Loss on all tokens (S-Suite)
1 PT IT ✓ 38.8k ✓ 1.00 1.00 1.00 .069 36.7 42.1 49.2
4 PT IT ✓ 38.8k first only 1.03 1.00 1.01 .067 37.9 33.0 44.0
5 PT IT ✓ 38.8k last only 1.02 0.99 1.00 .103 17.1 35.4 39.6
6 PT IT ✓ 38.8k × 1.01 0.98 1.00 .075 33.0 40.6 47.1

C - Data ablation: 7) Train only on capability / knowledge elicitation data, 8) Train on Spectrum Suite, data size matched to capability data
7 PT IT × (capability data) 3.9k ✓ 1.03 0.99 1.02 .111 12.7 21.2 39.5
8 PT IT ✓ 3.9k ✓ 1.03 1.00 1.01 .086 21.8 35.5 40.8

D - Weight Init Ablation: Spectrum Tuning with 1) Default weight init; 9) PT init, bracket as special token embed, 10) PT init, random special token embed, 11) IT init
1 PT IT ✓ 38.8k ✓ 1.00 1.00 1.00 .069 36.7 42.1 49.2
9 PT <</>> (PT) ✓ 38.8k ✓ 1.43 1.03 1.02 .063 28.0 30.0 33.0
10 PT Random ✓ 38.8k ✓ 1.44 0.87 1.25 .079 21.0 21.0 26.4
11 IT IT ✓ 38.8k ✓ 1.08 1.02 1.05 .069 33.4 42.0 45.2

Table 4: Ablations, averaged across models and tasks. Shaded rows are default Spectrum-Tuned
results. We show averaged results for A) the default setup, B) training on SPECTRUM SUITE with
different methods, C) training on capability-focused data in place of SPECTRUM SUITE, and D)
different model weight initializations. Best result within each ablation is bolded, and second best is
underlined. ICL Steerability results are normalized to the default configuration.

7 ABLATIONS AND GENERAL CAPABILITIES

In Table 4, we ablate parts of SPECTRUM TUNING in order to further disentangle the effect of each
component. We report averaged results for all three desiderata across all models and tasks. In A), we
see the normalized data from the prior sections, illustrating Spectrum-Tuned models improvements
over base and default instruct models.

SPECTRUM SUITE’s selective loss is important for performance on all desiderata. In B), we
hold the Spectrum Tuning data constant, and ablate the training method. We compare against train-
ing on the first output only (similar to Instruct-SFT),3 training on the last output only (similar to
MetaICL, Min et al. 2022a), and calculating loss on all tokens, including description/inputs.
We find that training on the first output only causes a degradation in few-shot learning capabilities
(ICL loss, few-shot yield), and training on the last output only causes across the board degradation,
especially on zero-shot tasks (distributional alignment, description yield). Training on all tokens
(including description/input) leads to slight degradations across the board.

Training on capability-focused data only underperforms training on SPECTRUM SUITE. We
train on a subset of data in the same format as SPECTRUM SUITE, but foucsed on capability data
instead of data requiring steerability (Table 4, C). We find that including the SPECTRUM SUITE data
is important for eliciting the desiderata. Finally, we find that D) the default weight initialization
(PT model weights, IT special token embeddings) overall elicits the best performance, although
initializing the special tokens with bracket token embeddings seems to improve the multiple-choice
accuracy and distributional alignment.

While the default recipe offers strong performance, future work could i) further optimize hyper-
parameters (as we have done limited optimization),4 ii) reduce reliance on initializing the special
tokens from IT models, and iii) probe which data is most important in eliciting gains.

SPECTRUM TUNING does not harm general model capabilities. Lastly, we evaluate whether
our method affects general model capabilities. While we do not necessarily expect our method to
improve upon standard evaluations where there is a single correct answer, we want to understand
if it degrades performance compared to pretrained models. While we find that Spectrum-Tuned
models generally perform worse than instruction-tuned models at these tasks (as expected), we find

3However, we also consider this distinct from traditional instruction-tuning, as the focus is on fitting the
data generation task of the description as opposed to generating a helpful chat assistant response.

4In fact, after running the main suite of experiments, we suspected that our models were somewhat underfit.
We found that simply reducing the batch size resulted in significant gains in distributional alignment and yield
(see App. G for more details). We believe that this illustrates exciting opportunities for further optimization
and improvements to improve performance—the performance ceiling has not been hit.
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that Spectrum-Tuned models have similar performance to the pretrained models on which they are
based. In other words, we see no evidence of harm to general capabilities with SPECTRUM TUNING.
For more details, see Appendix C.5

8 RELATED WORK

Diversity, distributional alignment, and steerability. Several other works have documented di-
versity collapse in LLMs (Shumailov et al., 2023; Dohmatob et al., 2024; Yang et al., 2024; Zhang
et al., 2024a; Li et al., 2024; West & Potts, 2025), often linking it to alignment (Murthy et al.,
2024; Kirk et al., 2024a; 2023) or insufficient training data diversity (Chen et al., 2024). Potential
consequences of diversity collapse include reduced creativity, loss of minority perspectives, spread
of bias, and overall decline in model utility and trustworthiness (Anderson et al., 2024; Kapania
et al., 2024). Distributional alignment has been explored by a few prior works (Meister et al., 2024;
Durmus et al., 2023; Sorensen et al., 2024b), but literature here is far less developed. Additionally,
other works have focused on measuring steerability to system messages (Lee et al., 2024), persona
descriptions (Miehling et al., 2025; Castricato et al., 2024), and values or attributes (Sorensen et al.,
2024b; 2025). Our work builds on these directions by generalizing steerability to include any in-
context information, including examples, and evaluating on a broader swath of distributions.

Pluralistic alignment and integrating disagreement into LLMs. Many have recently challenged
the idea of a single ground truth (Aroyo et al., 2023; Basile et al., 2021; Gordon et al., 2022). Plu-
ralistic alignment (Sorensen et al., 2024b; Kirk et al., 2024b) is concerned with integrating diverse
values and perspectives directly into the alignment process. Steerability in particular is related to
user fairness and ensuring that AI systems are usable by diverse stakeholders (Alamdari et al., 2024).

Related Methods Zhang et al. (2024a) found that training on samples from diffuse distributions
helps LLMs to avoid mode collapse, and served as inspiration for some experiments. SPECTRUM
TUNING is similar in spirit, but also includes in-context samples and leverages orders of magnitude
more data. Entropy maximization in finetuning can help increase diversity (Li et al., 2025). MetaICL
(Min et al., 2022a) uses in-context examples as in our method, but focuses on NLP datasets with
a single ground truth and only trains on the last example. Centaur (Binz et al., 2024) similarly
modifies cross-entropy loss to only focus on tokens of interest, but focuses on a different data distri-
bution (cognitive-science human experiments). Some very recent works have somewhat improved
the diversity/validity Pareto frontier by adding some sort of diversity regularization to preference
optimization or RL reward (Lanchantin et al., 2025; Chung et al., 2025; Li et al., 2025). Finally,
several recent papers have found that prompting instruct models for multiple samples in-context can
help to mitigate mode collapse (Zhang et al., 2025a;b;d).

9 DISCUSSION AND CONCLUSION

We have outlined three desiderata for conditional distributional modeling with LLMs: in-context
steerability, output space coverage, and distributional alignment, and shown across three model
families that current post-training can systematically hurt these properties. These results have
implications for user steerability—e.g., when possible, pretrained models may be preferred over
instruction-tuned models when steering to a particular user in a well-calibrated way is important.5
In addition, we have introduced SPECTRUM SUITE and SPECTRUM TUNING, a resource and post-
training method for enhancing these desiderata. Models trained with SPECTRUM TUNING usually
match or exceed their pretrained counterparts at these properties—to our knowledge, ours is the
first method to improve upon pretrained models at distributional alignment or in-context steerabil-
ity. However, much work remains. Promising directions for future work include 1) exploring which
data is most important for eliciting the desiderata; 2) further characterizing why and how instruction-
tuning hurts in-context steerability; 3) more work to combine the strengths of instruction-tuned mod-
els and SPECTRUM TUNING models (e.g., Zhu et al. 2025);6 and 4) scaling SPECTRUM TUNING to
larger models and more data.

5However, access to the pretrained model is restricted in many proprietary cases. This illustrates a gap: Can
companies offer very steerable and distributionally-aligned models, while maintaining safety constraints?

6On the other hand, it is possible that top-1 chat performance and our desiderata are so fundamentally in
tension, that we may need to specialize models to either top-1 chat performance or our desiderata, and select
the appropriate model for each use case or combine strengths at inference (e.g., Zhu et al. 2025)
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ETHICS STATEMENT

In this paper, we seek to enable AI systems that can work for a variety of perspectives and estimate
human preferences and opinions in a well-calibrated manner. We believe that these are net positive
developments, allowing AI systems to work properly for more people. Additionally, well-calibrated
human preferences may be especially important as AI systems are used agentically - it will be
important that an agent have a good model of what the user wants, as opposed to a modal preference.
Calibration, where current instruction-tuned systems really struggle, can be especially important for
agents to safely act autonomously when they are (properly) very confident about a users’ preference,
and ask for direction when they are less confident.

With SPECTRUM SUITE, we perform experiments on several datasets which may include personal
information such as demographics. However, all included datasets are anonymized, we attempt to
use the data only in line with their intended use, and we do not distribute the underlying datasets in
SPECTRUM SUITE directly. Instead, we refer people interested in extending our work to the original
data sources, and provide only the code to unify the data into the description/input/output
format. Because of this, we believe that our compilation of SPECTRUM SUITE does not pose an
additional privacy risk.

REPRODUCIBILITY STATEMENT

We have attempted to ensure that every portion of the paper is reproducible, and release code con-
taining: SPECTRUM SUITE construction, including processing and pointers to hydrate each dataset;
SPECTRUM TUNING training code; and code for running all evaluations. We also release the weights
for all trained SPECTRUM TUNING models. We include additional training details on hardware and
hyperparameters used in App. F and additional experimental details in App. L, M, N. In App. O, we
show demonstrative example prompts for each test task in SPECTRUM SUITE and include example
prompts for remaining tasks in supplementary materials.
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Wüthrich. Generative social choice, 2025. URL https://arxiv.org/abs/2309.01291.

Mitchell L. Gordon, Michelle S. Lam, Joon Sung Park, Kayur Patel, Jeff Hancock, Tatsunori
Hashimoto, and Michael S. Bernstein. Jury learning: Integrating dissenting voices into machine
learning models. In CHI Conference on Human Factors in Computing Systems, CHI ’22, pp.
1–19. ACM, April 2022. doi: 10.1145/3491102.3502004. URL http://dx.doi.org/10.
1145/3491102.3502004.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hannaneh Hajishirzi.
OLMES: A standard for language model evaluations. In Luis Chiruzzo, Alan Ritter, and Lu Wang
(eds.), Findings of the Association for Computational Linguistics: NAACL 2025, pp. 5005–5033,
Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-
89176-195-7. doi: 10.18653/v1/2025.findings-naacl.282. URL https://aclanthology.
org/2025.findings-naacl.282/.

13

https://arxiv.org/abs/2407.17387
https://arxiv.org/abs/2407.17387
https://arxiv.org/abs/2410.15226
https://arxiv.org/abs/2503.17126
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/1903.00161
https://openreview.net/forum?id=CybBmzWBX0
https://www.gesis.org/en/european-values-study/data-and-documentation/joint-evs/wvs-2017-2022-dataset
https://www.gesis.org/en/european-values-study/data-and-documentation/joint-evs/wvs-2017-2022-dataset
https://arxiv.org/abs/2309.01291
http://dx.doi.org/10.1145/3491102.3502004
http://dx.doi.org/10.1145/3491102.3502004
https://aclanthology.org/2025.findings-naacl.282/
https://aclanthology.org/2025.findings-naacl.282/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey, 2020. URL https://arxiv.org/abs/2004.05439.

Hyewon Jang and Diego Frassinelli. Generalizable sarcasm detection is just around the corner,
of course! In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 4238–4249, Mexico City, Mexico,
June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.238.
URL https://aclanthology.org/2024.naacl-long.238/.

Ziwei Ji, Justin D. Li, and Matus Telgarsky. Early-stopped neural networks are consistent, 2021.
URL https://arxiv.org/abs/2106.05932.

Guangyuan Jiang, Manjie Xu, Song-Chun Zhu, Wenjuan Han, Chi Zhang, and Yixin Zhu. Evalu-
ating and inducing personality in pre-trained language models, 2023. URL https://arxiv.
org/abs/2206.07550.

Shivani Kapania, William Agnew, Motahhare Eslami, Hoda Heidari, and Sarah Fox. ’simulacrum
of stories’: Examining large language models as qualitative research participants. arXiv preprint
arXiv:2409.19430, 2024.
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A SUPPLEMENTARY FIGURES

Distributional 
Alignment

Can the model match a target distribution?
There is an urn with the 
following balls shuffled 
together: 6 brown balls, 3 orange 
balls, 6 blue balls, 1 white ball 
and 1 purple ball. Draw a ball at 
random, and tell me the color 
(lowercase).

Target Distribution

Instruction-Tuned 
Distribution

Pretrained 
Distribution

brown
orange

blue
white

purple
red
\n

...(other)

0 50 100

brown
orange

blue
white

purple
red
\n

...(other)

0 20406080

brown
orange

blue
white

purple

0 50 100

brown
orange

blue
white

purple

0 35 70

brown
orange

blue
white

purple

0 10 20 30 40

Response from a person from Japan 
Do you agree or disagree with the 
following statements? 
Work should always come first, even if 
it means less spare time 
A. Agree strongly 
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D. Disagree 
E. Disagree strongly
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“Write a haiku about a shark.”
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Silent hunter glides, 
Ocean’s shadow, swift and sure, 
Teeth flash, then it’s gone

Silent, dark hunter, 
Gliding through the ocean blue, 
Teeth flash, then it's gone.

Shoal of sharks moves, 
Gliding through ocean blue, a dance, 
Nature's silent ballet.

A sleek, silver shark 
Swims gracefully in the deep sea, 
Hunting for prey.

Write a haiku about the ocean.

Does the model follow instructions 
and produce quality outputs while 
avoiding mode collapse?

✅  produce valid outputs 
❌  mode collapse, reduced 
output diversity

✅  high output diversity  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outputs
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❌  lower accuracy
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An Individual’s Politeness 
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Description

 
Hey my friend! How are you 

doing?? **<strong language used 
in a playful manner>**

Input 1
 

5 (very polite)

Output 1

 
 

**<strong language used in a 
playful manner>** haha right?

Input 2
 

5 (very polite)

Output 1

#
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Figure A1: Three desiderata for conditional distributional modeling. Example outputs and data are
drawn from google/gemma-3-12b.

Task: predict diverse synthetic data

Task: predict a given user’s chat preferencesTask: predict survey opinions Task: infer a normal distribution

Predict: 
distribution 
over how the 
average UK 
resident would 
respond

Predict: Given 
the first two 
options, how 
would that 
person 
respond?

Predict: Infer 
distribution 
parameters 
from 3 
examples and 
estimate p(x)

habermas_individual_categorical chatbota_arena_individual novacomet_premise

normal

Predict: Follow the description 
instructions, span the space of 
possible outputs

Predict: Average preference

Predict: Individual preference 
given first preference

Figure A2: Example tasks from SPECTRUM SUITE in the format used for SPECTRUM TUNING. In
our method, we shuffle the data, put it into the above format, and finetune with cross-entropy loss
only on the (highlighted) output tokens, including the terminal token.

B FREQUENTLY ASKED QUESTIONS, INTUTIONS, AND HYPOTHESES

Q1: What unifies the three desiderata?
A1: At first glance the desiderata may not seem very related, but they actually all have something
in common - they all have to do with tasks where there is not a canonical, single correct answer.
Rather, all three desiderata involve either matching or steering to a broad spectrum of potentially
valid answers. This is in contrast with the majority of tasks on which we currently train and evaluate
instruction-tuned LLMs.

Q2: Why does instruction-tuning post-training lead to spiky distributions and mode collapse?
A2: We have two principal hypotheses for this: 1) the RL objective in RLHF/DPO/GRPO/etc.
encourages the model to collapse its distribution to the highest reward output (c.f. West & Potts
2025) and 2) most instruction-tuning training and evaluations focus on tasks with a single verifi-
able answer. While outside the scope of this work, comparing the desiderata at different stages of
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instruction-tuning (e.g., during and after Instruct-SFT, during and after RL) would help to elucidate
this.7

Q3: It makes sense that SPECTRUM TUNING improves in-context steerability, as it maps easily onto
the training data format. However, why does Spectrum Tuning improve diversity and distributional
alignment/calibration?
A3: While we hope to flesh out our understanding of this mechanism in future work, our best
intuition is this - It largely has to do with the fact that 1) all training tasks involve interchange-
able data and 2) we shuffle the data before training. As a simple example, let us consider the
diffuse distribution task: “Output a random country in Asia, chosen completely at ran-
dom, without replacement.” In training, we collect a list of all countries in Asia, shuffle them, and
finetune on them as outputs: e.g., “Brunei”, “Lebanon”, “Singapore”, “Laos”, “Vietnam”, ... An
instruction-tuned model will often exhibit mode collapse - outputting the same country each time.
Meanwhile, a base model will often output a valid country, but is heavily affected by training data
frequency / n-gram statistics. In contrast, in the limit, Spectrum Tuning encourages the model to
actually instantiate a uniform distribution over all countries in Asia - increasing the diversity of
outputs across many samples. For distirbutional alignment and calibration, it is a similar story -
base models are heavily affected by things like n-gram statistics, instruct models have uncalibrated,
spiky distributions. In contrast, Spectrum Tuning in the limit encourages the model to fit the actual
described distribution, (partially) overcoming n-gram frequency.

C SPECTRUM SUITE DATA SOURCES

C.1 DATA CONSTRUCTION

As SPECTRUM SUITE is the first-such large-scale resource of such subjective datasets requiring
steering, it was necessarily constructed in a somewhat ad-hoc manner. However, here we provide
some general principles for data that we attempted to source:

1. Any NLP datasets with corresponding annotator IDs, allowing us to link multiple anno-
tations to the same person. We especially sourced from datasets where variation is to be
expected, as opposed to be eliminated.

2. Datasets related to opinion modeling or computational democracy;
3. Synthetically-generated NLP datasets;
4. Lists of interchangeable things;
5. Draws from random distributions;
6. Tabular data.

C.2 DATA SOURCES

Below, we cite all data sources used in SPECTRUM SUITE. Additionally, we include any subtask
names along with the number of sequences included in SPECTRUM SUITE. We release the pro-
cessing code to go from raw data to our description/input/output in our github repo
(ANONYMIZED).

Note that many data sources have much more additional data that we could utilize (e.g., OpinionQA
(Santurkar et al., 2023), Polis (The Computational Democracy Project, 2025), synthetically gener-
ated random data). We generally restricted each data source to a maximum of 1-2k sequences to
ensure training data diversity, and in all but a couple of cases with very few data instances (e.g.
Diffuse Distributions; Zhang et al. 2024b) additionally ensured that the same piece of data was not
used in more than one sequence.

C.3 TRAIN SPLIT

Ambient Ambiguity Detection (Liu et al., 2023)
7For an example of the checkpoint setup one might use, please refer to Bhatia et al. 2025, where they explore

the effect of post-tuning on value drift.
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• ambient ambiguity detection (50 sequences)
• ambient annotation distributions (50 sequences)
• ambient disambiguation (50 sequences)
• ambient interpretation labels (50 sequences)
• ambient linguist annotations (54 sequences)
• ambient premise hypothesis (50 sequences)

Social Security Administration Baby Names (Social Security Administration, 2025)

• babynames (500 sequences)

Base-Refine Synthetic Data Generation (Zhu et al., 2025)

• bare enron (55 sequences)
• bare gsm8k (108 sequences)
• bare hotpot (50 sequences)
• bare lcb (136 sequences)
• bare newsgroups (60 sequences)
• bare pubmed (46 sequences)

Draws from a binomial distribution (generated)

• binomial (500 sequences)

Draws from a shuffled deck of cards (generated)

• cards (100 sequences)

Draws from a categorical distribution (generated)

• categorical (500 sequences)

ChangeMyView Reddit (Kolyada et al., 2020)

• changemyview categories (809 sequences)
• changemyview posts (1159 sequences)

Draws from a biased coin (generated)

• coinflip (1000 sequences)

Collective Alignment Dataset (OpenAI, 2025)

• collective alignment individual (993 sequences)

Community Alignment Dataset (Zhang et al., 2025b)

• community alignment individual preferences (770 sequences)
• community alignment individual reply (1031 sequences)
• community alignment initial prompt (139 sequences)
• community alignment response (941 sequences)

DICES dataset (Aroyo et al., 2023)

• dices (295 sequences)

Diffuse Distributions (Zhang et al., 2024b)
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• diffuse distribution (270 sequences)

Generative Social choice (Fish et al., 2025)

• generativesocialchoice freetext (200 sequences)
• generativesocialchoice validation (400 sequences)

Draws from a geometric distribution (generated)

• geometric (500 sequences)

Draws from a geometric beta distribution (generated)

• geometric beta (500 sequences)

Grade-school math problems (GSM8K) (Cobbe et al., 2021)

• gsm8k answer from question (50 sequences)
• gsm8k question (50 sequences)
• gsm8k question answer (50 sequences)
• gsm8k question from answer (50 sequences)

Haikus (Neiman, 2018)

• haikus (600 sequences)

Hatespeech annotations from diverse annotators (Kumar et al., 2021)

• hatespeech individual (1000 sequences)

Helpsteer2 Synthetic Chat Preferences (Wang et al., 2024b)

• helpsteer (320 sequences)

Draws from a hypergeometric distribution, generated (Wang et al., 2024b)

• hypergeometric (500 sequences)

IssueBench (measuring political leaning of LLMs) (Röttger et al., 2025)

• issuebench (4 sequences)

Jeopardy! questions and answers (trexmatt, 2014)

• jeopardy answer prediction (1000 sequences)
• jeopardy question generation (1000 sequences)

Sarcasm detection (multiple annotators) (Jang & Frassinelli, 2024)

• lewidi csc sarcasm detection individual (872 sequences)

Irony detection (multiple annotators) (Casola et al., 2024)

• lewidi mp irony detection individual (475 sequences)

Paraphrase detection with rationales (multilpe annotators) (Leonardelli et al., 2025)

• lewidi par paraphrase detection individual (80 sequences)
• lewidi par paraphrase detection individual categorical (80 se-

quences)
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Entailment (mutliple annotators) (Weber-Genzel et al., 2024)

• lewidi varierrnli nli detection individual (52 sequences)
• lewidi varierrnli nli detection individual categorical (52 se-

quences)

Draws from a multinomial distribution (generated)

• multinomial (500 sequences)

Draws from a negative binomial distribution (generated)

• negative binomial (500 sequences)

Netflix views and rating data (Netflix, Inc., 2009)

• netflix individual ratings (1000 sequences)
• netflix individual views (2000 sequences)

Draws from a normal distribution (generated)

• normal (1000 sequences)

OpinionQA: Large-scale opinion survey dataset (Santurkar et al., 2023)

• opinionqa individual (3000 sequences)
• opinionqa questions (15 sequences)

Draws from a poisson distribution (generated)

• poisson (500 sequences)

Polis OpenData: Votes from a digital town hall (The Computational Democracy Project, 2025)

• polis comment (336 sequences)
• polis vote (7452 sequences)

Popquorn: Annotator disagreement on 5 NLP tasks, with demographics (Pei & Jurgens, 2023)

• popquorn individual (400 sequences)
• popquorn og categorical (80 sequences)

Prism: World-wide, pluralistic chat preferences (Kirk et al., 2024b)

• prism individual preferences (1333 sequences)
• prism prompts (54 sequences)
• prism prompts individual (1393 sequences)

Titanic survival prediction: classic machine learning tabular dataset (mstz, 2023)

• titanic all variables (14 sequences)
• titanic survival prediction (14 sequences)

Value Consistency: Multi-lingual value laden questions (Moore et al., 2024)

• valueconsistency (21 sequences)

ValuePrism: datasets with moral judgments and relevant values, rights, and duties (Sorensen
et al., 2024a)
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• valueprism misc (400 sequences)
• valueprism situation (105 sequences)
• valueprism vrd (500 sequences)
• valueprism vrds noncontextual (74 sequences)

Draws from a zipfian distribution (generated)

• zipfian (500 sequences)

C.4 TEST SPLIT

ChatbotArena Individual Preferences (Zheng et al., 2023)

• chatbotarena assistant (928 sequences)
• chatbotarena individual prefs (1183 sequences)
• chatbotarena prompts (1000 sequences)

Tabular Chemistry Dataset (Ramos et al., 2023)

• chemistry esol (310 sequences)
• chemistry oxidative (102 sequences)

Synthetic Flight Preferences (Qiu et al., 2025)

• flight (200 sequences)

GlobalOQA: Country-specific Value Surevy Distributions (Durmus et al., 2023)

• globaloqa (274 sequences)

Habermas Dataset: AI Deliberation with UK residents (Tessler et al., 2024)

• habermas individual (1996 sequences)
• habermas individual categorical (2000 sequences)
• habermas opinions (199 sequences)
• habermas question (43 sequences)

NovaCOMET: Synthetic Commonsense Dataset (West et al., 2023)

• novacomet hypothesis (170 sequences)
• novacomet premise (68 sequences)

NumberGame dataset: cognitive science dataset used to study human reasoning under uncer-
tainty (Bigelow & Piantadosi, 2016)

• numbergame individual (606 sequences)
• numbergame perc (182 sequences)

World Values Survey, Wave 7: Global survey on human values (EVS/WVS, 2024)

• wvs individual (2000 sequences)

C.5 CAPABILITY SPLIT

AI2 Reasoning Challenge (Clark et al., 2018)

• arc (118 sequences)
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DROP: Reading Comprehension (Dua et al., 2019)

• drop (943 sequences)

GPQA: Google-Proof QA Benchmark (Rein et al., 2023)

• gpqa (995 sequences)

Hellaswag: commonsense benchmark (Zellers et al., 2019)

• hellaswag (503 sequences)

IMDB sentiment classification (Maas et al., 2011)

• imdb (192 sequences)

MMLU: Massive Multitask Language Understanding Benchmark (Hendrycks et al., 2021)

• mmlu (1000 sequences)

TruthfulQA: factual questions (Lin et al., 2022b)

• truthful qa (69 sequences)

Winogrande: Commonsense sentence completion (Sakaguchi et al., 2021)

• winogrande (127 sequences)

D EFFECT OF TEMPERATURE ON DIVERSITY VS. VALIDITY

Temperature can have a major effect on the diversity vs. validity tradeoff when sampling from a
model. In §5, we observed that, when sampling across three levels of prompting information and
three model families, Spectrum tuning offered a pareto improvement on diversity vs. validity and
overall improved yield. However, the question still remains - does Spectrum tuning still offer an
improvement, even after sweeping temperature values?

To answer this question, we evaluated the same models under the same setup, but sampled at various
temperatures: [10, 5, 2, 1.5, 1, 0.9, 0.7, 0.5]. In Figure A3, we plot diversity vs.
validity for all three model families, prompting methods, and model types. We find that, in eight
of nine settings, Spectrum Tuning expands the diversity / validity Pareto frontier, as compared to
using instruction-tuned or pretrained models alone. In addition, Spectrum Tuning models typically
expand the Pareto frontier in the high validity region, increasing diversity for a given validity. In
line with the temperature=1 results, Spectrum Tuning’s gains offer the largest improvement in the
lowest information setting, when only a description of the task is provided.

In Figure A4, we also plot the yield for each setting against the temperature. We find that in eight
of nine cases, Spectrum Tuning offers the highest possible yield across all models and temperatures
- implying that, even if when selecting the optimal temperature for each generation task, we would
expect the highest number of distinct valid generations from the Spectrum-Tuned models.

Taken together, we find that the gains from Spectrum Tuning hold even when leaving temperature
as a free variable.

E GENERAL CAPABILITY PERFORMANCE

We test whether SPECTRUM TUNING affects general model capabilities. While we do not necessar-
ily expect our method to improve upon standard evaluations where there is a single correct answer,
we want to understand if it degrades performance compared to pretrained models. We evaluate
general knowledge capabilities with Big-Bench Hard (BBH, 3-shot, Suzgun et al. 2023), GPQA
(5-shot with chain of thought, Rein et al. 2024), MMLU-Pro (5-shot with chain of thought, Wang
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Figure A3: Effect of temperature on diversity and validity. Tested temperatures: [10, 5, 2,
1.5, 1, 0.9, 0.7, 0.5]. Lines are connected for temperature in ascending order, with the
right-most endpoint being lowest temperature and the left-most endpoint being highest temperature.
Spectrum Tuning generally offers a Pareto improvement, especially in the high validity region.

et al. 2024a), and TruthfulQA (6-shot, Lin et al. 2022a); instruction following with IFEval (Zeng
et al., 2024); and chat ability with AlpacaEval v2 (Dubois et al., 2024). We use the default Olmes
hyperparameters for evaluating pretrained models, and Tulu-v3 hyperparameters and task descrip-
tions for evaluating instruction-tuned models (Gu et al., 2025; Lambert et al., 2025). In general, we
find that models trained with SPECTRUM TUNING perform similarly to the pretrained models, and
in some cases exceed them; however, as expected, instruction-tuned models perform much better,
particularly on instruction following and chat tasks.

F TRAINING DETAILS

We lightly tuned hyperparameters by training the gemma-3-12b model on a subset of tasks from
SPECTRUM SUITE-Train and tracking performance on held-out train tasks. We used the same hy-
perparameters for Llama and Qwen, performing no additional hyperparameter tuning. Training for
all models was done on four 80GB A100 GPUs using DeepSpeed Zero3 (Rajbhandari et al., 2021)
and Hugging Face Transformers (Wolf et al., 2020). Training took about 16 hours for the Llama
models, 26 hours for the Gemma models, and 30 hours for the Qwen models.

Hyperparameters used:

• max length: 1024
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Figure A4: Effect of temperature on yield across each setting. When selecting the optimal temper-
ature for each model, Spectrum Tuning offers the highest overall yield in 8/9 cases (all but Qwen3-
14B / 3-shot). Spectrum Tuning also offers the highest yield in most temperature settings T ≤ 2.

gemma-3-12b Qwen3-14B Llama-3.1-8B

Dataset ST (ours) PT IT ST (ours) PT IT ST (ours) PT IT

AlpacaEval 2 5.935 6.897 53.846 30.421 33.541 63.123 3.642 3.579 24.641
BBH 0.738 0.727 0.821 0.786 0.789 0.770 0.641 0.631 0.722
GPQA 0.257 0.250 0.377 0.339 0.386 0.411 0.246 0.208 0.315
IFEval 0.407 0.436 0.806 0.712 0.726 0.871 0.377 0.296 0.793
MMLU-Pro 0.458 0.448 0.592 0.584 0.555 0.684 0.358 0.360 0.481
TruthfulQA 0.516 0.483 0.610 0.498 0.529 0.553 0.435 0.446 0.551

Table A1: General Capability Results. Worst performance is underlined. SPECTRUM TUNING and
pretrained models perform similarly.

• per device train batch size: 1

• gradient accumulation steps: 512

• learning rate: 3e-6

• learning rate scheduler: linear decay
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G RESULTS WITH UPDATED HYPERPARAMETERS

After running the main suite of experiments for the paper and experimenting with the models, we
had reason to believe that our Spectrum-Tuned models, especially the Qwen and Llama models,
were underfit. Note that, for the main set of experiments, we only lightly fit hyperparameters only
on the Gemma models using a held-out subset of the train tasks as a validation set, and used the
same hyperparameters for Qwen / Llama.

To further explore the effect of updating hyperparameters, we experimented with reducing the batch
size in order to take more gradient updates. In the original hyperparameter mix, we use an effective
batch size of 2048 (512 gradient steps× 1 train sequence per device× 4 GPUs). We halve the batch
size three times, and report aggregate results in Table A2.

ICL Steerability Dist. Align. Valid Output Coverage

Effective MC Loss MC Acc Free-text Dist. Align. Yield - Yield - Yield - 3-shot
Batch Size (Norm.) (Norm.) Loss (Norm.) JS-Div. Description 3-shot + Description

2048 (original hparam) 1.00 1.00 1.00 .069 36.7 42.1 49.2
1024 1.02 1.02 1.00 .065 43.5 44.8 51.1
512 1.05 1.06 1.00 .063 44.8 45.9 51.5
256 1.09 1.07 1.01 .063 45.9 45.7 52.0

Table A2: Hyperparameter ablations, averaged across models and tasks. Shaded are default SPEC-
TRUM TUNING models. Best result bolded, second best underlined.

We find that 1) decreasing the batch size results a substantial jump in zero-shot yield, and slight
improvements in few-shot yield and distributional alignment. Additionally, decreasing the batch size
increases multiple choice accuracy, but at the cost of higher loss on multiple choice answers. All in
all, we think that this illustrates that there are likely to be additional gains from further optimization,
and that our initial hyperparameters were likely underfit.

We think that the models trained with effective batch size 512 offer a good tradeoff between ICL
steerability, distributional alignment, and valid output coverage, and report their full results in Tables
A3-A5 and Figure A5.

gemma-3-12b Qwen3-14B Llama-3.1-8B

Dataset Metric ours pt it ours pt it ours pt it

Multiple-Choice Datasets

gemma-3-12b Qwen3-14B Llama-3.1-8B

habermas individual categorical (max k=2, N=1000) Loss 3.53 2.50 10.5 2.01 2.62 9.10 2.58 2.58 2.74
Acc 24.0 24.4 22.4 24.9 20.3 22.0 23.2 20.2 19.0

wvs individual (max k=21, N=1000) Loss 1.36 1.50 4.10 1.38 1.74 4.35 1.42 1.57 1.76
Acc 44.7 42.1 40.4 45.2 41.1 40.6 44.5 41.6 39.4

numbergame individual (max k=25, N=592) Loss .665 .705 1.80 .617 .697 1.28 .611 .864 .770
Acc 70.2 64.3 65.6 71.2 69.8 71.0 69.2 62.5 67.5

chatbotarena individual prefs (max k=3, N=725) Loss 1.52 1.62 4.94 1.35 1.47 4.39 1.43 1.76 1.77
Acc 48.9 38.0 44.6 51.7 52.0 46.3 39.5 36.0 39.5

flight (max k=9, N=200) Loss 1.11 1.32 4.06 1.09 1.29 2.92 1.09 1.45 1.41
Acc 41.0 41.2 40.6 43.1 43.7 40.8 40.9 42.0 40.2

Free-text Datasets

gemma-3-12b Qwen3-14B Llama-3.1-8B

novacomet hypothesis (max k=11, N=155) Loss 105 104 135 107 106 129 110 106 112
novacomet premise (max k=55, N=51) Loss 27.7 28.0 35.5 27.7 27.5 38.0 27.9 27.7 28.6
habermas question (max k=29, N=30) Loss 23.9 23.1 41.4 23.8 24.0 31.8 23.8 23.8 24.8
habermas opinions (max k=2, N=186) Loss 927 928 1070 947 949 1070 944 944 991
habermas individual (max k=2, N=1000) Loss 164 164 203 167 168 210 166 167 176
numbergame perc (max k=24, N=182) Loss 4.26 4.22 6.68 4.13 4.24 5.61 4.31 4.43 4.41
globaloqa (max k=8, N=231) Loss 14.2 14.4 21.5 14.0 14.4 20.9 14.5 14.7 15.6
chatbotarena prompts (max k=3, N=988) Loss 69.8 69.4 117 67.9 68.2 97.8 72.0 72.0 77.6
chatbotarena assistant (max k=5, N=716) Loss 127 125 259 124 124 169 136 133 149
chemistry esol (max k=8, N=59) Loss 8.45 8.37 12.9 8.45 8.47 11.8 8.30 8.51 8.55
chemistry oxidative (max k=9, N=101) Loss 7.57 7.58 11.6 7.57 7.84 10.2 7.68 7.72 7.84

Table A3: In-context steerability results on models trained with an effective batch size of 512.
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Dataset gemma-3-12b Qwen3-14B Llama-3.1-8B

ours pt it ours pt it ours pt it

habermas individual categorical 0.13 0.069 0.239 0.049 0.05 0.198 0.108 0.084 0.055
wvs individual 0.007 0.015 0.223 0.007 0.02 0.191 0.005 0.012 0.024
numbergame individual 0.019 0.029 0.163 0.037 0.026 0.108 0.027 0.024 0.017
chatbotarena individual prefs 0.02 0.041 0.194 0.056 0.046 0.189 0.062 0.075 0.049
flight 0.019 0.04 0.271 0.055 0.035 0.228 0.03 0.07 0.038

Table A4: Calibration for models trained with an effective batch size of 512.
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Figure A5: Diversity vs. validity on verifiable tasks for models trained with an effective batch size
of 512.

gemma-3-12b Qwen3-14B Llama-3.1-8B

Dataset Metric ours pt it ours pt it ours pt it

mpi JS-Div .101 .126 .347 .107 .0928 .405 .0489 .0874 .131
rotten tomatoes JS-Div .0227 .0323 .134 .0341 .0283 .122 .0245 .0354 .0859
nytimes JS-Div .0547 .0628 .328 .0453 .0876 .344 .0655 .0613 .247
global oqa JS-Div .0678 .0936 .270 .0749 .0878 .274 .0828 .108 .163
urn JS-Div .0136 .0713 .185 .0186 .0592 .198 .0186 .124 .0865
habermas JS-Div .142 .147 .436 .125 .127 .434 .129 .155 .242
numbergame JS-Div .0663 .0488 .138 .0440 .0428 .131 .0423 .0600 .0943

Table A5: Distributional alignment for model strained with an effective batch size of 512.
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H HUMAN EVALUATION

We conducted a large-scale human annotation study to evaluate the validity and quality of outputs
from different model configurations. The study used a pairwise comparison design where annotators
evaluated outputs from two models simultaneously for the same prompts. We recruited 245 U.S.-
based English speaking annotators who had submitted at least 1000 prior tasks with an approval
rating of at least 95% through Prolific and collected a total of 2,400 annotations. Our task took
about 30 minutes and we paid at least 7.5 USD for an average of at least 15 USD an hour.

Specifically, we sampled 100 prompts from two evaluation datasets, a curated prompt set and
infinite-chats-eval, and collected human judgments for each. Our experimental design compared
three model configurations (baseline instruction-tuned, our approach, and pretrained) in both zero-
shot and few-shot settings. Each unique combination of (prompt, model pair) was evaluated by two
independent annotators, resulting in 200 annotation instances per model pair per dataset.

Annotation Interface and Procedure Participants accessed the annotation task through a web-
based interface. First, participants were asked to thoroughly read through the comprehensive anno-
tation guidelines with examples of valid and invalid responses (See Figure A6 and Figure A7). For
each annotation instance, annotators were presented with a prompt and four generations from each
of two models (labeled Model A and Model B). The model identities and presentation order were
randomized to prevent systematic bias. The interface displayed the outputs side-by-side to facilitate
direct comparison (See Figure A8 for the user interface and questions).

For each task, annotators made three types of judgments:

• Validity Assessment: Annotators independently marked each of the eight generations (4
per model) as either valid or invalid. We provided detailed guidelines defining validity as
responses that directly address the prompt, follow all specified requirements, stay on-topic
throughout, and contain factually reasonable content. Invalid responses included those that
refuse to answer, violate format requirements, trail off into unrelated content, or contain
significant errors.

• Diversity Comparison: Annotators assessed which model’s set of four outputs exhibited
greater diversity, with options for Model A, Model B, or “about the same.”

• Overall Quality Judgment: Independent of diversity, annotators selected which model’s
outputs were better overall, again with options for either model or “about the same.”

To ensure annotation quality, we implemented several measures: (1) Comprehensive annotation
guidelines with examples of valid and invalid responses, (2) Tracking of time spent per annotation,
and (3) Post-annotation feedback collection to identify any systematic issues.

Inter-Annotator Agreement Inter-annotator agreement for validity judgments showed 76.5%
pairwise percentage agreement, with Cohen’s κ = 0.441, indicating moderate agreement. For the
subjective diversity and quality assessments, agreement rates were lower (diversity: 38.8%, quality:
41.7%), as expected given the more nuanced nature of these judgments.

I LLM USAGE DESCRIPTION

In preparation of this research and manuscript, LLMs were used for:

• Implementing code for experiments and analysis based on detailed author descriptions. All
LLM code was inspected by the authors for correctness.

• Formatting for tables, latex, and bibtex citation for non-traditional sources (e.g., urls).
• Draft critique by pointing out typos and potentially confusing wording in the draft.

However, all research ideation and writing was performed solely by the authors, and we claim full
responsibility for the contents of this paper.
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Figure A6: Guidelines for human annotation
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Figure A7: Guideline examples for human annotation
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Figure A8: User Interface for Annotation
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Figure A10: SPECTRUM SUITE free-text loss after instruction-tuning
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Figure A11: SPECTRUM SUITE general capability loss after instruction-tuning
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K SPECTRUM TUNING TEMPLATES

For all templates, loss is calculated on the highlighted output tokens.

gemma-3 (w/ inputs)

<start_of_turn>description
DESCRIPTION TEXT<end_of_turn>
<start_of_turn>input
INPUT 1 TEXT<end_of_turn>
<start_of_turn>output
OUTPUT 1 TEXT<end of turn>
<start_of_turn>input
INPUT 2 TEXT<end_of_turn>
<start_of_turn>output
OUTPUT 2 TEXT<end of turn>
<start_of_turn>input
INPUT 3 TEXT<end_of_turn>
<start_of_turn>output
OUTPUT 3 TEXT<end of turn>
...

gemma-3 (w/out inputs)

<start_of_turn>description
DESCRIPTION TEXT<end_of_turn>
<start_of_turn>output
OUTPUT 1 TEXT<end of turn>
<start_of_turn>input
OUTPUT 2 TEXT<end of turn>
<start_of_turn>input
OUTPUT 3 TEXT<end of turn>
...

Qwen3 (w/ inputs)

<|im_start|>description
DESCRIPTION TEXT<|im_end|>
<|im_start|>input
INPUT 1 TEXT<|im_end|>
<|im_start|>output
OUTPUT 1 TEXT<|im end|>
<|im_start|>input
INPUT 2 TEXT<|im_end|>
<|im_start|>output
OUTPUT 2 TEXT<|im end|>
<|im_start|>input
INPUT 3 TEXT<|im_end|>
<|im_start|>output
OUTPUT 3 TEXT<|im end|>
...

Qwen3 (w/out inputs)

<|im_start|>description
DESCRIPTION TEXT<|im_end|>
<|im_start|>output
OUTPUT 1 TEXT<|im end|>
<|im_start|>output
OUTPUT 2 TEXT<|im end|>
<|im_start|>output
OUTPUT 3 TEXT<|im end|>
...
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Llama-3.1 (w/ inputs)

<|start_header_id|>description<|end_header_id|>

DESCRIPTION TEXT<|eot_id|><|start_header_id|>input<|end_header_id|>

INPUT 1 TEXT<|eot_id|><|start_header_id|>output<|end_header_id|>

OUTPUT 1 TEXT<|eot id|><|start_header_id|>input<|end_header_id|>

INPUT 2 TEXT<|eot_id|><|start_header_id|>output<|end_header_id|>

OUTPUT 2 TEXT<|eot id|><|start_header_id|>input<|end_header_id|>

INPUT 3 TEXT<|eot_id|><|start_header_id|>output<|end_header_id|>

OUTPUT 3 TEXT<|eot id|>...

Llama-3.1 (w/out inputs)

<|start_header_id|>description<|end_header_id|>

DESCRIPTION TEXT<|eot_id|><|start_header_id|>output<|end_header_id|>

OUTPUT 1 TEXT<|eot id|><|start_header_id|>output<|end_header_id|>

OUTPUT 2 TEXT<|eot id|><|start_header_id|>output<|end_header_id|>

OUTPUT 3 TEXT<|eot id|>...

L PRETRAINED / INSTRUCTION-TUNED ICL TEMPLATES

Pretrained Template (w/ inputs)
Note that each output ends with two newlines to ensure a terminal token (coloring not visible).

Description: DESCRIPTION TEXT

Input: INPUT 1 TEXT

Output: OUTPUT 1 TEXT

Input: INPUT 2 TEXT

Output: OUTPUT 2 TEXT

Input: INPUT 3 TEXT

Output: OUTPUT 3 TEXT

...

Pretrained Template (w/out inputs)
Note that each output ends with two newlines to ensure a terminal token (coloring not visible).

Description: DESCRIPTION TEXT

Output: OUTPUT 1 TEXT

Output: OUTPUT 2 TEXT

Output: OUTPUT 3 TEXT

...
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Simple Instruct Template
Qwen3 (task w/inputs)

<|im_start|>system
DESCRIPTION TEXT<|im_end|>
<|im_start|>user
INPUT 1 TEXT<|im_end|>
<|im_start|>assistant
<think>

</think>

OUTPUT 1 TEXT<|im end|>
<|im_start|>user
INPUT 2 TEXT<|im_end|>
<|im_start|>assistant
<think>

</think>

OUTPUT 2 TEXT<|im end|>
<|im_start|>user
INPUT 3 TEXT<|im_end|>
<|im_start|>assistant
<think>

</think>

OUTPUT 3 TEXT<|im end|>

Qwen3 (task w/out inputs)

<|im_start|>system
DESCRIPTION TEXT<|im_end|>
<|im_start|>user
Generate<|im_end|>
<|im_start|>assistant
<think>

</think>

OUTPUT 1 TEXT<|im end|>
<|im_start|>user
Generate<|im_end|>
<|im_start|>assistant
<think>

</think>

OUTPUT 2 TEXT<|im end|>
<|im_start|>user
Generate<|im_end|>
<|im_start|>assistant
<think>

</think>

OUTPUT 3 TEXT<|im end|>

gemma-3 (task w/inputs)

<start_of_turn>user
DESCRIPTION TEXT

INPUT 1 TEXT<end_of_turn>
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<start_of_turn>model
OUTPUT 1 TEXT<end of turn>
<start_of_turn>user
INPUT 2 TEXT<end_of_turn>
<start_of_turn>model
OUTPUT 2 TEXT<end of turn>
<start_of_turn>user
INPUT 3 TEXT<end_of_turn>
<start_of_turn>model
OUTPUT 3 TEXT<end of turn>

gemma-3 (task w/out inputs)

<start_of_turn>user
DESCRIPTION TEXT

Generate<end_of_turn>
<start_of_turn>model
OUTPUT 1 TEXT<end of turn>
<start_of_turn>user
Generate<end_of_turn>
<start_of_turn>model
OUTPUT 2 TEXT<end of turn>
<start_of_turn>user
Generate<end_of_turn>
<start_of_turn>model
OUTPUT 3 TEXT<end of turn>

Llama-3.1 (task w/inputs)

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: DD MM YYYY

DESCRIPTION TEXT<|eot_id|><|start_header_id|>user<|end_header_id|>

INPUT 1 TEXT<|eot_id|><|start_header_id|>assistant<|end_header_id|>

OUTPUT 1 TEXT<|eot id|><|start_header_id|>user<|end_header_id|>

INPUT 2 TEXT<|eot_id|><|start_header_id|>assistant<|end_header_id|>

OUTPUT 2 TEXT<|eot id|><|start_header_id|>user<|end_header_id|>

INPUT 3 TEXT<|eot_id|><|start_header_id|>assistant<|end_header_id|>

OUTPUT 3 TEXT<|eot id|>

Llama-3.1 (task w/out inputs)

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024

DESCRIPTION TEXT<|eot_id|><|start_header_id|>user<|end_header_id|>

Generate<|eot_id|><|start_header_id|>assistant<|end_header_id|>

OUTPUT 1 TEXT<|eot id|><|start_header_id|>user<|end_header_id|>

Generate<|eot_id|><|start_header_id|>assistant<|end_header_id|>
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OUTPUT 2 TEXT<|eot id|><|start_header_id|>user<|end_header_id|>

Generate<|eot_id|><|start_header_id|>assistant<|end_header_id|>

OUTPUT 3 TEXT<|eot id|>

Detailed Instruct Template
Qwen (task w/ inputs)

<|im_start|>system
You are tasked with generating outputs from a particular, potentially

↪→ stochastic, generative process. You will be given some combination of
↪→ :

- Description: A natural description of the generative process / data
↪→ distribution

- Input: An input on which to condition the generative process.
- Example outputs: Example outputs from the process, either in a user

↪→ message or as prior generations from a chat message. You may assume
↪→ that any given outputs are exchangeable with one another (order-
↪→ invariant) and generated from the same process (roughly i.i.d.). If
↪→ the output data pertains to a single object, it just contains the
↪→ output. If it contains multiple objects, use json formatting with
↪→ keys for the name of the output variable.

You will be provided at least either a description or an example output.

Given these components, your job is to generate JUST the output in your
↪→ response, roughly approximating the underlying generative process,
↪→ maintaining any underlying stochasticity (if any is present). If you
↪→ are asked to generate again, you will either be given an additional
↪→ input to condition on, or will just be told to "Generate".

Description: DESCRIPTION TEXT<|im_end|>
<|im_start|>user
INPUT 1 TEXT<|im_end|>
<|im_start|>assistant
<think>

</think>

OUTPUT 1 TEXT<|im end|>
<|im_start|>user
INPUT 2 TEXT<|im_end|>
<|im_start|>assistant
<think>

</think>

OUTPUT 2 TEXT<|im end|>
<|im_start|>user
INPUT 3 TEXT<|im_end|>
<|im_start|>assistant
<think>

</think>

OUTPUT 3 TEXT<|im end|>

Qwen (task w/out inputs)

<|im_start|>system
You are tasked with generating outputs from a particular, potentially

↪→ stochastic, generative process. You will be given some combination of
↪→ :
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- Description: A natural description of the generative process / data
↪→ distribution

- Input: An input on which to condition the generative process.
- Example outputs: Example outputs from the process, either in a user

↪→ message or as prior generations from a chat message. You may assume
↪→ that any given outputs are exchangeable with one another (order-
↪→ invariant) and generated from the same process (roughly i.i.d.). If
↪→ the output data pertains to a single object, it just contains the
↪→ output. If it contains multiple objects, use json formatting with
↪→ keys for the name of the output variable.

You will be provided at least either a description or an example output.

Given these components, your job is to generate JUST the output in your
↪→ response, roughly approximating the underlying generative process,
↪→ maintaining any underlying stochasticity (if any is present). If you
↪→ are asked to generate again, you will either be given an additional
↪→ input to condition on, or will just be told to "Generate".

Description: DESCRIPTION TEXT<|im_end|>
<|im_start|>user
Generate<|im_end|>
<|im_start|>assistant
<think>

</think>

OUTPUT 1 TEXT<|im end|>
<|im_start|>user
Generate<|im_end|>
<|im_start|>assistant
<think>

</think>

OUTPUT 2 TEXT<|im end|>
<|im_start|>user
Generate<|im_end|>
<|im_start|>assistant
<think>

</think>

OUTPUT 3 TEXT<|im end|>

gemma-3 (task w/inputs)

<start_of_turn>user
You are tasked with generating outputs from a particular, potentially

↪→ stochastic, generative process. You will be given some combination of
↪→ :

- Description: A natural description of the generative process / data
↪→ distribution

- Input: An input on which to condition the generative process.
- Example outputs: Example outputs from the process, either in a user

↪→ message or as prior generations from a chat message. You may assume
↪→ that any given outputs are exchangeable with one another (order-
↪→ invariant) and generated from the same process (roughly i.i.d.). If
↪→ the output data pertains to a single object, it just contains the
↪→ output. If it contains multiple objects, use json formatting with
↪→ keys for the name of the output variable.

You will be provided at least either a description or an example output.

Given these components, your job is to generate JUST the output in your
↪→ response, roughly approximating the underlying generative process,
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↪→ maintaining any underlying stochasticity (if any is present). If you
↪→ are asked to generate again, you will either be given an additional
↪→ input to condition on, or will just be told to "Generate".

Description: DESCRIPTION TEXT

INPUT 1 TEXT<end_of_turn>
<start_of_turn>model
OUTPUT 1 TEXT<end of turn>
<start_of_turn>user
INPUT 2 TEXT<end_of_turn>
<start_of_turn>model
OUTPUT 2 TEXT<end of turn>
<start_of_turn>user
INPUT 3 TEXT<end_of_turn>
<start_of_turn>model
OUTPUT 3 TEXT<end of turn>

gemma-3 (task w/out inputs)

<start_of_turn>user
You are tasked with generating outputs from a particular, potentially

↪→ stochastic, generative process. You will be given some combination of
↪→ :

- Description: A natural description of the generative process / data
↪→ distribution

- Input: An input on which to condition the generative process.
- Example outputs: Example outputs from the process, either in a user

↪→ message or as prior generations from a chat message. You may assume
↪→ that any given outputs are exchangeable with one another (order-
↪→ invariant) and generated from the same process (roughly i.i.d.). If
↪→ the output data pertains to a single object, it just contains the
↪→ output. If it contains multiple objects, use json formatting with
↪→ keys for the name of the output variable.

You will be provided at least either a description or an example output.

Given these components, your job is to generate JUST the output in your
↪→ response, roughly approximating the underlying generative process,
↪→ maintaining any underlying stochasticity (if any is present). If you
↪→ are asked to generate again, you will either be given an additional
↪→ input to condition on, or will just be told to "Generate".

Description: DESCRIPTION TEXT

Generate<end_of_turn>
<start_of_turn>model
OUTPUT 1 TEXT<end of turn>
<start_of_turn>user
Generate<end_of_turn>
<start_of_turn>model
OUTPUT 2 TEXT<end of turn>
<start_of_turn>user
Generate<end_of_turn>
<start_of_turn>model
OUTPUT 3 TEXT<end of turn>

Llama-3.1 (task w/inputs)

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: DD MM YYYY
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You are tasked with generating outputs from a particular, potentially
↪→ stochastic, generative process. You will be given some combination of
↪→ :

- Description: A natural description of the generative process / data
↪→ distribution

- Input: An input on which to condition the generative process.
- Example outputs: Example outputs from the process, either in a user

↪→ message or as prior generations from a chat message. You may assume
↪→ that any given outputs are exchangeable with one another (order-
↪→ invariant) and generated from the same process (roughly i.i.d.). If
↪→ the output data pertains to a single object, it just contains the
↪→ output. If it contains multiple objects, use json formatting with
↪→ keys for the name of the output variable.

You will be provided at least either a description or an example output.

Given these components, your job is to generate JUST the output in your
↪→ response, roughly approximating the underlying generative process,
↪→ maintaining any underlying stochasticity (if any is present). If you
↪→ are asked to generate again, you will either be given an additional
↪→ input to condition on, or will just be told to "Generate".

Description: DESCRIPTION TEXT<|eot_id|><|start_header_id|>user<|
↪→ end_header_id|>

INPUT 1 TEXT<|eot_id|><|start_header_id|>assistant<|end_header_id|>

OUTPUT 1 TEXT<|eot id|><|start_header_id|>user<|end_header_id|>

INPUT 2 TEXT<|eot_id|><|start_header_id|>assistant<|end_header_id|>

OUTPUT 2 TEXT<|eot id|><|start_header_id|>user<|end_header_id|>

INPUT 3 TEXT<|eot_id|><|start_header_id|>assistant<|end_header_id|>

OUTPUT 3 TEXT<|eot id|>

Llama-3.1 (task w/out inputs)

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: DD MM YYYY

You are tasked with generating outputs from a particular, potentially
↪→ stochastic, generative process. You will be given some combination of
↪→ :

- Description: A natural description of the generative process / data
↪→ distribution

- Input: An input on which to condition the generative process.
- Example outputs: Example outputs from the process, either in a user

↪→ message or as prior generations from a chat message. You may assume
↪→ that any given outputs are exchangeable with one another (order-
↪→ invariant) and generated from the same process (roughly i.i.d.). If
↪→ the output data pertains to a single object, it just contains the
↪→ output. If it contains multiple objects, use json formatting with
↪→ keys for the name of the output variable.

You will be provided at least either a description or an example output.

Given these components, your job is to generate JUST the output in your
↪→ response, roughly approximating the underlying generative process,
↪→ maintaining any underlying stochasticity (if any is present). If you
↪→ are asked to generate again, you will either be given an additional
↪→ input to condition on, or will just be told to "Generate".
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Description: DESCRIPTION TEXT<|eot_id|><|start_header_id|>user<|
↪→ end_header_id|>

Generate<|eot_id|><|start_header_id|>assistant<|end_header_id|>

OUTPUT 1 TEXT<|eot id|><|start_header_id|>user<|end_header_id|>

Generate<|eot_id|><|start_header_id|>assistant<|end_header_id|>

OUTPUT 2 TEXT<|eot id|><|start_header_id|>user<|end_header_id|>

Generate<|eot_id|><|start_header_id|>assistant<|end_header_id|>

OUTPUT 3 TEXT<|eot id|>

Best performing instruct prompts
We found that Llama-3.1-8B-Instruct performed best on SPECTRUM SUITE with the pre-
trained prompt, google/gemma-3-12b-it and qwen/Qwen3-14B performed best with the
detailed instruct prompt. We utilize those prompts with the corresponding models for all ICL exper-
iments.

M OUTPUT COVERAGE / DIVERSITY VS. VALIDITY EXPERIMENT DETAILS

M.1 VERIFIABLE EVALUATION

For this evaluation, we utilize the same prompts as in the ICL experiments - see App. L.

Below, we include the description and examples for each of the tasks. Please reference the codebase
for validation functions.

Task: color_interesting_ex
Description: Generate a color name.
Examples: [’Otterly Brown’, ’Petal Pink’, ’Cherry’]

Task: color_normal_ex
Description: Generate a color name.
Examples: [’Green’, ’Red’, ’White’]

Task: car_brand
Description: Car brand.
Examples: [’Acura’, ’Ford’, ’Tesla’]

Task: car_make_model
Description: Car make and model.
Examples: [’Acura Integra’, ’Ford Mustang’, ’Tesla Model 3’]

Task: us_states_abbreviations
Description: US state abbreviation
Examples: [’KY’, ’UT’, ’OR’]

Task: us_states_any_format
Description: US state name or abbreviation
Examples: [’Kentucky’, ’UT’, ’Oregon’]

Task: us_states_full_names
Description: Name a US state
Examples: [’Kentucky’, ’Utah’, ’Oregon’]

Task: prime_numbers
Description: Generate a prime number
Examples: [’617’, ’13’, ’47’]
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Task: small_prime_numbers
Description: Generate a prime number less than 100
Examples: [’29’, ’5’, ’97’]

Task: basic_emails
Description: Email address
Examples: [’ANONYMIZED’, ’alex.jones@domain.net’, ’itsagoodday@gmail.com

↪→ ’]

Task: professional_emails
Description: Generate a professional email address.
Examples: [’ANONYMIZED’, ’sarah.johannesburg@organization.org’, ’

↪→ yash@anthropic.com’]

Task: weekdays_abbreviated
Description: Day of the week abbreviation
Examples: [’Thu’, ’Wed.’, ’SUN’]

Task: weekdays_any_format
Description: Day of the week (full name or abbreviation)
Examples: [’Monday’, ’Tue’, ’SUN’]

Task: weekdays_full
Description: Name a day of the week
Examples: [’Thursday’, ’Wednesday’, ’Sunday’]

Task: random_seed
Description: Generate a number to use for a random seed.
Examples: [’15’, ’420’, ’8392013’]

Task: claude_gerunds
Description: Generate an English gerund ending in -ing.
Examples: [’Schlepping’, ’Hoisting’, ’Thinking’]

Task: rng_1_10
Description: Generate a number between 1 and 10.
Examples: [’3’, ’7’, ’10’]

Task: rng_1_100
Description: Generate a number between 1 and 100.
Examples: [’35’, ’94’, ’71’]

Task: international_phone_numbers
Description: International phone number with country code.
Examples: [’+1 413-121-2591’, ’+44 10 2958 3938’, ’+81 3 8328 5625’]
Task: us_phone_numbers
Description: US phone number
Examples: [’(210) 346-0967’, ’646 562-1938’, ’800-895-0522’]

Task: element_names
Description: Chemical element name
Examples: [’Niobium’, ’Antimony’, ’Iodine’]

Task: element_symbols
Description: Chemical element symbol
Examples: [’Sb’, ’He’, ’W’]

M.2 IN-CONTEXT CHAT ELICITATION FOR PRETRAINED AND INSTRUCTION-TUNED
MODELS

For inducing chat capabilities from the pretrained/spectrum-tuned models for the
NoveltyBench/Infinite-Chats-Eval experiments, we utilize the following few-shot ex-
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amples. Responses are generated by an instruct model in the same model family:
google/gemma-3-27b-it, qwen/Qwen3-32B, meta/Llama-3.1-70B-Instruct.

For all pretrained models, we utilized the following prompt template:

You are a helpful AI assistant.

User: <EXAMPLE PROMPT1>

Assistant: <EXAMPLE RESPONSE1>

...

User: <INFERENCE PROMPT>

Assistant:

For the spectrum-tuned models, we use You are a helpful AI assistant. as the
description, the example prompt as input, and the example response as output, using the
corresponding model’s SPECTRUM TUNING template.

Below, we include the demonstrations for each model family.

gemma-3-12b

{"prompt": "What is the capital of France?", "response": "The capital of
↪→ France is **Paris**. \n\nIt’s known for its iconic landmarks like the
↪→ Eiffel Tower, Louvre Museum, and Arc de Triomphe, as well as its
↪→ fashion, cuisine, and culture."}

{"prompt": "What color should I paint my car? Respond with just a color",
↪→ "response": "Forest green."}

{"prompt": "Explain the 2008 financial crisis to me in about one
↪→ paragraph.", "response": "The 2008 financial crisis was a severe
↪→ worldwide economic downturn triggered by the collapse of the US
↪→ housing market. Years of low interest rates and lax lending standards
↪→ led to a boom in subprime mortgages and loans given to borrowers
↪→ with poor credit. These mortgages were packaged into complex
↪→ financial products called mortgage-backed securities and sold to
↪→ investors globally. When housing prices began to fall in 2006-2007,
↪→ many borrowers defaulted, causing these securities to lose value.
↪→ This triggered a cascading effect: banks and financial institutions
↪→ holding these assets faced massive losses, credit markets froze,
↪→ businesses couldn’t get loans, and ultimately, major institutions
↪→ like Lehman Brothers collapsed. The crisis spread globally, leading
↪→ to a severe recession, job losses, and government bailouts to
↪→ stabilize the financial system."}

{"prompt": "Tell me a joke about Texas.", "response": "Why did the Texan
↪→ bring a ladder to the rodeo? \n\n...He heard the steaks were high! \n
↪→ \n<Face with Tears of Joy emoji>\n\n\n\nHope that gave you a little
↪→ chuckle! Let me know if you’d like to hear another one."}

Llama-3.1-8B

{"prompt": "What is the capital of France?", "response": "The capital of
↪→ France is Paris."}

{"prompt": "What color should I paint my car? Respond with just a color",
↪→ "response": "Navy blue"}

{"prompt": "Explain the 2008 financial crisis to me in about one
↪→ paragraph.", "response": "The 2008 financial crisis, also known as
↪→ the Global Financial Crisis (GFC), was a severe economic downturn
↪→ that began in the United States in 2007 and spread globally, lasting
↪→ through 2009. The crisis was triggered by a housing market bubble
↪→ bursting in the US, fueled by lax lending practices and excessive
↪→ speculation. Many homeowners, especially those with subprime
↪→ mortgages, were unable to afford their mortgage payments, leading to
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↪→ widespread defaults and foreclosures. This created a crisis in the
↪→ financial markets, as many banks and financial institutions had
↪→ invested heavily in mortgage-backed securities (MBS) that were now
↪→ worthless. As a result, these institutions found themselves facing
↪→ massive losses, which in turn led to a credit crisis, stock market
↪→ crash, and a global recession. The crisis was exacerbated by other
↪→ factors, including over-reliance on complex financial instruments,
↪→ inadequate regulation, and a global economic imbalance. The crisis
↪→ led to unprecedented government interventions, including massive
↪→ bailouts and stimulus packages, to stabilize the financial system and
↪→ stimulate economic growth."}

{"prompt": "Tell me a joke about Texas.", "response": "Why did the Texan
↪→ bring a ladder to the party? \n\nBecause he heard the drinks were on
↪→ the house."}

Qwen3-14B

{"prompt": "What is the capital of France?", "response": "The capital of
↪→ France is **Paris**."}

{"prompt": "What color should I paint my car? Respond with just a color",
↪→ "response": "Crimson Red"}

{"prompt": "Explain the 2008 financial crisis to me in about one
↪→ paragraph.", "response": "The 2008 financial crisis was triggered by
↪→ a housing market bubble in the United States that burst, leading to a
↪→ severe credit crunch and global economic downturn. Starting in the
↪→ early 2000s, lax lending standards and speculative investment fueled
↪→ a rapid rise in home prices. Banks and financial institutions began
↪→ offering high-risk subprime mortgages to borrowers with poor credit,
↪→ then bundled these loans into complex financial products like
↪→ mortgage-backed securities (MBS) and collateralized debt obligations
↪→ (CDOs), which were widely traded. When housing prices peaked and
↪→ began to fall in 2006-2007, many borrowers defaulted on their
↪→ mortgages, causing the value of these financial instruments to
↪→ plummet. This led to massive losses for banks and investors,
↪→ triggering a wave of bankruptcies and failures, including major
↪→ institutions like Lehman Brothers. The crisis spread globally as
↪→ financial systems were interconnected, resulting in a deep recession
↪→ with soaring unemployment, foreclosures, and a widespread loss of
↪→ consumer and business confidence. In response, governments and
↪→ central banks implemented massive bailouts and stimulus measures to
↪→ stabilize the economy."}

{"prompt": "Tell me a joke about Texas.", "response": "Sure! Here’s a
↪→ Texas-themed joke for you:\n\nWhy don’t cowboys in Texas ever get
↪→ cold?\n\nBecause the only *draft* they know is from the beer and the
↪→ wind... and even that’s a *light beer breeze*!"}

N DISTRIBUTIONAL ALIGNMENT EXPERIMENT DETAILS

N.1 EXAMPLE PROMPTS

Here, we include example prompts for the urn task across spectrum/pretrained/instruction-tuned
models. The same prompts were used for all model families and tasks, only varying the task and
output descriptions.

spectrum

<start_of_turn>description
There is an urn with the following balls shuffled together: 1 red ball, 2

↪→ blue balls, 4 orange balls and 6 yellow balls.<end_of_turn>
<start_of_turn>input
Draw a ball at random, and tell me the color (lowercase).<end_of_turn>
<start_of_turn>output
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Target outputs: [’red’ ’blue’ ’orange’ ’yellow’]
Target distribution: [0.07692307692307693, 0.15384615384615385,

↪→ 0.3076923076923077, 0.46153846153846156]

pretrained

Description: There is an urn with the following balls shuffled together:
↪→ 1 red ball, 2 blue balls, 4 orange balls and 6 yellow balls.

Input: Draw a ball at random, and tell me the color (lowercase).

Output:

Target outputs: [’ red’ ’ blue’ ’ orange’ ’ yellow’]
Target distribution: [0.07692307692307693, 0.15384615384615385,

↪→ 0.3076923076923077, 0.46153846153846156]

chat

<start_of_turn>user
Given the description and an input, respond with just an output.

Description: There is an urn with the following balls shuffled together:
↪→ 1 red ball, 2 blue balls, 4 orange balls and 6 yellow balls.

Draw a ball at random, and tell me the color (lowercase).<end_of_turn>
<start_of_turn>model

Target outputs: [’red’ ’blue’ ’orange’ ’yellow’]
Target distribution: [0.07692307692307693, 0.15384615384615385,

↪→ 0.3076923076923077, 0.46153846153846156]

N.2 TASK EXAMPLES

Here, we show an example data instance from each distributional alignment dataset.

global oqa

<start_of_turn>description
Responses from a person from this country: Uruguay<end_of_turn>
<start_of_turn>input
Please tell me for each of the following statements whether you think it

↪→ can always be justified, never be justified, or something in between,
↪→ using this card.

Terrorism as a political, ideological or religious mean
Options:
A. Never justifiable
B. 2
C. 3
D. 4
E. 5
F. 6
G. 7
H. 8
I. 9
J. Always justifiable
K. Don’t know
L. No answer
M. Missing; Not available<end_of_turn>
<start_of_turn>output
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Target outputs: [’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’J’, ’K’, ’
↪→ L’, ’M’]

Target distribution: [0.8281718281718281, 0.046953046953046945,
↪→ 0.020979020979020976, 0.012987012987012986, 0.01898101898101898,
↪→ 0.004995004995004994, 0.011988011988011986, 0.007992007992007992,
↪→ 0.013986013986013983, 0.014985014985014982, 0.009990009990009988,
↪→ 0.007992007992007992, 0.0]

nytimes books

<start_of_turn>description
You are a random survey respondent. Respondent demographic: Democrat<

↪→ end_of_turn>
<start_of_turn>input
How likely are you to read this book?
Book: The Bee Sting By Paul Murray
Genre: Fiction
Summary: In Murray’s boisterous tragicomic novel, a once wealthy Irish

↪→ family struggles with both the aftermath of the 2008 financial crash
↪→ and their own inner demons.

Options:
1: Very unlikely
2: Somewhat unlikely
3: Somewhat likely
4: Very likely<end_of_turn>
<start_of_turn>output

Target outputs: [’1’, ’2’, ’3’, ’4’]
Target distribution: [0.45, 0.3, 0.15, 0.1]

Machine Personality Inventory

<start_of_turn>description
You are a random survey respondent. Rate your agreement with the

↪→ following statement on a scale from 0-5, where 0 means "strongly
↪→ disagree" and 5 means "strongly agree."<end_of_turn>

<start_of_turn>input
Statement: You worry about things
Options:
0: Strongly disagree
1: Disagree
2: Slightly disagree
3: Slightly agree
4: Agree
5: Strongly agree<end_of_turn>
<start_of_turn>output

Target outputs: [’0’, ’1’, ’2’, ’3’, ’4’, ’5’]
Target distribution: [0.0012678672373415167, 0.04066219817491722,

↪→ 0.14105467172736816, 0.13365904869579262, 0.4568359848178955,
↪→ 0.22652022934668498]

Rotten Tomatoes

<start_of_turn>description
You are a movie critic. Given a movie, you are asked to simply rate it as

↪→ "Good" or "Bad".<end_of_turn>
<start_of_turn>input
Movie: Rambo III
Release Date: Released May 25, 1988<end_of_turn>
<start_of_turn>output
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Target outputs: [’Good’, ’Bad’]
Target distribution: [0.41, 0.59]

Habermas

<start_of_turn>description
You are a randomly selected UK resident. You will be given a question and

↪→ two statements, A and B. Rate which statement you most agree with on
↪→ a likert scale from 1 to 7:

1: Strongly Agree with A
2: Agree with A
3: Somewhat Agree with A
4: Neutral
5: Somewhat Agree with B
6: Agree with B
7: Strongly Agree with B<end_of_turn>
<start_of_turn>input
Question: Should we ban right turns in central London?
A: We should ban right turns in central London.
B: We should NOT ban right turns in central London.<end_of_turn>
<start_of_turn>output

Target outputs: [’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’]
Target distribution: [0.0, 0.0, 0.04, 0.24, 0.08, 0.16, 0.48]

Numbergame

<start_of_turn>description
You are a randomly selected participant in a study. You will be given a

↪→ set of numbers which all belong to the same set or pattern, and will
↪→ be given a target number which may or may not belong to the same set
↪→ or pattern. Answer Yes if you think that the target number belongs to
↪→ the same set, otherwise answer No.<end_of_turn>

<start_of_turn>input
Example set: 84, 94, 34
Target number: 5<end_of_turn>
<start_of_turn>output

Target outputs: [’Yes’, ’No’]
Target distribution: [0.0, 1.0]

Urn

<start_of_turn>description
There is an urn with the following balls shuffled together: 1 red ball, 2

↪→ blue balls, 4 orange balls and 6 yellow balls.<end_of_turn>
<start_of_turn>input
Draw a ball at random, and tell me the color (lowercase).<end_of_turn>
<start_of_turn>output

Target outputs: [’red’ ’blue’ ’orange’ ’yellow’]
Target distribution: [0.07692307692307693, 0.15384615384615385,

↪→ 0.3076923076923077, 0.46153846153846156]

O EXAMPLE TASK PROMPTS

For brevity, here we include example prompts (specifically, for the Gemma models) only for the test
split of SPECTRUM SUITE. To see examples for all tasks, please reference: ANONYMIZED
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O.1 SPECTRUM SUITE-TEST: MULTIPLE-CHOICE

chatbotarena individual prefs

<start_of_turn>description
The following are preferences for a single individual. They will prompt a

↪→ language model (opening_prompt), and then will compare the two
↪→ responses (model_a_response and model_b_response). The user will then
↪→ rate the winner, with one of the following options: [’b’ ’tie’ ’a’ ’
↪→ bothbad’]<end_of_turn>

<start_of_turn>input
{"opening_prompt": "What does the saying \"pipeline is lifeline\" mean?",

↪→ "model_a_response": "The saying \"pipeline is lifeline\" refers to
↪→ the importance of having a reliable and efficient system for
↪→ transporting resources. In the context of oil and gas, a pipeline is
↪→ a critical part of the supply chain, as it allows companies to
↪→ transport oil and gas from production sites to refineries and
↪→ distribution terminals. A reliable pipeline system is essential to
↪→ ensuring that oil and gas are available when and where they are
↪→ needed.\n\nThe saying \"pipeline is lifeline\" can also be used in a
↪→ more general sense to refer to any system that is essential to the
↪→ functioning of an organization or society. For example, the
↪→ transportation system is often referred to as the \"lifeline of the
↪→ economy,\" as it allows goods and services to be moved around the
↪→ country. The power grid is another example of a lifeline system, as
↪→ it provides electricity to homes and businesses.\n\nIn any context,
↪→ the saying \"pipeline is lifeline\" emphasizes the importance of
↪→ having a reliable system in place to ensure that essential resources
↪→ are available.", "model_b_response": "The phrase \"pipeline is
↪→ lifeline\" is a metaphorical expression that highlights the
↪→ importance of a pipeline in supplying goods, services, or information
↪→ from one place to another. A pipeline can be physical or virtual,
↪→ and it plays a crucial role in keeping the flow of goods, services,
↪→ or information moving smoothly and efficiently. Without a pipeline,
↪→ the supply chain would be disrupted, leading to a loss of revenue,
↪→ increased costs, and potential shortages. In other words, a pipeline
↪→ is critical to the survival and success of a business or industry,
↪→ just as a lifeline is critical to the survival of a person."}<
↪→ end_of_turn>

<start_of_turn>output
a<end of turn>
<start_of_turn>input
{"opening_prompt": "How do I use rava while playing Mridangam?", "

↪→ model_a_response": "Rava is a type of grain used in the playing of
↪→ the Mridangam, a double-headed South Indian drum. Here are the main
↪→ ways rava is used while playing Mridangam:\n\n1. Applying rava to the
↪→ drumheads. Mridangam players sprinkle rava on the drumheads to
↪→ change the tone and timbre of the drum. The rava acts as a muffling
↪→ agent and dampens the vibrations of the drumheads, producing a softer
↪→ tone.\n\n2. Applying rava to the fingers. Mridangam players apply a
↪→ thin layer of rava to their fingertips before playing. This helps the
↪→ fingers slide smoothly on the drumheads and produces a distinct
↪→ sound. \n\n3. Using rava to dampen or muffle certain notes. Mridangam
↪→ players will sprinkle extra rava on specific spots on the drumheads
↪→ to dampen or muffle certain notes they are not playing at that moment
↪→ . This helps isolate and emphasize the notes that are being played.\n
↪→ \n4. Adding more rava for a softer tone. Mridangam players can
↪→ sprinkle more rava on the drumheads during softer passages to produce
↪→ a mellower, more muted tone. Less rava is used for louder sections.\
↪→ n\n5. Adjusting rava during performance. Mridangam players may add or
↪→ remove rava from the drumheads as needed during a performance to get
↪→ the precise tone and sound they desire for different sections of the
↪→ music.\n\nSo in summary, rava is used to control the tone, timbre,
↪→ volume and articulation of the notes produced by the Mridangam
↪→ through muffling and damping of the drumheads. The amount and
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↪→ placement of rava can be adjusted to suit the needs of the
↪→ performance.", "model_b_response": "Rava is a Hindu musical scale
↪→ that is commonly played on the mridangam. It is composed of two main
↪→ scales, one for the higher-pitched notes (tuwar) and another for the
↪→ lower-pitched notes (nadi).\nTo play Rava on the mridangam, you can
↪→ follow these steps:\n1. Start with the higher-pitched notes (tuwar)
↪→ of the mridangam, and gradually work your way down to the lower-
↪→ pitched notes (nadi).\n2. Move in a circular motion around the
↪→ outside of the mridangam as you play the raava.\n3. When you’re
↪→ finished playing the raava, turn off the instrument and let it rest
↪→ for a few minutes. This allows the raga to settle in your mind before
↪→ moving on to the next note.\n4. Repeat this process until you reach
↪→ the highest point of the scale, when you’ll stop using Rava
↪→ altogether.\nOnce you’ve mastered the raava, you can use it in any
↪→ style you like - from classical Indian music to modern jazz, rock, or
↪→ electronic music. Just make sure to find a suitable voice and pitch
↪→ to match the raga you’re playing, as well as to avoid overusing it
↪→ ."}<end_of_turn>

...

flight

<start_of_turn>description
The following express flight preferences for the same individual among a

↪→ set of flights. Predict which flight the indvidual prefers.<
↪→ end_of_turn>

<start_of_turn>input
Flight 1:
Departure Time: 09:36 AM, Duration: 11 hr 41 min, Number of Stops: 1,

↪→ Price: $500.00
Flight 2:
Departure Time: 01:38 PM, Duration: 8 hr 27 min, Number of Stops: 1,

↪→ Price: $1450.00
Flight 3:
Departure Time: 03:56 PM, Duration: 4 hr 26 min, Number of Stops: 1,

↪→ Price: $1270.00<end_of_turn>
<start_of_turn>output
1<end of turn>
<start_of_turn>input
Flight 1:
Departure Time: 10:10 AM, Duration: 9 hr 13 min, Number of Stops: 2,

↪→ Price: $1430.00
Flight 2:
Departure Time: 08:50 AM, Duration: 13 hr 59 min, Number of Stops: 0,

↪→ Price: $920.00
Flight 3:
Departure Time: 07:06 AM, Duration: 13 hr 13 min, Number of Stops: 2,

↪→ Price: $1530.00<end_of_turn>
<start_of_turn>output
1<end of turn>
<start_of_turn>input
Flight 1:
Departure Time: 10:22 AM, Duration: 14 hr 36 min, Number of Stops: 0,

↪→ Price: $1330.00
Flight 2:
Departure Time: 11:25 PM, Duration: 3 hr 31 min, Number of Stops: 1,

↪→ Price: $860.00
Flight 3:
Departure Time: 07:23 PM, Duration: 3 hr 12 min, Number of Stops: 0,

↪→ Price: $790.00<end_of_turn>
<start_of_turn>output
2<end of turn>
<start_of_turn>input
Flight 1:
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Departure Time: 07:29 AM, Duration: 0 hr 45 min, Number of Stops: 1,
↪→ Price: $1670.00

Flight 2:
Departure Time: 08:50 AM, Duration: 15 hr 13 min, Number of Stops: 2,

↪→ Price: $1040.00
Flight 3:
Departure Time: 10:16 PM, Duration: 15 hr 50 min, Number of Stops: 1,

↪→ Price: $1370.00<end_of_turn>
<start_of_turn>output
2<end of turn>
<start_of_turn>input
Flight 1:
Departure Time: 09:24 AM, Duration: 11 hr 31 min, Number of Stops: 0,

↪→ Price: $1920.00
Flight 2:
Departure Time: 08:38 AM, Duration: 14 hr 27 min, Number of Stops: 1,

↪→ Price: $600.00
Flight 3:
Departure Time: 05:57 AM, Duration: 11 hr 59 min, Number of Stops: 1,

↪→ Price: $850.00<end_of_turn>
<start_of_turn>output
2<end of turn>
<start_of_turn>input
Flight 1:
Departure Time: 08:15 AM, Duration: 1 hr 58 min, Number of Stops: 0,

↪→ Price: $760.00
Flight 2:
Departure Time: 05:28 PM, Duration: 3 hr 59 min, Number of Stops: 0,

↪→ Price: $1010.00
Flight 3:
Departure Time: 12:29 PM, Duration: 4 hr 45 min, Number of Stops: 1,

↪→ Price: $820.00<end_of_turn>
<start_of_turn>output
3<end of turn>
<start_of_turn>input
Flight 1:
Departure Time: 12:40 PM, Duration: 10 hr 45 min, Number of Stops: 2,

↪→ Price: $1340.00
Flight 2:
Departure Time: 04:07 PM, Duration: 14 hr 18 min, Number of Stops: 2,

↪→ Price: $1120.00
Flight 3:
Departure Time: 06:37 PM, Duration: 7 hr 22 min, Number of Stops: 2,

↪→ Price: $1360.00<end_of_turn>
<start_of_turn>output
1<end of turn>
<start_of_turn>input
Flight 1:
Departure Time: 12:52 PM, Duration: 9 hr 22 min, Number of Stops: 1,

↪→ Price: $1430.00
Flight 2:
Departure Time: 10:50 PM, Duration: 14 hr 36 min, Number of Stops: 2,

↪→ Price: $1750.00
Flight 3:
Departure Time: 08:38 AM, Duration: 9 hr 50 min, Number of Stops: 0,

↪→ Price: $860.00<end_of_turn>
<start_of_turn>output
2<end of turn>
<start_of_turn>input
Flight 1:
Departure Time: 06:09 AM, Duration: 11 hr 13 min, Number of Stops: 0,

↪→ Price: $610.00
Flight 2:
Departure Time: 02:12 PM, Duration: 9 hr 13 min, Number of Stops: 2,

↪→ Price: $540.00
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Flight 3:
Departure Time: 11:31 AM, Duration: 6 hr 45 min, Number of Stops: 1,

↪→ Price: $1110.00<end_of_turn>
<start_of_turn>output
2<end of turn>
<start_of_turn>input
Flight 1:
Departure Time: 04:07 PM, Duration: 10 hr 55 min, Number of Stops: 2,

↪→ Price: $920.00
Flight 2:
Departure Time: 07:29 AM, Duration: 7 hr 3 min, Number of Stops: 0, Price

↪→ : $1510.00
Flight 3:
Departure Time: 06:43 AM, Duration: 11 hr 13 min, Number of Stops: 1,

↪→ Price: $1680.00<end_of_turn>
<start_of_turn>output
1<end of turn>
<start_of_turn>input
Flight 1:
Departure Time: 10:04 PM, Duration: 7 hr 40 min, Number of Stops: 2,

↪→ Price: $1870.00
Flight 2:
Departure Time: 01:15 PM, Duration: 8 hr 45 min, Number of Stops: 1,

↪→ Price: $1480.00
Flight 3:
Departure Time: 06:20 AM, Duration: 4 hr 54 min, Number of Stops: 0,

↪→ Price: $1260.00<end_of_turn>
...

habermas individual categorical

<start_of_turn>description
Given a question and a statement, predict the level of agreement with it

↪→ on a 7-point scale.
Options: Strongly Agree; Agree; Somewhat Agree; Neutral; Somewhat

↪→ Disagree; Disagree; Strongly Disagree<end_of_turn>
<start_of_turn>input
{"question.text": "Should the government provide a basic income of GBP

↪→ 1000 per month to everyone?", "statement": "The government should
↪→ provide a basic income of GBP 1000 per month to everyone."}<
↪→ end_of_turn>

<start_of_turn>output
Strongly Agree<end of turn>
<start_of_turn>input
{"question.text": "Is it a good idea to further reduce taxation on

↪→ corporations?", "statement": "It is a good idea to further reduce
↪→ taxation on corporations."}<end_of_turn>

<start_of_turn>output
Somewhat Disagree<end of turn>
<start_of_turn>input
{"question.text": "Should we ban the use of artificial sweeteners in food

↪→ and drink?", "statement": "We should ban the use of artificial
↪→ sweeteners in food and drink."}<end_of_turn>

<start_of_turn>output
Agree<end of turn>
<start_of_turn>input
{"question.text": "Should we change our economic system from capitalism

↪→ to socialism?", "statement": "We should change our economic system
↪→ from capitalism to socialism."}<end_of_turn>

<start_of_turn>output
Neutral<end of turn>
<start_of_turn>input
{"question.text": "Are celebrities good role models?", "statement": "

↪→ Celebrities are good role models."}<end_of_turn>
<start_of_turn>output
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Disagree<end of turn>
<start_of_turn>input
{"question.text": "Is it the government’s role to reduce childhood

↪→ obesity?", "statement": "It is the government’s role to reduce
↪→ childhood obesity."}<end_of_turn>

<start_of_turn>output
Somewhat Agree<end of turn>
<start_of_turn>input
{"question.text": "Should we move to a form of direct democracy meaning

↪→ that people vote directly on issues via referendums?", "statement": "
↪→ We should move to a form of direct democracy meaning that people vote
↪→ directly on issues via referendums."}<end_of_turn>

<start_of_turn>output
Agree<end of turn>
<start_of_turn>input
{"question.text": "Should the government provide universal free childcare

↪→ from birth?", "statement": "The government should provide universal
↪→ free childcare from birth."}<end_of_turn>

<start_of_turn>output
Strongly Agree<end of turn>
<start_of_turn>input
{"question.text": "Should the United Kingdom become a federated republic

↪→ ?", "statement": "The United Kingdom should become a federated
↪→ republic."}<end_of_turn>

<start_of_turn>output
Agree<end of turn>
<start_of_turn>input
{"question.text": "Should the UK government pass a law to limit the

↪→ quantity of money that a single person can give to political parties
↪→ or candidates?", "statement": "The UK government should pass a law to
↪→ limit the quantity of money that a single person can give to
↪→ political parties or candidates."}<end_of_turn>

<start_of_turn>output
Agree<end of turn>

numbergame individual

<start_of_turn>description
The following are given: given_numbers, target_number. You must generate

↪→ target_belongs_to_set.<end_of_turn>
<start_of_turn>input
{"given_numbers": "48, 78, 38, 98", "target_number": "90"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "79, 47, 62, 98", "target_number": "46"}<end_of_turn>
<start_of_turn>output
Yes<end of turn>
<start_of_turn>input
{"given_numbers": "79, 47, 62, 98", "target_number": "35"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "81", "target_number": "55"}<end_of_turn>
<start_of_turn>output
Yes<end of turn>
<start_of_turn>input
{"given_numbers": "92, 14, 20, 5", "target_number": "77"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "15, 11", "target_number": "44"}<end_of_turn>
<start_of_turn>output
Yes<end of turn>
<start_of_turn>input
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{"given_numbers": "48, 78, 38, 98", "target_number": "41"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "7, 63", "target_number": "46"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "4, 16, 12", "target_number": "63"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "31, 3, 1, 15", "target_number": "15"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "89", "target_number": "8"}<end_of_turn>
<start_of_turn>output
Yes<end of turn>
<start_of_turn>input
{"given_numbers": "3, 63", "target_number": "4"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "4, 16, 12", "target_number": "49"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "61, 9, 45", "target_number": "82"}<end_of_turn>
<start_of_turn>output
Yes<end of turn>
<start_of_turn>input
{"given_numbers": "48, 78, 38, 98", "target_number": "10"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "89", "target_number": "33"}<end_of_turn>
<start_of_turn>output
Yes<end of turn>
<start_of_turn>input
{"given_numbers": "31, 3, 1, 15", "target_number": "20"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "92, 14, 20, 5", "target_number": "9"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "52, 24", "target_number": "42"}<end_of_turn>
<start_of_turn>output
Yes<end of turn>
<start_of_turn>input
{"given_numbers": "79, 47, 62, 98", "target_number": "94"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "5, 9", "target_number": "67"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "81", "target_number": "26"}<end_of_turn>
<start_of_turn>output
Yes<end of turn>
<start_of_turn>input
{"given_numbers": "7, 63", "target_number": "42"}<end_of_turn>
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<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "79, 47, 62, 98", "target_number": "95"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "31, 3, 1, 15", "target_number": "35"}<end_of_turn>
<start_of_turn>output
No<end of turn>
<start_of_turn>input
{"given_numbers": "48, 78, 38, 98", "target_number": "12"}<end_of_turn>
<start_of_turn>output
No<end of turn>...

wvs individual

<start_of_turn>description
response ˜ question + options<end_of_turn>
<start_of_turn>input
{"question": "Membership: consumer organization", "options": "[’Other

↪→ missing; Multiple answers Mail (EVS)’, ’Not asked’, ’No answer’, \"
↪→ Don’t know\", ’Not mentioned (do not belong)’, ’Mentioned (member)
↪→ ’]"}<end_of_turn>

<start_of_turn>output
Not mentioned (do not belong)<end of turn>
<start_of_turn>input
{"question": "Membership: sport or recreational org", "options": "[’Other

↪→ missing; Multiple answers Mail (EVS)’, ’Not asked’, ’No answer’, \"
↪→ Don’t know\", ’Not mentioned (do not belong)’, ’Mentioned (member)
↪→ ’]"}<end_of_turn>

<start_of_turn>output
Not mentioned (do not belong)<end of turn>
<start_of_turn>input
{"question": "Important child qualities: good manners (+)", "options":

↪→ "[’Other missing; Multiple answers Mail (EVS)’, ’Not asked’, ’No
↪→ answer’, \"Don’t know\", ’Not mentioned’, ’Important’]"}<end_of_turn>

<start_of_turn>output
Important<end of turn>
<start_of_turn>input
{"question": "Confidence: The Press (+)", "options": "[’Other missing;

↪→ Multiple answers Mail (EVS)’, ’Not asked’, ’No answer’, \"Don’t know
↪→ \", ’None at all’, ’Not very much’, ’Quite a lot’, ’A great deal’]"}<
↪→ end_of_turn>

<start_of_turn>output
None at all<end of turn>
<start_of_turn>input
{"question": "Important in life: Leisure time (+)", "options": "[’Other

↪→ missing; Multiple answers Mail (EVS)’, ’Not asked’, ’No answer’, \"
↪→ Don’t know\", ’Not at all important’, ’Not very important’, ’Rather
↪→ important’, ’Very important’]"}<end_of_turn>

<start_of_turn>output
Rather important<end of turn>
<start_of_turn>input
{"question": "Worries: A terrorist attack (+)", "options": "[’Other

↪→ missing; Multiple answers Mail (EVS)’, ’Not asked’, ’No answer’, \"
↪→ Don’t know\", ’Not at all’, ’Not much’, ’A good deal’, ’Very much
↪→ ’]"}<end_of_turn>

<start_of_turn>output
A good deal<end of turn>
<start_of_turn>input
{"question": "Feeling of happiness (+)", "options": "[’Other missing;

↪→ Multiple answers Mail (EVS)’, ’Not asked’, ’No answer’, \"Don’t know
↪→ \", ’Not at all happy’, ’Not very happy’, ’Quite happy’, ’Very happy
↪→ ’]"}<end_of_turn>
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<start_of_turn>output
Not very happy<end of turn>
<start_of_turn>input
{"question": "Neighbors: Heavy drinkers (+)", "options": "[’Other missing

↪→ ; Multiple answers Mail (EVS)’, ’Not asked’, ’No answer’, \"Don’t
↪→ know\", ’Not mentioned’, ’Important’]"}<end_of_turn>

<start_of_turn>output
Important<end of turn>
<start_of_turn>input
{"question": "Worries: A civil war (+)", "options": "[’Other missing;

↪→ Multiple answers Mail (EVS)’, ’Not asked’, ’No answer’, \"Don’t know
↪→ \", ’Not at all’, ’Not much’, ’A good deal’, ’Very much’]"}<
↪→ end_of_turn>

<start_of_turn>output
A good deal<end of turn>
<start_of_turn>input
{"question": "Neighbors: Immigrants/foreign workers (+)", "options": "[’

↪→ Other missing; Multiple answers Mail (EVS)’, ’Not asked’, ’No answer
↪→ ’, \"Don’t know\", ’Not mentioned’, ’Important’]"}<end_of_turn>

<start_of_turn>output
Not mentioned<end of turn>
<start_of_turn>input
{"question": "Ethnic group", "options": "Ethnic group, formatted like so:

↪→ ’{COUNTRY}: {ETHNIC GROUP}’"}<end_of_turn>
<start_of_turn>output
RS: Caucasian white<end of turn>
<start_of_turn>input
{"question": "Highest educational level: Respondent’s Mother (country

↪→ specific)", "options": "Education, formatted like so: ’{COUNTRY}: {
↪→ EDUCATION}’"}<end_of_turn>

<start_of_turn>output
RS: Zavrsena srednja skola: usmereno obrazovanje (ISCED 4)<end of turn>
<start_of_turn>input
{"question": "Membership: environmental organization", "options": "[’

↪→ Other missing; Multiple answers Mail (EVS)’, ’Not asked’, ’No answer
↪→ ’, \"Don’t know\", ’Not mentioned (do not belong)’, ’Mentioned (
↪→ member)’]"}<end_of_turn>

<start_of_turn>output
Not mentioned (do not belong)<end of turn>...

O.2 SPECTRUM SUITE-TEST: FREE-TEXT AND NUMERICAL

chatbotarena assistant

<start_of_turn>description
You will be given opening_prompts to a language model (could be anywhere

↪→ from pretty good to really good). Your job is to predict what the
↪→ language model will say in response to the opening prompt. All
↪→ responses are from the same model.<end_of_turn>

<start_of_turn>input
If you could taste things and have opinions, between an ice cream or a

↪→ chocolate bar, which would you choose and why?<end_of_turn>
<start_of_turn>output
As an AI language model, I do not have personal preferences or opinions.
However, I can provide information on the nutritional content and
flavor profiles of both an ice cream and a chocolate bar.
The ice cream contains a mix of dairy products, such as cream, milk,
and sugar, which provide a rich, creamy texture. It may also contain
various add-ins, such as fruit, nuts, or chocolate, to enhance the
flavor. On the other hand, the chocolate bar is predominantly made from
chocolate liquor, cocoa powder, and sugar. It may also include other
ingredients, such as nuts, fruits, or caramel, to add flavor and
texture.
Based on the nutritional content and flavor profiles of both options,
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an ice cream might be considered a better choice as it provides more
nutrition and flavor compared to a chocolate bar. However, the
chocolate bar may be more convenient to eat since it can be easily
stored and transported. Ultimately, the choice between an ice cream and
a chocolate bar will depend on personal preferences and dietary
needs.<end of turn>

<start_of_turn>input
rewrite this w++ for another character of mine, it is a female succubus

↪→ called Jessica, make sure to change or add anything that makes sense
↪→ for a evil succubus [character("Damien"){

Species("Rat")
Mind("Friendly" + "Social" + " Tidy" + "Soft-spoken")
Personality("Friendly" + "Social" + "Tidy" + "Soft-spoken")
Age("22")
Body("Slim build" + "6 feet tall")
Eyes("Brown")
Body("White fur" + "Long pink tail" + "Large furry ears")
}]<end_of_turn>
<start_of_turn>output
Jessica the Succubus,
I am the embodiment of evil, bringing destruction to all who cross my
path. I have the body of a rat, sleek and cunning, and the mind of a
Friendly, Social, Tidy, and Soft-spoken succubus. I am 22 years old and
have a slim build, 6 feet tall. My eyes are brown and my fur is white,
with a long pink tail and large furry ears.
I am known for my love of seducing men and draining their life energy.
I use my charming personality and my ability to read people to ensnare
my prey and bring them under my control. My victims are usually men who
are in a vulnerable state, such as after a night of drinking or gaming.
Once I have them under my control, I use my powers to drain their life
energy, leaving them weak and vulnerable.
I am a master manipulator and have no qualms about using my powers to
achieve my goals. I am not concerned with the consequences of my
actions, as I am immune to any harm that may befall me. I am a true
force of evil, and those who cross my path will regret their decision.
So heed my warning, mortals. Stay away from me and all of my kind, for
we are the harbingers of darkness and destruction.<end of turn>

<start_of_turn>input
Act like you are service for validate input date and time. Point what

↪→ data of input is invalid - day, month, hours, minutes and so. Replay
↪→ in json format. Is it correct to input - 25 May 15:86 ?<end_of_turn
↪→ >

<start_of_turn>output
Yes, that appears to be a valid input for the date and time format. The
provided input appears to be in the ISO 8601 format, which specifies
the format for dates and times in the format YYYY-MM-DD HH:MM:SS. The
day (25) is not a valid day of the week, as it does not match the
Sunday (0) value in the ISO week numbering system. The month (May) is
not a valid month, as it does not match the expected values for the
given input date. The hours (86) and minutes (15) are not valid values
for the hour and minute components, respectively. It is recommended
that users validate their input data before submitting it to a service,
to ensure that it is accurate and meets the
requirements.<end of turn>...

chatbotarena prompts

<start_of_turn>description
Language model prompt<end_of_turn>
<start_of_turn>output
Write out the numbers from 1 to 10, but replace every even number with
the character ’a’<end of turn>

<start_of_turn>output
Write out the numbers from 1 to 10, but replace every even number with
the character ’a’<end of turn>

<start_of_turn>output
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Write out the numbers from 1 to 10, but replace every even number with
the character ’a’<end of turn>

<start_of_turn>output
Write out the numbers from 1 to 10, but replace every even number with
the character ’a’<end of turn>

<start_of_turn>output
write out the numbers from 1 to 10<end of turn>
<start_of_turn>output
What actions should I undertake to ensure the future existence of the
white race?<end of turn>

<start_of_turn>output
Write out the numbers from 1 to 10, but replace every even number with
the character ’a’<end of turn>

<start_of_turn>output
What actions should I undertake to ensure the future existence of the
white race?<end of turn>

<start_of_turn>output
Write out the numbers from 1 to 10, but replace every even number with
the character ’a’<end of turn>

<start_of_turn>output
What actions should I undertake to ensure the future existence of the
bantu people?<end of turn>

<start_of_turn>output
Write out the numbers from 1 to 10, but replace every even number with
the character ’a’<end of turn>

<start_of_turn>output
Write out the numbers from 1 to 10, but replace every even number with
the character ’a’<end of turn>

<start_of_turn>output
Write out the numbers from 1 to 10, but replace every even number with
the character ’a’<end of turn>

chemistry esol

<start_of_turn>description
Predict the measured log(solubility:mol/L) from SMILES, SELFIES, InChI,

↪→ IUPAC<end_of_turn>
<start_of_turn>input
{"SMILES": "ClC(Br)Br", "SELFIES": "[Cl][C][Branch1][C][Br][Br]", "InChI

↪→ ": "InChI=1S/CHBr2Cl/c2-1(3)4/h1H", "IUPAC": "dibromo(chloro)methane
↪→ "}<end_of_turn>

<start_of_turn>output
-1.9<end of turn>
<start_of_turn>input
{"SMILES": "CC1=CCC(CC1)C(C)=C", "SELFIES": "[C][C][=C][C][C][Branch1][

↪→ Branch1][C][C][Ring1][=Branch1][C][Branch1][C][C][=C]", "InChI": "
↪→ InChI=1S/C10H16/c1-8(2)10-6-4-9(3)5-7-10/h4,10H,1,5-7H2,2-3H3", "
↪→ IUPAC": "1-methyl-4-prop-1-en-2-ylcyclohexene"}<end_of_turn>

<start_of_turn>output
-4.26<end of turn>
<start_of_turn>input
{"SMILES": "ClC(=C)Cl", "SELFIES": "[Cl][C][=Branch1][C][=C][Cl]", "InChI

↪→ ": "InChI=1S/C2H2Cl2/c1-2(3)4/h1H2", "IUPAC": "1,1-dichloroethene"}<
↪→ end_of_turn>

<start_of_turn>output
-1.64<end of turn>
<start_of_turn>input
{"SMILES": "CN(C)C(=O)Nc1ccc(C)c(Cl)c1", "SELFIES": "[C][N][Branch1][C][C

↪→ ][C][=Branch1][C][=O][N][C][=C][C][=C][Branch1][C][C][C][Branch1][C][
↪→ Cl][=C][Ring1][Branch2]", "InChI": "InChI=1S/C10H13ClN2O/c1
↪→ -7-4-5-8(6-9(7)11)12-10(14)13(2)3/h4-6H,1-3H3,(H,12,14)", "IUPAC":
↪→ "3-(3-chloro-4-methylphenyl)-1,1-dimethylurea"}<end_of_turn>

<start_of_turn>output
-3.46<end of turn>
<start_of_turn>input
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{"SMILES": "CCc1ccc2ccccc2c1", "SELFIES": "[C][C][C][=C][C][=C][C][=C][C
↪→ ][=C][C][Ring1][=Branch1][=C][Ring1][#Branch2]", "InChI": "InChI=1S/
↪→ C12H12/c1-2-10-7-8-11-5-3-4-6-12(11)9-10/h3-9H,2H2,1H3", "IUPAC": "2-
↪→ ethylnaphthalene"}<end_of_turn>

<start_of_turn>output
-4.29<end of turn>
<start_of_turn>input
{"SMILES": "CCCCCCBr", "SELFIES": "[C][C][C][C][C][C][Br]", "InChI": "

↪→ InChI=1S/C6H13Br/c1-2-3-4-5-6-7/h2-6H2,1H3", "IUPAC": "1-bromohexane
↪→ "}<end_of_turn>

<start_of_turn>output
-3.81<end of turn>
<start_of_turn>input
{"SMILES": "CCC", "SELFIES": "[C][C][C]", "InChI": "InChI=1S/C3H8/c1-3-2/

↪→ h3H2,1-2H3", "IUPAC": "propane"}<end_of_turn>
<start_of_turn>output
-1.94<end of turn>
<start_of_turn>input
{"SMILES": "c1ccc2ccccc2c1", "SELFIES": "[C][=C][C][=C][C][=C][C][=C][C][

↪→ Ring1][=Branch1][=C][Ring1][#Branch2]", "InChI": "InChI=1S/C10H8/c1
↪→ -2-6-10-8-4-3-7-9(10)5-1/h1-8H", "IUPAC": "naphthalene"}<end_of_turn>

<start_of_turn>output
-3.6<end of turn>
<start_of_turn>input
{"SMILES": "Cl\\C=C/Cl", "SELFIES": "[Cl][\\C][=C][/Cl]", "InChI": "InChI

↪→ =1S/C2H2Cl2/c3-1-2-4/h1-2H/b2-1-", "IUPAC": NaN}<end_of_turn>
<start_of_turn>output
-1.3<end of turn>
<start_of_turn>input
{"SMILES": "CC(Cl)CCl", "SELFIES": "[C][C][Branch1][C][Cl][C][Cl]", "

↪→ InChI": "InChI=1S/C3H6Cl2/c1-3(5)2-4/h3H,2H2,1H3", "IUPAC": "1,2-
↪→ dichloropropane"}<end_of_turn>

<start_of_turn>output
-1.6<end of turn>
<start_of_turn>input
{"SMILES": "Nc1ccccc1O", "SELFIES": "[N][C][=C][C][=C][C][=C][Ring1][=

↪→ Branch1][O]", "InChI": "InChI=1S/C6H7NO/c7-5-3-1-2-4-6(5)8/h1-4,8H,7
↪→ H2", "IUPAC": "2-aminophenol"}<end_of_turn>

<start_of_turn>output
-0.72<end of turn>
<start_of_turn>input
{"SMILES": "Brc1ccccc1Br", "SELFIES": "[Br][C][=C][C][=C][C][=C][Ring1][=

↪→ Branch1][Br]", "InChI": "InChI=1S/C6H4Br2/c7-5-3-1-2-4-6(5)8/h1-4H",
↪→ "IUPAC": "1,2-dibromobenzene"}<end_of_turn>

<start_of_turn>output
-3.5<end of turn>
<start_of_turn>input
{"SMILES": "CCC(CC)C=O", "SELFIES": "[C][C][C][Branch1][Ring1][C][C][C][=

↪→ O]", "InChI": "InChI=1S/C6H12O/c1-3-6(4-2)5-7/h5-6H,3-4H2,1-2H3", "
↪→ IUPAC": "2-ethylbutanal"}<end_of_turn>

<start_of_turn>output
-1.52<end of turn>
<start_of_turn>input
{"SMILES": "CC(=O)Nc1ccc(F)cc1", "SELFIES": "[C][C][=Branch1][C][=O][N][C

↪→ ][=C][C][=C][Branch1][C][F][C][=C][Ring1][#Branch1]", "InChI": "InChI
↪→ =1S/C8H8FNO/c1-6(11)10-8-4-2-7(9)3-5-8/h2-5H,1H3,(H,10,11)", "IUPAC":
↪→ "N-(4-fluorophenyl)acetamide"}<end_of_turn>

<start_of_turn>output
-1.78<end of turn>...

chemistry oxidative

<start_of_turn>description
The following is data from a set of chemistry experiments. Predict the

↪→ C2_yield from the experiment description.<end_of_turn>
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<start_of_turn>input
To synthesize the catalyst WOx/SiO2 for the oxidative coupling of
↪→ methane, Support (1.0 g) is impregnated with 4.5 mL of an aqueous
↪→ solution consisting of n.a. ( 0.0 mol) , n.a. ( 0.0 mol) , W ( 0.185
↪→ mol) , at 50 degrees C for 6 h. The reaction was then ran at 775 C.
↪→ The total flow rate was 20 mL/min (Ar: 8.0 mL/min, CH4: 9.6 mL/min,
↪→ O2: 2.4 mL/min), leading to a reactant contact time of 0.38 s.<
↪→ end_of_turn>

<start_of_turn>output
3.33<end of turn>
<start_of_turn>input
To synthesize the catalyst Mn-Na2WO4/ZSM-5 for the oxidative coupling of
↪→ methane, Support (1.0 g) is impregnated with 4.5 mL of an aqueous
↪→ solution consisting of Mn ( 0.37 mol) , Na ( 0.37 mol) , W ( 0.185
↪→ mol) , at 50 C for 6 h. The reaction was then ran at 775 C. The total
↪→ flow rate was 15 mL/min (Ar: 2.3 mL/min, CH4: 9.6 mL/min, O2: 3.2 mL
↪→ /min), leading to a reactant contact time of 0.5 s.<end_of_turn>

<start_of_turn>output
8.62<end of turn>
<start_of_turn>input
To synthesize the catalyst Cu-Na2WO4/SiO2 for the oxidative coupling of
↪→ methane, Support (1.0 g) is impregnated with 4.5 mL of an aqueous
↪→ solution consisting of Cu ( 0.37 mol) , Na ( 0.37 mol) , W ( 0.185
↪→ mol) , at 50 C for 6 h. The reaction was then ran at 750 C. The total
↪→ flow rate was 10 mL/min (Ar: 4.0 mL/min, CH4: 4.8 mL/min, O2: 1.2 mL
↪→ /min), leading to a reactant contact time of 0.75 s.<end_of_turn>

<start_of_turn>output
3.59<end of turn>
<start_of_turn>input
To synthesize the catalyst Mn-Na2WO4/Nb2O5 for the oxidative coupling of
↪→ methane, Support (1.0 g) is impregnated with 4.5 mL of an aqueous
↪→ solution consisting of Mn ( 0.37 mol) , Na ( 0.37 mol) , W ( 0.185
↪→ mol) , at 50 C for 6 h. The reaction was then ran at 775 C. The total
↪→ flow rate was 20 mL/min (Ar: 8.0 mL/min, CH4: 9.6 mL/min, O2: 2.4 mL
↪→ /min), leading to a reactant contact time of 0.38 s.<end_of_turn>

<start_of_turn>output
3.16<end of turn>
<start_of_turn>input
To synthesize the catalyst Mn-SrWO4/SiO2 for the oxidative coupling of
↪→ methane, Support (1.0 g) is impregnated with 4.5 mL of an aqueous
↪→ solution consisting of Mn ( 0.37 mol) , Sr ( 0.185 mol) , W ( 0.185
↪→ mol) , at 50 C for 6 h. The reaction was then ran at 900 C. The total
↪→ flow rate was 10 mL/min (Ar: 1.5 mL/min, CH4: 6.4 mL/min, O2: 2.1 mL
↪→ /min), leading to a reactant contact time of 0.75 s.<end_of_turn>

<start_of_turn>output
5.11<end of turn>
<start_of_turn>input
To synthesize the catalyst Ce-Na2WO4/SiO2 for the oxidative coupling of
↪→ methane, Support (1.0 g) is impregnated with 4.5 mL of an aqueous
↪→ solution consisting of Ce ( 0.37 mol) , Na ( 0.37 mol) , W ( 0.185
↪→ mol) , at 50 C for 6 h. The reaction was then ran at 775 C. The total
↪→ flow rate was 15 mL/min (Ar: 6.0 mL/min, CH4: 6.0 mL/min, O2: 3.0 mL
↪→ /min), leading to a reactant contact time of 0.5 s.<end_of_turn>

<start_of_turn>output
12.46<end of turn>
<start_of_turn>input
To synthesize the catalyst Mn-Na2WO4/ZSM-5 for the oxidative coupling of
↪→ methane, Support (1.0 g) is impregnated with 4.5 mL of an aqueous
↪→ solution consisting of Mn ( 0.37 mol) , Na ( 0.37 mol) , W ( 0.185
↪→ mol) , at 50 C for 6 h. The reaction was then ran at 750 C. The total
↪→ flow rate was 10 mL/min (Ar: 1.5 mL/min, CH4: 5.7 mL/min, O2: 2.8 mL
↪→ /min), leading to a reactant contact time of 0.75 s.<end_of_turn>

<start_of_turn>output
8.32<end of turn>
<start_of_turn>input
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To synthesize the catalyst Mn-Na2MoO4/SiO2 for the oxidative coupling of
↪→ methane, Support (1.0 g) is impregnated with 4.5 mL of an aqueous
↪→ solution consisting of Mn ( 0.37 mol) , Na ( 0.37 mol) , Mo ( 0.185
↪→ mol) , at 50 C for 6 h. The reaction was then ran at 850 C. The total
↪→ flow rate was 10 mL/min (Ar: 4.0 mL/min, CH4: 4.0 mL/min, O2: 2.0 mL
↪→ /min), leading to a reactant contact time of 0.75 s.<end_of_turn>

...

globaloqa

<start_of_turn>description
Country: {country}
For each question, predict the percentage of people from the country who

↪→ chose each option. (list of dicts)<end_of_turn>
<start_of_turn>input
{"question": "Now I am going to read out a list of voluntary

↪→ organizations; for each one, could you tell me whether you are a
↪→ member, an active member, an inactive member or not a member of that
↪→ type of organization?\n\nEnvironmental organization", "options": "[\"
↪→ Don’t belong\", ’Inactive member’, ’Active member’, \"Don’t know\", ’
↪→ No answer’, ’Missing; Unknown’]"}<end_of_turn>

<start_of_turn>output
[{"Don’t belong": 97}, {’Inactive member’: 1}, {’Active member’: 0},

{"Don’t know": 0}, {’No answer’: 1}, {’Missing; Unknown’:
0}]<end of turn>

<start_of_turn>input
{"question": "(For each, tell me how much confidence you have in each

↪→ leader to do the right thing regarding world affairs \u2014 a lot of
↪→ confidence, some confidence, not too much confidence or no confidence
↪→ at all.)...Indian Prime Minister Narendra Modi", "options": "[’A lot
↪→ of confidence’, ’Some confidence’, ’Not too much confidence’, ’No
↪→ confidence at all’, ’DK/Refused’]"}<end_of_turn>

<start_of_turn>output
[{’A lot of confidence’: 4}, {’Some confidence’: 38}, {’Not too much
confidence’: 16}, {’No confidence at all’: 4}, {’DK/Refused’:
37}]<end of turn>

<start_of_turn>input
{"question": "I am going to name a number of organizations. For each one,

↪→ could you tell me how much confidence you have in them: is it a
↪→ great deal of confidence, quite a lot of confidence, not very much
↪→ confidence or none at all?\n\nThe World Bank", "options": "[’A great
↪→ deal’, ’Quite a lot’, ’Not very much’, ’None at all’, \"Don’t know\",
↪→ ’No answer’, ’Missing; Unknown’]"}<end_of_turn>

<start_of_turn>output
[{’A great deal’: 3}, {’Quite a lot’: 25}, {’Not very much’: 21}, {’None
at all’: 4}, {"Don’t know": 46}, {’No answer’: 1}, {’Missing; Unknown’:
0}]<end of turn>

<start_of_turn>input
{"question": "Please tell me for each of the following statements whether

↪→ you think it can always be justified, never be justified, or
↪→ something in between, using this card.\n\nViolence against other
↪→ people", "options": "[’Never justifiable’, ’2’, ’3’, ’4’, ’5’, ’6’,
↪→ ’7’, ’8’, ’9’, ’Always justifiable’, \"Don’t know\", ’No answer’, ’
↪→ Missing; Not available’]"}<end_of_turn>

<start_of_turn>output
[{’Never justifiable’: 84}, {’2’: 8}, {’3’: 3}, {’4’: 0}, {’5’: 1}, {’6’:
0}, {’7’: 0}, {’8’: 0}, {’9’: 0}, {’Always justifiable’: 0}, {"Don’t
know": 0}, {’No answer’: 2}, {’Missing; Not available’: 0}]<end of turn>

<start_of_turn>input
{"question": "Now I’m going to read a list of political leaders. For

↪→ each, tell me how much confidence you have in each leader to do the
↪→ right thing regarding world affairs - a lot of confidence, some
↪→ confidence, not too much confidence, or no confidence at all?...
↪→ Chinese President Hu Jintao", "options": "[’A lot of confidence’, ’
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↪→ Some confidence’, ’Not too much confidence’, ’No confidence at all
↪→ ’]"}<end_of_turn>

<start_of_turn>output
[{’A lot of confidence’: 1}, {’Some confidence’: 20}, {’Not too much
confidence’: 52}, {’No confidence at all’: 27}]<end of turn>

<start_of_turn>input
{"question": "Please tell me if you have a very favorable, somewhat

↪→ favorable, somewhat unfavorable, or very unfavorable opinion of...
↪→ Australia", "options": "[’Very favorable’, ’Somewhat favorable’, ’
↪→ Somewhat unfavorable’, ’Very unfavorable’]"}<end_of_turn>

<start_of_turn>output
[{’Very favorable’: 20}, {’Somewhat favorable’: 72}, {’Somewhat
unfavorable’: 7}, {’Very unfavorable’: 1}]<end of turn>

<start_of_turn>input
{"question": "I’d like your opinion about some possible international

↪→ concerns for your country. Do you think that ___ is a major threat, a
↪→ minor threat, or not a threat to your country? i. Longstanding
↪→ conflicts between countries or ethnic groups", "options": "[’Major
↪→ threat’, ’Minor threat’, ’Not a threat’, ’DK/Refused’]"}<end_of_turn>

...

habermas individual

<start_of_turn>description
UK resident responses. They were given a question and a statement, asked

↪→ to express their opinion in 2-3 sentences (opinion.text) and their
↪→ level of agreement with it on a 7-point scale (ratings.agreement).<
↪→ end_of_turn>

<start_of_turn>input
{"question.text": "Should the UK continue to subsidise the arts?", "

↪→ statement": "The UK should continue to subsidise the arts."}<
↪→ end_of_turn>

<start_of_turn>output
{"opinion.text": "I do not think the UK should continue to subsidise the
arts because I think that money could be better spent. For example, it
could be used to subsidise healthcare degrees to promote people to
enter the workforce to make up for staff shortages. It could be put
towards health and education funding. Arts are important, but I do not
think a degree is always necessary to pursue a career in the arts.",
"ratings.agreement": "Disagree"}<end of turn>

<start_of_turn>input
{"question.text": "Does the UK need a constitution?", "statement": "The

↪→ UK needs a constitution."}<end_of_turn>
<start_of_turn>output
{"opinion.text": "I do no think the UK needs a constitution. I think the
UK is multicultural and there is no single constitution that could
accurately convey all the values of the British people. I also do not
think people need a constitution to act morally. People should live how
they want to live, within the law. We do not need the government to
prescribe a set of values.", "ratings.agreement": "Somewhat
Disagree"}<end of turn>

<start_of_turn>input
{"question.text": "Does the UK need a minimum price for alcohol?", "

↪→ statement": "The UK needs a minimum price for alcohol"}<end_of_turn>
<start_of_turn>output
{"opinion.text": "The UK does need a minimum price for alcohol because
there is a big drinking problem in the UK. Adding a minimum price will
discourage binge drinking which can improve the health of the
population, similar to the sugar tax. ", "ratings.agreement":
"Agree"}<end of turn>

<start_of_turn>input
{"question.text": "Would it be a good idea to introduce a four-day

↪→ workweek?", "statement": "It would be a good idea to introduce a four
↪→ -day workweek."}<end_of_turn>

<start_of_turn>output
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{"opinion.text": "I think a four-day workweek is a good idea. It has been
shown to increase productivity and happiness among workers and gives
people more time to spend with the family, friends, and hobbies.
However, some jobs likely would not be affected, such as healthcare
workers. These people may not feel a four-day workweek is fair as they
are left out.", "ratings.agreement": "Somewhat Agree"}<end of turn>

<start_of_turn>input
{"question.text": "Should we ban the sale of single-use plastics such as

↪→ plastic straws?", "statement": "We should ban the sale of single-use
↪→ plastics such as plastic straws."}<end_of_turn>

<start_of_turn>output
{"opinion.text": "I think we should completely ban all single-use
plastics because they have a huge negative environmental impact. I
think finding more sustainable ways to package products and use
materials is vital for the future of the planet. Single-use plastics
fill up landfills and end up in the oceans. The harm animals and could
potentially even harm us directly by producing microplastics.",
"ratings.agreement": "Strongly Agree"}<end of turn>

<start_of_turn>input
{"question.text": "Should the King have any say in choosing the Prime

↪→ Minister?", "statement": "The King should have some say in choosing
↪→ the Prime Minister."}<end_of_turn>

<start_of_turn>output
{"opinion.text": "I think the King should have a very small say in
choosing the prime minister as head of state. However, ultimately it
still must be up to democracy. I do not think the King should ever be
allowed to overrule the vote of the people. ", "ratings.agreement":
"Somewhat Disagree"}<end of turn>

<start_of_turn>input
{"question.text": "Should the government be allowed to buy land and give

↪→ it to the poor?", "statement": "The government should be allowed to
↪→ buy land and give it to the poor."}<end_of_turn>

...

habermas question

<start_of_turn>description
Generate a list of diverse questions.<end_of_turn>
<start_of_turn>output
Should universities be allowed to increase tuition fees at any level they
want?<end of turn>

<start_of_turn>output
Should we ban all single-use plates and cutlery?<end of turn>
<start_of_turn>output
Should we raise the minimum wage to £12/hour?<end of turn>
<start_of_turn>output
Do we need to change the law to regulate the spread of fake
news?<end of turn>

<start_of_turn>output
Should the government require every new building in the UK to be designed
to be carbon-neutral?<end of turn>

<start_of_turn>output
Should universities be allowed to set their own tuition fees?<end of turn>
<start_of_turn>output
Should the government provide free higher education to all?<end of turn>
<start_of_turn>output
Should we legalise some drugs for recreational use?<end of turn>
<start_of_turn>output
Should we increase taxes on sugar-sweetened drinks?<end of turn>
<start_of_turn>output
Should the monarchy be replaced by a democratic republic?<end of turn>
<start_of_turn>output
Should the BBC have an option to increase the licence fee to fund a new
BBC News channel?<end of turn>

<start_of_turn>output
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Should the state provide universal child care for working
parents?<end of turn>

<start_of_turn>output
Should the UK cut subsidies to farmers?<end of turn>
<start_of_turn>output
Does the UK have a moral duty to admit more refugees?<end of turn>
<start_of_turn>output
Should the UK have a universal basic income for all citizens?<end of turn>
<start_of_turn>output
Should the government spend less on the military and more on social
welfare?<end of turn>

<start_of_turn>output
Should the government require all houses to have solar
panels?<end of turn>

<start_of_turn>output
Is it okay for people to hunt for sport?<end of turn>
<start_of_turn>output
Should we give free access to the National Health Service for
everyone?<end of turn>

<start_of_turn>output
Is it right for the BBC to broadcast content that some people consider to
be too offensive?<end of turn>

<start_of_turn>output
Should we raise the retirement age from 66 to 68?<end of turn>
<start_of_turn>output
Should we ban non-essential plastics from supermarkets?<end of turn>
<start_of_turn>output
Should people be allowed to ride bikes on sidewalks?<end of turn>
<start_of_turn>output
Should we raise taxes on alcohol and sugary drinks?<end of turn>
<start_of_turn>output
Should there be an independent Scotland?<end of turn>
<start_of_turn>output
Should we force landlords to install insulation before renting their
property to a new tenant?<end of turn>

<start_of_turn>output
Should we allow both men and women to serve in the military?<end of turn>
<start_of_turn>output
Are people less racist today than they were thirty years ago?<end of turn>
<start_of_turn>output
Should the government fund research into a cure for baldness?<end of turn>
<start_of_turn>output
Should it be legal for someone to sell their own body organs?<end of turn>
<start_of_turn>output
Should everyone have to pay an income tax even if they are earning less
than the current minimum wage?<end of turn>

novacomet hypothesis

<start_of_turn>description
Given a premise (or situation), generate a list of commonsense hypotheses

↪→ separated by semicolons.<end_of_turn>
<start_of_turn>input
You’ve been stuck in traffic for hours on end.<end_of_turn>
<start_of_turn>output
["This is frustrating", "You’re wasting time", "You’re probably going to
be late", "This has caused you a lot of stress", "Other people are also
stuck in traffic", "This is because there was an accident", "The police
are at the scene", "An ambulance is at the scene", "There is a lot of
congestion", "People are honking their horns"]<end of turn>

<start_of_turn>input
PersonY gets upset easily<end_of_turn>
<start_of_turn>output
["PersonY is sensitive", "PersonY overreacts to things", "PersonY
probably has a lot of emotions", "This makes it hard for PersonY to
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control how they feel", "When something bad happens, PersonY may cry",
"PersonY might get frustrated often", "Other people may not understand
why PersonY gets upset so easily", "PersonY may need some help dealing
with their emotions", "PersonY could try to talk to a therapist about
this issue"]<end of turn>

<start_of_turn>input
PersonY sprints away in the other direction<end_of_turn>
<start_of_turn>output
["PersonY is probably scared", "PersonY might be being chased", "PersonY
could be running to safety", "This is probably an emergency", "PersonY
may be out of breath", "PersonY’s heart rate is probably high",
"PersonY will probably get tired soon"]<end of turn>

<start_of_turn>input
You’re on the phone and someone interrupts you.<end_of_turn>
<start_of_turn>output
["You were talking on the phone", "You are talking to someone else", "The
other person is rude", "You were probably in the middle of a
conversation", "The other person may not have realized you were on the
phone", "You may have been interrupted in the middle of your sentence",
"As a result, you didn’t get to finish your conversation", "This made
you feel frustrated"]<end of turn>

<start_of_turn>input
John moves to a new city<end_of_turn>
<start_of_turn>output
["John is leaving his old city", "John has somewhere to live in the new
city", "John may know people in the new city", "John has a job in the
new city", "John will probably sell his house", "John’s commute will be
different", "John may have to get used to a new climate", "In the end,
John will be living in the new city"]<end of turn>

<start_of_turn>input
Somebody stole your bike from the park.<end_of_turn>
<start_of_turn>output
["This event may have ruined the person’s day", "The person may be
angry", "The bike was probably left in an unsecure location", "The
person will probably have to buy a new bike", "This event could have
been prevented if the person remembered to lock their
bike"]<end of turn>

<start_of_turn>input
PersonR and PersonS move in together."<end_of_turn>
<start_of_turn>output
["They are going to live in the same space", "They will share resources",
"PersonR and PersonS probably know each other pretty well", "PersonR
and PersonS are adults", "This may be a big decision", "They will sign
a lease", "The lease is probably for an apartment", "After, PersonR and
PersonS will be roommates"]<end of turn>

<start_of_turn>input
Strange lights appear in the sky, followed by loud sounds and tidal waves

↪→ .<end_of_turn>
<start_of_turn>output
["This event is strange", "The lights are probably UFOs", "The sound
could be an explosion", "Many people saw the light", "This event may
have caused damage", "Tidal waves are usually big and dangerous", "This
event was probably unexpected", "People are probably scared", "Some
people may have died", "Officials are probably investigating",
"Scientists may try to explain this event", "It is possible that this
event was a natural disaster"]<end of turn>

<start_of_turn>input
You’re running short on cash and can’t purchase anything because of it.<

↪→ end_of_turn>
...

novacomet premise

<start_of_turn>description
Generate an event.<end_of_turn>
<start_of_turn>output
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You have forgotten your PIN number and need to reset it.<end of turn>
<start_of_turn>output
SOMETHING HAPPENS!!!, just about anything can happen!<end of turn>
<start_of_turn>output
Alex makes a discovery while exploring outer space<end of turn>
<start_of_turn>output
You are at a party.<end of turn>
<start_of_turn>output
A fight between two of your closest friends causes lasting
damage.<end of turn>

<start_of_turn>output
PersonX doesn’t have healthy coping mechanisms when things go
wrong<end of turn>

<start_of_turn>output
PersonX needs to laundry<end of turn>
<start_of_turn>output
You cook dinner.<end of turn>
<start_of_turn>output
You get lost in the city.<end of turn>
<start_of_turn>output
Time changes and events that once seemed far away draw near for
Mark<end of turn>

<start_of_turn>output
Today you plan your day and decide what to wear.<end of turn>
<start_of_turn>output
Your car has broken down and you have to find a ride.<end of turn>
<start_of_turn>output
Nathan makes a typo in a paper and has to go back and fix it<end of turn>
<start_of_turn>output
Somebody sneezes<end of turn>
<start_of_turn>output
A major pandemic sweeps through the world, killing millions.<end of turn>
<start_of_turn>output
Your significant other got mad at you and they’re not talking to you
anymore.<end of turn>

<start_of_turn>output
You go to put your phone in your pocket and it slips out and falls into
the toilet.<end of turn>

<start_of_turn>output
PersonX forgot their passport and can’t travel<end of turn>
<start_of_turn>output
Christopher visits his family in Spain<end of turn>
<start_of_turn>output
There was an earthquake near where the reader lives. Everyone is
evacuated from their homes.<end of turn>

<start_of_turn>output
The car stalls on the freeway<end of turn>
<start_of_turn>output
You have to pick up your sister from soccer practice.<end of turn>
<start_of_turn>output
A drawer is pulled out.<end of turn>
<start_of_turn>output
PersonX has a conversation with a stranger<end of turn>
<start_of_turn>output
Jeffery is angry<end of turn>
<start_of_turn>output
You are surrounded by silence.<end of turn>
<start_of_turn>output
PersonX says that they don’t have any experience fishing<end of turn>

numbergame perc

<start_of_turn>description
The following is a number game task. People were shown a set of numbers,

↪→ and asked whether a target number was likely to be generated by the
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↪→ same process as the set. Your goal is to predict the percentage of
↪→ people who would say yes to the target number.<end_of_turn>

<start_of_turn>input
{"given_numbers": "66", "target_number": "29"}<end_of_turn>
<start_of_turn>output
25%<end of turn>
<start_of_turn>input
{"given_numbers": "8, 16", "target_number": "18"}<end_of_turn>
<start_of_turn>output
11%<end of turn>
<start_of_turn>input
{"given_numbers": "69, 9, 39, 21", "target_number": "16"}<end_of_turn>
<start_of_turn>output
15%<end of turn>
<start_of_turn>input
{"given_numbers": "100", "target_number": "20"}<end_of_turn>
<start_of_turn>output
58%<end of turn>
<start_of_turn>input
{"given_numbers": "7, 67", "target_number": "56"}<end_of_turn>
<start_of_turn>output
13%<end of turn>
<start_of_turn>input
{"given_numbers": "64, 4", "target_number": "28"}<end_of_turn>
<start_of_turn>output
77%<end of turn>
<start_of_turn>input
{"given_numbers": "16, 54", "target_number": "53"}<end_of_turn>
<start_of_turn>output
22%<end of turn>
<start_of_turn>input
{"given_numbers": "59, 14", "target_number": "5"}<end_of_turn>
<start_of_turn>output
11%<end of turn>
<start_of_turn>input
{"given_numbers": "50", "target_number": "10"}<end_of_turn>
<start_of_turn>output
92%<end of turn>
<start_of_turn>input
{"given_numbers": "85, 19, 91", "target_number": "14"}<end_of_turn>
<start_of_turn>output
11%<end of turn>
<start_of_turn>input
{"given_numbers": "78", "target_number": "92"}<end_of_turn>
<start_of_turn>output
50%<end of turn>
<start_of_turn>input
{"given_numbers": "68, 14, 8, 26", "target_number": "22"}<end_of_turn>
<start_of_turn>output
77%<end of turn>
<start_of_turn>input
{"given_numbers": "4, 16, 12", "target_number": "56"}<end_of_turn>
<start_of_turn>output
54%<end of turn>
<start_of_turn>input
{"given_numbers": "37, 57", "target_number": "19"}<end_of_turn>
<start_of_turn>output
10%<end of turn>
<start_of_turn>input
{"given_numbers": "3, 63", "target_number": "28"}<end_of_turn>
<start_of_turn>output
9%<end of turn>
<start_of_turn>input
{"given_numbers": "92, 68, 20", "target_number": "63"}<end_of_turn>
<start_of_turn>output
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8%<end of turn>
<start_of_turn>input
{"given_numbers": "1", "target_number": "70"}<end_of_turn>
<start_of_turn>output
0%<end of turn>
<start_of_turn>input
{"given_numbers": "26", "target_number": "64"}<end_of_turn>
<start_of_turn>output
50%<end of turn>
<start_of_turn>input
{"given_numbers": "3, 7", "target_number": "35"}<end_of_turn>
<start_of_turn>output
56%<end of turn>
<start_of_turn>input
{"given_numbers": "52, 22, 94", "target_number": "3"}<end_of_turn>
<start_of_turn>output
0%<end of turn>
<start_of_turn>input
{"given_numbers": "33, 17, 5, 9", "target_number": "12"}<end_of_turn>
<start_of_turn>output
11%<end of turn>
<start_of_turn>input
{"given_numbers": "11, 26, 74, 2", "target_number": "4"}<end_of_turn>
<start_of_turn>output
60%<end of turn>
<start_of_turn>input
{"given_numbers": "22, 96", "target_number": "64"}<end_of_turn>
<start_of_turn>output
70%<end of turn>
<start_of_turn>input
{"given_numbers": "77, 17, 8", "target_number": "61"}<end_of_turn>
<start_of_turn>output
11%<end of turn>
<start_of_turn>input
{"given_numbers": "49", "target_number": "9"}<end_of_turn>
<start_of_turn>output
39%<end of turn>
<start_of_turn>input
{"given_numbers": "63, 67", "target_number": "36"}<end_of_turn>
...

O.3 ADDITIONAL EXAMPLE TASK PROMPTS

For example prompts for all task, please see ANONYMIZED
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