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ABSTRACT

Existing 3D semantic segmentation methods rely on point-wise or voxel-wise fea-
ture descriptors to output segmentation predictions. However, these descriptors
are often supervised at point or voxel level, leading to segmentation models that
can behave poorly at instance-level. In this paper, we proposed a novel instance-
aware approach for 3D semantic segmentation. Our method combines several ge-
ometry processing tasks supervised at instance-level to promote the consistency of
the learned feature representation. Specifically, our methods use shape generators
and shape classifiers to perform shape reconstruction and classification tasks for
each shape instance. This enforces the feature representation to faithfully encode
both structural and local shape information, with an awareness of shape instances.
In the experiments, our method significantly outperform existing approaches in
3D semantic segmentation on several public benchmarks, such as Waymo Open
Dataset, SemanticKITTI and ScanNetV2.

1 INTRODUCTION

3D semantic segmentation is fundamental to the perception systems in robotics, autonomous driving,
and other fields that require active interaction with the 3D physical surrounding environment. In the
deep learning era, a common approach to 3D semantic segmentation is to compute point- or voxel-
level descriptors, which are then used to perform point-wise semantic segmentation. So far, most
existing approaches have focused on crafting novel neural architectures for descriptor learning and
class prediction Zhu et al. (2021); Tang et al. (2020); Choy et al. (2019); Zhang et al. (2020b);
Milioto et al. (2019); Xu et al. (2020); Cheng et al. (2022). Few approaches Yan et al. (2021; 2022);
Ye et al. (2023) have looked into what type of supervision beyond semantic labels is beneficial for
learning dense descriptors for 3D semantic descriptors.

In this paper, we study how instance label supervision can benefit semantic segmentation. Intu-
itively, in 3D semantic segmentation, the instance labels offer supervision about geometric features
of individual objects (e.g., object sizes and most popular shapes) and correlations among those ob-
jects. Such supervisions, which are not present from semantic labels, enable learning more powerful
descriptors for semantic segmentation. However, compared to obtaining semantic labels, acquiring
instance-level labels is more costly, particularly on objects with potentially many instances (e.g.,
vehicles and pedestrians).

The biggest message of this paper is that in 3D semantic segmentation, instance labels can be com-
puted in an almost unsupervised manner. Moreover, we introduce additional feature learning tasks
that are insensitive to erroneous instance labels. Specifically, we introduce a clustering approach
that takes an input point cloud, ground-truth semantic labels, and learned dense descriptors from
semantic labels and outputs clusters of input points as object instances. The clustering procedure
is driven by prior knowledge of the average object size of each object class, which is unique in 3D
semantic segmentation compared to 2D semantic segmentation.

Given the predicted instance labels, we introduce two additional tasks that take semantic descriptors
as input, i.e., classification and shape reconstruction, to boost descriptor learning. The classification
task forces the semantic descriptors to predict instance labels, promoting that semantic descriptors
capture instance-level shape features and contextual features. The reconstruction task asks the se-
mantic descriptors to reconstruct the 3D geometry of individual object instances, offering another
level of supervision on semantic descriptors to capture instance-level shape features. Note that both
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Figure 1: We propose an instance-aware semantic segmentation framework. Baseline methods (left)
apply segmentation at the individual point level, without considering the relations between points on
the same instance, which causes inconsistent predictions on one object. Our method (right) introduce
instance-level classification and reconstruction, making the network learn between instance shape
features and getting more consistent and accurate results.

tasks are insensitive to wrong clustering results, making our approach robust with only semantic
labels as supervision. In addition, our method is orthogonal to improving network architecture for
3D semantic segmentation and is effective under different feature extraction backbones.

We have evaluated our approach on two outdoor datasets, i.e., SemanticKitti and Waymo, and one
indoor dataset, i.e., ScanNetV2. Experimental results show that our approach can boost IoU from
the state-of-the-art by 0.7% and 0.9% on SemanticKitti and Waymo, and 0.8% on ScanNetV2. In
addition, our approach is competitive against using ground-truth instance labels. For example, on
Waymo, using the ground-truth instance labels offers an improvement in IoU by 1.5%. This shows
the effectiveness of our clustering approach for identifying individual object instances.

To summarize, our contributions are

• We study instance-level supervision for 3D semantic segmentation and introduce an effec-
tive unsupervised approach for identifying object instances.

• Using the predicted object instances, we introduce classification and shape reconstruction
as additional tasks to boost semantic descriptor learning.

• We show state-of-the-art results on both indoor and outdoor benchmarks and consistent
improvements on variant baselines.

2 RELATED WORKS

3D Semantic Segmentation. 3D semantic segmentation is fundamental to understanding indoor
and outdoor scenes. Current works follow the U-Net structure, where the input point cloud is down-
sampled and upsampled to obtain per-point features. The resulting point features are then used to
predict segmentation labels for each individual points. For indoor scenes Dai et al. (2017); Ar-
meni et al. (2017), the point samples are often uniformly sampled, which is suitable for point-based
methods Qi et al. (2016; 2017); Wu et al. (2019); Thomas et al. (2019); Lai et al. (2022); Hu et al.
(2020b); Zhao et al. (2021a); Zhang et al. (2020a); Lei et al. (2020); Hu et al. (2020a); Qiu et al.
(2021); Yang et al. (2023) Outdoor scenes typically come from LiDAR, point-based methods suffer
from efficiency and computation costs due to data sparsity and large data size. People use different
data representations to make the U-Net framework more efficient and effective. SqueezeNet Xu
et al. (2020), RangeNet++ Milioto et al. (2019), SalsaNext Cortinhal et al. (2020), FIDNet Zhao
et al. (2021b), and CENet Cheng et al. (2022) project the input point cloud to a front-view range
image and use the 2D convolution networks to do the segmentation. SparseConvNet Graham &
van der Maaten (2017), MinkwoskiNet Choy et al. (2019), (AF )2S3Net Cheng et al. (2021) and Li-
darMultiNet Ye et al. (2023) take advantage of sparse convolution and use volumetric grid to do the
3D segmentation. SPVNAS Tang et al. (2020) combines points and voxel representation to get more
accurate results. More novel grid representations are developed to better utilize the LiDAR point
cloud properties, such as cylindrical grids Zhu et al. (2021); Hou et al. (2022) and polar BEV coor-
dinates Zhang et al. (2020b). These baselines predict per-point semantic labels separately without
considering individual object instances. On the other hand, our method applies instance-level feature
grouping and learning, which helps the network learn better features for semantic segmentation.

3D Multi-task Learning. Many approaches combine multiple tasks Liang et al. (2019); Wang
et al. (2021); Ye et al. (2023); Zhou et al. (2023); Feng et al. (2021) or different sensor data Yan
et al. (2022); Liang et al. (2019); Wang et al. (2021); Yan et al. (2021) to boost the performance of
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Figure 2: The pipeline of our method. Taking the 3D point cloud as input, the framework outputs
the per-point semantic labels. The segmentor is composed of 3D sparse U-Net backbone, and a per-
point semantic prediction head. Upon the backbone we add two instance-level branches: instance
classification head and shape completion head. Instance labels are obtained by semantic guided
clustering. Backbone features are grouped by instance labels and fed into a shape classifier and
shape autoencoder. The per-point segmentation, instance classification and shape reconstruction are
jointly trained to help the backbone learn better instance-aware features.

single-task learning. LidarMultiNet Ye et al. (2023) combines object detection, BEV segmentation
and semantic segmentation. JS3CNet Yan et al. (2021) added semantic scene completion upon the
segmentation task. 2DPASS Yan et al. (2022) fuses 2D images with 3D point clouds. All of those
papers require more supervision or sensor data, while our method only uses semantic labels and
acquires instance labels in an unsupervised way.

Feature Learning by Completion. Following Masked Autoencoder (MAE) He et al. (2022a),
a lot of methods do the masking and completion-based feature learning and pre-training on 3D
shapes Pang et al. (2022); Guo et al. (2023); Yan et al. (2023); Liang et al. (2022); Zhang et al.
(2022; 2023) and 3D scenes Min et al. (2022); Hess et al. (2023); Chen et al. (2023). Our method
also does feature learning by completion. Unlike those papers, which do the scene or shape level
masking and model pre-training for the entire input, our method does the masking on the instance
level. In addition, we aim to refine the features of segmentation rather than the autoencoder.

3 APPROACH OVERVIEW

In this section, we highlight the design principles of our approach, named with InsSeg, and leave the
details to section 4. Figure 2 summarizes our approach. Broadly speaking, our approach adopts a
descriptor learning module (introduced in section 4.1) and leverages instance-level supervision tasks
without requiring ground-truth instance labels from additional annotation procedures.

Besides the descriptor learning module, our approach uses a semantic-guided instance clustering
module and two instance-level supervision heads. The instance clustering module computes instance
labels from the input point cloud, ground-truth semantic labels, and the point-wise feature descrip-
tors generated from the descriptor learning module. The instance-level supervision heads perform
shape reconstruction and classification to enhance the feature representation at training time.

Semantic-guided Instance Clustering Module. Computing instance labels is a challenging task
that requires a tolerance of variation in the size and number of instances of each object class. Incor-
rect instance labels can lead to marginal performance gain from instance-level supervision heads.
To this end, we use mean-shift clustering Comaniciu & Meer (2002), which is a modern clustering
algorithm that can be efficiently computed and is robust to the number and size of clusters. The
combination of point-wise feature descriptors and the input point cloud leads to robust clustering re-
sults. In our experiments, the clustering module has a negligible computation cost and can produce
reasonable instance labels for multi-task supervision (see Figure 1, right).

Instance-level Multi-task Supervision. Given the instance labels computed from the clustering
module, we design two supervision tasks that can regularize the feature representation at the in-
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stance level, i.e., shape reconstruction and shape classification. These two tasks force the feature
representation to encode both categorical and geometric information regarding each object instance,
leading to better learned features. Specifically, the shape classification head adopts a max-pool strat-
egy to make the task insensitive to incorrect instance labels. The shape reconstruction head takes
descriptors of each masked-out object instance as input and reconstructs the corresponding complete
object instance. In the same spirit as MAE He et al. (2022b), the shape reconstruction forces the
point-wise descriptors to capture contextual information. The difference in our setting is that con-
textual information is prioritized at the object level, which is important for semantic segmentation.
4 APPROACH

This section presents the technical details of our approach. We begin with the descriptor learning
backbone in Section 4.1. We then introduce the clustering module in Section 4.2. Section 4.3 and
Section 4.4 introduce the classification and reconstruction heads, respectively. Finally, Section 4.5
elaborates on the technical details.

4.1 DESCRIPTOR LEARNING

As shown in Figure 2, the descriptor learning module combines a voxelization sub-module and a
3D U-Net sub-module for descriptor extraction. The voxelization sub-module transforms the point
cloud P ∈ RN×3 into a fix-sized voxel grid and extracts initial voxel features F0 ∈ RM×d0 by
aggregating points in same voxels, where M is the number of non-empty voxels. The 3D U-Net
sub-module then takes F0 as input and compute backbone features F ∈ RM×d by a multi-scale
encoder-decoder model. The backbone features are fed into the voxel semantic prediction head Hs

and per-voxel semantic labels S̄V ∈ RM are predicted.

4.2 INSTANCE LABELS VIA CLUSTERING

The clustering module takes the predicted point-wise descriptors (obtained by interpolating the out-
put of the 3D U-Net), ground-truth semantic labels, and 3D point coordinates as input and outputs
clusters of points, each of which corresponds to one predicted object instance. Our major goal is to
leverage prior knowledge on the average shape size of each object class to identify object instances.

Specifically, we perform mean-shift clustering Comaniciu & Meer (2002) on points of each scene
that belong to the same semantic class. The feature vector f = (p, λp, d) for each point p includes
its location p and its descriptor returned by the descriptor learning module. λp = 1/σp where σp is
the descriptor variance among all points whose distance to p are within rp where rp is based on the
semantic class label of p, e.g., rp = 1m for cars and rp = 0.5m for pedestrians. Please refer to the
supplementary material for details and the visualization of instance clustering.

We denote the resulting clusters as {Ok|k = 1, ...,K}. Each Ok corresponds to one object semantic
label ck. The raw point cloud and backbone features in instance Ok are denoted by P(Ok) ∈ RMk×3

and F(Ok) ∈ RMk×d, respectively, where Mk is the number of voxels falling on instance Ok and
d is the feature dimension. We also denote the group of voxel centers that falls into instance Ok as
V(Ok) ∈ RMk×3.

Based on the predicted object labels, we design two prediction heads that take the voxel-based
semantic descriptors as input. In the same spirit as multi-task learning, our goal is to use these
prediction heads to boost the quality of the voxel-based semantic descriptors, which then improve
semantic segmentation performance. Both tasks are defined so that they are insensitive to potentially
noisy object labels.

4.3 INSTANCE CLASSIFICATION HEAD

The first additional prediction head is the instance classification head Hc. The goal is to help the
network to learn instance-wise semantic features. It groups the backbone features falling in different
instances and predicts the semantic categories C̄ for those instances.

For instance Ok, we have the grouped backbone features F(Ok). We first use a max-pooling to
aggregate the input features from the voxel-level to instance level, then apply a classification head
on this pooled feature. The max-pooling operator can accommodate objects with different number
of points and tolerate the errors in the instance clustering, e.g. the feature aggregation of two objects
is still valid for single-object classification. With this setup, the predicted class label for the object
Ok is

c̄k = MLP(max-pool(F(Ok))), (1)
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Figure 3: Qualitative results on Waymo Open Dataset and SemanticKTTI validation set. From left
to right we show the semantic segmentation results of SPVCNNTang et al. (2020), LidarMultiNetYe
et al. (2023), our method, and the ground truth semantic labels. We use red boxes to highlight the
inconsistent or erronous predictions from baselines. Our method is able to improve the consistency
and accuracy of the semantic prediction on objects.

The loss function adopted for this head is the instance classification loss between the predicted object
class labels c̄k and the ground truth labels ck. We use OHEM lossShrivastava et al. (2016) in our
method:

Lc =
1

K

K∑
k=0

lohem(c̄k, ck) (2)

4.4 SHAPE RECONSTRUCTION HEAD

The second prediction head is Hg , which takes backbone features from part of an instance (a subset
of a full instance) and aims to reconstruct the geometry of the full instance. This prediction head
takes motivations from MAE He et al. (2022a), which performs feature learning by completing
masked out regions. Our approach presents two fundamental differences. First, the input are point
descriptors not raw 3D points. The point descriptors are jointly trained by semantic labels, providing
good initializations for feature learning. Second, in contrast to reconstructing the entire scene, the
reconstruction is performed at the instance level. This helps the features capture object-specific
features for semantic segmentation.

Specifically, to get the input for the shape reconstruction head of instance Ok, we randomly mask
part of the backbone feature F(Ok). This is done by randomly choosing a voxel q from the voxel
centers V(Ok) and mask all voxels within radius r (which depends on the semantic class and is the
same as the one used for clustering) from q. The input for the completion head is

F ′(Ok) = F(Ok)[mask(q, r)] (3)
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RangeNet++Milioto et al. (2019) 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9
PolarNetZhang et al. (2020b) 54.3 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5

SqueezeSegV3Xu et al. (2020) 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9
KPConvThomas et al. (2019) 58.8 95.0 30.2 42.5 33.4 44.3 61.5 61.6 11.8 90.3 61.3 72.7 31.5 90.5 64.2 84.8 69.2 69.1 56.4 47.4

SalsaNextCortinhal et al. (2020) 59.5 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1
FIDNetZhao et al. (2021b) 59.5 93.9 54.7 48.9 27.6 23.9 62.3 59.8 23.7 90.6 59.1 75.8 26.7 88.9 60.5 84.5 64.4 69.0 53.3 62.8

BAAFQiu et al. (2021) 59.9 95.4 31.8 35.5 48.7 46.7 49.5 55.7 53.0 90.9 62.2 74.4 23.6 89.8 60.8 82.7 63.4 67.9 53.7 52.0
CENetCheng et al. (2022) 59.4 91.7 43.0 40.5 42.3 42.8 55.1 58.4 26.3 90.5 65.6 74.0 30.4 89.1 61.4 81.4 60.4 66.2 50.4 59.3

FusionNetZhang et al. (2020a) 61.3 95.3 47.5 37.7 41.8 34.5 59.5 56.8 11.9 91.8 68.8 77.1 30.8 92.5 69.4 84.5 69.8 68.5 60.4 66.5
Cylinder3D Zhu et al. (2021) 61.8 96.1 54.2 47.6 38.6 45.0 65.1 63.5 13.6 91.2 62.2 75.2 18.7 89.6 61.6 85.4 69.7 69.3 62.6 64.7
SPVCNNTang et al. (2020) 63.6 96.2 49.4 47.1 45.2 40.6 60.8 68.3 41.1 90.9 63.9 75.4 17.9 91.3 66.5 85.5 71.1 69.6 61.6 65.4

MinkowskiNetChoy et al. (2019) 64.3 96.2 43.7 46.4 51.6 41.0 62.8 68.1 49.6 90.9 64.0 75.2 21.7 90.5 64.5 85.6 70.2 69.8 60.8 66.5
LidarMultiNetYe et al. (2023) 64.3 96.2 45.7 47.0 47.1 40.9 62.7 66.8 40.8 90.7 67.0 75.5 29.3 92.0 67.5 85.3 72.5 69.7 61.5 62.5

InsSeg 65.0 96.5 37.5 48.9 51.1 44.1 64.3 69.0 42.5 91.2 66.9 76.1 30.8 92.5 69.2 85.7 72.3 69.8 61.7 64.1

Table 1: Quantitative semantic segmentation results on SemanticKITTIBehley et al. (2019) test set.
We show the IoU for 23 semantic classes and mIoU among them. Our method outperforms all
baselines in mIoU and most categories.
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RPVNetXu et al. (2021) 62.6 94.8 67.4 74.9 33.0 0.0 77.3 88.6 68.0 28.6 74.7 37.6 53.8 64.9 96.5 86.4 67.1 70.9 90.9 23.7 24.0 68.8 84.4
SPVCNNTang et al. (2020) 64.12 94.68 68.82 73.59 26.89 0.04 73.77 88.08 68.50 26.75 74.30 43.31 56.78 62.34 96.32 85.93 66.58 70.78 91.90 41.37 46.66 69.69 83.67
Cylinder3DZhu et al. (2021) 64.19 94.21 66.75 76.76 25.85 0.10 74.27 88.01 65.61 26.64 73.92 49.59 58.07 66.12 96.51 86.28 67.77 66.22 91.42 37.26 45.23 71.75 84.86

MinkowskiNetChoy et al. (2019) 65.21 95.06 69.48 77.27 29.52 0.00 74.34 88.40 68.98 28.53 75.92 48.67 57.58 64.62 96.47 86.26 67.98 71.32 92.05 41.46 45.09 70.39 84.08
LidarMultiNetYe et al. (2023) 65.24 94.42 65.70 76.37 29.47 0.05 78.07 89.57 68.34 28.55 76.02 48.35 57.79 65.85 96.70 86.87 67.93 72.22 92.41 45.02 48.17 71.25 84.85

InsSeg 66.13 95.09 69.78 79.83 30.13 0.11 77.38 89.59 68.25 28.77 75.67 48.19 58.42 66.66 96.68 87.09 68.44 72.25 92.38 45.05 48.27 71.80 84.93

Table 2: Quantitative semantic segmentation results on Waymo Open DatasetSun et al. (2020) test
set. Our method shows superior results to baselines.

where mask(q, r)i=True if ∥V(Ok)i − q∥ > r, else False, for i = 1, ...,Mk. The dimension of
F ′(Ok) is M ′

k × d, and M ′
k < Mk. The reconstruction head Hg then takes the masked backbone

features F ′(Ok) as input, and output the raw voxel center locations V(Ok).

We use PointNet AutoencoderQi et al. (2016) as the model architecture. We normalize the voxel
locations for each instance with zero mean and pad the voxel number to a same number Ng . We use
chamfer distance (CD) as the objective function:

Lg = CD(Hg(F ′(Ok),V(Ok)) (4)

4.5 TRAINING DETAILS

We perform training in two stages. In the first stage, we drop the classification and reconstruction
heads and train the descriptor learning module and the semantic segmentation head using semantic
labels. We then use the resulting descriptors to predict object instances. After that, we activate
classification and reconstruction heads and train all the modules together. The total loss term is

L = Ls + λ1L
c + λ2L

g (5)

where Ls, Lc and Lg are per-point segmentation loss, instance classification loss, and shape recon-
struction loss, respectively. λ1 and λ2 are weights of different loss terms. In our method we set
λ1 = 0.1 and λ2 = 0.01. We train our model on 8 Tesla V100 GPUs with batch size 2 for 30
epochs. The first 10 epochs are for descriptor learning and last 20 epochs are for joint training with
instance supervision heads. We use Adam optimizer and OneCycleLRSmith & Topin (2018) sched-
uler with the starting learning rate 0.003 for outdoor datasets Sun et al. (2020); Behley et al. (2019)
and 0.03 for ScanNetDai et al. (2017).

5 EXPERIMENTS

5.1 OUTDOOR SCENE SEMANTIC SEGMENTATION

Datasets. We conduct our experiments on two large-scale LiDAR datasets: SemanticKITTI
DatasetBehley et al. (2019) and Waymo Open Dataset Sun et al. (2020). SemanticKITTI contains
22 driving sequences, where sequences 00-07, 09-10 are used for training, 08 for validation, and
11-21 for testing. A total number of 19 semantic classes are chosen following the SemanticKITTI
benchmark. For Waymo Open Dataset, it contains 1150 sequences in total, where 798 sequences are
used for training, 202 for validation, and 150 for testing. Each sequence contains about 200 frames
of LiDAR point cloud. For the semantic segmentation task, there are 23,691 and 5,976 frames with
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semantic segmentation labels in the training and validation set, respectively. There are a total of
2,982 frames in the test set. 23 semantic classes are chosen following the WOD benchmark.

Instance Choices. We manually choose thing objects in both datasets. Apart from foreground
objects like vehicles and pedestrians, we also include background objects such as poles, traffic lights.
Specifically, for SemanticKITTI, we choose 12 instance classes including car, bicycle, motorcycle,
truck, other vehicle, person, bicylist, motorcyclist, trunk, pole and traffic sign. For Waymo Open
Dataset, we choose 13 classes: car, truck, bus, other vehicle, motorcyclist, bicyclist, pedestrian, sign,
traffic light, pole, cone, bicycle, and motorcycle.

Evaluation Metric. We adopt the intersection-over-union (IoU) of each class and the mean IoU
(mIoU) of all classes as the evaluation metric. The IoU for class i is IoUi =

TPi

TPi+FPi+FNi
, where

TPi, FPi, FNi are true positive, false positive, and false negatives for class i. The mean IoU (mIoU)
is calculated by mIoU = 1

N

∑N
i=1 IoUi. Apart from this, we also adopt an instance-level metric

called instance classfication accuracy. The details can be found in Section 5.1.2.

Baseline Methods. We compare our method with state-of-the-art semantic segmentation methodsYe
et al. (2023); Zhu et al. (2021); Tang et al. (2020); Cheng et al. (2022); Cortinhal et al. (2020); Zhang
et al. (2020a); Milioto et al. (2019); Zhang et al. (2020b); Xu et al. (2020); Thomas et al. (2019);
Zhao et al. (2021b); Qiu et al. (2021); Choy et al. (2019). Methods with extra input information
(e.g. 2D image) or extra supervision (e.g. object detection and semantic scene completion) are not
included in the comparison. For papers without code releasingYe et al. (2023), we implemented their
methods according to their papers and include the coding details in the supplementary materials.

5.1.1 RESULTS ON SEMANTICKITTI AND WAYMO OPEN DATASET

In this section we show the outdoor LiDAR semantic segmentation on SemanticKITTI
DatasetBehley et al. (2019) and Waymo Open DatasetSun et al. (2020). Table 1 and Table 2 show
the mIoU and per-class IoU on the test set of both datasets. Our method achieves the state-of-the-art
results compared with various baselines. Figure 3 shows the qualitative comparison of our method
with baselines. Zoom-in box highlights some inconsistent or wrong predictions of the baseline meth-
ods. Our method is able to get the consistent and accurate segmentation results, both on foreground
and background objects.

5.1.2 INSTANCE CLASSIFICATION ACCURACY METRIC

Our method combines the point-based and instance-based information in the semantic segmentation.
The mIoU is not enough to show the advantage of our method because it only computes per-point
accuracies. Here we proposed a instance-level metric: classification accuracy for segmentation
Accseg. It computes the ratio of the correctly classified objects in all objects with the same semantic
label. For the semantic label c, the classification accuracy is defined as Acccseg =

Nc
correct
Nc , where

Ncorrect and Nc are the correctly classified and total number of instances with semantic label c.

For an object Ok with mk points and semantic label c, we say it’s correctly classifier if the ratio of
correctly predicted points is above some threshold t: Npredk=c

mk
≥ t.

In the Table 3 we show the results on the 7 foreground categories which has the ground-truth in-
stance labels. We show results with two different thresholds 0.5 and 0.8. We have significantly
improvement on the classes where the inconsistent classification often happens, e.g. 12% on the bus
and 25% on the other vehicle.

Mean Acc car truck bus other vehicle motorcyclist bicyclist pedestrian
Threshold 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8

LidarMultiNetYe et al. (2023) 0.637 0.594 0.929 0.913 0.575 0.525 0.641 0.576 0.294 0.195 0.337 0.315 0.823 0.798 0.85.9 0.833
InsSeg 0.654 0.614 0.931 0.912 0.584 0.544 0.700 0.645 0.334 0.244 0.315 0.293 0.843 0.815 0.868 0.842

Table 3: Instance classification accuracy under different thresholds on the Waymo validation set.

5.2 INDOOR SCENE SEMANTIC SEGMENTATION

Dataset. ScanNetDai et al. (2017) is an RGB-D video dataset collected from indoor environments.
The training/validation/test set includes 1201, 312, 100 scans respectively. The dataset provides
labels for 40 common indoor semantic classes, while only 20 of them are used for performance
evaluation. We use 21 classes in training with class 0 to be not evaluated classes.
Instance Choices. We choose all instances categories except wall and floor.
Metric. We use the same metric IoU as the outdoor dataset.
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PointNet++ Qi et al. (2017) 62.62 81.47 74.22 68.93 53.60 85.33 48.56 61.31 51.89 45.19 94.02 40.57 25.55 46.29 53.02 63.19 73.44 65.75 86.74 78.81 54.61
PointNet++ + InsSeg 63.46 82.34 75.83 69.01 55.21 85.98 53.25 63.57 54.42 44.21 93.86 41.23 28.56 46.21 57.35 61.21 75.33 66.75 86.41 76.32 52.11

MinkwosikiNet Choy et al. (2019) 67.35 84.60 76.30 73.74 59.84 88.75 60.93 68.12 56.57 55.89 94.53 47.13 18.16 56.35 62.62 70.33 75.90 68.44 91.88 81.81 55.03
MinkwosikiNet + InsSeg 68.18 86.12 78.02 72.17 61.22 88.86 62.23 70.04 59.81 55.58 94.52 47.77 20.54 51.86 68.86 69.23 79.44 70.59 90.81 81.77 54.14
Stratified Lai et al. (2022) 74.05 89.47 81.44 81.20 66.00 89.83 66.56 73.57 71.53 70.34 95.86 55.83 32.04 64.35 67.22 65.56 83.78 76.53 94.45 86.67 68.85

Stratified + InsSeg 74.47 91.71 81.67 81.79 64.93 90.07 66.78 71.45 73.25 71.36 95.47 54.37 34.23 64.89 71.68 65.53 85.52 73.42 95.14 86.88 69.06
Swin3D Yang et al. (2023) 75.26 88.12 83.53 84.23 65.65 90.38 66.30 79.45 67.91 69.03 96.27 59.90 42.25 70.89 71.02 61.19 80.72 77.23 93.57 87.57 70.02

Swin3D + InsSeg 75.87 89.23 83.21 84.11 66.34 90.83 67.04 80.39 70.88 68.53 96.33 60.56 43.39 71.16 73.82 59.78 81.92 78.01 93.32 87.41 71.15

Table 4: Quantitative semantic segmentation results on ScanNet Dai et al. (2017) validation set. We
show the segmentation results of baselines with and without our method. The results shows oue
method is able to improve upon variant baselines.

Swin3D Swin3D + InsSeg GT Swin3D Swin3D + InsSeg GT

Figure 4: Qualitative results on ScanNet validation set Dai et al. (2017). We show two groups of
results of Swin3D Yang et al. (2023) with and without our instance heads. Our method improves the
prediction accuracy and object-level consistency.

Baseline Methods. We compare our method with the classic and state-of-the-art indoor scene seg-
mentation methods Lai et al. (2022); Choy et al. (2019); Qi et al. (2017); Yang et al. (2023). Here
we directly add the instance multi-task learning on top of the baseline methods and do the results
comparison.

5.2.1 RESULTS ON SCANNET DATASET

Different from the sparse outdoor datasets, indoor scenes are often more dense and have smaller
ranges. We follow the majority baselines and use the point-based method. Since most baselines
follow the similar high-level structures, backbone and per-point segmentation head, it’s easy for
us to apply our method on top of their backbones. Here we conduct our experiment by adding
the instance clustering and multi-task heads on various baselines. Table 4 and Figure 4 show the
quantitative and qualitative comparison of our method with the baseline methods. Table 4 shows that
our method improves the segmentation results over various baselines. Figure 4 shows the instance
heads improves the prediction consistency significantly.

5.3 ABLATION STUDY

In this section, we show the ablation study of our method. Section 5.3.1 shows the effect of our
method training on different object categories. Section 5.3.2 shows our method working on different
representations of point cloud. Section 5.3.3 shows the results with clustered and GT instance labels.
Section 5.3.4 analyzes the effect of different components of our method.

5.3.1 CHOICES OF INSTANCE CATEGORIES

As we introduced in Section 5.1, we manually choose 13 object categories on Waymo Open Dataset
and 12 classes on SemanticKITTI Dataset. Those categories include vehicles, motorcyclists, street
signs, etc. Here we try only train the model on one or several categories and see the improvements
on those categories. Table 5a shows the results training with vehicles and motorcyclists instances on
Waymo Open Dataset. We get significant improvement on training categories. Note that by training
on car, truck, bus, and other vehicle, our method has significant improvement on the last 3 classes,
which shows our method is able to improve more on minor classes. This is also consistent with the
visual results in Figure 3.

5.3.2 BACKBONES WITH DIFFERENT REPRESENTATIONS

In this section, we show that our method not only generalize among different datasets, it also has
improvements on various types of 3D representations. To apply our method on different baselines,
we keep the backbone and segmentation head and add the instance classification head and com-
pletion head upon the per-point or per-voxel backbone features. Table 6a shows the results of our
method with point, voxel, point + voxel, and cylinder based representations. Our method is able to
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mIoU Motorcyclist Bicyclist Motorcycle Bicycle
Baseline 68.03 0.50 64.39 67.87 70.36

Baseline + Motorcyclist 68.22 2.08 69.69 68.64 67.51
mIoU Car Truck Bus Other-veh

Baseline 68.03 95.26 64.92 84.69 35.53
Baseline + vehicle 68.53 95.06 65.03 84.86 39.78

(a) Results of instance heads training on the mo-
torcyclist (top) and four vehicle classes (bottom).
Our method improves significantly on classes that
are easy to be mis-classified by baselines.

Baseline Classification Reconstruction mIoU
✓ 68.03
✓ ✓ 68.65
✓ ✓ 68.48
✓ ✓ ✓ 68.93

(b) Ablation study on different components of our
method. Both the instance classification head and
the shape reconstruction head contribute to the fi-
nal results.

Table 5: Ablation study on object categories and different components. Both results are the mIoU
on the validation set of Waymo Open DatasetSun et al. (2020).

Method PointNet++ Cylinder3D SPVCNN LidarMultiNet
Backbone Type Point Cylinder Point + Voxel Voxel

w/o Instance Heads 64.62 65.71 66.36 68.22
w. Instance Heads 64.90 66.25 67.17 68.79

(a) Generalization of our method on different 3D repre-
sentations. Our method shows consistent improvement
on all of those baselines with different representations.

Clustered Instance Label GT Instance Label
mIoU 68.63 69.01

(b) Results of InsSeg training on foreground in-
stance categories with clustered instance labels
and ground truth instance labels. Note both exper-
iments only use 7 classes with GT instance labels.

Table 6: Ablation study on different 3D representations and instance label sources. All results are
on the validation set of Waymo Open Dataset Sun et al. (2020).

get improvements on all of them, which shows our method is a general framework that can be easily
inserted into those baselines, with almost no extra computation cost.

5.3.3 RESULTS WITH THE GT INSTANCE LABEL

We use the semantic-guided instance clustering to get the instance labels. To show the effectiveness
of this method, we show the comparison between our method with the clustered instance labels and
ground-truth instance labels in Table 6b on the validation set of Waymo Open Dataset Sun et al.
(2020). Note that in this dataset instance labels are only available for 7 foreground classes while
our method is able to get labels for 13 classes. To keep the fairness, we conduct both experiments
on 7 foreground categories. The results show that our method is robust to the unsupervised instance
labels and there’s a small margin between the clustered and ground-truth instance labels.

5.3.4 ANALYSIS ON DIFFERENT COMPONENTS OF OUR METHOD

We analyze the effectiveness of the instance classification head and the shape reconstruction head
by removing the corresponding head and evaluate the results. Table 5b shows the results on the
validation set of Waymo Open DatasetSun et al. (2020) with removing different heads. Both instance
heads contribute to the final results, where the classification head helps the backbone features capture
more shape global features while the reconstruction head preserves more local geometries.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

We proposed InsSeg, an instance-level multi-task framework for 3D semantic segmentation. With
instance labels obtained from unsupervised semantic guided clustering, we add two novel branches
upon the U-Net style segmentation backbones: instance classification and shape reconstruction. The
network learns better shape features with these instance supervision heads and produces consistent
predictions on the same objects. Our method achieved state-of-the-art segmentation results on both
indoor and outdoor datasets. Moreover, it can generalize to most backbones and improve the results
with almost no extra computation burden.
Limitations. Our method has two limitations. First, it relies on the property that 3D objects are
easy to isolate, so instance clustering can work well. For 2D images, where objects don’t have clear
boundaries, an unsupervised instance label is hard to get, and our method would fail. Second, since
our features are more consistent on the shape level if the instance classification is wrong, the whole
object will be mis-segmented, which causes lower IoU than the inconsistent predictions. For failure
cases, please refer to the supplementary materials.
Future Work. In the future, how to combine point- or voxel-level supervision with more high-level
concepts will be a good research topic. Apart from the instance categories and geometry shapes
studied in this paper, we can also use object interactions, scene graph priors, and more geometric
primitives. How to deploy our method in 2D is also an open area, especially how to get unsupervised
instance labels.
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