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ABSTRACT

In this work, we investigate deep stochastic processes for image enhancement.
We show that existing approaches can be interpreted as instances of Orn-
stein–Uhlenbeck processes, diffusion bridges, or diffusion processes, each repre-
sented by a stochastic differential equation. As a result, we consolidate 11 meth-
ods into a unified mathematical framework and present them in a systematically
structured table. This perspective separates the definition of processes from the
schedulers and samplers that were originally used. Furthermore, we provide a
modular library that implements the proposed methods and facilitates the inte-
gration of additional approaches with minimal coding effort. In order to perform
comprehensive empirical evaluation among considered approaches, we evaluate
them on four image enhancement tasks: super-resolution, colorization, low-light
enhancement, and deraining with identical backbones and training protocol ensur-
ing fair and meaningful comparison. The experiments highlight that, while most
methods achieve similar results, there are exceptions that make some refinement
strategies more effective than others, which we further analyze and explain.

1 INTRODUCTION

Image enhancement refers to a broad class of tasks, such as super-resolution, colorization, low-light
enhancement, and rain removal, where the goal is to recover a high-quality image from a degraded
input. These tasks are inherently generative because the corrupted signal cannot fully determine
the high-quality output; the model must synthesize plausible visual details that are missing. As a
result, traditional computer vision techniques Danielyan et al. (2011); Guo (2016) typically struggle
to produce convincing outputs Chen et al. (2018).

Early breakthroughs in this area came with the introduction of deep learning architectures such as
U-Net Ronneberger et al. (2015), which were trained using pixelwise losses, such as mean squared
error (MSE) Dong et al. (2014; 2016); Chen et al. (2018). However, these losses proved to be
suboptimal because image enhancement is an ill-posed problem—there is usually no single correct
solution, but rather a distribution of plausible high-quality reconstructions. Pixelwise losses tend to
average over these possibilities, leading to overly smooth and blurry results Ledig et al. (2016).

To address this, the researchers introduced generative adversarial networks (GANs) Ledig et al.
(2016); Wang et al. (2018); Nazeri et al. (2018); Jiang et al. (2021), which combine reconstruc-
tion or consistency loss with adversarial loss. The adversarial component encourages the model to
produce more realistic outputs by penalizing images that the discriminator classifies as unnatural.
Although GANs significantly improved perceptual quality over standard methods, they introduced
new challenges, most notably unstable and difficult-to-balance training dynamics, that limited their
reliability and performance.

To further improve the quality of image enhancement models, researchers have turned to diffusion
models Saharia et al. (2022a;b); Jinhui Hou & Yuan (2023). These models have gained popularity
due to their strong performance in image generation and relatively stable training behavior. Diffusion
models work by gradually removing artificial noise from an image in a series of steps, eventually
producing a high-quality output. Although they often achieve impressive results, this approach
comes with a tradeoff in speed. Because the denoising process is iterative and typically requires large
neural networks, diffusion models are significantly slower than traditional GAN-based methods.
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time

Diffusion process Ornstein-Uhlenbeck process Diffusion bridge

time time

Figure 1: 1D visualization of three classes of considered methods and how conditioning with y af-
fects them. Left: Diffusion models gradually perturb x0 into Gaussian noise N (0, 1), independently
of y. Middle: Ornstein–Uhlenbeck processes converge to a terminal distribution centered at y with
variance τ2. Right: Diffusion bridges start at x0 and are conditioned to reach y at the terminal time.
For ease of visualization, we consider fixed starting point for each process.

More recently, a new class of methods has been proposed specifically for image enhancement Yue
et al. (2023b); Delbracio & Milanfar (2023); Li et al. (2023); Liu et al. (2023); Luo et al. (2023a);
Zhou et al. (2023b); Yue et al. (2023a); Zhu et al. (2025). Unlike diffusion models, which start from
pure Gaussian noise, these methods construct stochastic processes whose forward and reverse tra-
jectories interpolate directly between the distributions of low- and high-quality images. This design
better matches the image enhancement setting, as the model evolves from a degraded observation
toward its restored version rather than from unrelated random noise.

These refinement processes can be categorized into two generalized families. The first is the Orn-
stein–Uhlenbeck (OU) process, where the forward process converges to a Gaussian distribution
centered on the low-quality image with variance controlled by a temperature parameter. The second
is the diffusion bridge, where the process ends exactly at the low-quality image. In Figure 1, we
present a visual comparison of these methods together with the standard diffusion process.

Although these approaches are motivated by the structure of image enhancement problems, there
has been little empirical work to assess their effectiveness under consistent conditions. In particular,
it remains unclear whether they provide measurable advantages over standard diffusion or flow-
matching methods that are simply conditioned on the degraded image. The goal of this work is to
establish a unified framework for these methods and to systematically compare their performance
using identical architectures and training protocols, ensuring fair and meaningful evaluation.

The main contributions of our work can be summarized as follows: (i) We unified the definition
of the most widely known deep stochastic processes from the literature. The design choices across
these methods are analyzed and presented in structured, easy-to-read tables. (ii) We conducted a
comprehensive set of experiments across several image enhancement tasks to evaluate and compare
the performance of prominent approaches in consistent and fair settings. (iii) We developed a mod-
ular library that unifies recent state-of-the-art deep stochastic process methods for image enhance-
ment by integrating their formulations together with schedulers, samplers, and time discretization
techniques, enabling flexible model composition and easy extension with minimal code.

2 UNIFIED FRAMEWORK

In this section, we present popular image enhancement methods by framing them as continuous
stochastic processes. We start by introducing the general mathematical framework. After that,
we examine 11 methods from the literature, grouped into three categories: diffusion models, Orn-
stein–Uhlenbeck processes, and diffusion bridges. Lastly, we introduce library that implements all
unified methods. We highlight our major contributions with propositions and remarks.

2.1 GENERAL DEFINITIONS

We define each method with three components: forward process, transition kernels, and base distri-
bution.
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Table 1: Different design choices of forward SDE and transition densities of different iteration-
based methods. We organized the methods into three groups: diffusion processes, OU processes
and diffusion bridges. We denote τ as temperature, γ as SOC penalty, βt as a noise scheduler, its
Riemann integral αs,t =

∫ t

s
βzdz, and ϕs,t = exp(−αs,t). We shorten the notation by αt ≡ α0,t,

ϕt ≡ ϕ0,t. For original choices of βt, τ , or γ for each method please see Table 3.

Methods

Forward SDE Transition kernel
Base dist.

dxt = f(xt, t,y) dt + g(t) dwt pt(xt|x0,y) = N (xt;µt(x0,y), σ
2
t I)

f(xt, t,y) g
2
(t) µt(x0,y) σ

2
t p1(x1|y)

DM-VE 0 βt x0 αt N (x0, α1I)

DM-VP
−βtxt

2βt
ϕtx0

1 − ϕ
2
t

N (0, I)
FM 2(1 − ϕt)βt (1 − ϕt)

2

IR-SDE

βt(y − xt)

2τ
2
βt

ϕtx0 + (1 − ϕt)y

τ
2
(1 − ϕ

2
t )

N (y, τ2I)ResShift τ
2
(2 − ϕt)βt τ

2
(1 − ϕt)

InDI 2τ
2
(1 − ϕt)βt τ

2
(1 − ϕt)

2

BBDM
βt

αt,1
(y − xt) βt

αt,1
α1

x0 +
αt
α1

y
αtαt,1

α1

δ(x − y)

DDBM-VE

I2SB

DDBM-VP

βt(
2ϕt,1

1 − ϕ2
t,1

y

2βt

ϕt

1 − ϕ2
t,1

1 − ϕ2
1

x0

(1−ϕ2
t,1)(1−ϕ2

t )

1−ϕ2
1−

1 + ϕ2
t,1

1 − ϕ2
t,1

xt) +ϕt,1
1 − ϕ2

t

1 − ϕ2
1

y

GOUB βt
1+ϕ2

t,1

1−ϕ2
t,1

(y − xt)

2τ2βt

ϕt

1 − ϕ2
t,1

1 − ϕ2
1

x0

τ2
(1−ϕ2

t,1)(1−ϕ2
t )

1−ϕ2
1

+(1 − ϕt

1 − ϕ2
t,1

1 − ϕ2
1

)y

UniDB†

βt

(γτ2)−1 + 1 − ϕ2
t,1

(γτ2)−1 + 1 + ϕ2
t,1

ϕt

γ−1 + 1 − ϕ2
t,1

γ−1 + 1 − ϕ2
1

x0

(y − xt) +(1 − ϕt

γ−1 + 1 − ϕ2
t,1

γ−1 + 1 − ϕ2
1

)y

† We consider UniDB that modifies GOUB, which was also used as a main example in the original work.

Forward process denoted as (xt ∈ Rd)t∈[0,1] that follows a stochastic differential equation (SDE)
of the general form:

dxt = f(xt, t,y) dt+ g(t) dwt, (1)
x0 ∼ pdata(x0), y ∼ plow(y|x0),

where wt ∈ Rd is a d-dimensional Wiener process, y ∈ Rd is d-dimensional random variable
denoting corresponding low-quality images, f : Rd × [0, 1]× Rd → Rd is a deterministic drift, and
g : [0, 1] → R is a diffusion coefficient, and these two functions completely define a model. The
model needs to be constructed so that at the terminal time t = 1 the process converges to its base
distribution p1 which should be easy to sample from. Note that y depends only on x0 and x0 is
independent of Brownian motion, therefore, we can still consider equation 1 in the Ito sense.

Transition kernel that tells what is the solution to the corresponding forward SDE given x0 and y.
The transition kernel formula is defined as:

p(xt|x0,y) = N (xt;µt(x0,y), σ
2
t I), (2)

with specific definitions of the functions µt and σ2
t for each method.

Base distribution that can be treated as a transition kernel at the terminal time t = 1. The base
distribution is indicated as p1(x1|y) and it can be the Gaussian or Dirac delta depending on the
method.

In order to generate a new high-quality image x̂, we need to first sample x1 ∼ p1(x1|y) and reverse
equation 1. Thanks to Anderson (1982); Zhang & Chen (2021) we have another SDE, where time
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goes backward and it almost surely goes through x0 at time t = 0

dxt = [f(xt, t,y)−
λ2 + 1

2
g(t)2∇xt

log pt(xt|y)] dt+ λg(t) dw̄t, (3)

x1 ∼ p1(x1|y), y ∼ plow(y),

where w̄t ∈ Rd is a d-dimensional reversed Wiener process and λ ∈ R+ ∪ {0} is a nonnegative
parameter that controls the level of stochasticity of the reverse process. In principle, equation 3 can
be solved numerically using standard samplers such as Euler–Maruyama. In practice, however, this
requires access to log pt(xt|y), which is intractable since it involves integration over pdata. Instead,
we approximate its gradient with a neural network vθ with learnable parameters θ such that:

θ∗ = argmin
θ

E||vθ(xt, t,y)−∇xt
log pt(xt|x0,y)||2, (4)

which is known as the score matching loss function Hyvärinen & Dayan (2005); Vincent (2011);
Song & Ermon (2019).

One of the main contributions of our work is Table 1, where we provide the unified definitions
for each of the methods. The columns are divided into three sections that describe the SDE of
the forward process, transition kernels, and base distributions. The methods are divided into three
groups: diffusion models, OU processes, and diffusion bridges.

Each model is defined independently of the chosen scheduler (βt > 0)t∈[0,1]. We denote the Rie-
mann integral of the scheduler as αs,t =

∫ t

s
βsds and ϕs,t = exp(−αs,t). For convenience, we

shorten αt ≡ α0,t and ϕt ≡ ϕ0,t. The temperature is denoted as τ in all the methods. For the
parameters of each method, such as the scheduler, sampler, or temperature value, see Table 3.

2.2 DIFFUSION MODELS

This class of models were initially designed to be unconditional, therefore y is not used in the
definitions of the forward processes, transition kernels or base distributions. To make the model
conditional and generate the enhanced version of the input y, one must add y as an additional input
to the backbone vθ Rombach et al. (2022); Saharia et al. (2023); Jinhui Hou & Yuan (2023).

Diffusion model (DM) Sohl-Dickstein et al. (2015); Ho et al. (2020) was originally introduced
as a discrete Markov process that gradually transforms the data distribution into Gaussian noise.
Later, Song et al. (2020b) reformulated it in terms of two continuous processes: Variance Exploding
(VE) and Variance Preserving (VP), summarized in Table 1. In VE, the expected value of the
transition kernel stays constant, while the variance grows to infinity. In VP, the definition of drift
f(xt, t) = −βtxt pushes the xt towards zero with a force proportional to the scheduler βt. This
force counteracts the Wiener process and ensures that the stationary distribution is standard Gaussian
N (0, I). Originally, the authors used the linear scheduler with parameters βmax = 10 and βmin =
0.051.

Flow Matching Lipman et al. (2022); Liu et al. (2022), derived from Normalizing Flow theory,
can be viewed as deterministic vector fields that transport one distribution to another. Their design
has been shown to achieve strong performance, and therefore they are important to include in our
comparison.
Proposition 2.1. Let xt be a continuous stochastic process that follows given SDE

dxt = −βtxt dt+
√

2(1− ϕt)βt dwt. (5)

If the scheduler is defined as βt = 1
1−t , then for any x0 ∼ pdata(x0) and ϵ ∼ N (0, I) we have

xt = (1− t)x0 + tϵ for t ∈ [0, 1), which corresponds to transitions of Liu et al. (2022).

The proof is in Appendix A.1. With proposition 2.1 we can reverse equation 5 together with Euler
sampling to recover the original implementation of Liu et al. (2022)2 we can also sample the reverse
of this process using any other standard sampler. We include this method in the comparison to
measure its effectiveness against conditioned processes.

1You might encounter βmax = 20, βmin = 0.1, but then the SDE is given as dxt = − 1
2
βtxt dt+

√
βt dwt

which is equivalent. We chose these values to highlight the connection with Ornstein-Uhlenbeck process.
2We do not consider rectification procedure.
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2.3 ORNSTEIN-UHLENBECK PROCESSES

The second group considered in our framework is a generalized Ornstein-Uhlenbeck process with
formula

dxt = βt(µ− xt) dt+ g(t) dwt, (6)
where βt > 0 and g(t) ≥ 0 are functions of time t. The process converges to a Gaussian stationary
distribution with mean µ and variance determined by g(t). It is easy to see that the diffusion and flow
matching models are also Ornstein-Uhlenbeck processes with µ = 0. In this section, we consider
OU processes with stationary distribution p1(x1|y) = N (x1;y, τ

2I), therefore, we denote y ≡ µ
hereafter.

IR-SDE Luo et al. (2023a) is the most standard version of the OU process with a diffusion co-
efficient g(t) similar to the diffusion model. In the original implementation, the authors used a
numerically calculated cosine scheduler for a given number of steps. We generalized it to a continu-
ous function that works with any number of steps without the need for recalculation (see Appendix
B).

ResShift Yue et al. (2023b) was originally proposed as a discrete model based on the Markov
chain that interpolates between high-quality image x0 and Gaussian centered in low-quality y with
specified variance τ2. The one-step forward equation is written as

p(xt|xt−1,y) = N (xt;xt−1 + δte, τ
2δtI), (7)

where e means residual between low- and high-quality images, i.e. e = y − x0, δt is an arbitrary
noise scheduler for a discrete process, and time t is a natural number between 0 and some sufficiently
large T . Notably, we can also write its marginalized equation that transitions from x0 to xt at
arbitrary timestep t within one step

p(xt|x0,y) = N (xt;x0 + ηte, τ
2ηtI). (8)

Here, ηt is cumulative sum of previous deltas, ηt =
∑t

i=0 δi.

Let us define ϕt = 1− ηt and rewrite e as y − x0

p(xt|x0,y) = N (xt;ϕtx0 + (1− ϕt)y, τ
2(1− ϕt)I). (9)

With this form we are looking for SDE that produces such transitions.
Proposition 2.2. The OU-process with the following stochastic differential equation

dxt = βt(y − xt) dt+ τ
√
βt(2− ϕt) dwt (10)

shares the same transition densities as the original ResShift model from equation 9 for t ∈ [0, 1].

The proof is in Appendix A.2. With proposition 2.2 we can use exponential scheduler and perform
ancestral sampling on equation 3 with λ = 1 to recover the original implementation.

InDI Delbracio & Milanfar (2023) defined a continuous process with the following formula for
intermediate samples

xt = (1− t)x0 + ty + τtϵ, ϵ ∼ N (0, I). (11)
The generative process starts with x1 ∼ N (x1;y, τ

2I) and solves the deterministic ODE using the
Euler method.
Proposition 2.3. The OU-process with the following stochastic differential equation

dxt = βt(y − xt) dt+ τ
√
2βt(1− ϕt) dwt. (12)

If the scheduler is defined as βt =
1

1−t , then for any x0 ∼ pdata(x0) and ϵ ∼ N (0, I) we have the
same marginals as equation 11 for t ∈ [0, 1).

The proof is in Appendix A.3. With proposition 2.3 we can use the reversed scheduler βt = 1
1−t

with the Euler sampler of reversed equation 3 with λ = 0 to recover the original implementation.
Similarly to previous propositions, the choice of sampler is independent of the model definition, and
therefore we evaluate several variants.

5
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2.4 DIFFUSION BRIDGES

The final class of models modifies the forward SDE to ensure that the process reaches y at the
terminal time t = 1 almost surely. For any SDE with a form

dxt = f(xt, t) dt+ g(t) dwt, (13)
one can apply the h-transform Doob & Doob (1984) to get conditioned SDE in a form

dxt = [f(xt, t) + g2(t)∇xt
log p1(y|xt)] dt+ g(t) dwt. (14)

BBDM Li et al. (2023) uses the definition of the Brownian bridge, summarized in Table 1.
Remark 2.1. The Brownian bridge definition can be seen as the result of applying the h-transform
on the Wiener process. The Wiener process can be generalized to the diffusion VE variant with a
constant scheduler βt = 1.

DDBM-VE & DDBM-VP Zhou et al. (2023b) generalized the idea of applying the h-transform to
the VE and VP variants of diffusion models, which gives the possibility of using an arbitrary sched-
uler. Notably, with Remark 2.1 for DDBM-VE if we set βt = 1 we recover BBDM, therefore, these
models have the same definition but different scheduler choice. DDBM-VP is the only conditional
method considered that its expected value at any time is not the interpolation between a clean image
and a low-quality input, because during the trajectory E[xt] tends to 0 with force proportional to the
scheduler βt.

I2SB Liu et al. (2023) approached the bridge problem from a different perspective. Their theory
is rooted in the findings on dynamic Schrodinger bridges (SB) from Chen et al. (2021), but they
considered the scenario, where we can sample from the joint distribution pdata,low(x,y) during
training, which is generally not required for SB models.
Remark 2.2. Deriving the bridge process from Liu et al. (2023) Theory 3.1 with f(xt, t) = 0 and
g(t) =

√
βt leads to the same result as applying h-transform Doob & Doob (1984) to the exact same

SDE dxt =
√
βt dwt. This gives the definition of DDBM-VE Zhou et al. (2023b).

We elaborate on Remark 2.2 in Appendix A.4. In I2SB, the authors designed a symmetric quadratic
scheduler to keep the transition variance symmetric in the interval t ∈ [0, 1] (see Appendix B).

GOUB Yue et al. (2023a) applied h-transform on OU process with the same parameterization as
IR-SDE. They additionally introduce mean-reverting ODE, that simply omits the Brownian motion
part in equation 3 with λ = 1 which yields state-of-the-art PSNR and SSIM results in deraining task
on Rain100H benchmark. However, this process does not have the same marginals as the forward
process and, by applying twice as much influence to score, the process naturally collapses to be
closer to expected value, resulting in oversmoothing, as the LPIPS and FID metrics are worse than
the standard samplers used along with the same model (see Yue et al. (2023a) Tables 1-3, as well as
Tables 9 and 10 in Appendix).

UniDB Zhu et al. (2025) generalizes the diffusion bridges using stochastic optimal control (SOC)
theory. The goal is to find a controller u∗

t,γ , such that it minimizes the following linear quadratic
SOC problem

u∗
t,γ = arg min

ut,γ∈U
E
[∫ 1

0

1

2
||ut,γ ||22dt+

γ

2
||xu

1 − y||22
]
, (15)

st. dxu
t = [f(xu

t , t,y) + g(t)ut,γ ] dt+ g(t) dwt, xu
0 = x ∼ pdata(x). (16)

Here, xu
t denotes the stochastic process under the control of ut,γ , ||ut,γ ||22 is an instantaneous cost

at time t, and γ
2 ||x

u
1 − y||22 is a terminal cost with a penalty γ. If γ → ∞, we only optimize the

terminal cost that gives us xu
1 = y which is equivalent to applying h-transform. However, for a

finite positive γ we can trade off two costs. In particular, the authors showed that equation 15 can be
solved analytically for all diffusion bridges considered and as an example they described and trained
the modified GOUB model with different γ values with 1e43 proven to give the best LPIPS and FID
results. We follow Zhu et al. (2025) with the same choices of the modified method and γ in our
experiments.

3In the original paper it was γ = 1e7 but we need to normalize it with our chosen terminal time T = 1
instead T = 1000.
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Input DM-VP FM IR-SDE ResShift InDI

BBDM I2SB DDBM-VP GOUB UniDB Ground truth
Figure 2: Visual comparison of image super resolution results performed on FFHQ dataset. Results
were generated using ancestral sampling with 35 steps. All methods achieve similar visual quality,
except BBDM and GOUB, which produce slightly blurred outputs.

2.5 LIBRARY

Building on the unified mathematical framework that underlies all considered methods, we release
Ito Vision, a Python library implemented in PyTorch. The library combines the tested approaches
into a single modular framework. This ensures consistency with the theoretical formulation and
enables faithful reproduction of our results. Beyond serving as a reference implementation, Ito Vi-
sion is designed to be easily extensible: by following the unified framework summarized in Table 1,
researchers can prototype and integrate new methods with minimal effort. We hope this library
will provide a practical foundation for future research and accelerate the development of novel ap-
proaches in this domain. Further details are provided in Appendix C.

3 EXPERIMENTS

In this section, we report experiments on four image enhancement tasks: super-resolution, low-light
enhancement, colorization, and deraining. We first describe the training setup, then compare the
methods, evaluate different samplers and discretization techniques, and finally discuss the results.

Experimental setup For different tasks, we used backbones of different sizes to test the scalability
of the methods. However, within each task, all models share the same backbone size, architecture,
and training parameters to ensure a fair comparison. If the method has some additional parameters,
such as temperature, we evaluated it with its default settings from the original work, except for
network parameterization, where we found that the prediction of x0 performs best for all methods.
We use MSE as a common loss function. For single-image super-resolution, we used the FFHQ
dataset Karras et al. (2019) downsampled by a factor of 8 (64× 64 → 512× 512). Low-light image
enhancement was conducted on the LOL dataset Wei et al. (2018), image colorization on ImageNet
Russakovsky et al. (2015) with latent diffusion setup, and image deraining on Rain1400 Fu et al.
(2017). A detailed description of the setup for each experiment is provided in Appendix D and
Table 4.

Experimental results We compare diffusion, OU processes, and diffusion bridges and present the
results in Table 2 (along with 5, 6, 7, and 8 with more details). The key insight from these exper-
iments is that all the methods achieve very similar performance in all tasks. However, we noticed
some trends. First, InDI yields the worst LPIPS scores among all OU processes. We explore this

7
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Table 2: Results on four selected tasks using ancestral sampling with Network Forward Evaluations
(NFE) = 35. The best values are bolded and second to best are underscored. We do not notice
any significant improvements of conditional processes over standard diffusion. In fact, in super-
resolution and low-light image enhancement diffusion achieves best results.

Super-Resolution Low-light Enhancement Colorization Deraining
Model PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DM-VP 27.86 0.748 0.181 23.01 0.685 0.186 21.73 0.685 0.191 29.02 0.853 0.055
FM 27.15 0.730 0.183 22.57 0.678 0.209 21.64 0.685 0.191 28.89 0.844 0.057
IR-SDE 26.97 0.718 0.184 23.07 0.679 0.237 22.02 0.691 0.187 28.15 0.827 0.061
ResShift 27.66 0.746 0.184 23.15 0.693 0.195 21.82 0.689 0.189 29.17 0.856 0.052
INDI 27.21 0.713 0.199 21.48 0.633 0.323 22.28 0.699 0.191 28.17 0.816 0.069
BBDM 27.14 0.728 0.252 22.84 0.687 0.191 22.17 0.698 0.182 30.10 0.873 0.049
DDBM-VE 27.11 0.724 0.186 23.18 0.680 0.224 22.36 0.700 0.181 28.65 0.837 0.054
DDBM-VP 27.46 0.741 0.190 22.55 0.659 0.231 22.23 0.697 0.184 28.94 0.842 0.052
I2SB 27.46 0.733 0.184 21.86 0.655 0.245 22.39 0.701 0.182 29.29 0.854 0.050
GOUB 27.24 0.735 0.224 22.57 0.669 0.233 21.59 0.681 0.193 28.38 0.831 0.061
UniDB 27.59 0.739 0.181 22.80 0.679 0.223 21.69 0.684 0.190 28.02 0.824 0.060

phenomenon and propose a possible explanation which we discuss in the next paragraph. Moreover,
we note that UniDB improves the performance of GOUB with respect to the LPIPS metric, which
might suggest that training the model on shorter trajectories might help stay in the well-modeled
regions.

The visual comparisons in Figures 2, 6, 7, and 8 further confirm this central result that once trained
under the same protocol, the methods produce nearly indistinguishable outputs. In fact, in many
cases, the plain diffusion baselines surpass the more elaborate variants, suggesting that the choice of
process offers limited practical benefit.

In addition, we study several samplers to determine which work best with our considered meth-
ods. The results shown in Tables 9 and 10 reveal that ancestral sampling is the most consistent
method for all models. The Euler method on reversed ODE works very well for diffusion and OU
processes. For all diffusion bridges, deterministic samplers (e.g., Euler ODE, Exponential Integra-
tor ODE, mean-reverting ODE, and second-order Runge-Kutta methods) yield high LPIPS scores
(> 0.3), suggesting that these methods perform best when combined with stochastic samplers. This
is because trajectories start from fixed points and the only source of stochasticity in these models is
the Brownian motion, which deterministic samplers omit. As a result, the trajectories follow straight
lines between y and x0, converging to the averaged ground truth (oversmoothing problem).

Finally, we conducted a series of experiments with different discretization techniques visualized in
Figure 4. We show the results in Table 11, however, we find that this choice does not influence the
quality of the final samples.

Discussion Methods based on the OU process or diffusion bridge were proposed with the fol-
lowing rationale: when starting from a low-quality image, the network already has some structural
information about the scene and therefore does not have to cover as much space as standard diffu-
sion, but it can traverse between two distributions and focus on recovering details. However, we find
no evidence that narrowing the modeled space improves the results. Moreover, we suggest that it is
the opposite, that this inductive bias can make the model less effective. By setting the temperature to
very small values (e.g. τ = 0.06 for InDI), the model learns that the trajectories are almost straight,
and thus it learns to extrapolate xt − y vector4. We further analyze this phenomenon and measure
the co-linearity of y, xt, and x0 at inference and compare it with the LPIPS of the sequence of model
predictions x̂0|t. As shown in Figure 5, low-temperature models show much higher collinearity and
slower LPIPS improvement, especially for small t, where most of the details are believed to be gen-
erated Karras et al. (2022). We can see the disproportion of the temperature for the OU processes in
Figure 3.

Increasing the level of noise during training mitigates this effect, as the model can no longer learn
to extrapolate, but rather learns to guess where x0 can be, improving its ability to recover accurate
estimates. However, by increasing temperature, the process loses information about the initial signal
and becomes a pure diffusion model, where y has no impact on the trajectory.

4This is because the backbone vθ takes xt, t and y as parameters, so it can deduce the exact data point x0

provided xt has no noise.
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4 RELATED WORKS

SP for image enhancement Diffusion models were first introduced for unconditional generation
Sohl-Dickstein et al. (2015); Song & Ermon (2019); Ho et al. (2020); Song et al. (2020b) and later
adapted to image enhancement by concatenating the corrupted image with the input Saharia et al.
(2022a;b); Rombach et al. (2022); Jinhui Hou & Yuan (2023). Another line of work Wang et al.
(2022); Yang et al. (2023) applies guidance to recover a clean version of the low-quality image.
Following Bansal et al. (2023), which showed that the forward process does not have to be Gaussian,
the researchers proposed alternative formulations that directly incorporate input into the diffusion
process. Examples include ResShift Yue et al. (2023b), which defines a Markov chain converging
to a Gaussian centered on the low-quality image; InDI Delbracio & Milanfar (2023), which adapts
flow matching Lipman et al. (2022); Liu et al. (2022) using the low-quality image distribution as the
base; IR-SDE Luo et al. (2023a), which introduces a mean-reverting Ornstein–Uhlenbeck process;
I2SB Liu et al. (2023), derived from the Schrödinger Bridge theory Chen et al. (2021); De Bortoli
et al. (2021; 2024); DDBM and GOUB Zhou et al. (2023b); Yue et al. (2023a), based on Doob’s h-
transform Doob & Doob (1984); and UniDB Zhu et al. (2025), which is based on stochastic optimal
control (SOC). The goal of this paper is to provide a unified formulation for these methods.

Methods not included in our studies We exclude methods that use the definition of the degradation
function Kawar et al. (2021; 2022); Chung et al. (2022); Song et al. (2023). We do not consider
methods that improve the architectures or samplers of our chosen methods, such as Refusion Luo
et al. (2023b) that focuses on the design of the backbone for the IR-SDE method or I3SB Wang
et al. (2025) that applies DDIM Song et al. (2020a) sampling to I2SB. Finally, we do not include the
Schrödinger Bridge methods De Bortoli et al. (2021; 2024); Su et al. (2022); Kim et al. (2023), as
they are designed for unpaired data, while we assume paired training data.

Unification We were inspired by EDM Karras et al. (2022), which unifies and compares diffusion
models within a consistent framework. In a similar direction, Tong et al. (2023) combines the flow-
based and Schrödinger Bridge methods for unpaired image translation. For GANs, Lucic et al.
(2018) conducted large-scale studies and demonstrated that different architectures achieve compara-
ble results when trained under the same conditions. In image enhancement, Li et al. (2025) provided
a comprehensive evaluation of diffusion-based methods using their original backbones. We want to
fill this gap by unifying and comparing alternative stochastic processes for image enhancement in
the same training setup.

5 CONCLUSIONS

In this work, we unify popular stochastic process methods for image enhancement and categorize
them as instances of the Ornstein-Uhlenbeck process, diffusion bridge, or standard diffusion pro-
cess. We separated their definitions from the original schedulers and samplers and summarized
them in a structured table. Based on this unification, we implement a library in which each method
corresponds directly to the formulas presented in the table, making it easily extensible and straight-
forward to integrate new techniques. We trained all methods on four image enhancement tasks,
including single-image super-resolution, image colorization, low-light image enhancement, and im-
age deraining, ensuring a fair comparison by using the same backbone architecture and identical
training settings for each method. Our empirical results show that conditional trajectories offer little
to no improvement over standard diffusion. In fact, we observe that plain diffusion often outper-
forms these techniques, and we suggest that lower temperature may be responsible for the reduced
performance.

Reproducibility statement We provide the complete code, in the form of a library and framework
that was used to train and validate our methods, together with a README.md and a requirements
file to enable straightforward reproduction of our results.

Ethics statement Our work unifies definitions of existing methods and evaluates them on stan-
dard benchmarks. We do not introduce new data or methods, therefore, we do not find any ethical
concerns associated with this study.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Ap-
plications, 12(3):313–326, 1982.

Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie Li, Hamid Kazemi, Furong Huang, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. Cold diffusion: Inverting arbitrary image transforms
without noise. Advances in Neural Information Processing Systems, 36:41259–41282, 2023.

Yuanhao Cai, Hao Bian, Jing Lin, Haoqian Wang, Radu Timofte, and Yulun Zhang. Retinexformer:
One-stage retinex-based transformer for low-light image enhancement. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 12504–12513, 2023.

Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. Learning to see in the dark. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 3291–3300, 2018.

Tianrong Chen, Guan-Horng Liu, and Evangelos A Theodorou. Likelihood training of schr\”
odinger bridge using forward-backward sdes theory. arXiv preprint arXiv:2110.11291, 2021.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models
for inverse problems using manifold constraints. Advances in Neural Information Processing
Systems, 35:25683–25696, 2022.

Aram Danielyan, Vladimir Katkovnik, and Karen Egiazarian. Bm3d frames and variational image
deblurring. IEEE Transactions on image processing, 21(4):1715–1728, 2011.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in neural information
processing systems, 34:17695–17709, 2021.

Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, and Arnaud Doucet. Schrodinger bridge flow
for unpaired data translation. Advances in Neural Information Processing Systems, 37:103384–
103441, 2024.

Mauricio Delbracio and Peyman Milanfar. Inversion by direct iteration: An alternative to denoising
diffusion for image restoration. arXiv preprint arXiv:2303.11435, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Chao Dong, CC Loy, K He, and X Tang. Image super-resolution using deep convolutional networks,
arxiv, 2014.

Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolutional
neural network. In European conference on computer vision, pp. 391–407. Springer, 2016.

Joseph L Doob and JI Doob. Classical potential theory and its probabilistic counterpart, volume
262. Springer, 1984.

Xueyang Fu, Jiabin Huang, Delu Zeng, Yue Huang, Xinghao Ding, and John Paisley. Removing
rain from single images via a deep detail network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3855–3863, 2017.

Xiaojie Guo. Lime: A method for low-light image enhancement. In Proceedings of the 24th ACM
international conference on Multimedia, pp. 87–91, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang, Pan Zhou,
and Zhangyang Wang. Enlightengan: Deep light enhancement without paired supervision. IEEE
transactions on image processing, 30:2340–2349, 2021.

Junhui Hou Hui Liu Huanqiang Zeng Jinhui Hou, Zhiyu Zhu and Hui Yuan. Global structure-aware
diffusion process for low-light image enhancement. Advances in Neural Information Processing
Systems, 2023.

Ioannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113.
springer, 2014.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Bahjat Kawar, Gregory Vaksman, and Michael Elad. Snips: Solving noisy inverse problems stochas-
tically. Advances in Neural Information Processing Systems, 34:21757–21769, 2021.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. Advances in neural information processing systems, 35:23593–23606, 2022.

Beomsu Kim, Gihyun Kwon, Kwanyoung Kim, and Jong Chul Ye. Unpaired image-to-image trans-
lation via neural schr\” odinger bridge. arXiv preprint arXiv:2305.15086, 2023.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, and Zehan Wang. et almbox. 2017.
photo-realistic single image super-resolution using a generative adversarial network. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, 2016.

Bo Li, Kaitao Xue, Bin Liu, and Yu-Kun Lai. Bbdm: Image-to-image translation with brownian
bridge diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern Recognition, pp. 1952–1961, 2023.

Xin Li, Yulin Ren, Xin Jin, Cuiling Lan, Xingrui Wang, Wenjun Zeng, Xinchao Wang, and Zhibo
Chen. Diffusion models for image restoration and enhancement: a comprehensive survey. Inter-
national Journal of Computer Vision, pp. 1–31, 2025.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A Theodorou, Weili Nie, and Anima
Anandkumar. I 2̂ sb: Image-to-image schr\” odinger bridge. arXiv preprint arXiv:2302.05872,
2023.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are gans
created equal? a large-scale study. Advances in neural information processing systems, 31, 2018.

Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Image restora-
tion with mean-reverting stochastic differential equations. arXiv preprint arXiv:2301.11699,
2023a.

Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Refusion:
Enabling large-size realistic image restoration with latent-space diffusion models. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1680–1691, 2023b.

Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image quality
analyzer. IEEE Signal processing letters, 20(3):209–212, 2012.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kamyar Nazeri, Eric Ng, and Mehran Ebrahimi. Image colorization using generative adversarial
networks. In International conference on articulated motion and deformable objects, pp. 85–94.
Springer, 2018.

Bernt Øksendal. Stochastic differential equations. In Stochastic differential equations: an introduc-
tion with applications, pp. 38–50. Springer, 2003.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH
2022 conference proceedings, pp. 1–10, 2022a.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE transactions on pattern anal-
ysis and machine intelligence, 45(4):4713–4726, 2022b.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(4):4713–4726, 2023. doi: 10.1109/TPAMI.2022.3204461.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations, 2023.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Ermon. Dual diffusion implicit bridges for
image-to-image translation. arXiv preprint arXiv:2203.08382, 2022.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Ra-
sul, Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and
Thomas Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/
huggingface/diffusers, 2022.

12

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen
Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings
of the European conference on computer vision (ECCV) workshops, pp. 0–0, 2018.

Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
null-space model. arXiv preprint arXiv:2212.00490, 2022.

Yuang Wang, Siyeop Yoon, Pengfei Jin, Matthew Tivnan, Sifan Song, Zhennong Chen, Rui Hu,
Li Zhang, Quanzheng Li, Zhiqiang Chen, et al. Implicit image-to-image schrödinger bridge for
image restoration. Pattern Recognition, 165:111627, 2025.

Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light
enhancement. arXiv preprint arXiv:1808.04560, 2018.

Peiqing Yang, Shangchen Zhou, Qingyi Tao, and Chen Change Loy. Pgdiff: Guiding diffusion mod-
els for versatile face restoration via partial guidance. Advances in Neural Information Processing
Systems, 36:32194–32214, 2023.

Conghan Yue, Zhengwei Peng, Junlong Ma, Shiyan Du, Pengxu Wei, and Dongyu Zhang. Im-
age restoration through generalized ornstein-uhlenbeck bridge. arXiv preprint arXiv:2312.10299,
2023a.

Zongsheng Yue, Jianyi Wang, and Chen Change Loy. Resshift: Efficient diffusion model for image
super-resolution by residual shifting. Advances in Neural Information Processing Systems, 36:
13294–13307, 2023b.

Qinsheng Zhang and Yongxin Chen. Diffusion normalizing flow. Advances in neural information
processing systems, 34:16280–16291, 2021.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Yonghua Zhang, Jiawan Zhang, and Xiaojie Guo. Kindling the darkness: A practical low-light
image enhancer. In Proceedings of the 27th ACM international conference on multimedia, pp.
1632–1640, 2019.

Dewei Zhou, Zongxin Yang, and Yi Yang. Pyramid diffusion models for low-light image enhance-
ment. arXiv preprint arXiv:2305.10028, 2023a.

Linqi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon. Denoising diffusion bridge models.
arXiv preprint arXiv:2309.16948, 2023b.

Kaizhen Zhu, Mokai Pan, Yuexin Ma, Yanwei Fu, Jingyi Yu, Jingya Wang, and Ye Shi.
Unidb: A unified diffusion bridge framework via stochastic optimal control. arXiv preprint
arXiv:2502.05749, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOFS AND METHODS DERIVATIONS

A.1 FLOW MATCHING DIFFUSION

Proposition 2.1. Let xt be a continuous stochastic process that follows given SDE

dxt = −βtxt dt+
√

2(1− ϕt)βt dwt. (5)

If the scheduler is defined as βt = 1
1−t , then for any x0 ∼ pdata(x0) and ϵ ∼ N (0, I) we have

xt = (1− t)x0 + tϵ for t ∈ [0, 1), which corresponds to transitions of Liu et al. (2022).

Proof. To construct the solution, we take the Brownian motion in the interval [0, 1] and consider the
modified version of the equation 5 in the closed interval [0, 1] where βt is replaced by β̃t defined
as follows: β̃t = βt, for t ∈ [0, 1 − δ] and β̃t = β1−δ , for t ∈ [1 − δ, 1], for a fixed δ ∈ (0, 1).
The modified equation has a unique strong solution (see Øksendal (2003) Theory 5.2.1 or Karatzas
& Shreve (2014) Theory 5.2.5 and 5.5.2.9). If we take δ, δ′ ∈ (0, 1) and δ < δ′, due to pathwise
uniqueness, almost all trajectories of the corresponding solutions xδ

t ,x
δ′

t agree on [0, δ′]. Therefore,
xδ
t is an extension of the solution xδ′

t of equation 5 from the interval [0, 1− δ′] to [0, 1− δ]. The so-
lution can now be constructed for almost all trajectories by taking δ → 0+. Similarly, by truncating
the interval [0, 1) to [0, 1− δ] one proves the pathwise uniqueness.

We find that solution of the equation 5 using Integrating Factor method. First, denote that the
integrating factor M of equation 5 is equivalent to the definition of ϕs,t

M = exp

(∫ t

s

a(z)dz

)
= ϕs,t =

1− t

1− s
. (17)

The mild solution is therefore

xt = ϕtx0 +

∫ t

0

ϕs,tg(s)dws (18)

Now, for simplicity, we divide our calculation into expected value E[xt|x0] and variance Var(xt|x0)
of transition densities. Because the Ito integral has zero mean, only the deterministic part of equa-
tion 18 contributes to the expected value

E[xt|x0] = ϕtx0 (19)

Similarly, for variance, we consider only the stochastic part of equation 18.

Var(xt) = E

[(∫ t

0

ϕs,tg(s) dwt

)2
]

(20)

We can apply Ito isometry to get

Var(xt) =

∫ t

0

ϕ2
s,tg

2(s)ds. (21)

Using exponential properties and linearity of Riemann integral we have

ϕs,t =
ϕt

ϕs
, (22)

we can apply that to equation 21 to obtain

Var(xt) = ϕ2
t

∫ t

0

ϕ−2
s g2(s)ds. (23)

Recall that g2(t) = 2(1− ϕt)βt which gives

Var(xt) = 2ϕ2
t

∫ t

0

ϕ−2
s βs(1− ϕs)ds. (24)
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We substitute u = ϕ−1
s , du = ϕ−1

s βsds

Var(xt) = 2ϕ2
t

∫ ϕ−1
t

1

u− 1 du

= 2ϕ2
t

(
ϕ−2
t

2
− ϕ−1

t +
1

2

)
= 1− 2ϕt + ϕ2

t

= (1− ϕt)
2 (25)

Recall that for our chosen scheduler, we have ϕt = 1− t, therefore
E[xt|x0] = (1− t)x0 (26)

Var(xt) = t2 (27)
and we can express intermediate sample xt as

xt = (1− t)x0 + tϵ (28)
for some x0 ∼ pdata(x0) and ϵ ∼ N (0, I). That shows that equation 5 has the same marginals as
Liu et al. (2022).

A.2 RESSHIFT

Proposition 2.2. The OU-process with the following stochastic differential equation

dxt = βt(y − xt) dt+ τ
√
βt(2− ϕt) dwt (10)

shares the same transition densities as the original ResShift model from equation 9 for t ∈ [0, 1].

Proof. Based on Theory 5.2.1 from Øksendal (2003), equation 10 has a strong solution and is
unique.

Similarly to Proposition 2.1, we can find the solution using the integrating factor method; the sub-
sequent steps are very similar, so we omit some comments.

xt = ϕtx0 + y

∫ t

0

ϕs,tb(s)ds+

∫ t

0

ϕs,tg(s) dwt (29)

E[xt|x0,y] = ϕtx0 + y

∫ t

0

ϕs,tβsds

= ϕtx0 + ϕty

∫ t

0

ϕ−1
s βsds

= ϕtx0 + ϕty

∫ ϕ−1
t

1

dr

= ϕtx0 + (1− ϕt)y (30)

Var(xt) = E

[(∫ t

0

ϕs,tg(s) dwt

)2
]

=

∫ t

0

ϕ2
s,tg

2(s)ds

= τ2ϕ2
t

∫ t

0

ϕ−2
s βs(2− ϕs)ds

= τ2ϕ2
t

∫ ϕ−1
t

1

2r − 1 dr

= τ2ϕ2
t

(
ϕ−2
t − ϕ−1

t

)
= τ2 (1− ϕt) (31)

Combining expected value and variance, we get the transition density formula from equation 9.
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A.3 INDI

Proposition 2.3. The OU-process with the following stochastic differential equation

dxt = βt(y − xt) dt+ τ
√
2βt(1− ϕt) dwt. (12)

If the scheduler is defined as βt =
1

1−t , then for any x0 ∼ pdata(x0) and ϵ ∼ N (0, I) we have the
same marginals as equation 11 for t ∈ [0, 1).

Proof. The conditions are the same as in 2.1.

Similarly to Proposition 2.1, we can find the solution using the integrating factor method; the sub-
sequent steps are very similar, so we omit some comments.

xt = ϕtx0 + y

∫ t

0

ϕs,tβsds+

∫ t

0

τϕs,t

√
βs(2− ϕs)dws (32)

The expected value is the same as in Proposition 2.2. The variance is a scaled version of the variance
from the Proposition 2.1. Therefore, we have

E[xt|x0,y] = ϕtx0 + (1− ϕt)y (33)

Var(xt) = τ2(1− ϕt)
2 (34)

If we set ϕt = 1− t then we get

pt(xt|x0,y) = N (xt; (1− t)x0 + ty, τ2t2I), (35)

which is equivalent to equation 11.

A.4 I2SB

Remark 2.2. Deriving the bridge process from Liu et al. (2023) Theory 3.1 with f(xt, t) = 0 and
g(t) =

√
βt leads to the same result as applying h-transform Doob & Doob (1984) to the exact same

SDE dxt =
√
βt dwt. This gives the definition of DDBM-VE Zhou et al. (2023b).

We consider two SDEs where, respectively, time goes forward and backward

dxt = [f(xt, t) + g2(t)∇xt
logΨ(xt, t)] dt+ g(t) dwt, (36)

dxt = [f(xt, t)− g2(t)∇xt log Ψ̂(xt, t)] dt+ g(t) dw̄t, (37)

x0 ∼ pdata(x0), x1 ∼ plow(x1), and the functions Ψ and Ψ̂ are the solution to the following
coupled PDEs5 

∂Ψ

∂t
= −∇xΨ

⊺f − 1

2
Tr(g2∇2

xΨ),

∂Ψ̂

∂t
= −∇x · (Ψ̂f) +

1

2
Tr(g2∇2

xΨ̂),

(38)

s.t. Ψ(x, 0)Ψ̂(x, 0) = pdata(x), Ψ(x, 1)Ψ̂(x, 1) = plow(x). (39)

From Theory 3.1 from Liu et al. (2023) when the above system holds, we can consider
Ψ̂(·, 0),Ψ(·, 1) as the boundary distributions and ∇xt log Ψ̂(xt, t) and ∇xt logΨ(xt, t) are the score
functions for the following SDEs, respectively

dxt = f(xt, t) dt+ g(t) dwt, x0 ∼ Ψ̂(x0, 0) (40)
dxt = f(xt, t) dt+ g(t) dw̄t, x1 ∼ Ψ(x1, 1), (41)

with the same f and g as in equation 36 and equation 37. For simplicity, we specify the drift
f(xt, t) = 0 and the diffusion coefficient g(t) =

√
βt because that was the practical design choice

5Following Chen et al. (2021), for brevity we denote Ψ ≡ Ψ(x, t), f ≡ f(x, t), and g ≡ g(t).
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made in Liu et al. (2023). With that we can easily calculate the transition kernel for equation 41
remembering that time goes backwards

pt(xt|x1) = N (xt;x1,

∫ 1

t

βsdsI). (42)

To remain consistent with our notation, we denote αt,1 =
∫ 1

t
βsds. With that, we can define the

score of equation 41 as ∇xt
logΨ(xt, t) =

x1−xt

αt,1
. Finally, we substitute the definitions of f , g, and

∇xt
logΨ(xt, t) into equation 36 which yields

dxt =
βt

αt,1
(x1 − xt) dt+

√
βt dwt. (43)

To further unify the notation, we denote y ≡ x1, which is true for all the models based on bridges
that we consider

dxt =
βt

αt,1
(y − xt) dt+

√
βt dwt. (44)

This corresponds to the h-transform Doob & Doob (1984) applied to variance exploding diffusion
process Zhou et al. (2023b); Li et al. (2023).

B UNIFIED SCHEDULERS

In this section, we show all the schedulers that were used in the methods we covered. Each scheduler
is defined for t ∈ [0, 1].

We provide the exact definitions for βt and αs,t =
∫ t

s
βzdz. The ϕs,t = exp(−αs,t) can be easily

computed for any scheduler.

Linear with two parameters βmin, and βmax that denote the value of βt at time 0, and 1.

βt = (βmax − βmin)t+ βmin (45)

αs,t =
1

2
(βmax − βmin)(t

2 − s2) + βmin(t− s) (46)

Cosine was used among several papers with two parameters ϵ and δ that are used to ensure numer-
ical stability. For all methods, we have

ϵ = 0.008, δ = 0.005.

For clarity, we shall define a few intermediate functions

g(t) = cos

(
t+ ϵ

1 + ϵ
· π
2

)2

(47)

h(t) = sin

(
t+ ϵ

1 + ϵ
π

)
(48)

f(t) = 1− g(t)

g(0)
(49)

F (s, t) =

∫ t

s

f(z)dz = t− s+
(s− t)π + (1 + ϵ)(h(s)− h(t))

2πg(0)
(50)

Now, we can easily define the scheduler

βt = − log(δ)
f(t)

F (0, 1)
(51)

αs,t = − log(δ)
F (s, t)

F (0, 1)
(52)
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Exponential with three parameters ηmin, ηmax, and p, where ηmin and ηmax are responsible for
a value range of ϕ, and p influence how fast ϕ goes to ηmax.

βt = 2p log

(
ηmax

ηmin

)
tp−1η2min

(
ηmax

ηmin

)2tp

ϕt (53)

αs,t = log

1−
(
η2min

(
ηmax

ηmin

)2sp
)

1−
(
η2min

(
ηmax

ηmin

)2tp
)
 (54)

Inversed is defined so that ϕt = 1 − t and it is a useful scheduler for methods based on linear
interpolation such as Flow Matching or InDI.

βt =
1

1− t
(55)

αs,t = log

(
1− s

1− t

)
(56)

Quadratic Symmetric is used when we want the transition variance of a diffusion bridge to be
symmetric at t ∈ [0, 1].

βt =

((√
βmax −

√
βmin

)(
1

2
−
∣∣∣∣12 − t

∣∣∣∣)+
√
βmin

)2

(57)

(58)

We consider two scenarios t ≤ 0.5 and t > 0.5.

f(t)(1) =
(√

βmax −
√
βmin

)2 t3

3
+

(√
βmax −

√
βmin

)√
βmint

2 + βmint (59)

f(t)(2) =
(√

βmax −
√
βmin

)2

·
(
t− t2 +

t3

3

)
+ (60)(√

βmax −
√
βmin

)√
βmin · (2t− t2) + βmint (61)

αt =

{
f(t)(1), t ≤ 1

2

f(t)(2) − f(t)(2) + f(t)(1), t > 1
2

(62)

αs,t = αt − αs (63)

C LIBRARY

Ito Vision is a Python library, built on PyTorch, that implements 11 considered methods, together
with multiple schedulers, samplers, network parametrizations and discretization techniques. Collec-
tively, these components support the use of all methods presented in this paper and enable straight-
forward implementation of novel approaches. The library can be installed via:

$ pip install <path/to/supplement/ito_vision>

The codebase is fully type-hinted and designed for consistency through the use of abstract classes
for each module. For example, every method inherits from the IterativeRefinementMethod
abstract class, which specifies required functions that correspond to the definitions from Table 1,
bridging the gap between the mathematical formulations and the code, and enabling easy imple-
mentation of new stochastic processes.

Further details and a code example are provided in the library’s README.md, included in the sup-
plementary material.
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D IMPLEMENTATION DETAILS

Table 3: Original choices of used scheduler, sampler, and other method-specific parameters.
Method Scheduler βt Sampler Parametrization Loss Parameters
DM-VP† linear Ancestral sampling ϵt l2 norm -
FM inversed Euler-ODE x0 − y l2 norm -
IR-SDE cosine Euler-Maruyama ϵt l2 norm τ = 0.20
ResShift exponential Ancestral sampling x0 l2 norm τ = 2.00
InDI inversed Euler-ODE x0 l1 norm τ = 0.06
BBDM constant Ancestral sampling ϵt l2 norm -
DDBM-VE linear 2nd Heun & Langevin-Heun karras l2 norm -
DDBM-VP linear 2nd Heun & Langevin-Heun karras l2 norm -
I2SB quadratic-symmetric Ancestral sampling ϵt l2 norm -
GOUB cosine Euler-ODE & mean-ODE ϵt l1 norm τ = 0.34
UniDB-GOUB cosine Euler-ODE & mean-ODE ϵt l1 norm τ = 0.34, γ = 1e4
† For diffusion we consider DDPM Ho et al. (2020) implementation.

Table 4: Detailed parameters choices of training procedure for each image en-
hancement task.

Super-Resolution Colorization Low-light Enhancement Deraining
Dataset FFHQ ImageNet LOL Rain100H
Iterations 400k 400k 150k 50k
Unet parameters 119M 119M 31.3M 31.3M
Channels 128 128 64 64
Depth 2 2 2 2
Channel multipliers 1,1,2,2,4,4 1,1,2,2,4,4 1,1,2,2,4,4 1,1,2,2,4,4
Attention head dimension 64 64 64 64
Latent ✗ ✓ ✗ ✗
Learning rate† 1e-4 → 1e-7 1e-4 → 1e-7 1e-4 → 1e-7 1e-4 → 1e-7
Random crop size 256 × 256 384 × 384 320 × 320 320 × 320
Batch size 64 256 80 80
† Decreasing learning rate with respect to cosine annealing LR scheduler.

Below we provide detailed description of the experimental setups for each task. We evaluate the
methods using Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM),
Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018), and Natural Image Quality
Evaluator (NIQE) Mittal et al. (2012). For image super-resolution and colorization, we also report
the Fréchet Inception Distance (FID) Heusel et al. (2017), as the test datasets are large enough for
this measure. We use LPIPS as the main metric to evaluate model quality because, unlike PSNR
and SSIM, it aligns with human perception, and unlike NIQE and FID, it incorporates ground truth,
which is important for preserving details.

Image super-resolution For this task, we used the FFHQ dataset Karras et al. (2019) and per-
formed x8 single image super-resolution 64× 64 → 512× 512. In addition to reducing resolution,
we also applied JPEG compression to 10% quality and then upscaled back to 512 × 512. Both
resizing used bicubic interpolation with anti-aliasing. Each model was trained in 256 × 256 crops
with batch size of 64. We split the data set that contains 70k images into train-val-test splits with
0.98 : 0.002 : 0.018 proportions. For our backbone, we used UNet Ronneberger et al. (2015) with
119M parameters from the diffuser library von Platen et al. (2022) with the same channel dimen-
sionality as in Dhariwal & Nichol (2021) (see their Appendix I, Table 12 ImageNet 256 × 256).
Detailed architectures are shown in Table 4. Each method was trained for 400k iterations. The final
model was selected based on the LPIPS metric Zhang et al. (2018) on the validation split, measured
each 10k iterations.

Low-light image enhancement We used the LOL dataset Wei et al. (2018), as it contains a rela-
tively extensive collection of 500 real-world dark and light pairs of the same scene. We used original
train and test splits, and we moved 5 pairs from training to validation split as it was not provided. We
trained the models on 320× 320 crops with batch size of 80. The model had 31.3M parameters and
its architecture was the same as in the super-resolution task, with reduced channel dimensions. Each
method was trained for 150k iterations with the validation each 2.5k iterations. Following most of
the state-of-the-art methods in this field Zhang et al. (2019); Cai et al. (2023); Zhou et al. (2023a) we
involve conditioning on ground-truth average lightness. We injected it through the attention mecha-
nism and adjusted the value channel for each estimation of ground truth x̂0|t to the given lightness
through the HSV color space.
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Image colorization Here, we utilized the ImageNet dataset Russakovsky et al. (2015). It contains
a wide range of real world objects; therefore, it fits this task perfectly as the diversity of objects
and their hues makes it well-suited for assessing generalization of validated methods. For training,
we used all images from the train split, with width and height between 256 and 768. We treat
low-quality input y as the grayscale version of ground truth with three channels to maintain the
same dimensionality. We used pretrained VAE from Stable Diffusion 2.1 Rombach et al. (2022)
originally used for ×4 super-resolution. We use the same architecture of the UNet as in the image
super-resolution task. We train it for 400k iteration with 384 × 384 random crops and a batch size
of 256. We evaluated FID on 50k images from the test split.

Image deraining For our last task we used the Rain1400 dataset Fu et al. (2017) with prepared
image pairs with synthetic rain applied to low-quality images y. Similarly to other experiments, we
report PSNR and SSIM metrics in RGB space.

E THE USE OF LARGE LANGUAGE MODELS

We used LLMs to find better synonyms and correct grammar in our text to improve its readability.
We read, analyzed, and modified each LLM suggestion, if needed, to ensure that there were no
hallucinations that could lead to misinformation.

F ADDITIONAL RESULTS

Figure 3: Transition variance Var(xt|x0) for all considered Ornstein-Uhlenbeck processes. Left:
Original temperatures τ and schedulers βt. Next: standarized τ with original schedulers. Middle
to right: standarized τ and specific schedulers. We can see that ResShift has by far the highest
temperature but IR-SDE reaches maximum level of noise faster than other methods. InDI has the
lowest temperature and adds the noise with the slowest pace.

Table 5: Image super-resolution on FFHQ dataset using ancestral sampling with Network forward evaluations (NFE) = 5, 35,
and 100. The best values are bolded and second to best are underscored.

NFE = 5 NFE = 35 NFE = 100
Model PSNR SSIM LPIPS NIQE FID PSNR SSIM LPIPS NIQE FID PSNR SSIM LPIPS NIQE FID
DDPM 29.04 0.7825 0.229 8.728 17.857 27.86 0.7481 0.181 7.979 17.525 27.23 0.7217 0.164 7.652 17.760
FM 28.72 0.7756 0.241 8.818 17.565 27.15 0.7295 0.183 7.839 17.745 26.48 0.6989 0.172 7.561 17.843
IR-SDE 28.64 0.7712 0.249 8.974 18.230 26.97 0.7179 0.184 7.805 18.302 26.17 0.6881 0.189 7.631 18.473
ResShift 28.84 0.7781 0.222 8.679 17.517 27.66 0.7461 0.184 7.965 17.422 27.23 0.7304 0.175 7.722 17.549
InDI 28.56 0.7657 0.319 9.759 19.820 27.21 0.7125 0.199 7.984 18.861 26.40 0.6801 0.195 7.643 18.893
BBDM 28.06 0.7529 0.278 9.157 19.533 27.14 0.7282 0.252 8.550 19.435 26.83 0.7176 0.245 8.356 19.513
DDBM-VE 28.55 0.7683 0.237 8.791 17.830 27.11 0.7239 0.186 7.813 17.749 26.60 0.7021 0.178 7.556 18.079
DDBM-VP 28.75 0.7768 0.232 8.750 17.598 27.46 0.7410 0.190 7.966 17.584 26.98 0.7217 0.176 7.663 17.581
I2SB 28.67 0.7708 0.245 8.960 17.938 27.46 0.7333 0.184 7.873 17.786 27.03 0.7173 0.174 7.647 17.789
GOUB 28.52 0.7680 0.270 9.197 18.688 27.24 0.7347 0.224 8.246 18.819 26.40 0.7136 0.213 7.922 19.076
UniDB 28.91 0.7789 0.247 8.981 17.602 27.59 0.7387 0.181 7.883 17.589 26.28 0.7023 0.177 7.514 18.082
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Table 6: Low-light image enhancement on LOL dataset using ancestral sampling with Network
forward evaluations (NFE) = 5, 35, and 100. The best values are bolded and second to best are
underscored.

NFE = 5 NFE = 35 NFE = 100
Model PSNR SSIM LPIPS NIQE PSNR SSIM LPIPS NIQE PSNR SSIM LPIPS NIQE
DM-VP 23.01 0.6855 0.185 5.517 23.01 0.6846 0.186 5.506 23.01 0.6842 0.186 5.514
FM 22.78 0.6848 0.202 5.677 22.57 0.6781 0.209 5.646 22.47 0.6756 0.215 5.668
IR-SDE 23.43 0.6960 0.208 5.745 23.07 0.6785 0.237 5.549 23.00 0.6736 0.248 5.536
ResShift 23.13 0.6926 0.194 5.756 23.15 0.6928 0.195 5.764 23.15 0.6928 0.195 5.753
InDI 21.26 0.6409 0.278 5.530 21.48 0.6327 0.323 5.439 21.35 0.6250 0.334 5.487
BBDM 22.84 0.6872 0.190 5.794 22.84 0.6869 0.191 5.788 22.84 0.6866 0.191 5.787
DDBM-VE 23.43 0.6933 0.201 5.555 23.18 0.6795 0.224 5.403 23.10 0.6752 0.234 5.383
DDBM-VP 23.16 0.6815 0.201 5.550 22.55 0.6587 0.231 5.443 22.38 0.6520 0.243 5.447
I2SB 22.01 0.6617 0.238 5.834 21.86 0.6552 0.245 5.769 21.86 0.6547 0.248 5.751
GOUB 23.11 0.6919 0.207 5.599 22.57 0.6690 0.233 5.513 22.38 0.6600 0.243 5.531
UniDB 23.36 0.6989 0.197 5.625 22.80 0.6793 0.223 5.609 22.56 0.6715 0.235 5.592

Table 7: Image colorization on ImageNet dataset using ancestral sampling with Network forward evaluations (NFE) =
5, 35, and 100. The best values are bolded and second to best are underscored. For this task, we also provide FID metric
evaluated on 50k samples.

NFE = 5 NFE = 35 NFE = 100
Model PSNR SSIM LPIPS NIQE FID PSNR SSIM LPIPS NIQE FID PSNR SSIM LPIPS NIQE FID
DM-VP 22.09 0.6969 0.186 4.772 3.859 21.73 0.6852 0.191 4.714 3.994 21.57 0.6797 0.194 4.690 4.085
FM 22.32 0.7033 0.183 4.795 3.452 21.64 0.6850 0.191 4.762 3.500 21.31 0.6750 0.196 4.740 3.575
IR-SDE 22.35 0.7035 0.186 4.803 3.597 22.02 0.6905 0.187 4.730 3.751 21.82 0.6823 0.190 4.693 3.847
ResShift 22.39 0.7058 0.183 4.822 3.473 21.82 0.6894 0.189 4.808 3.481 21.55 0.6809 0.194 4.801 3.487
InDI 22.39 0.7044 0.192 4.811 4.449 22.28 0.6992 0.191 4.747 4.416 22.06 0.6914 0.190 4.715 4.444
BBDM 22.44 0.7063 0.179 4.823 3.306 22.17 0.6977 0.182 4.789 3.323 21.98 0.6916 0.185 4.780 3.324
DDBM-VE 22.57 0.7064 0.180 4.729 3.842 22.36 0.7003 0.181 4.737 3.712 22.17 0.6940 0.183 4.692 3.732
DDBM-VP 22.50 0.7052 0.182 4.671 3.487 22.23 0.6969 0.184 4.664 3.536 22.02 0.6897 0.187 4.631 3.543
I2SB 22.52 0.7058 0.183 4.838 4.402 22.39 0.7009 0.182 4.846 4.259 22.28 0.6972 0.183 4.830 4.208
GOUB 22.17 0.6993 0.188 4.770 3.629 21.59 0.6808 0.193 4.691 3.799 18.54 0.5938 0.270 4.598 4.256
UniDB 22.20 0.6999 0.186 4.787 3.637 21.69 0.6835 0.190 4.727 3.806 19.32 0.6153 0.248 4.654 4.130

Table 8: Image deraining on Rain1400 dataset using ancestral sampling with Network forward evalu-
ations (NFE) = 5, 35, and 100. The best values are bolded and second to best are underscored.

NFE = 5 NFE = 35 NFE = 100
Model PSNR SSIM LPIPS NIQE PSNR SSIM LPIPS NIQE PSNR SSIM LPIPS NIQE
DM-VP 29.92 0.8703 0.052 4.356 29.02 0.8528 0.055 4.243 28.56 0.8450 0.058 4.239
FM 29.98 0.8702 0.050 4.290 28.89 0.8444 0.057 4.154 28.46 0.8352 0.062 4.153
IR-SDE 29.54 0.8627 0.048 4.217 28.15 0.8269 0.061 4.104 27.52 0.8115 0.070 4.112
ResShift 29.69 0.8670 0.050 4.283 29.17 0.8562 0.052 4.217 28.99 0.8527 0.052 4.197
InDI 29.93 0.8633 0.050 4.194 28.17 0.8159 0.069 4.081 27.60 0.7995 0.079 4.087
BBDM 30.37 0.8784 0.048 4.366 30.10 0.8731 0.049 4.349 30.04 0.8723 0.049 4.348
DDBM-VE 29.55 0.8595 0.050 4.293 28.65 0.8372 0.054 4.133 28.37 0.8276 0.058 4.105
DDBM-VP 29.82 0.8632 0.049 4.298 28.94 0.8422 0.052 4.162 28.60 0.8315 0.056 4.109
I2SB 30.07 0.8715 0.047 4.264 29.29 0.8542 0.050 4.165 29.14 0.8508 0.051 4.158
GOUB 29.79 0.8673 0.050 4.277 28.38 0.8313 0.061 4.102 27.73 0.8140 0.072 4.097
UniDB 29.38 0.8606 0.049 4.239 28.02 0.8237 0.060 4.092 27.29 0.8031 0.073 4.116

Figure 4: Visualization of different discretization techniques. Karras discretization spends most of
the time at low values of t, while DDBM places emphasis on both the beginning and the end of the
trajectory.
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Table 9: Different samplers used in image super-resolution for diffusion and Ornstein-Uhlenbeck
processes. We measure their effectiveness using PSNR / SSIM / LPIPS metrics for Network For-
ward Evaluations (NFE) = 5, 35, and 100. Best results across samplers are bolded and second
best are underscored. Ancestral sampling and Euler ODE achieve the best LPIPS results. Mean-
reverting ODE yields the highest PSNR and SSIM but low LPIPS, suggesting possible oversmooth-
ing. Our Exponential Integrator (EI-ODE) relies on numerical methods, which perform worse for
flow matching and InDI due to their stiff dynamics. Surprisingly, Heun performs worst among the
second-order Runge-Kutta methods.

NFE Sampler DM-VP FM IR-SDE ResShift InDI

5

Euler ODE 25.2 / 0.51 / 0.40 28.4 / 0.77 / 0.22 26.3 / 0.58 / 0.35 28.2 / 0.76 / 0.20 28.5 / 0.76 / 0.29
Euler SDE 17.5 / 0.18 / 1.00 8.9 / 0.01 / 0.84 18.7 / 0.13 / 0.82 18.5 / 0.15 / 1.07 7.6 / 0.00 / 1.49
Ancestral† 29.0 / 0.78 / 0.23 28.7 / 0.78 / 0.24 28.6 / 0.77 / 0.25 28.8 / 0.78 / 0.22 28.6 / 0.77 / 0.32
EI-ODE 14.9 / 0.11 / 0.97 9.5 / 0.01 / 0.84 14.5 / 0.13 / 0.75 18.1 / 0.18 / 0.94 3.0 / -0.39 / 0.82
Mean-ODE†† 21.4 / 0.29 / 0.79 8.9 / 0.01 / 0.84 21.7 / 0.23 / 0.60 20.0 / 0.19 / 1.00 7.6 / 0.00 / 1.49
Langevin-Heun††† 29.5 / 0.79 / 0.28 29.3 / 0.79 / 0.29 29.2 / 0.79 / 0.30 29.5 / 0.79 / 0.28 28.7 / 0.77 / 0.34
2nd Heun 15.8 / 0.13 / 0.92 13.0 / 0.30 / 0.61 9.0 / 0.01 / 0.94 12.5 / 0.03 / 0.87 12.9 / 0.33 / 0.59
2nd Midpoint 20.7 / 0.34 / 0.66 28.1 / 0.76 / 0.23 25.9 / 0.62 / 0.25 24.6 / 0.47 / 0.43 28.5 / 0.76 / 0.30
2nd Ralston 20.4 / 0.60 / 0.37 27.9 / 0.75 / 0.22 22.7 / 0.27 / 0.57 22.5 / 0.31 / 0.65 28.6 / 0.77 / 0.31

35

Euler ODE 27.0 / 0.71 / 0.16 26.7 / 0.71 / 0.17 26.4 / 0.68 / 0.19 27.2 / 0.73 / 0.18 26.8 / 0.69 / 0.19
Euler SDE 27.5 / 0.70 / 0.25 25.5 / 0.55 / 0.29 25.7 / 0.62 / 0.25 27.5 / 0.74 / 0.19 16.7 / 0.15 / 0.84
Ancestral 27.9 / 0.75 / 0.18 27.2 / 0.73 / 0.18 27.0 / 0.72 / 0.18 27.7 / 0.75 / 0.18 27.2 / 0.71 / 0.20
EI-ODE 27.3 / 0.73 / 0.25 13.1 / 0.17 / 0.75 25.6 / 0.70 / 0.21 27.3 / 0.75 / 0.22 11.5 / 0.44 / 0.64
Mean-ODE 28.2 / 0.78 / 0.32 28.2 / 0.78 / 0.32 27.9 / 0.77 / 0.32 28.2 / 0.78 / 0.30 25.8 / 0.67 / 0.45
Langevin-Heun 25.2 / 0.58 / 0.38 12.6 / 0.19 / 0.91 22.8 / 0.48 / 0.35 19.8 / 0.24 / 0.74 5.8 / -0.00 / 0.92
2nd Heun 25.6 / 0.63 / 0.28 23.2 / 0.58 / 0.27 23.8 / 0.57 / 0.26 25.1 / 0.44 / 0.62 24.8 / 0.65 / 0.23
2nd Midpoint 26.9 / 0.70 / 0.17 26.3 / 0.69 / 0.18 26.1 / 0.67 / 0.19 26.9 / 0.72 / 0.18 26.1 / 0.66 / 0.20
2nd Ralston 26.8 / 0.70 / 0.17 26.2 / 0.68 / 0.18 26.1 / 0.67 / 0.19 26.9 / 0.72 / 0.18 26.4 / 0.67 / 0.20

100

Euler ODE 26.8 / 0.69 / 0.17 26.4 / 0.69 / 0.17 26.1 / 0.67 / 0.19 27.0 / 0.72 / 0.18 26.2 / 0.67 / 0.20
Euler SDE 27.2 / 0.73 / 0.18 25.9 / 0.65 / 0.20 25.6 / 0.65 / 0.21 27.2 / 0.73 / 0.18 21.6 / 0.50 / 0.39
Ancestral 27.2 / 0.72 / 0.16 26.5 / 0.70 / 0.17 26.2 / 0.69 / 0.19 27.2 / 0.73 / 0.17 26.4 / 0.68 / 0.19
EI-ODE 26.9 / 0.72 / 0.18 17.0 / 0.21 / 0.69 25.8 / 0.68 / 0.19 27.0 / 0.72 / 0.17 13.1 / 0.48 / 0.56
Mean-ODE 28.2 / 0.78 / 0.32 28.2 / 0.78 / 0.32 27.6 / 0.77 / 0.33 28.1 / 0.78 / 0.30 27.3 / 0.75 / 0.35
Langevin-Heun 26.4 / 0.67 / 0.19 13.6 / 0.17 / 0.70 25.1 / 0.63 / 0.23 27.1 / 0.72 / 0.25 8.6 / 0.04 / 0.99
2nd Heun 26.3 / 0.67 / 0.19 25.3 / 0.65 / 0.21 25.3 / 0.65 / 0.21 27.3 / 0.73 / 0.24 25.4 / 0.65 / 0.21
2nd Midpoint 26.6 / 0.68 / 0.18 26.2 / 0.67 / 0.18 25.9 / 0.67 / 0.20 26.8 / 0.71 / 0.18 25.8 / 0.65 / 0.20
2nd Ralston 26.6 / 0.68 / 0.18 26.1 / 0.67 / 0.18 25.9 / 0.67 / 0.20 26.8 / 0.71 / 0.17 25.8 / 0.65 / 0.20

† Ancestral sampling of the Markov model that discretizes forward SDE (see Ho et al. (2020)).
†† See Yue et al. (2023a).
††† See Zhou et al. (2023b).
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Table 10: Different samplers used in image super-resolution for diffusion bridges. We measure their effectiveness
using PSNR / SSIM / LPIPS metrics for Network Forward Evaluations (NFE) = 5, 35, and 100. Best results across
samplers are bolded and second best are underscored. Ancestral sampling remains the best choice globally. Note
that no deterministic sampler achieves an LPIPS below 0.3, even with 100 NFEs.

NFE Sampler BBDM DDBM-VE DDBE-VP I2SB GOUB UniDB

5

Euler ODE 28.5 / 0.77 / 0.36 28.6 / 0.78 / 0.31 28.7 / 0.79 / 0.30 28.8 / 0.78 / 0.34 28.7 / 0.77 / 0.34 29.2 / 0.79 / 0.32
Euler SDE 27.4 / 0.72 / 0.25 14.0 / 0.05 / 1.22 11.6 / 0.03 / 1.35 23.2 / 0.31 / 0.74 17.6 / 0.10 / 0.89 13.2 / 0.09 / 0.86
Ancestral† 28.1 / 0.75 / 0.28 28.5 / 0.77 / 0.24 28.8 / 0.78 / 0.23 28.7 / 0.77 / 0.25 28.5 / 0.77 / 0.27 28.9 / 0.78 / 0.25
EI-ODE 3.4 / -0.37 / 0.86 2.6 / -0.43 / 0.83 2.6 / -0.43 / 0.83 2.9 / -0.41 / 0.84 12.8 / 0.48 / 0.60 12.9 / 0.49 / 0.59
Mean-ODE†† 28.5 / 0.77 / 0.34 25.8 / 0.74 / 0.34 27.1 / 0.77 / 0.32 29.0 / 0.79 / 0.31 28.3 / 0.77 / 0.32 28.9 / 0.78 / 0.31
Langevin-Heun††† 28.7 / 0.77 / 0.35 29.2 / 0.79 / 0.30 29.4 / 0.79 / 0.28 29.2 / 0.79 / 0.30 29.0 / 0.78 / 0.31 29.4 / 0.79 / 0.29
2nd Heun 11.6 / 0.22 / 0.73 16.9 / 0.19 / 0.72 12.9 / 0.41 / 0.59 9.9 / 0.08 / 0.73 9.9 / 0.15 / 0.74 11.4 / 0.24 / 0.69
2nd Midpoint 28.6 / 0.77 / 0.35 27.1 / 0.75 / 0.33 21.8 / 0.74 / 0.33 28.8 / 0.78 / 0.35 27.0 / 0.73 / 0.38 27.4 / 0.75 / 0.34
2nd Ralston 28.4 / 0.76 / 0.36 27.9 / 0.75 / 0.33 21.5 / 0.72 / 0.36 28.4 / 0.77 / 0.38 26.9 / 0.72 / 0.45 27.3 / 0.73 / 0.42

35

Euler ODE 28.5 / 0.77 / 0.35 27.8 / 0.77 / 0.32 28.5 / 0.78 / 0.31 28.9 / 0.78 / 0.31 28.6 / 0.77 / 0.32 29.3 / 0.79 / 0.31
Euler SDE 27.2 / 0.73 / 0.26 24.2 / 0.39 / 0.43 23.0 / 0.31 / 0.53 27.1 / 0.70 / 0.18 26.4 / 0.67 / 0.20 25.5 / 0.56 / 0.31
Ancestral 27.1 / 0.73 / 0.25 27.1 / 0.72 / 0.19 27.5 / 0.74 / 0.19 27.5 / 0.73 / 0.18 27.2 / 0.73 / 0.22 27.6 / 0.74 / 0.18
EI-ODE 10.6 / 0.24 / 0.71 12.5 / 0.35 / 0.70 13.1 / 0.36 / 0.68 4.3 / -0.25 / 0.81 15.5 / 0.42 / 0.68 11.9 / 0.26 / 0.67
Mean-ODE 28.2 / 0.76 / 0.34 24.3 / 0.73 / 0.36 26.3 / 0.76 / 0.34 25.5 / 0.75 / 0.34 27.8 / 0.76 / 0.33 28.9 / 0.78 / 0.32
Langevin-Heun 14.7 / 0.08 / 0.92 21.7 / 0.27 / 0.46 19.5 / 0.19 / 0.56 19.6 / 0.17 / 0.93 23.4 / 0.45 / 0.31 23.6 / 0.46 / 0.36
2nd Heun 25.7 / 0.70 / 0.39 27.6 / 0.76 / 0.32 27.9 / 0.76 / 0.31 27.3 / 0.75 / 0.32 25.9 / 0.71 / 0.36 27.5 / 0.75 / 0.32
2nd Midpoint 28.5 / 0.76 / 0.34 27.5 / 0.77 / 0.32 28.4 / 0.78 / 0.31 28.5 / 0.78 / 0.31 28.5 / 0.77 / 0.32 29.2 / 0.79 / 0.31
2nd Ralston 28.4 / 0.76 / 0.35 27.6 / 0.77 / 0.32 28.4 / 0.78 / 0.31 28.6 / 0.78 / 0.31 28.5 / 0.77 / 0.32 29.2 / 0.79 / 0.31

100

Euler ODE 28.4 / 0.76 / 0.34 27.5 / 0.77 / 0.32 28.4 / 0.78 / 0.31 28.2 / 0.78 / 0.31 28.5 / 0.77 / 0.32 29.2 / 0.79 / 0.31
Euler SDE 26.9 / 0.72 / 0.25 25.6 / 0.56 / 0.28 25.3 / 0.51 / 0.32 26.9 / 0.71 / 0.17 26.4 / 0.70 / 0.21 26.3 / 0.66 / 0.20
Ancestral 26.8 / 0.72 / 0.24 26.6 / 0.70 / 0.18 27.0 / 0.72 / 0.18 27.0 / 0.72 / 0.17 26.4 / 0.71 / 0.21 26.3 / 0.70 / 0.18
EI-ODE 21.7 / 0.68 / 0.48 14.7 / 0.54 / 0.53 16.5 / 0.60 / 0.48 12.1 / 0.47 / 0.63 16.0 / 0.45 / 0.66 13.8 / 0.33 / 0.64
Mean-ODE 28.1 / 0.76 / 0.34 24.1 / 0.73 / 0.37 26.1 / 0.75 / 0.34 24.1 / 0.74 / 0.36 27.6 / 0.76 / 0.34 28.9 / 0.78 / 0.32
Langevin-Heun 27.2 / 0.69 / 0.37 25.8 / 0.62 / 0.24 25.7 / 0.58 / 0.27 26.8 / 0.67 / 0.26 25.9 / 0.69 / 0.21 26.0 / 0.66 / 0.20
2nd Heun 27.7 / 0.75 / 0.36 27.4 / 0.77 / 0.33 28.3 / 0.78 / 0.31 27.8 / 0.77 / 0.32 27.9 / 0.76 / 0.33 28.9 / 0.78 / 0.31
2nd Midpoint 28.4 / 0.76 / 0.34 27.3 / 0.77 / 0.32 28.3 / 0.78 / 0.31 27.7 / 0.78 / 0.32 28.5 / 0.77 / 0.32 29.2 / 0.79 / 0.31
2nd Ralston 28.4 / 0.76 / 0.34 27.3 / 0.77 / 0.32 28.3 / 0.78 / 0.31 27.9 / 0.78 / 0.32 28.4 / 0.77 / 0.32 29.2 / 0.79 / 0.31

† Ancestral sampling of the Markov model that discretizes forward SDE (see Ho et al. (2020)).
†† See Yue et al. (2023a).
††† See Zhou et al. (2023b).
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Figure 5: Comparison of diffusion and three OU processes: InDI, IR-SDE, and ResShift with pro-
gressively higher temperature parameter τ , to study how temperature influences the collinearity of
xt,y, x̂0|t, and how this collinearity, in turn, affects the LPIPS metric. Left: collinearity of normal-
ized vectors xt−y and x̂0|t−xt. InDI, with the lowest τ , is trained to extrapolate the xt−y vector,
especially at the end of the trajectory, where the transition variance was very small during training.
Right: LPIPS of predicted x̂0|t for different t. It can be noticed that when InDI has high collinearity,
it does not improve over time. Later steps are redundant or even harmful to the quality of the final
sample. Experiments were conducted on image super-resolution.

Table 11: Different discretization strategies (see Figure 4) for
image super-resolution. The results show that model quality
does not depend on the chosen method. We report PSNR /
SSIM / LPIPS. The best values are bolded and second to best
are underscored.

NFE Method Linear Karras† DDBM††

5

DM-VP 29.0 / 0.78 / 0.23 28.9 / 0.77 / 0.20 29.4 / 0.79 / 0.26
FM 28.7 / 0.78 / 0.24 28.9 / 0.78 / 0.24 29.1 / 0.79 / 0.27
ResShift 28.8 / 0.78 / 0.22 28.8 / 0.77 / 0.21 29.0 / 0.78 / 0.23
IR-SDE 28.6 / 0.77 / 0.25 28.9 / 0.78 / 0.27 28.9 / 0.78 / 0.28
InDI 28.6 / 0.77 / 0.32 28.7 / 0.77 / 0.33 28.5 / 0.77 / 0.31
BBDM 28.1 / 0.75 / 0.28 28.1 / 0.75 / 0.28 28.4 / 0.76 / 0.30
DDBM-VE 28.5 / 0.77 / 0.24 28.8 / 0.77 / 0.25 28.8 / 0.78 / 0.25
DDBM-VP 28.8 / 0.78 / 0.23 29.0 / 0.78 / 0.24 29.1 / 0.79 / 0.25
I2SB 28.7 / 0.77 / 0.25 28.9 / 0.78 / 0.26 28.8 / 0.78 / 0.25
GOUB 28.5 / 0.77 / 0.27 28.7 / 0.77 / 0.28 28.9 / 0.78 / 0.30
UniDB 28.9 / 0.78 / 0.25 29.1 / 0.78 / 0.26 29.3 / 0.79 / 0.27

35

DM-VP 27.9 / 0.75 / 0.18 27.3 / 0.71 / 0.17 27.8 / 0.73 / 0.17
FM 27.2 / 0.73 / 0.18 27.1 / 0.71 / 0.17 27.7 / 0.74 / 0.17
IR-SDE 27.0 / 0.72 / 0.18 27.2 / 0.72 / 0.18 27.9 / 0.75 / 0.20
ResShift 27.7 / 0.75 / 0.18 27.5 / 0.73 / 0.17 27.8 / 0.74 / 0.17
InDI 27.2 / 0.71 / 0.20 27.8 / 0.74 / 0.25 27.1 / 0.73 / 0.23
BBDM 27.1 / 0.73 / 0.25 26.9 / 0.72 / 0.24 27.1 / 0.72 / 0.25
DDBM-VE 27.1 / 0.72 / 0.19 27.3 / 0.72 / 0.17 27.5 / 0.73 / 0.17
DDBM-VP 27.5 / 0.74 / 0.19 27.4 / 0.72 / 0.16 27.8 / 0.74 / 0.17
I2SB 27.5 / 0.73 / 0.18 27.7 / 0.73 / 0.18 27.6 / 0.74 / 0.18
GOUB 27.2 / 0.73 / 0.22 27.4 / 0.74 / 0.23 27.8 / 0.75 / 0.24
UniDB 27.6 / 0.74 / 0.18 27.9 / 0.74 / 0.18 28.4 / 0.76 / 0.20

100

DM-VP 27.2 / 0.72 / 0.16 26.7 / 0.68 / 0.19 27.0 / 0.69 / 0.18
FM 26.5 / 0.70 / 0.17 26.2 / 0.68 / 0.18 26.7 / 0.70 / 0.17
IR-SDE 26.2 / 0.69 / 0.19 26.2 / 0.69 / 0.19 26.7 / 0.71 / 0.18
ResShift 27.2 / 0.73 / 0.17 27.1 / 0.72 / 0.17 27.2 / 0.72 / 0.17
InDI 26.4 / 0.68 / 0.19 26.9 / 0.71 / 0.21 26.1 / 0.69 / 0.20
BBDM 26.8 / 0.72 / 0.24 26.6 / 0.71 / 0.24 26.7 / 0.71 / 0.24
DDBM-VE 26.6 / 0.70 / 0.18 26.7 / 0.69 / 0.17 26.8 / 0.70 / 0.17
DDBM-VP 27.0 / 0.72 / 0.18 26.8 / 0.70 / 0.17 27.0 / 0.71 / 0.16
I2SB 27.0 / 0.72 / 0.17 27.2 / 0.71 / 0.17 27.0 / 0.71 / 0.17
GOUB 26.4 / 0.71 / 0.21 26.7 / 0.72 / 0.22 16.0 / 0.41 / 0.53
UniDB 26.3 / 0.70 / 0.18 27.2 / 0.71 / 0.17 13.3 / 0.23 / 0.67

† See Karras et al. (2022) Appendix D.1.
†† See Zhou et al. (2023b). Formulation is taken from the official Github repository.
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Input DM-VP FM

IR-SDE ResShift InDI

BBDM I2SB DDBM-VE

DDBM-VP GOUB UniDB

Ground truth
Figure 6: Visual comparison of image deraining on the Rain1400 dataset using ancestral sampling
with 35 steps. All outputs appear similar, but diffusion and flow matching tend to leave slightly
more visible traces of raindrops.
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Input DM-VP FM

IR-SDE ResShift InDI

BBDM I2SB DDBM-VE

DDBM-VP GOUB UniDB

Ground truth
Figure 7: Visual comparison of low-light image enhancement on the LOL dataset using ancestral
sampling with 35 steps. Most methods produce images of similar quality, while InDI performs
noticeably worse. All methods still struggle to fully recover the ground truth.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Input

DM-VP

FM

IR-SDE

ResShift

InDI

BBDM

I2SB

DDBM-VE

DDBM-VP

GOUB

UniDB

Ground truth

Figure 8: Visual comparison of image colorization on ImageNet. Results were generated using
ancestral sampling with 35 steps. In most cases, methods recover the correct canonical colors (e.g.,
green grass, blue sky, orange fruit). However there are some exceptions, such as DDPM producing
green tires and most methods struggling with colors of the ladybug. Flow Matching and ResShift
produces outputs with higher saturation.
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