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Abstract

Estimating the Kullback–Leibler (KL) divergence between language models has
many applications, e.g., reinforcement learning from human feedback (RLHF),
interpretability, and knowledge distillation. However, computing the exact
KL divergence between two arbitrary language models is intractable. Thus,
practitioners often resort to sampling-based estimators. While it is easy to fashion
a simple Monte Carlo (MC) estimator that provides an unbiased estimate of the
KL divergence between language models, this estimator notoriously suffers from
high variance and can even result in a negative estimate of the KL divergence, a
non-negative quantity. In this paper, we introduce a Rao–Blackwellized estimator
that is unbiased and provably has variance less than or equal to that of the standard
Monte Carlo estimator. In an empirical study on sentiment-controlled fine-tuning,
we show that our estimator provides more stable KL estimates and reduces
variance substantially. Additionally, we derive an analogous Rao–Blackwellized
estimator of the gradient of the KL divergence, which leads to more stable training
and produces models that more frequently appear on the Pareto frontier of reward
vs. KL compared to the ones trained with the MC estimator of the gradient.

https://github.com/rycolab/kl-rb

1 Introduction

The Kullback–Leibler [KL; 19] divergence is a statistical divergence that quantifies how one probabil-
ity distribution differs from another. Measuring the KL divergence between probability distributions
is a well-established problem that has been studied extensively in the statistics literature [7, 12, inter
alia]. In some special cases, e.g., in the case that we wish to measure the KL divergence between two
Gaussian measures, the KL divergence has an analytical solution. However, in the general case, exact
computation of the KL divergence is not analytically tractable or approximable with an efficient algo-
rithm [14]. This paper treats the case of computing the KL divergence between two language models
(LMs), a fundamental task in natural language processing with numerous practical applications.

The KL divergence plays a central role across multiple applications. In reinforcement learning from
human feedback [RLHF; 6, 26, 35], it is used as a regularization term to constrain the fine-tuned
model from drifting too far from a reference model, preserving fluency and preventing reward over-
optimization. In interpretability research, KL divergence quantifies how a specific prompt shifts the
model distribution by comparing the model’s distributions before and after controlled interventions
[9, 27, 36]. As an evaluation metric, KL divergence is used to assess how well language models
approximate target distributions [4, 37]. In knowledge distillation, KL divergence is minimized to
align a student model with a teacher model [1].
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The above applications demonstrate that measuring the KL divergence between two language models
is useful and widespread. However, in the case of neural language models, it is far from straight-
forward. It is easy to see why: Given an alphabet of symbols Σ and two language models p and q,
distributions over Σ∗, the KL divergence is given by the following expression:1,2

KL(p || q) def
=
∑
y∈Σ∗

p(y) log
p(y)

q(y)
. (1)

Recalling that Σ∗ is a countably infinite set, we cannot expect, in general, to compute Eq. (1) exactly
in finite time without additional assumptions.3 While in some very special cases, e.g., where p and
q are deterministic finite-state automata, there exist efficient algorithms, [4, 20, 22], we should not
expect such an algorithm to exist in the case where p and q are neural language models, e.g., those
based on the transformer [25, 28, 39]. Thus, most researchers turn to approximation, with Monte
Carlo estimation being the most widely used method.

The Monte Carlo (MC) estimator for KL divergence (Eq. (1)) involves sampling M strings
Y (1), ... ,Y (M) i.i.d.∼ p and then averaging log p(Y (m))

q(Y (m))
. Even though this estimator is unbiased, it often

exhibits high variance, which means the approximation can be noisy and unreliable.4 More patholog-
ically, the naive MC estimator can result in negative estimates of KL, which may be undesirable in
practice.5 To address these issues, practitioners adopt alternative techniques to ensure non-negativity.
For example, Schulman [33] proposes an unbiased, non-negative KL estimator that is widely used
in practice [13, 40]. However, the proposed method, in its original form, does not theoretically yield
an estimator with lower variance, and, as we show empirically, can exhibit enormous variance.

In this paper, we derive an improved estimator of KL using Rao–Blackwellization [RB; 3, 5, 11, 30],
a well-established variance-reduction technique from statistics.6 This results in an estimator that is
provably unbiased and has a variance that is always less than or equal to that of the standard Monte
Carlo estimator, while requiring no additional computational overhead. As a point of comparison to
our RB estimator, we also provide a comprehensive formal analysis of various existing methods for
estimating KL divergence, examining their bias and variance.

We empirically validate our theoretical findings using the sentiment-controlled generation task [29] as
a testbed. Specifically, we measure the KL divergence between a GPT-2 model [28] before and after
fine-tuning, where the fine-tuning objective is to steer the model toward generating positive movie re-
views. Our experimental results confirm that our proposed estimator significantly reduces the variance
of the Monte Carlo estimator, yielding the most stable and reliable estimates among all methods stud-
ied. In contrast, alternative estimators from the literature fail to achieve meaningful variance reduction,
and in some cases, lead to unbounded variance. We further examine how using our derived estimator
in the fine-tuning loop of RLHF impacts the downstream performance. Our results suggest that using
our Rao–Blackwellized estimator reduces the instability across different RLHF runs. We further look

1Throughout this paper log denotes the natural logarithm function; thus, KL divergence is measure in nats rather
than bits. We also note that terms of the form p(y) log p(y)

q(y)
in Eq. (1) where p(y) = 0 can correctly be taken

to equal zero because limp→0+ p log p/q = 0.
2In conditional tasks like dialogue generation, language models are prompted with an input x ∈ Σ∗, inducing a
conditional distribution p(· | x). KL divergences are typically averaged over a set of prompts. For simplicity,
we omit x in notation and write p(y); all of our results extend straightforwardly to the conditional case.

3In general, computing the KL divergence between two arbitrary LMs exactly is undecidable. To see why, assume
that each of the two language models is a probabilistic context-free grammar. In this case, deciding whether
their KL divergence is zero is undecidable, as it follows directly from the undecidability of testing equivalence
between two unweighted context-free grammars [15]. In the more restrictive case of probabilistic finite-state
language models, it is PSPACE-hard. Importantly, however, the intractablity of exact computation does not
imply that approximation is intractable. In practice, one can often obtain good Monte Carlo estimates of the
KL divergence, provided that its variance is well-controlled. We study very practical methods for improving
variance in this paper.

4Monte Carlo estimation formally requires that the underlying random variable have finite variance; if the
variance is unbounded, the estimator no longer converges in the limit.

5Since the KL divergence is non-negative by definition, a negative estimate can be problematic when KL is used
as part of a loss function, as it may destabilize the learning dynamics.

6Despite its simplicity, our proposed estimator is absent from existing literature and open-source RLHF libraries
[13, 17, 34, 40], highlighting a gap we believe is worth addressing.
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at the Pareto frontier of average rewards achieved by the model vs. its KL divergence with the refer-
ence model. We observe that models fine-tuned using the RB estimator appear significantly more often
on the Pareto frontier of reward vs. KL compared to the models fine-tuned with the MC estimator.

2 Preliminaries

2.1 Language Models

Let Σ be an alphabet, a finite, non-empty set of symbols. A string is a finite sequence of symbols
from Σ. Let Σ∗ denote the set of all such strings. A language model p is a distribution over Σ∗. The
prefix probability function p⃗ of a prefix x ∈ Σ∗ is

p⃗(x)
def
=
∑
y∈Σ∗

p(xy), (2)

which is the cumulative probability of all strings in the language that have x as their prefix. We
denote the conditional prefix probability as p⃗(y | x) = p⃗(xy)

p⃗(x) , where we additionally define

p⃗(EOS | y) def
= p(y)

p⃗(y) . Language models can be factored into the product of distributions using the
chain rule of probability, i.e., for any string y = y1 ··· yN ∈ Σ∗ we can write

p(y) = p⃗(EOS | y)
N∏

n=1

p⃗(yn | y<n), (3)

where y<n
def
= y1 ··· yn−1 and EOS /∈ Σ is a distinguished end-of-string symbol. Let Σ def

= Σ ∪ {EOS}.
In Eq. (3), each p⃗(· | y<n) can fruitfully be viewed as a distribution over Σ. Despite the overloading
of the notation, whether p⃗(· | y<n) refers to a prefix probability, a function which takes an argument
from Σ∗, or a distribution over Σ will always be clear from context. Throughout this paper, we use Y
to represent the string-valued random variable sampled from p. When taking M i.i.d. samples from p,
we use Y (m) to denote the mth sample.

2.2 Monte Carlo KL Estimation

A simple way to estimate the KL divergence is with the Monte Carlo estimator (MC) defined as

µMC =
1

M

M∑
m=1

log
p(Y (m))

q(Y (m))
=

1

M

M∑
m=1

f(Y (m)), (4)

where Y (1), ... ,Y (M) i.i.d.∼ p and f(Y )
def
= log p(Y )

q(Y ) . Throughout the paper, we assume that the
KL divergence is finite, i.e., KL(p || q) < ∞. It is straightforward to show µMC is unbiased, i.e.,
E[µMC] = KL(p || q) and the variance of this estimator is Var[µMC] =

1
M Var[f(Y )]. In App. A, we

discuss the Horvitz–Thompson estimator, another unbiased KL estimator.

Note that while the exact KL value is always non-negative, f(Y ) may be positive or negative.
Consequently, the Monte Carlo estimate µMC may also be negative. This happens because the estimate
is based on a limited number of samples, and some sample draws can lead to negative values. This
can be problematic during RLHF, which depends on the KL divergence being non-negative.

2.3 Control Variate Monte Carlo Estimation

A general approach to reduce estimator variance is through control variates [32, §8.2]. For KL
divergence between language models, this technique was popularized by Schulman [33] and is widely
used in RLHF libraries [13, 17, 34]. Formally, a control variate is any function g : Σ∗ → R for which
G

def
= E[g(Y )] can be efficiently computed.7 We define the control variate Monte Carlo estimator as

µCV =
1

M

M∑
m=1

f(Y (m)) + α · (g(Y (m))−G). (5)

7One could also consider control variates of the form g : Σ∗ → Rd for d > 1 [10].
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where α ∈ R is a calibration parameter that must be chosen a priori. The proposition below
characterizes the variance of µCV as a function of α, which will tell use how to choose α optimally.
Proposition 1. Consider the control variate MC estimator µCV defined in Eq. (5), and assume that
E[g(Y )] < ∞. Then µCV is an unbiased estimator, and its variance is given by

Var[µCV] =
Var[f ] + α2 Var[g] + 2αCov[f, g]

M
. (6)

Proof. See App. B. ■

Assume 0 < Var[g] < ∞. It is straightforward to show that α∗ def
= −Cov[f, g]/Var[g] is the value

that minimizes the variance. If we plug α∗ in Eq. (6), and simplify, we see that

Var[µCV] =
1

M
Var[f ]

(
1− Corr[f, g]

2
)
, (7)

which directly translates to reducing the variance of the MC estimator. The magnitude of the
correlation between f and g determines the degree of variance reduction. Note that the value of
α∗ may be estimated from a pilot sample when it cannot be computed analytically.8

KL Estimation with a Control Variate. A specific control variate for KL estimation was proposed
by Schulman [33], who defined g(Y ) = q(Y )

p(Y ) . Substituting this into Eq. (5), the MC estimator of
the KL divergence with this control variate is

µCV =
1

M

M∑
m=1

log
p(Y (m))

q(Y (m))
+ α ·

(
q(Y (m))

p(Y (m))
− 1

)
. (8)

Remarks. This proposal has some notable properties. First, G = E
[
q(Y )
p(Y )

]
= 1, meaning G is

known in advance.9 Second, Cov[f, g] = 0 is zero if and only if p is equal to q (Prop. 8), meaning that
when the two distributions are not equal, and α is chosen suitably, we are guaranteed to strictly reduce
variance. Schulman [33] proposes setting α = 1; the benefit of this suboptimal choice is that the
resulting estimator is always non-negative (Prop. 7).10 However, setting α = 1 will increase variance
when α∗ < 1

2 (Remark 10). Indeed, our experiments (§5.1) confirm that α = 1 is a poor choice in
practice—it is better to estimate α∗11 to ensure that the control variate is correctly calibrated.

3 Rao–Blackwellized Monte Carlo

In this article, we propose the application of another classical technique to reduce the variance of
the Monte Carlo estimation of the KL divergence—Rao–Blackwellization [RB; 5, 11]. Despite
its standing in the statistics literature, a Rao–Blackwellized Monte Carlo estimator has yet to gain
traction in the context of RLHF [13, 17, 34, 40].

We define the Rao–Blackwellized Monte Carlo estimator µRB as follows:

µRB
def
=

1

M

M∑
m=1

|Y (m)|∑
n=1

KL(p⃗(· | Y (m)
<n )∥q⃗(· | Y (m)

<n )). (9)

The key benefit of this estimator is that we analytically compute the expectation over the nth symbol
in each string rather than relying on the single sampled value at that position.

Rao–Blackwellization Background. The starting point of Rao–Blackwellization is the following
inequality involving the conditional variance: Var[E[µ | T ]] ≤ Var[µ], where µ is an unbiased
estimator of E[f ] and T is a statistic12 for which we can explicitly compute E[µ | T ]. This
8Note that the control variate method can be straightforwardly extended to support multiple control variates.
9Note that for this to hold, we need have q(y) = 0 whenever p(y) = 0, which is different from the support
condition we assumed for KL(p || q) < ∞.

10Note that α = 1 is the only value of α that guarantees nonnegativity (see proof of Prop. 7).
11Prop. 9 provides the exact conditions on α required for a variance reduction.
12Note that T is a function of {Y (m)}Mm=1. We have suppressed this function’s arguments in our notation for

improved readability.
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technique is often referred to as Rao-–Blackwellization because the inequality is associated with
the Rao–Blackwell theorem [21].13

Notation. Before moving forward, we introduce some convenient notation. Let Y
(m)

denotes
the EOS-padded version of Y (m). Additionally, we extend the definition of the prefix probabilities
p⃗ and q⃗ to strings containing padding symbols, i.e., y /∈ Σ∗, with the following additional case:
p⃗(y | y) def

= 1{y = EOS}, and q⃗(y | y) def
= 1{y = EOS}.

Understanding Our Rao–Blackwellized Estimator. We now present a proof that our Rao–
Blackwellized estimator µRB is unbiased and indeed does result in a variance reduction. One might
wonder why this requires more than a straightforward application of the Rao–Blackwell theorem. The
reason is that µRB does not arise directly from the standard formulation of Rao–Blackwellization. In-
stead, we apply Rao–Blackwellization separately to each summand, where each summand corresponds
to an estimator over strings of a particular length. In general, Rao–Blackwellizing the summands
pointwise does not guarantee a reduction in the variance of their sum, since the summands may be
correlated. However, in the specific case of µRB, we can prove that the overall variance is reduced,
despite Rao–Blackwellizing the summands independently, as we state in the following theorem.

Theorem 2. Suppose the MC estimator µMC has finite variance, i.e., Var[µMC] < ∞. Then the
following properties regarding µRB hold:

(i) E[µRB] = KL(p || q) (unbiasedness) (ii) Var[µRB] ≤ Var[µMC] (variance reduction)

Proof. See App. C for a detailed proof. However, we provide the proof sketch below for the reader
to quickly understand the structure of the argument, which is broken down into three steps.

(1) Step-wise Estimation. We begin by Rao–Blackwellizing the step-wise Monte Carlo estimator
for any n > 0,

µn
MC

def
= =

1

M

M∑
m=1

log
p⃗(Y

(m)

n | Y (m)

<n )

q⃗(Y
(m)

n | Y (m)

<n )
. (10)

Intuitively, µn
MC measures the average KL of the nth symbol. The next step is to define

Tn(Y ) = Y <n and apply Rao–Blackwellization to each µn
MC as follows:

µn
RB

def
= E

Y
(1)

,...,Y
(M)

[µn
MC | Tn] (11a)

=
1

M

M∑
m=1

E
Y

(m)

[
log

p⃗(Y
(m)

n | Y (m)

<n )

q⃗(Y
(m)

n | Y (m)

<n )

∣∣∣∣∣Tn(Y
(m)

)

]
(11b)

=
1

M

M∑
m=1

KL(p⃗(· | Y (m)

<n )∥q⃗(· | Y (m)

<n )). (11c)

Now, it is clear from the Rao–Blackwellization theorem that µn
RB is unbiased and it provides

a variance reduction (i.e., Var[µn
RB] ≤ Var[µn

MC]) for all n > 0. Inuitively, the source of the
variance reduction in the µn

RB estimator is that we compute the expectation over the nth symbol
exactly rather relying on the sampled symbol at that position.

(2) Truncated Estimation. Next, we define µ
(N)
MC

def
=
∑N

n=1 µ
n
MC and µ

(N)
RB

def
=
∑N

n=1 µ
n
RB. Intuitively,

these estimators target the KL divergence for symbols up to a maximum length of N . In
Lemma 11, we prove that E[µ(N)

RB ] = E[µ(N)
MC ], and Var

[
µ
(N)
RB

]
≤ Var

[
µ
(N)
MC

]
for all N > 0

using the law of total expectation and Jensen’s inequality, where the latter is used in a manner
analougsly to have it is used in the original Rao–Blackwellization theorem.

13Note that in the Rao–Blackwell theorem, we get the stronger result that when T is a sufficient statistic,
Var[E[µ | T ]] is optimal, i.e., it is the minimal-variance, unbiased estimator. However, we can perform
Rao–Blackwellization even when T is not sufficient and are still guaranteed that the variance is no worse [31].
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(3) Complete Estimation. Now, we consider the complete estimation. First, we observe that
the limit of the truncated estimators converge to µMC = limN→∞ µ

(N)
MC (Lemma 12), and

analogously, µRB = limN→∞ µ
(N)
RB . Thereby, we are able to show that µRB is an unbiased

estimator of the KL divergence with variance less than or equal to that of µMC.

■

Remarks. Notably, µRB is guaranteed to be non-negative, a property desired by some when de-
signing estimators for the KL divergence between two language models, as the KL divergence itself
is always non-negative (cf. remarks in §2.3). In the case of our Rao–Blackwellized estimator, non-
nonegativity follows from the fact that each step-wise estimator computes the exact KL divergence
between the two next-symbol distributions, conditioned on the sampled context y(m)

<n . Since all terms
in Eq. (11c) are non-negative, µRB remains non-negative as well.

Complexity Analysis. Although computing µRB might seem more expensive than µMC, the overall
runtime is dominated by the cost of forward passes. Because a forward pass already involves
producing the full distribution over Σ at each position n, the additional O

(
MN |Σ|

)
work required

by µRB is negligible compared to the M forward passes needed for both µCV and µMC.

4 Estimating the Gradient

KL estimation is essential in many applications, especially in fine-tuning large language models.
In reinforcement learning from human feedback (RLHF), for example, the objective includes a KL
regularization term to balance reward maximization with staying close to a reference model. Since
the language model is a differentiable function of parameters θ optimized via gradient descent, this
setup requires computing the gradient of the KL divergence with respect to θ:

G
def
= ∇θKL(pθ || q) = E

[
log

pθ(Y )

q(Y )
∇θ log pθ(Y )

]
. (12)

Therefore, the Monte Carlo estimator of this gradient is

δMC =
1

M

M∑
m=1

log
pθ(Y

(m))

q(Y (m))
∇θ log pθ(Y

(m)). (13)

Now, we derive the Rao–Blackwellized Monte Carlo estimator of the gradient. We start with restating
Theorem 2.2 in Malagutti et al. [24], which will prove useful.
Theorem 3 (Malagutti et al. [24]; Theorem 2.2). Let p and q be language models over Σ. The
following equality holds

KL(p || q) =
∑
y∈Σ∗

p⃗(y)KL(p⃗(· | y) || q⃗(· | y)), (14)

where we treat p⃗(· | y) and q⃗(· | y) as probability distributions over Σ
∗
.

We refer the reader to Malagutti et al. [24] for the proof. Next, to derive the Rao–Blackwellized
estimator of the gradient, we take the gradient of the local KL as stated in the following theorem.
Theorem 4. Let pθ and q be two language models over Σ and p⃗θ the prefix probability function of
pθ. Then, the following equality holds

∇θKL(pθ || q) =
∑
y∈Σ∗

p⃗θ(y)E
Y

[
log

p⃗θ(Y | y)
q⃗(Y | y)

· (∇θ log p⃗θ(Y | y) +∇θ log p⃗θ(y))
]
. (15)

Proof. See App. D. ■

We then construct the Monte Carlo estimator of the gradient using the above theorem, which naturally
results in the following unbiased, Rao–Blackwellized Monte Carlo estimator of the gradient:

δRB =
1

M

M∑
m=1

|Y (m)|∑
n=1

E
Y

[
log

p⃗θ(Y | Y (m)
<n )

q⃗(Y | Y (m)
<n )

·
(
∇θ log p⃗θ(Y

(m)
<n ) +∇θ log p⃗θ(Y | Y (m)

<n )
) ]

.

(16)
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The above estimator is unbiased, as it is the MC estimator of Eq. (15).

Theorem 5. Assuming Var[δRB] < ∞,Var[δMC] < ∞, we have

E
[
∥δRB −G∥2

]
≤ E

[
∥δMC −G∥2

]
. (17)

Proof. See App. D.1. ■

Off-policy Gradient. So far, we have discussed how to estimate the gradient of KL(pθ || q) using
samples drawn from the current policy pθ. Crucially, we derive the gradient manually rather than
relying on automatic differentiation because the samples depend on θ through pθ. However, in
practice and for efficiency reasons, we often collect large batches of samples in parallel with the
optimization loop. As a result, these samples are generated from a slightly outdated version of the
policy, denoted pθold . To compute the KL divergence using samples from pθold , we first write the KL
as the expectation under pθold as

KL(pθ || q) = E
Y ∼pθold

[
pθ(Y )

pθold(Y )
log

pθ(Y )

q(Y )

]
. (18)

Therefore, the MC estimator using samples Y (1), ... ,Y (M) i.i.d.∼ pθold is

µold
MC =

1

M

M∑
m=1

pθ(Y
(m))

pθold(Y
(m))

log
pθ(Y

(m))

q(Y (m))
. (19)

Given the unbiasedness proof of the Rao–Blackwellization in Thm. 2, we can similarly write

KL(pθ || q) = E
Y ∼pθold

[
pθ(Y )

pθold(Y )

|Y (m)|∑
n=1

E
Y

[
log

p⃗θ(Y | Y <n)

q⃗(Y | Y <n)

]]
. (20)

Therefore, the Rao–Blackwellized MC estimator using samples Y (1), ... ,Y (M) i.i.d.∼ pθold is

µold
RB =

1

M

M∑
m=1

pθ(Y
(m))

pθold(Y
(m))

|Y (m)|∑
n=1

E
Y

[
log

p⃗θ(Y | Y (m)
<n )

q⃗(Y | Y (m)
<n )

]
. (21)

Since µold
MC and µold

RB use samples from the old policy that does not depend on θ, we can apply automatic
differentiation to compute the estimate of the KL gradient by computing the gradient of µold

MC and µold
RB .

5 Experiments

We use the sentiment control task as the testbed to empirically evaluate our theoretical findings on
the KL estimators. Concretely, the reference model, denoted as q, is the GPT-IMDB14 model, i.e., a
GPT-2 [28] model fine-tuned on IMDB corpus [23]. The goal of the task is to fine-tune this language
model such that the samples from it are movie reviews with a positive sentiment. The fine-tuned
language model is denoted with pθ. In the following experiments, we estimate the KL divergence
between pθ and q. We provide a code snippet for implementing the RB estimator in App. F.1.

5.1 Analyzing the KL Estimators

In this experiment, we empirically evaluate the bias, variance, and consistency of various KL
estimators. To obtain pθ , we fine-tune q with direct preference optimization [DPO; 29] on a sample of
5,000 data points from the IMDB training set. To create the preference data required for DPO training,
following Rafailov et al. [29], we sample 4 responses for each prompt and create 6 pairs per prompt.
14Specifically, we use https://huggingface.co/lvwerra/gpt2-imdb.
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Table 1: Estimated value ± empirical stan-
dard deviation of different estimators. When
aggregating over prompts, µHT and µCV fail
to significantly reduce the variance of µMC.
RB estimator, however, achieves the lowest
standard deviation.

M = 1 M = 5 M = 10

µMC 6.76± 0.16 6.76± 0.07 6.76± 0.05
µHT 6.76± 0.16 6.76± 0.07 6.76± 0.05
µCV1 6.28± 2.54 6.28± 1.13 6.28± 0.79
µCV 6.76± 0.16 6.76± 0.07 6.76± 0.05
µRB 6.76± 0.11 6.76± 0.05 6.76± 0.03

To determine the preferred response in each pair, we
employ a binary sentiment classifier,15 selecting the
response with the higher probability of positive senti-
ment. Upon successful fine-tuning, pθ should assign
a higher probability mass to movie reviews with posi-
tive sentiment while maintaining a low KL divergence
with q. We then evaluate this KL divergence using
our estimators to assess their reliability in measuring
distributional shifts induced by fine-tuning.

We evaluate on 512 examples from the IMDB dataset.
For each review, we randomly select a prefix length
between 2 and 8 tokens and use it as the prompt. we
then generate 4000 samples from pθ for each prompt.
Using these samples, we compute the MC, control
variate (CV), and Rao–Blackwellized (RB) estimators and estimate their standard We also implement
the Horvitz–Thompson (HT) estimator; see App. A for details. The CV estimator, µCV, is computed
twice: once using the optimal α estimated from 1000 samples, and once with α = 1 to match the
setup in Schulman [33].

=1α

Figure 1: Standard deviation of KL estimators
across various prompts in the IMDB datasest.

In Tab. 1, we report the expected KL estimate
along with the empirical standard deviation of
different estimators evaluated at sample sizes
M = 1, 5, 10. To obtain these estimates, we
compute each estimator using M samples, re-
peating the process 4000/M times to estimate
both the expected value and the standard devia-
tion of the estimates. Our findings confirm that
all estimators except one (µCV, α = 1), are un-
biased and report an expected KL divergence of
6.76. We also observe that the CV estimators
fail to significantly reduce the variance of the
standard MC estimator. Importantly, the RB es-
timator achieves the lowest standard deviation
and offers a more robust estimate compared to
the MC estimator. Interestingly, we observe that the µCV estimator exhibits a noticeable bias and
high standard deviation when α = 1, i.e., when it is not set to its optimal value. The bias arises from
numerical instability during the computation of g(Y ) = q(Y )

p(Y ) − 1. The high variance is due to large
values of Var[g(Y )]. Specifically, for certain prompts, Var[g(Y )] can be unbounded. We visualize
the estimates for 3 example prompts in App. E.

Since the robustness of the estimators depends on the choice of the prompt, we further analyze their
estimated standard deviations across all prompts. Fig. 1 presents a box plot of standard deviations (in
log scale) for each estimator. The µCV estimator with α = 1 shows significant instability for certain
prompts, with numerous outliers indicating high variance. In contrast, the µMC and the standard µCV

estimators exhibit comparable standard deviations. In particular, the Rao-Blackwellized estimator con-
sistently achieves the lowest standard deviation, suggesting that it provides the most stable estimates.

5.2 KL Estimation and RLHF Training Dynamics

A key application of KL estimation is in the RLHF training loop. From the previous experiment,
we observed that the RB estimator significantly reduces the standard deviation of the MC estimator.
Therefore, it is natural to ask how this affects RLHF performance when this estimator is used in
the training loop. The RLHF objective consists of two terms: (i) the expected rewards for samples
generated by the language model pθ, which in this case is the samples’ score under a sentiment
classifier16, and (ii) the negative KL divergence between the fine-tuned model pθ and the reference
model q, which represents the language model before fine-tuning.

15Specifically, we use https://huggingface.co/lvwerra/distilbert-imdb.
16Specifically, we look at the logits of the positive class.
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Figure 2: Comparison of the Monte Carlo (MC) and Rao–Blackwellized (RB) estimators in the RLHF
fine-tuning loop. We perform RLHF with each estimator 5 times and plot the mean and standard
deviation (in shades) of the average reward values and the KL at each fine-tuning step. We observe
that the MC estimator is not as stable as the RB estimator and its performance varies significantly
across different runs. However, RB estimator reliably offers a good balance between achieving low
KL and high reward values in all runs.

We compare the MC and RB estimators for computing the gradient of the KL divergence term in
the RLHF training loop. We use the RL algorithm17 proposed by Ahmadian et al. [2],18 which is an
improved verfaiion of the REINFORCE algorithm [41].19

Figure 3: Compared to models trained with MC
esimator, models trained with RB appear on the
Pareto front 78% of the time.

First, we empirically test Thm. 5 by measuring
the variance of the gradient norm. We sample
40 prompts and compute the gradient of the KL
divergence with respect to the model parame-
ters using both the MC and RB estimators. To
estimate variance empirically, we repeat this pro-
cess 5 times. Both estimators are evaluated on
the same prompts and model initializations to en-
sure a fair comparison. We find that the variance
of the gradient norm estimated with the MC esti-
mator is 59.90, whereas with the RB estimator it
is 45.44. This corresponds to a 24.6% reduction
in variance, providing direct empirical evidence
consistent with our theoretical motivation.

We then proceed with using both estimators
in RL fine-tuning. We track two metrics
throughout fine-tuning: (i) the average reward
associated with samples drawn from pθ , and (ii)
the KL divergence between pθ and q. The results are visualized in Fig. 2. The purple trace represents
the training run where the µRB is used in the optimization loop to estimate the gradient of the KL
divergence, while the blue trace represents the run using µMC. The x-axis denotes the fine-tuning
step, with the left plot showing the evolution of the average reward and the right plot displaying
the KL divergence between pθ and q over the course of fine-tuning. We repeat each experiment 5
times and report the mean and standard deviation of each metric. Notably, the KL values in the right
plot are estimated using the RB estimator. However, we observe the same overall trend when using
the MC estimator for evaluation.

As illustrated in Fig. 2, the performance of the models trained using the MC estimator varies
significantly across the 5 experiments, resulting in a large standard deviation in both average rewards
and the KL divergence. However, RB estimator consistantly achieves high rewards and reasonable KL
values across all runs. This observation suggests that the RB estimator makes RLHF runs more stable.

17App. D.2 discusses a common mistake when Rao–Blackwellizing the KL estimator in trust-region algorithms.
18Specifically, we use the available implementation of this algorithm in the trl library [40].
19App. F reports the hyperparameters used for the algorithm.
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Finally, we vary the KL coefficient, β, in [0.01, 0.1] range and fine-tune 18 models with each
estimator. For each estimator, we plot the Pareto frontier of average rewards versus KL divergence
in Fig. 3, displaying models that do not appear on the Pareto front with reduced opacity. Overall,
we find that fine-tuning with the RB estimator is more effective at achieving high rewards while
maintaining a low KL divergence from the reference model. To quantify this effect, we compute the
fraction of RB fine-tuned models that appear on the overall Pareto front—i.e., the frontier obtained
when considering all models fine-tuned with either estimator. We then conduct a permutation test
and report the results in Fig. 3. We find that 78% of the points on the overall Pareto front come from
RB fine-tuned models. Restricting to models with KL values below 5, this fraction rises to 95%,
with both results being statistically significant.

6 Conclusion

In this paper, we study the problem of estimating the KL divergence between language models. We
provide a comprehensive formal analysis of various KL estimators, with a focus on their bias and
variance. We introduce the RB estimator, which is provably unbiased and has variance at most equal
to that of the standard NC estimator. This estimator applies the well-known Rao–Blackwellization
technique to reduce the variance of the standard MC method. Our empirical results show that the RB
estimator significantly reduces the variance compared to the MC estimator, while other estimators
fail to achieve meaningful variance reduction or, in some cases, suffer from unbounded variance.
Additionally, we find that using our proposed RB estimator makes RLHF more stable and produces
models that more frequently lie on the Pareto frontier of reward versus KL, compared to models
fine-tuned with the MC estimator.

Impact Statement

In this paper, we investigate the fundamental problem of estimating KL divergence between language
models. One key application of KL estimation is in RLHF, which aims to enhance fluency while
aligning language models with user preferences. However, RLHF can also be misused by bad actors
to optimize models for generating misleading, biased, or harmful content. While our work provides a
deeper understanding of KL estimation techniques, it is purely foundational research and does not
introduce new risks or directly contribute to harmful applications.

Limitations

In our RLHF experiments, evaluating the variance of our estimator and comparing it to existing
methods requires training a large number of models. For instance, the significance test in §5.2 involves
training 36 models. Due to limited computational resources, we used the controlled-generation
task as a testbed. Given the strength of both our theoretical and empirical results, we hope future
work will adopt the Rao–Blackwellized estimator and apply it to larger language models and a wider
variety of RL-based approaches to LM alignment.
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A Horvitz–Thompson Estimation

When estimating the KL divergence between language models p and q, we have access not only to
samples from p but also to the probability assigned by p to any string y. This enables the use of a
more informed estimator, which leverages these probabilities during its construction. Notably, this
estimator is a specific instance of the Horvitz–Thompson (HT) estimator [16], defined as

µHT =
∑
y∈S

p(y)

πS(y)
log

p(y)

q(y)
=
∑
y∈S

p(y)

πS(y)
f(y), (22)

where S is the random variable representing the set of all sampled strings. Any sampling design
can be specified to generate the elements of S. The inclusion probability, denoted by πS(y), is the
probability that a particular string y is included in S, or equivalently, E [1{y ∈ S}].
Proposition 6. µHT is an unbiased estimator of the KL divergence, i.e., E

[
µHT

]
= KL(p || q).

Proof. The bias of the estimator is as follows:

E
S

[
µHT

]
− KL(p || q)

= E
S

[∑
y∈S

p(y)

πS(y)
log

p(y)

q(y)

]
− KL(p || q) (definition of µHT) (23a)

= E
S

[ ∑
y∈Σ∗

p(y)

πS(y)
log

p(y)

q(y)
· 1{y ∈ S}

]
− KL(p || q) (23b)

=
∑
y∈Σ∗

p(y)

πS(y)
log

p(y)

q(y)
· E

S

[
1{y ∈ S}

]
− KL(p || q) (linearity of expectation) (23c)

=
∑
y∈Σ∗

p(y)

���πS(y)
log

p(y)

q(y)
· ���πS(y)− KL(p || q) (definition of πS(y)) (23d)

= 0. (23e)

■

Similar to the MC estimator, the HT estimator does not necessarily return a non-negative estimate
of the KL. In principle, however, we should prefer Eq. (22) to Eq. (4) because it exploits more
information—namely, the knowledge of p. Whether the HT estimator yields lower variance than the
MC estimator depends on the sampling design used to construct S. In our experiments in App. E,
we used the sampling-with-replacement design, where πS(y) = 1− (1− p(y))

M . Compared to the
MC estimator, we observed no significant reduction in variance in our experiments.
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B Control Variate Monte Carlo Estimation

Proposition 1. Consider the control variate MC estimator µCV defined in Eq. (5), and assume that
E[g(Y )] < ∞. Then µCV is an unbiased estimator, and its variance is given by

Var[µCV] =
Var[f ] + α2 Var[g] + 2αCov[f, g]

M
. (6)

Proof. Recall that the control variate Monte Carlo estimator is defined as

µCV =
1

M

M∑
m=1

f(Y (m)) + α · (g(Y (m))−G). (5)

Note that {Y (m)}Mm=1
i.i.d.∼ p. First, we look at the expected value of the estimator:

E[µCV] =
1

M

M∑
m=1

E
[
f(Y (m))

]
+ α · (E

[
g(Y (m))

]
−G)︸ ︷︷ ︸

=0

= E[f ] (24a)

Therefore, it is unbiased. Next, we manipulate the variance

Var[µCV] =
1

M
Var[f + α · (g −G)] =

1

M
Var[f ] +

α2

M
Var[g] +

2α

M
Cov[f, g], (24b)

where the second equality above stems from well-known variance identities.20 ■

Proposition 7. Provided that the target KL divergence is finite, the estimator µCV with α = 1 is
nonnegative with probability one. Furthermore, α = 1 is the only value for which we can guarantee
nonnegativity of µCV.

Proof. To prove that µCV is nonnegative with probability one when α = 1, we will prove that each
term log p(Y (m))

q(Y (m))
+ α ·

(
q(Y (m))

p(Y (m))
− 1
)

in the summation that defines µCV is nonnegative.

Let r = q(Y (m))

p(Y (m))
. We identify α for which log 1

r +α · (r− 1) ≥ 0 holds for all r > 0.21 Equivalently,
we want to find α values for which:

inf
r>0

− log r + α · (r − 1) ≥ 0. (25a)

Next, we prove that α = 1 is the only value satisfies the inequality Eq. (25a). To see why, consider
the first-order optimality conditions for the minimization over r. These conditions are necessary and
sufficient as − log r + α · (r − 1) is convex for all α over the region r > 0. Solving for r such that
the derivative is zero gives us

0 =
∂

∂r
[− log r + α · (r − 1)] (25b)

⇐⇒ 0 = −1/r + α (25c)
⇐⇒ r = 1/α. (25d)

Plugging that value allows us to simplify away the minimization:

0 ≤ inf
r>0

− log r + α · (r − 1) (25e)

= − log(1/α) + α · (1/α− 1) (25f)
= log(α) + 1− α. (25g)

For each term in µCV to be nonnegative, we need log(α) + 1 − α ≥ 0. However, the function
log(α) + 1− α is strictly concave and nonpositive for all α > 0, attaining zero only at α = 1. Thus,
when α = 1 every term in µCV is nonnegative. When α ̸= 1, some terms may be nonnegative, leading
to the possibility that µCV may be negative.

■
20Let X and Y be real-valued random variables, and let a be a real scalar. Then, the following hold:
Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X,Y ], Var[aX] = a2 Var[X], and Var[X + a] = Var[X].

21Note that r > 0 whenever this term is finite.
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Proposition 8. Given the random variable Y ∼ p, let f(Y ) = log p(Y )
q(Y ) and g(Y ) = q(Y )

p(Y ) . We
prove Cov[f, g] is zero if and only if p = q.

Proof.

Cov[f, g] = E

(log p(Y )

q(Y )
− E

[
log

p(Y )

q(Y )

])q(Y )

p(Y )
− E

[
q(Y )

p(Y )

]
︸ ︷︷ ︸

=1


 (26a)

= E

[
q(Y )

p(Y )
log

p(Y )

q(Y )
−
�

�
�
��

log
p(Y )

q(Y )
− E

[
log

p(Y )

q(Y )

]
q(Y )

p(Y )
+
���

���
E
[
log

p(Y )

q(Y )

]]
(26b)

= E
[
q(Y )

p(Y )
log

p(Y )

q(Y )

]
− E

[
log

p(Y )

q(Y )

]
E
[
log

q(Y )

p(Y )

]
︸ ︷︷ ︸

=1

(26c)

= E
[
−q(Y )

p(Y )
log

q(Y )

p(Y )

]
− E

[
log

p(Y )

q(Y )

]
(26d)

= −KL(q || p)− KL(p || q). (26e)

Since each KL divergence is non-negative and equals zero if and only if the two distributions coincide
almost everywhere, we have,

Cov[f, g] = 0 ⇐⇒ −KL(q || p)− KL(p || q) = 0 ⇐⇒ p = q. (26f)

■

Proposition 9.

Var
[
µ
(α)
CV

]
≤ Var

[
µMC

]
⇐⇒ α ∈ [min(0, 2α∗),max(0, 2α∗)] (27)

Proof. We first establish conditions of α for which the variance of Var[µCV] does not increase that of
Var[µMC]. In other words, we seek conditions on α such that the following inequality holds:

Var
[
µ
(α)
CV

]
≤ Var

[
µMC

]
(28)

Var[f ] + α2 Var[g] + 2αCov[f, g]

M
≤ Var[f ]

M
(29)

Var[f ] + α2 Var[g] + 2αCov[f, g] ≤ Var[f ] (30)

α2 Var[g] + 2αCov[f, g] ≤ 0. (31)

Observe that the function on the left-hand side is quadratic in α, and, moreover, it is convex because
Var[g] ≥ 0. The minimum of this quadratic is α∗ = −Cov[f,g]

Var[g] . We can use the quadratic formula
to identify the two values of α where it equals 0, i.e., α ∈ {0, 2α∗}. Now, because the quadratic is
convex, we have that it is ≤ 0 for values of α ∈ [min(0, 2α∗),max(0, 2α∗)]. Note that α∗ can be
positive or negative; hence the min and max. ■

Remark 10. When does Schulman’s (2020) suboptimal choice of α = 1 not hurt estimator variance?
To answer this question, we substitute α = 1 into the variance of µCV given in Eq. (6), we have

Var[µCV] =
Var[f ] + Var[g] + 2Cov[f, g]

M
. (32)

Therefore, for Var[µCV] ≤ Var[µMC], we must have

Var[f ] + Var[g] + 2Cov[f, g]

M
≤ Var[f ]

M
(33a)

Var[f ] + Var[g] + 2Cov[f, g] ≤ Var[f ] (33b)
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Var[g] + 2Cov[f, g] ≤ 0 (33c)

−Cov[f, g]

Var[g]
≥ 1

2
(33d)

α∗ ≥ 1

2
. (33e)

Therefore, choosing α = 1 does not hurt the variance if α∗ ≥ 1
2 , but does otherwise.
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C Rao–Blackwellized Estimator

Lemma 11. With regard to the estimator µ(N)
RB , the following two properties hold for all N > 0

1. E[µ(N)
RB ] = E[µ(N)

MC ] (unbiasedness)

2. Var
[
µ
(N)
RB

]
≤ Var

[
µ
(N)
MC

]
(variance reduction)

Proof. In the proof below, we consider the case where M = 1. The proof easily generalizes to
M > 1 using the i.i.d. assumption. Additionally, we write µ

(N)
RB (Y ), rather than suppressing the

argument to the estimator as we do in the main text. We begin by proving the unbiasedness property
of the estimator.

E[µ(N)
RB ] = E

Y
′

[ N∑
n=1

E
Y

[
µn

MC(Y ) | Y <n = Y
′
<n

]]
(definition of µ(N)

RB ) (34a)

=

N∑
n=1

E
Y

′

[
E
Y

[
µn

MC(Y ) | Y <n = Y
′
<n

]]
(linearity of expectation) (34b)

=

N∑
n=1

E
Y

[
µn

MC(Y )
]

(law of total expectation) (34c)

= E
Y

[
N∑

n=1

µn
MC(Y )

]
(linearity of expectation) (34d)

= E[µ(N)
MC ] (definition of µ(N)

MC ) (34e)

Next, we prove the variance-reduction property:

Var
[
µ
(N)
RB

]
= E

Y
′

( N∑
n=1

E
Y

[
µn

MC(Y )
∣∣∣Y <n = Y

′
<n

])2
− E[µ(N)

MC ]2 (35a)

(defintion of µ(N)
RB and unbiasedness)

= E
Y

′

( N∑
n=1

E
Y

n

[
µn

MC(Y
n
)
∣∣∣Y n

<n = Y
′
<n

])2
− E[µ(N)

RB ]2 (35b)

(each Y
n is distributed independently and identically to Y )

= E
Y

′

( E
Y

1

[
··· E

Y
N

[
N∑

n=1

µn
MC(Y

n
)

∣∣∣∣∣Y N

<N = Y
′
<N

]
···

∣∣∣∣∣Y 1

<1 = Y
′
<1

])2
+ E[µ(N)

MC ]2 (35c)

(linearity of expectation)

≤ E
Y

′

 E
Y

1

··· E
Y

N

( N∑
n=1

µn
MC(Y

n
)

)2
∣∣∣∣∣∣Y N

<N = Y
′
<N

 ···
∣∣∣∣∣∣Y 1

<1 = Y
′
<1

− E[µ(N)
MC ]2 (35d)

(Jensen’s inequality)

= E
Y

1

··· E
Y

N

( N∑
n=1

µn
MC(Y

n
)

)2
− E[µ(N)

MC ]2 (35e)

(law of total expectation)

= E
Y

( N∑
n=1

µn
MC(Y )

)2
− E[µ(N)

MC ]2 (35f)
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({Y n}N
n=1 are i.i.d.)

= E
Y

[(
µ
(N)
MC (Y )

)2]
− E[µ(N)

MC ]2 (35g)

(definition of µ(N)
MC )

= Var
[
µ
(N)
MC

]
(35h)

(definition of variance)

■

Lemma 12.
∞∑

n=1

µn
MC = µMC (36)

Proof.

µMC =
1

M

M∑
m=1

log
p(Y (m))

q(Y (m))
(37a)

=
1

M

M∑
m=1

log
p⃗(EOS | Y (m))

q⃗(EOS | Y (m))

|Y (m)|∏
n=1

log
p⃗(Y

(m)
n | Y (m)

<n )

q⃗(Y
(m)
n | Y (m)

<n )
(37b)

=
1

M

M∑
m=1

log

∞∏
n=1

p⃗(Y
(m)

n | Y (m)

<n )

q⃗(Y
(m)

n | Y (m)

<n )
(37c)

=
1

M

M∑
m=1

log lim
N→∞

N∏
n=1

p⃗(Y
(m)

n | Y (m)

<n )

q⃗(Y
(m)

n | Y (m)

<n )
(37d)

= lim
N→∞

1

M

M∑
m=1

log

N∏
n=1

p⃗(Y
(m)

n | Y (m)

<n )

q⃗(Y
(m)

n | Y (m)

<n )
(37e)

= lim
N→∞

1

M

M∑
m=1

log
p⃗(Y

(m)

≤N )

q⃗(Y
(m)

≤N )
(37f)

= lim
N→∞

N∑
n=1

µn
MC (37g)

Note that going from Eq. (37b) to Eq. (37c), we use the padding construction given in §3. ■

Theorem 2. Suppose the MC estimator µMC has finite variance, i.e., Var[µMC] < ∞. Then the
following properties regarding µRB hold:

(i) E[µRB] = KL(p || q) (unbiasedness) (ii) Var[µRB] ≤ Var[µMC] (variance reduction)

Proof. In this proof, we consider the special case of M = 1. The proof easily generalizes to M > 1
using the i.i.d. assumption. Additionally, we write µRB(Y ), rather than suppressing the argument to
the estimator as we do in the main text. We begin with proving the unbiasedness of the estimator,
using Lemma 12 and Lemma 11.

E
[
µRB(Y )

]
= E

Y
′

[
lim

N→∞

N∑
n=1

E
Y

[
µn

MC(Y ) | Y <n = Y
′
<n

]]
(38a)

= lim
N→∞

N∑
n=1

E
Y

′

[
E
Y

[
µn

MC(Y ) | Y <n = Y
′
<n

]]
(38b)

(Tonelli’s Theorem)
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= lim
N→∞

N∑
n=1

E
Y

[
µn

MC(Y )
]

(38c)

(Lemma 11)

= E
Y

[
lim

N→∞

N∑
n=1

µn
MC(Y )

]
(38d)

(Fubini’s Theorem, E[
∑∞

n=1 |µn
MC(Y )|] < ∞)

= E
Y

[
µMC(Y )

]
(38e)

(Lemma 12)

= KL(p || q). (38f)
(unbiasedness of µMC)

Finally, we prove the variance-reduction property.

Var[µRB] = E
Y

′

( lim
N→∞

N∑
n=1

E
Y

[
µn

MC(Y ) | Y <n = Y
′
<n

]
− KL(p || q)

)2
 (39a)

(Definition of µRB(Y ))

= lim
N→∞

E
Y

′

( N∑
n=1

E
Y

[
µn

MC(Y ) | Y <n = Y
′
<n

]
− KL(p || q)

)2
 (39b)

(dominated convergence theorem, Var[µRB] < ∞)

≤ lim
N→∞

E
Y

( N∑
n=1

µn
MC(Y )− KL(p, q)

)2
 (39c)

(Lemma 11, variance reduction)

= E
Y

 lim
N→∞

(
N∑

n=1

µn
MC(Y )− KL(p, q)

)2
 (39d)

(dominated convergence theorem, Var[µMC] < ∞)

= E
Y

[(
µMC(Y )− KL(p || q)

)2]
(39e)

(Lemma 12)

= Var[µMC]. (39f)

■
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D Rao–Blackwellized Estimator of the Gradient

Theorem 4. Let pθ and q be two language models over Σ and p⃗θ the prefix probability function of
pθ. Then, the following equality holds

∇θKL(pθ || q) =
∑
y∈Σ∗

p⃗θ(y)E
Y

[
log

p⃗θ(Y | y)
q⃗(Y | y)

· (∇θ log p⃗θ(Y | y) +∇θ log p⃗θ(y))
]
. (15)

Proof.

∇θKL(p || q)

=
∑
y∈Σ∗

KL(p⃗θ(· | y) || q⃗(· | y))∇θp⃗θ(y) + p⃗θ(y)∇θKL(p⃗θ(· | y) || q⃗(· | y)) (40a)

=
∑
y∈Σ∗

KL(p⃗θ(· | y) || q⃗(· | y))∇θp⃗θ(y) + p⃗θ(y)
∑
y∈Σ

∇θp⃗θ(y | y) log p⃗θ(y | y)
q⃗(y | y)

(40b)

=
∑
y∈Σ∗

KL(p⃗θ(· | y) || q⃗(· | y))∇θp⃗θ(y) + p⃗θ(y)
∑
y∈Σ

log
p⃗θ(y | y)
q⃗(y | y)

∇θp⃗θ(y | y) +∇θp⃗θ(y | y)

(40c)

=
∑
y∈Σ∗

KL(p⃗θ(· | y) || q⃗(· | y))∇θp⃗θ(y) + p⃗θ(y)E
Y

[(
log

p⃗θ(Y | y)
q⃗(Y | y)

+ 1

)
∇θ log p⃗θ(Y | y)

]
(40d)

=
∑
y∈Σ∗

KL(p⃗θ(· | y) || q⃗(· | y))∇θp⃗θ(y) + p⃗θ(y)E
Y

[
log

p⃗θ(Y | y)
q⃗(Y | y)

∇θ log p⃗θ(Y | y)
]

(40e)

=
∑
y∈Σ∗

E
Y

[
log

p⃗θ(Y | y)
q⃗(Y | y)

]
∇θp⃗θ(y) + p⃗θ(y)E

Y

[
log

p⃗θ(Y | y)
q⃗(Y | y)

∇θ log p⃗θ(Y | y)
]

(40f)

=
∑
y∈Σ∗

p⃗θ(y)E
Y

[
log

p⃗θ(Y | y)
q⃗(Y | y)

]
∇θ log p⃗θ(y) + p⃗θ(y)E

Y

[
log

p⃗θ(Y | y)
q⃗(Y | y)

∇θ log p⃗θ(Y | y)
]
(40g)

=
∑
y∈Σ∗

p⃗θ(y)E
Y

[
log

p⃗θ(Y | y)
q⃗(Y | y)

(
∇θ log p⃗θ(Y | y) +∇θ log p⃗θ(y)

)]
. (40h)

■

D.1 Variance-Reduction Proof

The proof structure is as follows: We first prove that the inequality holds when we constrain Y to
have length less than or equal to N . We then generalize to the infinite-length sequences by analyzing
as N → ∞. We begin with defining the truncated MC and RB estimators. Let δ(N)

MC be the truncated
MC estimator of the gradient:

δ
(N)
MC =

N∑
n=1

1

M

M∑
m=1

log
p⃗θ(Y

(m)

n | Y (m)

<n )

q⃗(Y
(m)

n | Y (m)

<n )
∇θ log p⃗θ(Y

(m)

≤N ). (41)

Let δ(N)
RB be the truncated RB estimator:

δ
(N)
RB =

1

M

M∑
m=1

N∑
n=1

E
Y n

[
log

p⃗θ(Y n | Y (m)

<n )

q⃗(Y n | Y (m)

<n )

(
∇θ log p⃗θ(Y n | Y (m)

<n ) +∇θ log p⃗θ(Y
(m)

<n )
)]

.

(42)

21



Lemma 13. The truncated MC estimator of the gradient δ(N)
MC converges to δMC as N goes to ∞, i.e.,

limN→∞ δ
(N)
MC = δMC.

Proof.

δMC =
1

M

M∑
m=1

log
p⃗θ(Y

(m))

q⃗(Y (m))
∇θ log p⃗θ(Y

(m)) (43)

=
1

M

M∑
m=1

log
p⃗θ(EOS | Y (m))

q⃗(EOS | Y (m))

|Y (m)|∏
n=1

p⃗θ(Yn | Y (m)
<n )

q⃗(Yn | Y (m)
<n )

∇θ log p⃗θ(Y
(m)) (44)

=
1

M

M∑
m=1

log

∞∏
n=1

p⃗θ(Y n | Y (m)

<n )

q⃗(Y n | Y (m)

<n )
∇θ log p⃗θ(Y

(m)
) (45)

=
1

M

M∑
m=1

log lim
N→∞

N∏
n=1

p⃗θ(Y n | Y (m)

<n )

q⃗(Y n | Y (m)

<n )
∇θ log p⃗θ(Y

(m)

≤N ) (46)

=
1

M

M∑
m=1

lim
N→∞

log

N∏
n=1

p⃗θ(Y n | Y (m)

<n )

q⃗(Y n | Y (m)

<n )
∇θ log p⃗θ(Y

(m)

≤N ) (47)

= lim
N→∞

1

M

M∑
m=1

log
p⃗θ(Y

(m)

≤N )

q⃗(Y
(m)

≤N )
∇θ log p⃗θ(Y

(m)

≤N ) (48)

= lim
N→∞

δ
(N)
MC . (49)

■

Lemma 14. The following identity holds:

∇θ log p⃗θ(Y ≤n) = E
Y

′

[
∇θ log p⃗θ(Y

′
≤N )

∣∣∣Y ′
≤n = Y ≤n

]
, (50)

for any N > n.

Proof. Note that p⃗θ(Y ≤n) =
∑

y′∈Σ
N−n p⃗θ(Y ≤ny

′) for any N > n. Therefore, we have

∇θ log p⃗θ(Y ≤n) =
∇θp⃗θ(Y ≤n)

p⃗θ(Y ≤n)
(51a)

=
∑

y′∈Σ
N−n

∇θp⃗θ(Y ≤ny
′)

p⃗θ(Y ≤n)
(51b)

=
∑

y′∈Σ
N−n

p⃗θ(Y ≤ny
′)

p⃗θ(Y ≤n)
∇θ log p⃗θ(Y ≤ny

′) (51c)

=
∑

y′∈Σ
N−n

p⃗θ(y
′ | Y ≤n)p⃗θ(Y ≤n)

p⃗θ(Y ≤n)
∇θ log p⃗θ(Y ≤ny

′) (51d)

=
∑

y′∈Σ
N−n

p⃗θ(y
′ | Y ≤n)∇θ log p⃗θ(Y ≤ny

′) (51e)

= E
Y

′

[
∇θ log p⃗θ(Y

′
≤N )

∣∣∣Y ′
≤n = Y ≤n

]
(51f)

■

Lemma 15. Let δ(N)
MC be the truncated MC estimator of the gradient defined in Eq. (41) and δ

(N)
RB the

truncated RB estimator of the gradient defined in Eq. (42). Define GN def
= E[δ(N)

MC ] = E[δ(N)
RB ]. We

have

E
[∥∥∥δ(N)

RB −GN
∥∥∥2] ≤ E

[∥∥∥δ(N)
MC −GN

∥∥∥2] . (52)
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Proof. Without loss of generality, we assume M = 1. The proof generalizes to M > 1 with the i.i.d.
assumption.

E
[∥∥∥δ(N)

RB −GN
∥∥∥2] (53a)

= E
Y

′


∥∥∥∥∥∥∥∥

N∑
n=1

E
Y

µn
MC(Y ≤n)

(
∇θ log p⃗θ(Y <n) +∇θ log p⃗θ(Y n | Y <n)

)︸ ︷︷ ︸
∇θ log p⃗θ(Y ≤n)

−GN

∣∣∣∣∣∣∣∣Y <n = Y
′
<n


∥∥∥∥∥∥∥∥
2

(53b)

(definition of δ(N)
RB )

= E
Y

′

∥∥∥∥∥
N∑

n=1

E
Y

n

[
µn

MC(Y
n

≤n)∇θ log p⃗θ(Y
n

≤n)−GN
∣∣∣Y n

<n = Y
′
<n

]∥∥∥∥∥
2
 (53c)

(each Y
n is distributed independently and identically to Y )

= E
Y

′

∥∥∥∥∥ EY 1

[
··· E

Y
N

[
N∑

n=1

µn
MC(Y

n

≤n)∇θ log p⃗θ(Y
n

≤n)−GN

∣∣∣∣∣Y N

<N = Y
′
<N

]
···

∣∣∣∣∣Y 1

<1 = Y
′
<1

]∥∥∥∥∥
2


(53d)
(linearity of expectation)

≤ E
Y

′

 E
Y

1

··· E
Y

N

∥∥∥∥∥
N∑

n=1

µn
MC(Y

n

≤n)∇θ log p⃗θ(Y
n

≤n)−GN

∥∥∥∥∥
2
∣∣∣∣∣∣Y N

<N = Y
′
<N

 ···
∣∣∣∣∣∣Y 1

<1 = Y
′
<1


(53e)

(Jensen’s inequality)

= E
Y

1

··· E
Y

N

∥∥∥∥∥
N∑

n=1

µn
MC(Y

n

≤n)∇θ log p⃗θ(Y
n

≤n)−GN

∥∥∥∥∥
2
 (53f)

(law of total expectation)

= E
Y

∥∥∥∥∥
N∑

n=1

µn
MC(Y ≤n)∇θ log p⃗θ(Y ≤n)−GN

∥∥∥∥∥
2
 (53g)

(Y 1
, ... ,Y

N are i.i.d.)

≤ E
Y

∥∥∥∥∥
N∑

n=1

µn
MC(Y ≤n) E

Y
′

[
∇θ log p⃗θ(Y

′
≤N ) | Y ′

≤n = Y ≤n

]
−GN

∥∥∥∥∥
2
 (53h)

(Lemma 14)

= E
Y

∥∥∥∥∥
N∑

n=1

E
Y

′

[
µn

MC(Y
′
≤n)∇θ log p⃗θ(Y

′
≤N )−GN

∣∣∣Y ′
≤n = Y ≤n

]∥∥∥∥∥
2
 (53i)

(linearity of expectation)

= E
Y

∥∥∥∥∥ E
Y

′1

[
··· E

Y
′N

[
N∑

n=1

µn
MC(Y

′n
≤n)∇θ log p⃗θ(Y

′n
≤N )−GN

∣∣∣∣∣Y ′N
≤N = Y ≤N

]
···

∣∣∣∣∣Y ′1
≤1 = Y ≤1

]∥∥∥∥∥
2


(53j)
(linearity of expectation)
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≤ E
Y

 E
Y

′1

··· E
Y

′N

∥∥∥∥∥
N∑

n=1

µn
MC(Y

′n
≤n)∇θ log p⃗θ(Y

′n
≤N )−GN

∥∥∥∥∥
2
∣∣∣∣∣∣Y ′N

≤N = Y ≤N

 ···
∣∣∣∣∣∣Y ′1

≤1 = Y ≤1


(53k)

(Jensen’s inequality)

= E
Y

′1

··· E
Y

′N

∥∥∥∥∥
N∑

n=1

µn
MC(Y

′n
≤n)∇θ log p⃗θ(Y

′n
≤N )−GN

∥∥∥∥∥
2
 (53l)

(law of total expectation)

= E
Y

′

∥∥∥∥∥
N∑

n=1

µn
MC(Y

′
≤n)∇θ log p⃗θ(Y

′
≤N )−GN

∥∥∥∥∥
2
 (53m)

(Y ′1
, ··· ,Y

′N are i.i.d.)

= E
Y

[∥∥∥δ(N)
MC (Y )−GN

∥∥∥2] . (53n)

(definition of δ(N)
MC )

■

Theorem 5. Assuming Var[δRB] < ∞,Var[δMC] < ∞, we have

E
[
∥δRB −G∥2

]
≤ E

[
∥δMC −G∥2

]
. (17)

Proof. Without loss of generality, we assume M = 1. The proof generalizes to M > 1 with the i.i.d.
assumption.

E
[
∥δRB −G∥2

]
= E

[∥∥∥ lim
N→∞

δ
(N)
RB −GN

∥∥∥2] (54a)

(definition of δRB)

= lim
N→∞

E
[∥∥∥δ(N)

RB −GN
∥∥∥2] (54b)

(dominated convergence theorem, Var[δRB] < ∞)

≤ lim
N→∞

E
[∥∥∥δ(N)

MC −GN
∥∥∥2] (54c)

(Lemma 15)

= E
[∥∥∥ lim

N→∞
δ
(N)
MC −GN

∥∥∥2] (54d)

(dominated convergence theorem, Var[δMC] < ∞)

= E
[
∥δMC −G∥2

]
. (54e)

(Lemma 13)

■

D.2 A Note on Rao–Blackwellizing KL in Trust-Region Algorithms

The conventional Monte Carlo estimator of KL(pθ || q) used in the PPO algorithm in open-sourced
RLHF libraries, e.g., [13, 40], is as follows:

µPPO
MC =

1

M

M∑
m=1

pθ(Y
(m))

pθold(Y
(m))

log
pθold(Y

(m))

q(Y (m))
, (55)
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where Y (1), ··· ,Y (M) i.i.d.∼ pθold . Notably, the expected value of the above estimator is not equal to
KL(pθ || q) and is

E[µPPO
MC ] = E

Y ∼pθold

[
pθ(Y )

pθold(Y )
log

pθold(Y )

q(Y )

]
= E

Y ∼pθ

[
log

pθold(Y )

q(Y )

]
. (56)

A natural question at this point is: what is the relationship between µPPO
MC and µMC, and why is

minimizing µPPO
MC a valid proxy for minimizing µMC? Crucially, the KL divergence between pθ and q

can be decomposed into the sum of E[µPPO
MC ] and the KL divergence between pθ and pθold , as shown in

the following equation:

E
Y ∼pθ

[
log

pθold(Y )

q(Y )

]
︸ ︷︷ ︸

E[µPPO
MC ]

+ E
Y ∼pθ

[
log

pθ(Y )

pθold(Y )

]
︸ ︷︷ ︸

trust region,KL(pθ,pθold )

= E
Y ∼pθ

[
log

pθ(Y )

q(Y )

]
= KL(pθ || q). (57)

Therefore, minimizing KL(pθ || q) is equivalent to minimizing both E[µPPO
MC ] and KL(pθ || pθold).

Notably, since the KL divergence between the current policy and the old policy, KL(pθ || pθold), is
already constrained by PPO’s clipping mechanism, the algorithm effectively focuses on penalizing
only the first term, using µPPO

MC .

A naı̈ve approach to Rao–Blackwellizing µPPO
MC defined in Eq. (55), is as follows:

µPPO
RB =

1

M

M∑
m=1

pθ(Y
(m))

pθold(Y
(m))

lim
N→∞

N∑
n=1

E
Yn∼pθold

[
log

p⃗θold(Yn | Y (m)
<n )

q⃗(Yn | Y (m)
<n )

]
. (58)

Importantly, µPPO
RB does not give an unbiased estimate of EY ∼pθ

[
log

pθold (Y )

q(Y )

]
, i.e.,

E [µPPO
RB ] = E

Y ∼pθ

[
lim

N→∞

N∑
n=1

E
Y n∼pθold

[
log

p⃗θold(Y n | Y <n)

q⃗(Y n | Y <n)

]]
̸= E

Y ∼pθ

[
log

pθold(Y )

q(Y )

]
. (59)

Therefore, we caution the reader against using this estimator as a replacement for µPPO
MC in practice.
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Figure 4: Comparing the bias, variance, and consistency of the estimators as the sample size increases.
The µCV estimator with α = 1 exhibits a higher standard deviation, particularly for neutral and
negative prompts, where the variance becomes extremely large. In contrast, the RB estimator, µRB,
achieves the lowest standard deviation.

E Additional Experiments

In Fig. 4, we visualize the KL estimates for three different prompts: (left) a positive prompt, (middle)
a neutral prompt, and (right) a negative adversarial prompt. The traces represent the average estimates
from all the repetitions, while the shaded regions indicate the standard deviation. Except µCV, α = 1,
all other estimators are unbiased and consistent.

As the sample size increases, the chance of sampling from the tail of pθ also increases. These tail
samples often correspond to negative movie reviews that had a high probability under the language
model prior to fine-tuning, i.e., q, leading to extremely large values of g(Y ) and, consequently, a
high standard deviation. This effect indeed depends on the prompt and is particularly pronounced for
neutral and adversarial prompts.

We conducted an additional experiment to evaluate the estimators on a random subset of prompts from
the UltraFeedback dataset [8]. We compute the KL divergence between Zephyr-7B-Beta [38] and its
reference model, Mistral-7B-v0.1 [18]. Zephyr is fine-tuned from Mistral using DPO on UltraFeed-
back, and as part of this fine-tuning, it is desirable not to diverge significantly from the base model.

Table 2: Estimated value ± empirical stan-
dard deviation of different estimators. RB es-
timator consistently achieves the lowest stan-
dard deviation.

M = 1 M = 5 M = 10

µMC 18.05± 3.19 18.05± 1.63 18.05± 0.75
µHT 18.05± 12.64 18.56± 5.34 19.24± 3.62
µCV1 17.17± 3.17 17.17± 1.62 17.17± 0.75
µCV 17.80± 3.18 17.80± 1.63 17.80± 0.75
µRB 18.05± 3.16 18.05± 1.61 18.05± 0.75

We randomly sampled 512 prompts and generated
100 responses per prompt. For estimation, we used
subsets of 1, 5, and 10 samples, reserving the re-
maining samples to estimate each method’s standard
deviation. Tab. 2 reports the KL estimate ± standard
deviation for each estimator. Unlike our GPT-2 ex-
periments, we had to use half-precision to perform
inference and forward passes on a single GPU, which
introduces bias in the HT and CV estimators. Con-
sistent with our findings on the IMDB dataset, our
proposed RB estimator consistently achieves the low-
est standard deviation across all settings, reaffirming
its stability and reliability.
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F Experimental Details

F.1 Code Snippet

1 def compute_kl(logprobs, ref_logprobs, logits, ref_logits):
2 """
3 Compute KL divergence using two estimators.
4

5 Args:
6 logprobs: Log probabilities of sampled actions from policy
7 ref_logprobs: Log probabilities of same actions from reference
8 logits: Full distribution logits from policy (all actions)
9 ref_logits: Full distribution logits from reference (all actions)

10

11 Example:
12 # Policy samples action 3 from 1000 possible actions
13 logprobs = [-2.3] # Only action 3's log prob
14 logits = [0.1, -0.5, ...] # All 1000 action logits (raw)
15

16 # MC: uses only sampled action
17 # RB: uses all 1000 actions for exact expectation
18 """
19 # Monte Carlo: unbiased but higher variance
20 kl_mc = mean(logprobs - ref_logprobs)
21

22 # Rao-Blackwell: lower variance, uses full distribution
23 log_p = log_softmax(logits) # Normalize to log probs
24 log_q = log_softmax(ref_logits) # Normalize to log probs
25 kl_rb = mean(sum(exp(log_p) * (log_p - log_q)))
26

27 return kl_mc, kl_rb

F.2 RLHF Experiments

In App. F.2, we include the hyperparameters used with the RLOO algorithm for the sentiment control
experiment. Each experiment takes approximately 20 minutes on a single rtx 4090 GPU.

Hypterparameter Value
Optimizer AdamW (ϵ = 1e−5, lr= 3e−6)
Scheduler Linear
Batch Size 32
β 0.07
k 2
Number of RLOO Updates Iteration Per Epoch 4
Clip range 0.2
Sampling Temperature 1

27



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The main contributions are that our proposed estimator is unbiased and has variance
less than or equal to the variance of the MC estimator, and it improves the stability of RLHF
training. All these claims are clearly stated in the abstract and introduction.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explain the limitations in §6.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: Yes, the main theoretical claim is that the RB estimator is unbiased and has variance
less than or equal to the variance of the MC estimator, this is supported by theorem 2, and the
proof is in appendix E.3. The rest of the theoretical claims regarding other estimators are proved
in appendix A-F.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a simple code snippet to implement our RB estimator in App. F.1, which
also highlights the difference between the RB and MC estimator.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We have released the code but, to preserve anonymity, we have not included the link
to the public repository in the paper. Instead, the code is attached as supplementary material to the
submission.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: The experimental details is explained in App. F.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: When evaluating estimators in §5.1, we report the standard deviation across runs.
Furthermore, for RLHF Pareto plot, we perform a permutation test in §5.2 to test significance of
the results.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: We provide this in App. F.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS code of ethics and we confirm that the paper conforms
to the NeurIPS code of ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: We discuss this in §6.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: We do not release any new models or datasets, therefore, the paper poses no such
risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: We cite the dataset in §5.1. While the original paper doesn’t specify a particular
license, it emphasizes that the data is intended for academic and non-commercial use.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method developed in this paper does not involve LLMs as any important,
original, or non-standard components.
Guidelines:
• The answer NA means that the core method development in this research does not involve LLMs

as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.
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