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ABSTRACT

Supervised Fine-Tuning (SFT) is an effective method for adapting Large Lan-
guage Models (LLMs) on down-stream tasks. However, variability in training
data can hinder a model’s ability to generalize across domains. This paper stud-
ies the problem of dataset alignment for Natural Language to SQL (NL2SQL or
text-to-SQL), examining how well SFT training data matches the structural char-
acteristics of target queries and how this alignment impacts model performance.
We hypothesize that alignment can be accurately estimated by comparing the dis-
tributions of structural SQL features across the training set, target data, and the
model’s predictions prior to SFT. Through comprehensive experiments on three
large cross-domain NL2SQL benchmarks and multiple model families, we show
that structural alignment is a strong predictor of fine-tuning success. When align-
ment is high, SFT yields substantial gains in accuracy and SQL generation quality;
when alignment is low, improvements are marginal or absent. These findings high-
light the importance of alignment-aware data selection for effective fine-tuning
and generalization in NL2SQL tasks.

1 INTRODUCTION

Natural Language to SQL—the automatic conversion of user queries into executable SQL
commands—enables non-technical users to interact with databases using natural language, sim-
plifying access to relational databases without requiring the knowledge of SQL syntax or schema
details. NL2SQL is expected to be an important tool in many industries, from business intelligence
to healthcare and education. Traditional NL2SQL models relied heavily on syntactic and semantic
parsing, but recent advancements in transformer-based models have drastically improved the accu-
racy and robustness of these systems (Gao et al., 2023; Pourreza & Rafiei, 2024a).

While NL2SQL models have achieved impressive results on benchmarks, they often struggle in real-
world settings due to the variability of natural language inputs and diversity in query structures and
database schemas. To be effective across domains, models must generalize beyond their training
data—a task made difficult by the complexity of both natural language and SQL. Transfer learning,
especially through supervised fine-tuning (SFT), has emerged as a promising solution, enabling
models to adapt to new tasks or domains by leveraging labeled data from related sources (Zoph
et al., 2016; Min et al., 2017; Sun et al., 2024). In NL2SQL, SFT allows models to learn domain-
specific patterns, improving performance even when source and target datasets differ significantly.
However, challenges remain: fine-tuned models may overfit or fail to transfer knowledge effectively
when alignment between datasets is poor.

As an example, consider fine-tuning CodeLlama-7B (Roziere et al., 2023) for the task of NL2SQL,
aiming to improve its performance on the Gretel development set (§ 4.1). As shown in Figure 1, the
model’s execution accuracy after fine-tuning can improve, remain unchanged, or even deteriorate. A
key question is if the post-SFT performance of a model on a target dataset can be predicted before-
hand. Such predictions would be invaluable in identifying datasets that could potentially improve
performance or deciding if it is not worth investing time and resources in fine-tuning when no suit-
able data is available. Several factors influence a model’s post-SFT performance on a target dataset,
including the patterns it was exposed to during pretraining, the relevance of the fine-tuning data to
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the target dataset, and the model’s overall generalizability. Given the limited public information
about large language models, predicting performance remains a complex challenge.

Figure 1: Execution accuracy of various models on the
Gretel test set before and after supervised fine-tuning
(SFT) with different datasets. The graph highlights
performance variability, showing instances of accu-
racy improvement and degradation across the datasets
and potential benefits of post-SFT performance pre-
diction.

Two closely related problems explored in
the literature are data selection for SFT (Xie
et al., 2024; Kang et al., 2024; Albalak
et al., 2024), aimed at reducing the size
of training data to improve efficiency and
scalability, and evaluating the impact of
SFT across various models and tasks (Ding
et al., 2023; Sun et al., 2024; Pourreza &
Rafiei, 2024b). Both lines of work as-
sume that relevant training data is avail-
able and provided. In this paper, we re-
lax this assumption to explore how well
a source training dataset aligns with the
LLM’s background knowledge from pre-
training and the target datasets on which the
model will be evaluated. This relaxation
is particularly important when the source
and target datasets largely differ, or when
multiple datasets are available for selection.
Our extensive experiments on three large
cross-domain NL2SQL datasets using dif-
ferent model sizes from three LLM fam-
ilies, QWen2, CodeLlama and Qwen2.5-
coder-instruct, show that this alignment can
be detected in most cases, and our ap-
proach accurately quantifies it across differ-
ent models within the same family.

This paper makes key contributions to the study of dataset alignment in NL2SQL tasks by examining
how structural relationships between training and target datasets affect model performance during
supervised fine-tuning. Through extensive evaluation on NL2SQL benchmarks, we show that well-
aligned SFT data significantly enhances model accuracy and query generation, while misaligned data
impairs performance, highlighting the importance of alignment in transfer learning. Furthermore, we
propose and validate a predictive framework for assessing the alignment between SFT training and
target datasets, enabling informed dataset selection and reducing the risks of fine-tuning on poorly
aligned data. This approach offers a practical solution for optimizing transfer learning strategies in
real-world applications.

Our contributions can be summarized as follows:

• Dataset Alignment in NL2SQL: We introduce and systematically investigate the role
of structural alignment between training and target datasets in supervised fine-tuning for
NL2SQL tasks.

• Empirical Evaluation Across Benchmarks: Through comprehensive experiments on
NL2SQL benchmarks using LLMs from QWen and CodeLlama families, we demonstrate
the strong correlation between alignment quality and model performance.

• Predictive Framework for Alignment Assessment: We develop and validate an approach
to predict the post-SFT performance based on dataset alignment, enabling proactive selec-
tion of training data and mitigating the risk of performance degradation.

2 RELATED WORK

Data Selection for Continued Pretraining or Fine Tuning Importance Resampling (Xie et al.,
2024) introduces KL reduction, a KL-divergence-based metric that quantifies how much selected
data reduces divergence from the target distribution compared to random sampling in a feature space.
Applied to hashed n-gram features, KL reduction shows strong correlation with downstream perfor-
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mance, with automatic selection matching expert curation. In contrast, Optimal Transport Distance
(Kang et al., 2024) shifts the pretraining distribution towards the target distribution, assuming access
to the original pretraining dataset. Other approaches emphasize diversity and quality, as highlighted
in a comprehensive survey by Albalak et al. (2024). However, many of these methods have yet to be
tested on challenging tasks such as NL2SQL.

Data Selection for Fine tuning Code Generation Models Despite significant progress on fine-
tuning LLMs for code generation, research on data or sample selection remains limited. Tsai et al.
(2024) introduce Code Less, Align More, a method that uses data pruning to reduce data requirement
while maintaining task alignment, thereby improving efficiency. Liu et al. (2024) present Mftcoder,
a multitask fine-tuning framework that leverages diverse tasks to boost model performance. Li et al.
(2022) explore competition-level code generation with AlphaCode, while Samo et al. (2024) propose
a parameter-efficient fine-tuning approach for Mistral-7B, optimizing it for Python query response
and code generation. Despite these advancements, there remains a critical research gap in strategic
data selection for fine-tuning code generation models, especially NL2SQL tasks, where optimized
data selection could significantly improve performance and efficiency.

The Role of Supervised Fine-Tuning in NL2SQL Performance SFT has proven effective in
improving the accuracy of NL2SQL models (Sun et al., 2024; Scholak et al., 2021; Pourreza &
Rafiei, 2024b), and recent advancements in data synthesis techniques have further enhanced this
capability. For instance, Yang et al. (2024b) leverage a combination of weak and strong LLMs for
data generation, showcasing the benefits of diverse model capabilities, and Pourreza et al. (2024b)
address dialect gap in NL2SQL tasks through synthetic data and model merging. These studies
collectively underscore the critical role of fine-tuning in NL2SQL performance and the need to
optimize fine-tuning datasets. Key factors influencing transfer learning success include structural
complexity of SQL queries (Pourreza et al., 2024a), linguistic diversity of natural language inputs
(Ning et al., 2022), and schema variability (Li et al., 2024). Understanding how to better align source
and target data has emerged as a vital area for improving transfer learning in NL2SQL.

3 METHODOLOGY

3.1 SFT FOR TEXT-TO-SQL

SFT for text-to-SQL entails training a large language model on a dataset T = (q, s,D), where each
triplet comprises a natural language question q, its corresponding SQL query s, and the associated
database schema D. Since it is typically unknown which tables are pertinent to a specific query, D
encompasses all database tables, enabling the model to learn to identify the relevant tables. The goal
is to minimize the empirical loss:

min
ϕ

−1

|T |
∑

(q,s,D)∈T

|s|∑
t=1

log[Prϕ(st|D, q, s1,...,t−1)], (1)

where Prϕ denotes the probability of generating the next SQL token st given the database D, ques-
tion q, and the previously generated token sequence s1,...,t−1. As the model weights ϕ are updated,
the predictions are expected to align more closely with the training data. To ensure that these im-
provements generalize to unseen data, it is crucial that the training data T is representative of the
target data G. The change in prediction for an input x, as the model moves from initial weights
ϕ0 to updated weights ϕ, can be quantified in terms of the difference between the two probability
distributions Prϕ(.|x) and Prϕ0

(.|x).
Let LT and LG represent the language models of the training and target test data, respectively,
defined as probability distributions over word sequences, while M and M ′ denote our LLM before
and after fine-tuning on T . By design, M ′ cannot be farther from LT than M , as this would imply
that the loss has not been minimized. However, we want to assess whether fine-tuning will bring
the base model M closer to the language model of the target LG. Direct comparison between the
language model of M and LG is challenging because M operates over the entire vocabulary and
larger contexts, whereas LG is limited to a smaller set of tokens and contexts specific to the target
data G. To bridge this gap, we generate outputs from M on dataset G, resulting in a set of SQL
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queries. Let LM,G represent the language model of those generated queries. If LT is farther from
LG than LM,G, fine-tuning M on T may inadvertently move the model away from G, potentially
diminishing performance on the target data. Next, we examine query templates as critical features
for comparing LT , LG and LM,G.

3.2 DERIVING STRUCTURAL QUERY TEMPLATES

The process of generating SQL queries from natural language questions typically involves parsing
the question, identifying relevant tables and columns, selecting an appropriate SQL query template,
and filling in the details. While foundational steps, such as question parsing, are covered during the
training of LLMs, the limited size and diversity of task-specific datasets (in our case, text-to-SQL)
reduce the likelihood of exposing models to the wide range of structural query patterns required for
effective inference. We hypothesize that SFT data bridges this gap by introducing critical structural
variations. This aligns with observations in selecting in-context examples, where examples with
similar query structures to the target yield the greatest benefit Pourreza et al. (2024a). Building on
this, we focus on structural features in the form of query templates learned from SFT data.

To derive these templates, SQL queries are parsed and schema-specific token sequences—commonly
found at the leaves of the parse tree—are removed. These include table and column names that vary
across databases, as well as literals that do not affect the query logic, as shown in Appendix §A.

3.3 MEASURING DATASET ALIGNMENT AND PREDICTING POST-SFT PERFORMANCE

A metric to assess the alignment between an SFT dataset, DSFT, and a target dataset, Dtarget, is the
proportion of distinct query templates in Dtarget that also appears in DSFT, which we refer to as OVLP
ratio. However, since long query templates often share similar structures without being identical, we
adopt a more granular metric based on n-gram features of query templates. Specifically, n-grams of
lengths ranging from 1 to lmax tokens are extracted from each dataset, where lmax is bounded by
the length of queries. To ensure the quality and relevance of these n-grams, we exclude those that
lack SQL keywords, begin or end with commas, or have unmatched parentheses. The remaining
n-grams and their frequencies are then used to represent the distribution of each query set for further
analysis.

To quantify the differences between n-gram distributions of DSFT and Dtarget, we utilize KL-
divergence, a metric widely used in reinforcement learning from human feedback (RLHF) to main-
tain policy proximity Bai et al. (2022); Sessa et al. (2024) and in knowledge distillation to align
token distributions between student and teacher models Wu et al. (2024). The KL divergence is
defined as:

DKL(P ∥ Q) =
∑
i

P (i) log
P (i)

Q(i)
, (2)

where P and Q represent the n-gram probability distributions of DSFT and Dtarget, respectively. This
metric quantifies the divergence between datasets, helping track shifts in token generation after fine-
tuning and indicating whether the output distribution aligns with the target.

To convert divergence into a measure of alignment, we define the KL-alignment metric:
AKL(P,Q) = exp(−DKL(P ||Q)/c). This metric ranges from 0 to 1, where 1 indicates perfect
alignment (achieved when DKL(P ∥ Q) = 0). The constant c serves as a scaling factor to bound the
alignment scores from below.

We hypothesize that for SFT to achieve potential performance improvements, the training dataset
must align more closely with the target dataset than the baseline model’s distribution. Misalignment
between the training data and the target can limit improvements or even degrade performance.

To quantify how well SFT data aligns with the target relative to the baseline model in feature space,
we introduce the alignment ratio (AR), defined as the ratio between AKL(D̄target ∥ D̄train) and
AKL(D̄target ∥ D̄pred), where D̄train and D̄target represent the empirical feature distributions of the
training and target datasets, respectively, while D̄pred denotes the feature distribution of the baseline
model’s predictions on the target dataset. A higher alignment ratio ( ARKL > 1) indicates that the
training dataset aligns better with the target than the baseline model, signaling potential for post-SFT
performance improvement.
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4 EXPERIMENTAL EVALUATION

4.1 DATASETS

We evaluate our proposed approach on three NL2SQL datasets with different complexities.
BIRD (Li et al., 2024) includes 95 real-world databases from 37 domains, featuring complex queries
involving multiple table joins, nested subqueries, and operations requiring both deep schema under-
standing and natural language comprehension. It includes 9,428 training samples and 1,534 devel-
opment samples. Spider Yu et al. (2018) contains 10,181 questions over 200 databases, with 140
used for training and the remaining 60 reserved for development and testing. Gretel (Meyer et al.,
2024) is a large-scale synthetic dataset that spans 100 distinct domains and includes 100,000 training
samples and 5,850 test samples. SmGretel is a size-controlled subset of Gretel, randomly sampled
to match the training set size of BIRD, allowing for controlled comparisons across datasets without
confounding effects due to dataset scale.

4.2 MODELS

In our experiments, we evaluate the performance of various models from the Qwen (Yang et al.,
2024a), Llama-2 (Touvron et al., 2023), and Deepseek (Guo et al., 2024) families, encompassing a
range of sizes and capabilities. Specifically, we investigate the following model configurations:
Qwen2 0.5B, Qwen2 1.5B, Qwen2 7B, Codellama 7B, Codellama 13B, Deepseek-coder 6.7B,
Qwen2.5-coder-instruct 3B, Qwen2.5-coder-instruct 7B, and Qwen2.5-coder-instruct 14B. Each
model undergoes various training strategies, including supervised fine-tuning (SFT) and few-shot
learning. Unless stated otherwise, our analysis employs zero-shot prompting. Details of prompts
used for SFT and few-shot tasks are detailed in Appendix §E.

4.3 EVALUATION METRICS AND EXPERIMENTAL SETTINGS

We evaluate model performance using two standard metrics: execution accuracy (EX) and exact
match (EM), commonly adopted in benchmarks like BIRD (Li et al., 2024) and Spider (Yu et al.,
2018). Execution accuracy measures whether the predicted and ground-truth SQL queries yield
identical results when executed on a database, regardless of syntactic differences. Exact match
compares each clause of the predicted query to the corresponding clause in the ground truth, treating
them as sets. A prediction is correct only if all components match exactly. In addition, we assess
dataset alignment using the KL-alignment metric described in §3.3.

For reproducibility, we set the maximum n-gram length lmax = 15, based on the average query
length across datasets (14.30 tokens on BIRD dev, 12.70 on Gretel test), which also aligns with
model-generated outputs. The constant c in KL-alignment was chosen to lower-bound the score at
1/e. Additional details, including the OVLP ratio metric, are provided in Appendix §B.

Table 1: KL-alignment scores of base models and training datasets with the Spider dev, BIRD Dev,
and Gretel Test target sets. Higher scores indicate greater syntactic alignment with target sets.

Model/Dataset Spider BIRD Gretel
CodeLlama 13B 0.52 0.51 0.64
CodeLlama 7B 0.58 0.49 0.68
QWen2 7B 0.63 0.61 0.68
QWen2 1.5B 0.61 0.60 0.69
QWen2 0.5B 0.46 0.57 0.66
Deeepseek 6.7B 0.59 0.53 0.67
Qwen2.5-coder 14B 0.80 0.67 0.71
Qwen2.5-coder 7B 0.61 0.66 0.72
Qwen2.5-coder 3B 0.76 0.67 0.71
Spider Train 0.81 0.46 0.43
BIRD Train 0.49 0.74 0.42
Gretel Train 0.61 0.52 0.88
SmGretel Train 0.46 0.44 0.71
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4.4 ALIGNMENT ACROSS DATASETS AND MODELS

Table 1 presents KL-alignment scores for our models on the the development sets of Spider and
BIRD, and the test set of Gretel. With few exceptions, alignment scores are highest on Gretel,
followed by Spider, and lowest on BIRD. This trend reflects the relative difficulty of the benchmarks
for the tested models—BIRD poses the greatest challenge, while Gretel is the easiest. The newer
Qwen2.5-coder models perform strongly across all three datasets, consistent with findings from prior
work (Hui et al., 2024).

These results confirm that KL-alignment is an effective measure of syntactic similarities across
datasets and models, underscoring the importance of training on data that closely matches the target
syntax to optimize model performance. Further analysis of query template overlap (Appendix §C)
provides additional support for these observations.

4.5 CHANGE IN ALIGNMENT AFTER SFT

Table 2 demonstrates several noteworthy trends, in terms of change in KL-alignment after SFT.

Table 2: KL-alignment scores of model outputs (zero-shot) across three datasets—BIRD (dev),
Gretel (test), and Spider (dev)—before and after SFT on the BIRD training set. Left: base KL-
alignment values. Right: changes in alignment scores (∆) post-SFT, indicating how fine-tuning on
BIRD affects alignment with each dataset.

Model Base KL-Alignment ∆ After SFT on BIRD
BIRD Gretel Spider BIRD Gretel Spider

CodeLlama 13B 0.51 0.64 0.52 +0.15 -0.11 -0.17
CodeLlama 7B 0.49 0.68 0.58 +0.14 -0.22 +0.23
Qwen2 7B 0.61 0.68 0.63 +0.05 -0.11 +0.00
Qwen2 1.5B 0.60 0.69 0.61 +0.04 -0.12 -0.10
Qwen2 0.5B 0.57 0.66 0.46 +0.06 -0.08 +0.01
Qwen2.5-coder-instruct 14B 0.67 0.71 0.80 -0.01 +0.00 +0.05
Qwen2.5-coder-instruct 7B 0.66 0.72 0.61 +0.01 +0.00 +0.04
Qwen2.5-coder-instruct 3B 0.67 0.72 0.76 +0.00 +0.00 -0.02

Post-SFT Improvements on BIRD All models show a clear increase in KL-alignment on BIRD
after fine-tuning on its training data. The largest gains are observed in the CodeLlama models
(+0.14 to +0.15), indicating that these models benefit substantially from task-specific supervision
to improve syntactic alignment with BIRD queries. Similar results are obtained on Gretel (See
Appendix §D for more details).

Trade-offs on Other Datasets Several models exhibit reduced alignment with Gretel and Spider
after BIRD fine-tuning, particularly CodeLlama 7B (–0.22 on Gretel) and 13B (–0.17 on Spider).
This suggests that fine-tuning on a single dataset can result in overfitting to its structure, reducing
generalization to other schema distributions.

Qwen2.5 Models Are More Stable The newer Qwen2.5 models exhibit high base KL-alignment
scores across all datasets and show minimal change post-fine-tuning (mostly between –0.01 and
+0.05). This stability suggests that these models are inherently well-aligned with the syntactic pat-
terns in all three datasets, and less sensitive to further fine-tuning.

4.6 EFFECT OF FEW-SHOT PROMPTING ON ALIGNMENT

Few-shot prompting is a widely used technique to influence model outputs without extensive fine-
tuning. To evaluate its impact on alignment, we tested three configurations: zero-shot prompting
(None), few-shot prompting with ExS1, and few-shot prompting with ExS2. Each few-shot setting
included three in-context examples from the training datasets. ExS1 contained one query template
shared with the target datasets, while ExS2 included two shared templates. Details about these
examples are in Appendix §E.
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As shown in Table 3, KL-alignment scores remain largely stable across all prompting settings, for
both base and fine-tuned (SFT) models. Base models show a marginal increase in alignment scores
from 0.61 (zero-shot) to 0.63 (ExS2), suggesting that the inclusion of more relevant examples may
offer minor syntactic guidance. However, the improvements are small and within standard deviation
ranges, indicating no substantial shift in alignment behavior. SFT models show near-identical scores
across all configurations, implying that prior supervised training likely overrides any influence from
in-context examples.

Table 3: KL-alignment scores (mean ± standard deviation) for base and fine-tuned (SFT) models
under zero-shot and few-shot prompting. Few-shot settings include ExS1 (one shared query template
with target datasets) and ExS2 (two shared query templates). Results highlight the limited impact of
few-shot prompting on alignment across models and datasets.

Few-shot Setting Base Models SFT Models
(Mean ± SD) (Mean ± SD)

Zero-shot 0.61 ± 0.07 0.61 ± 0.10
Few-shot (ExS1) 0.62 ± 0.06 0.61 ± 0.08
Few-shot (ExS2) 0.63 ± 0.04 0.61 ± 0.08

4.7 KL-ALIGNMENT VS. MODEL ACCURACY

Figure 2 illustrates the relationship between KL-alignment and two key evaluation met-
rics—execution accuracy (top) and exact match accuracy (bottom)—for base models across zero-
shot and few-shot prompting settings.

Figure 2: Correlation between KL-Alignment and a) Execution Accuracy and b) Exact Match Ac-
curacy for base model outputs. Higher KL-Alignment generally corresponds to improved execution
accuracy across model families.

Across both panels, a consistent positive correlation emerges: models with higher KL-alignment
scores tend to achieve better performance on both execution and exact match metrics. This trend
holds across model families and datasets, underscoring KL-alignment as a useful proxy for measur-
ing syntactic compatibility and downstream SQL generation quality.

Notably, Qwen 2.5 Coder models (gray) demonstrate strong alignment and accuracy, dominating
the upper-right regions in both plots. In contrast, CodeLlama models (orange) show lower KL-
alignment and accuracy, indicating less syntactic consistency with target datasets. Qwen 2 (blue)
and Deepseek (yellow) occupy intermediate positions, with Qwen 2 models showing slightly better
alignment on average.

4.8 PREDICTIVE CAPABILITY OF ALIGNMENT RATIO

While increasing KL-alignment typically benefits model performance, it is equally important to
identify when fine-tuning may degrade a baseline model. To this end, we investigate whether the

7
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Alignment Ratio (AR)—introduced in §3.3—can serve as a predictor of post-SFT model accuracy.
Figure 3 plots AR values against the percent change in execution accuracy after SFT. A clear trend
emerges: datasets with AR>1 generally lead to accuracy improvements, while those with AR<1
often result in limited or negative performance change.

This predictive relationship is strongest in CodeLlama models (r=0.624, p=0.030), and also statisti-
cally significant for Qwen-2 models (r=0.540, p=0.037), though somewhat weaker. This difference
may be due to the smaller size of the Qwen models (0.5B–7B) compared to CodeLlama (7B and
13B), which may make them more adaptable to moderately misaligned data.

In contrast, Qwen2.5-Coder models exhibit no meaningful correlation (r=0.029, p=0.941). These
models are already highly capable on NL2SQL tasks due to strong pretraining, leaving minimal
room for improvement through SFT. Their post-SFT accuracy varies by less than ±1%, with AR
values clustered between 0.5 and 1.1, suggesting limited utility of AR as a predictor for such models.

4.9 ESTIMATING TARGET QUERY DISTRIBUTION FROM SMALL SAMPLES

Figure 3: Predictive nature of alignment ratio
(AR): Datasets with AR > 1 generally show accu-
racy improvement after SFT, while those with AR
< 1 exhibit similar or decreased accuracy. The
colour bar at the bottom of the figure highlights
better (dark green) and poorer (dark red) align-
ment ratios.

In industry settings, user query logs are com-
monly used for training and evaluation. Our
method provides a cost-efficient way to reorga-
nize such logs by estimating target query struc-
ture alignment from small samples—without
requiring new annotations.

As shown in Table 4, KL-alignment estimated
from a small query sample closely mirrors the
trends seen in full datasets (see Table 2 for
SFT on BIRD and Table 7 for SFT on Gretel).
Fine-tuning on Gretel increases alignment with
its test distribution across all models while of-
ten decreasing alignment with BIRD, especially
for smaller QWen models. Conversely, SFT
on BIRD improves BIRD alignment but harms
Gretel alignment, underscoring the asymme-
try of cross-domain generalization. These re-
sults show that small samples are sufficient to
guide fine-tuning decisions and predict domain-
specific alignment effects.

Table 4: KL-alignment of model-generated SQL outputs (zero-shot) before and after supervised
fine-tuning (SFT), using a small sample of target queries: two per database from the BIRD devel-
opment set and 1% of the Gretel test set. Despite reduced sample size, relative alignment trends
remain consistent with those from full datasets.

Model Base KL-Alignment Change After SFT on BIRD Change After SFT on Gretel
BIRD Gretel ∆ BIRD ∆ Gretel ∆ BIRD ∆ Gretel

CodeLlama 13B 0.38 0.49 +0.08 –0.10 +0.00 +0.05
CodeLlama 7B 0.36 0.50 +0.07 –0.16 –0.01 +0.05
QWen 7B 0.43 0.53 +0.03 –0.08 +0.07 +0.01
QWen 1.5B 0.45 0.54 –0.04 –0.08 –0.07 +0.01
QWen 0.5B 0.41 0.51 +0.02 –0.05 –0.08 +0.04

4.10 EXAMPLES OF QUERY CHANGES
POST-SFT

To better understand the impact of SFT on model generation, we analyzed traceable features in
queries generated by QWen-7B and CodeLlama-7B before and after SFT. We selected queries from
the Gretel Test set where the base model generated correct outputs but the SFT model did not. After

8
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SFT on BIRD Train, systematic changes were observed in the models’ use of aggregation func-
tions, case expressions, and subqueries (see Appendix G). Notably, the frequency of pattern att,
SUM(exp) (e.g., total balance per customer) significantly dropped while that of SUM(exp) (e.g.,
the total balance of all customers) significantly increased. Similarly, the frequency of COUNT(*)
decreased and that of COUNT(att) increased. These changes closely mirrored the frequency of
patterns in the training data. QWen-7B simulated these patterns more faithfully than CodeLlama-
7B. Both models followed training data patterns after SFT, and when these patterns misaligned with
the target, the likelihood of generating incorrect queries increased.

5 DISCUSSION

While proposing a novel dataset optimization method is not within the scope of this study, our find-
ings offer valuable insights and guidelines for selecting and aligning datasets to improve NL2SQL
model generalization:

When Alignment is Meaningful: As a syntactic metric, KL-alignment has its limitations. A model
may generate sequences that align well with the target distribution, yet fail to produce valid SQL
queries or accurately map natural language questions to SQL. In our evaluation, execution accuracy
for base models demonstrated a strong correlation with KL-alignment (r = 0.941 for the QWen
family and r = 0.921 for the CodeLlama family), but this correlation weakened for SFT models (r =
0.674 and r = 0.623, respectively). After filtering out configurations with AR ≤ 1, the correlation
significantly improved (r = 0.861 for QWen and r = 0.920 for CodeLlama), indicating that alignment
is more meaningful and predictive of performance gains when AR > 1.

Maximizing KL-Alignment: When multiple SFT datasets are available, selecting the one with the
highest KL-alignment to the target (ground truth) data is likely to improve model performance, as it
ensures better alignment with the desired target data distribution.

Cautiously Using Few-Shot Prompting: Careful selection of few-shot examples can help maintain
or enhance performance levels while minimizing the need for extensive labeled datasets. However,
with smaller fine-tuned models such as Qwen 0.5B, few-shot prompting may exert a dispropor-
tionately high influence on output, potentially leading to unexpected outcomes, such as decreased
KL-Alignment.

6 CONCLUSION

We investigated the problem of dataset alignment and its critical impact on the effectiveness of SFT
for NL2SQL models. Through our KL-Alignment metric, we quantified how closely the structure of
SFT training data matches that of target queries, and showed that high alignment leads to substantial
gains in accuracy and generalization across domains. In contrast, poorly aligned datasets yield
minimal improvements or even degrade performance, highlighting the importance of alignment-
aware data selection in transfer learning pipelines.

Our study suggests that structural alignment between training and target distributions is a key lever
for building robust, domain-adaptable NL2SQL systems. Future work could explore automated
techniques for alignment-driven sampling or curriculum design to reduce manual overhead and im-
prove cross-domain transferability. Additionally, while our experiments focus on small to mid-sized
LLMs—commonly favored in resource-constrained settings—further investigation is needed to as-
sess the extent to which these insights generalize to larger models.

Finally, although KL-Alignment captures distributional similarity over SQL syntax patterns, future
extensions may incorporate semantic dimensions such as query correctness, schema grounding, and
user intent.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang,
Tatsunori Hashimoto, and William Yang Wang. A survey on data selection for language mod-
els. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https:
//openreview.net/forum?id=XfHWcNTSHp. Survey Certification.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. arXiv preprint
arXiv:2308.15363, 2023.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Feiyang Kang, Hoang Anh Just, Yifan Sun, Himanshu Jahagirdar, Yuanzhi Zhang, Rongxing Du,
Anit Kumar Sahu, and Ruoxi Jia. Get more for less: Principled data selection for warming
up fine-tuning in LLMs. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=QmYNBVukex.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiy-
ing Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C.C. Chang, Fei Huang,
Reynold Cheng, and Yongbin Li. Can llm already serve as a database interface? a big bench
for large-scale database grounded text-to-sqls. In Proceedings of the 37th International Confer-
ence on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran
Associates Inc.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
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Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre
Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, et al. Bond: Aligning llms
with best-of-n distillation. arXiv preprint arXiv:2407.14622, 2024.

Ruoxi Sun, Sercan O. Arik, Alex Muzio, Lesly Miculicich, Satya Gundabathula, Pengcheng Yin,
Hanjun Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang, and Tomas Pfister. Sql-palm:
Improved large language model adaptation for text-to-sql (extended), 2024. URL https:
//arxiv.org/abs/2306.00739.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Yun-Da Tsai, Mingjie Liu, and Haoxing Ren. Code less, align more: Efficient llm fine-tuning for
code generation with data pruning. arXiv preprint arXiv:2407.05040, 2024.

Taiqiang Wu, Chaofan Tao, Jiahao Wang, Zhe Zhao, and Ngai Wong. Rethinking kullback-leibler
divergence in knowledge distillation for large language models. arXiv preprint arXiv:2404.02657,
2024.

11

https://arxiv.org/abs/2402.01117
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2307.09288


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language
models via importance resampling. In Proceedings of the 37th International Conference on Neu-
ral Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates
Inc.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024a.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing text-
to-SQL data from weak and strong LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 7864–7875, Bangkok, Thailand, August 2024b. Association
for Computational Linguistics. URL https://aclanthology.org/2024.acl-long.
425.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for com-
plex and cross-domain semantic parsing and text-to-sql task. In 2018 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2018, pp. 3911–3921. Association for Com-
putational Linguistics, 2018.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. Transfer learning for low-resource
neural machine translation. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 1568–1575, 2016.

12

https://aclanthology.org/2024.acl-long.425
https://aclanthology.org/2024.acl-long.425


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ABSTRACT SYNTAX TREE OF QUERIES

The abstract syntax tree (AST) of queries can be obtained using tools such as sqlglot 1. For example,
consider the following SQL query with its abstract syntax tree (AST) shown in Figure 4:

SELECT meal/enrollment FROM frpm WHERE county=’Alameda’ ORDER BY
(CAST(meal AS REAL) / enrollment) DESC LIMIT 1

Figure 4: Abstract syntax tree (AST) of the given SQL query

By removing the leaf nodes from the AST, the query is transformed into the following structural
template:

SELECT / FROM WHERE = ORDER BY ( CAST ( ) / ) DESC LIMIT.

B EVALUATION METRICS DETAILS

A standard metric for evaluating text-to-SQL models is execution accuracy (EX), as used in various
benchmarks such as BIRD (Li et al., 2024) and Spider (Yu et al., 2018). Given a ground-truth SQL
query and a predicted SQL query, the execution accuracy compares the execution results of the
two queries on a database instance. If both queries produce identical results, the predicted query is
considered correct, and the execution accuracy is marked as 1; otherwise, it is marked as 0. This
metric is commonly used as it provides a comprehensive overview of model performance ignoring
syntactic differences between queries.

Recognizing that two different queries may yield identical results on a database instance by chance,
we additionally assess exact match accuracy (EM), which treats each clause as a set and compares
the prediction for each clause to its corresponding clause in the ground truth query. A predicted SQL
query is considered correct only if all of its components match the ground truth. This metric serves
as a stricter variant of accuracy, as a predicted query can be correct but its clauses may not directly
match those of the gold query, leading to a failure in exact match accuracy.

We assess dataset alignment mainly using KL-alignment, as introduced in §3.3. We also report
the proportion of query templates in the target set that appear in the (training or model-generated)
dataset, referred to as the OVLP ratio, as an alternative metric, provided in Appendix C.

C ALIGNMENT IN TERMS OF COMMON QUERY TEMPLATES

Table 5 presents the OVLP ratio, which quantifies the fraction of common query templates between
datasets and model outputs. The results indicate that our tested models exhibit stronger alignment
with Gretel compared to BIRD. Also, there is a notable alignment between the training and devel-
opment/test sets within the same datasets.

Table 6 shows the impact of SFT on model alignment in terms of the OVLP ratio. Fine-tuning on
BIRD substantially improves alignment with BIRD targets (e.g., CodeLlama 13B improves from

1https://github.com/tobymao/sqlglot
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Table 5: Alignment of base models and train data sets in terms of OVLP ratio
BIRD Dev Gretel Test

CodeLlama 13B 0.01 0.21
CodeLlama 7B 0.09 0.23

QWen 7B 0.06 0.22
QWen 1.5B 0.03 0.21
QWen 0.5B 0.03 0.17
BIRD Train 0.32 0.02
Gretel Train 0.02 0.61

SmGretel Train 0.00 0.17

0.01 to 0.21), but often reduces alignment with Gretel. In contrast, SFT on Gretel yields consis-
tent gains in alignment with Gretel across all models, while maintaining or only slightly reducing
alignment with BIRD.

Table 6: Change in structural alignment before and after supervised fine-tuning (SFT), measured
via the OVLP ratio (the fraction of predicted queries matching the structure of target queries). Base
scores are shown alongside alignment improvements (∆) after SFT on BIRD and Gretel datasets.

Model Base OVLP Ratio Change After SFT on BIRD Change After SFT on Gretel
BIRD Gretel ∆ BIRD ∆ Gretel ∆ BIRD ∆ Gretel

CodeLlama 13B 0.01 0.21 +0.20 –0.08 +0.10 +0.13
CodeLlama 7B 0.09 0.23 +0.11 –0.21 –0.04 +0.10
QWen 7B 0.06 0.22 +0.11 –0.15 +0.08 +0.03
QWen 1.5B 0.03 0.21 +0.09 –0.18 –0.03 +0.02
QWen 0.5B 0.03 0.17 +0.11 –0.10 –0.03 +0.03

These results confirm that models adapt structurally to the training domain, with improvements
in OVLP ratio indicating better structural generalization to the target query distribution. Notably,
large models like CodeLlama 13B benefit more symmetrically from domain-specific fine-tuning
than smaller QWen variants, which show trade-offs between domains.

D CHANGE IN ALIGNMENT AFTER SFT ON GRETEL

Table 7: KL-alignment before and after SFT on Gretel datasets. Left: Baseline KL-alignment
scores (higher is better) with BIRD (dev) and Gretel (test). Center: Change (∆) in alignment after
fine-tuning on the full Gretel training set. Right: Change after fine-tuning on the smaller SmGretel
subset. Positive values indicate improved alignment with the respective dataset.

Model Base KL-Alignment Change After SFT on Gretel Change After SFT on SmGretel
BIRD Gretel BIRD Gretel BIRD Gretel

CodeLlama 13B 0.51 0.64 +0.02 +0.13 +0.02 +0.11
CodeLlama 7B 0.49 0.68 -0.01 +0.09 -0.01 +0.06
QWen 7B 0.61 0.68 +0.06 +0.02 -0.02 +0.06
QWen 1.5B 0.60 0.69 -0.09 +0.03 -0.09 +0.03
QWen 0.5B 0.57 0.66 -0.13 +0.00 -0.11 +0.03

Table 7 shows that SFT on Gretel improves KL-alignment with the Gretel test set across all models,
confirming that fine-tuning effectively adapts model outputs to the target domain. Larger models
like CodeLlama 13B gain the most (+0.13), while even smaller models show modest improvements.
This pattern holds for both the full Gretel and smaller SmGretel training sets, suggesting that even
limited in-domain data can drive meaningful structural alignment.

In contrast, alignment with the BIRD dataset often decreases after SFT, especially for smaller QWen
models (e.g., –0.13 for QWen 0.5B), indicating a loss in generalization. Larger models like CodeL-
lama 13B maintain or slightly improve BIRD alignment, reflecting stronger generalization capacity.
SmGretel tends to preserve BIRD alignment better than the full Gretel set, highlighting its potential
for efficient fine-tuning with less risk of overfitting.
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E FEW-SHOT EXAMPLES

Here are the few-shot examples used in the first round (ExS1) and the second round (ExS2):

-- ExS1
SELECT s.sname, a.album_name
FROM singer s JOIN album a ON s.singer_id = a.singer_id
WHERE s.nation = ’USA’;

SELECT s.sname, s.age
FROM singer s JOIN album a ON s.singer_id = a.singer_id
WHERE a.genre = ’Rock’;

SELECT AVG(s.salary)
FROM singer s JOIN album a ON s.singer_id = a.singer_id
WHERE s.nation = ’Japan’ AND s.age BETWEEN 30 AND 40 AND a.release_year

>= (s.year - 5);

-- ExS2
SELECT s.sname, a.album_name
FROM singer s JOIN album a ON s.singer_id = a.singer_id
WHERE s.nation = ’USA’;

SELECT CAST(
COUNT(CASE WHEN T3.gender = ’M’ THEN 1 ELSE NULL END) AS REAL) * 100 /

COUNT(T2.person_id)
FROM noc_region AS T1 INNER JOIN person_region AS T2 ON T1.id =

T2.region_id
INNER JOIN person AS T3 ON T2.person_id = T3.id
WHERE T1.region_name = ’Estonia’;

SELECT name, growth_rate
FROM (SELECT name, growth_rate, ROW_NUMBER() OVER (ORDER BY growth_rate

DESC) rn
FROM marine_species) t
WHERE rn <= 3;

F FINE-TUNING PROMPT

Here, we provide an example of a fine-tuning prompt used in the supervised fine-tuning process.
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Listing 1: Example of fine-tuning prompt
CREATE TABLE region (

region_id INT,
region_name STRING,
PRIMARY KEY (region_id)

);

CREATE TABLE timber (
timber_id INT,
region_id INT,
year_time INT,
volume INT,
PRIMARY KEY (timber_id),
FOREIGN KEY (region_id) REFERENCES region(region_id)

);

CREATE TABLE wildlife (
wildlife_id INT,
region_id INT,
species_count INT,
PRIMARY KEY (wildlife_id),
FOREIGN KEY (region_id) REFERENCES region(region_id)

);

-- External Knowledge:
-- Using valid SQLite and understanding External Knowledge, answer
-- the following questions for the tables provided above:
-- What is the total volume of timber produced by each region, along with
-- the total number of wildlife species in those regions, grouped by

year?

G EXAMPLES OF QUERY CHANGES POST-SFT

Table 8 presents the changes in the frequency of queries exhibiting traceable patterns after supervised
fine-tuning (SFT) on the BIRD Train dataset. The analysis focuses on cases where the base models,
QWen-7B and CodeLlama-7B, originally generated correct queries but introduced errors post-SFT.
The table highlights patterns that either increased (↑) or decreased (↓) in frequency relative to the
base models, providing insight into the specific failure modes introduced by fine-tuning.

Table 8: Changes in the frequency of queries with those traceable patterns after SFT on BIRD Train
for cases where the base models (QWen-7B and CodeLlama-7B) initially generated correct queries,
but errors emerged after SFT. Arrows indicate an increase (↑) or decrease (↓) in frequency compared
to the base models.

Pattern Frequency Example
QWen-7B CodeLlama-7B BIRD

Base SFT Base SFT Train
, SUM(exp) 129 13 ↓ 120 72 ↓ 35 SELECT region, SUM(amount)

FROM investments GROUP BY region

SUM(exp) 63 209 ↑ 55 95 ↑ 1168 SELECT SUM(amount) FROM investments

COUNT(*) 109 49 ↓ 141 0 ↓ 371 SELECT COUNT(*) FROM transactions

COUNT(att) 75 119 ↑ 61 242 ↑ 2861 SELECT COUNT(id) FROM transactions

CASE WHEN 8 40 ↑ 4 33 ↑ 776 SELECT SUM(CASE WHEN age < 18 THEN 1 ELSE 0)

IIF 0 10 ↑ 0 0 162 SELECT SUM(IIF age < 18, NULL, salary)

UNION 2 23 ↑ 1 9 ↑ 22 SELECT . . . UNION SELECT . . .

Subqueries 19 69 ↑ 70 65 ↓ 723 SELECT name FROM (SELECT . . .
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