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Abstract

Vision Transformers (ViTs) have proven to be effective, in solving 2D image understanding
tasks by training over large-scale image datasets; and meanwhile as a somehow separate
track, in modeling the 3D visual world too such as voxels or point clouds. However, with the
growing hope that transformers can become the “universal” modeling tool for heterogeneous
data, ViTs for 2D and 3D tasks have so far adopted vastly different architecture designs that
are hardly transferable. That invites an (over-)ambitious question: can we close the gap
between the 2D and 3D ViT architectures? As a piloting study, this paper demonstrates the
appealing promise to understand the 3D visual world, using a standard 2D ViT architecture,
with only minimal customization at the input and output levels without redesigning the
pipeline. To build a 3D ViT from its 2D sibling, we “inflate” the patch embedding and
token sequence, accompanied with new positional encoding mechanisms designed to match
the 3D data geometry. The resultant “minimalist” 3D ViT, named Simple3D-Former,
performs surprisingly robustly on popular 3D tasks such as object classification, point cloud
segmentation and indoor scene detection, compared to highly customized 3D-specific designs.
It can hence act as a strong baseline for new 3D ViTs. Moreover, we note that pursuing a
unified 2D-3D ViT design has practical relevance besides just scientific curiosity. Specifically,
we demonstrate that Simple3D-Former naturally is able to exploit the wealth of pre-trained
weights from large-scale realistic 2D images (e.g., ImageNet), which can be plugged into
enhancing the 3D task performance “for free”.

1 Introduction

In the past year, we have witnessed how transformers extend their reasoning ability from Natural Language
Processing(NLP) tasks to computer vision (CV) tasks. Various vision transformers (ViTs) (Carion et al.,
2020; Dosovitskiy et al., 2020; Liu et al., 2021b; Wang et al., 2022) have prevailed in different image/video
processing pipelines and outperform conventional Convolutional Neural Networks (CNNs). One major reason
that accounts for the success of ViTs is the self-attention mechanism that allows for global token reasoning
(Vaswani et al., 2017b). It receives tokenized, sequential data and learns to attend between every token
pair. These pseudo-linear blocks offer flexibility and global feature aggregation at every element, whereas
the receptive field of CNNs at a single location is confined by small size convolution kernels. This is one of
the appealing reasons that encourages researchers to develop more versatile ViTs, while keeping its core of
self-attention module simple yet efficient, e.g., Zhou et al. (2021); He et al. (2021).

Motivated by ViT success in the 2D image/video space, researchers are expecting the same effectiveness
of transformers applied into the 3D world, and many innovated architectures have been proposed, e.g.,
Point Transformer (PT, Zhao et al. (2021)), Point-Voxel Transformer (PVT, Zhang et al. (2021)), Voxel
Transformer (VoTr, Mao et al. (2021)), M3DETR(Guan et al., 2021). Although most of the newly proposed
3D Transformers have promising results in 3D classification, segmentation and detection, they hinge on heavy
customization beyond a standard transformer architecture, by either introducing pyramid style design in
transformer blocks, or making heavy manipulation of self-attention modules to compensate for sparsely-
scattered data. Consequently, ViTs for same type of vision tasks under 2D and 3D data is difficult to share
similar architecture designs. On the other hand, there are recently emerged works, including Perceiver

1



Under review as submission to TMLR

IO(Jaegle et al., 2021a), and SRT(Sajjadi et al., 2022), that make fairly direct use of ViTs architecture, with
only the input and output modalities requiring different pre-encoders.

That invites the question: are those task-specific, complicated designs necessary for ViTs to succeed in 3D
vision tasks? Or can we stick an authentic transformer architecture with minimum modifications, as is the
case in 2D ViTs? Note that the questions are of both scientific interest, and practical relevance. On one hand,
accomplishing 3D vision tasks with standard transformers would set another important milestone for a
transformer to become the universal model, whose success could save tedious task-specific model design.
On the other hand, bridging 2D and 3D vision tasks with a unified model implies convenient means to
borrow each other’s strength. For example, 2D domain has a much larger scale of real-world images with
annotations, while acquiring the same in the 3D domain is much harder or more expensive. Hence, a unified
transformer could help leverage the wealth of 2D pre-trained models, which are supposed to learn more
discriminative ability over real-world data, to enhance the 3D learning which often suffers from either limited
data or synthetic-real domain gap. Other potential appeals include integrating 2D and 3D data into unified
multi-modal/multi-task learning using one transformer (Akbari et al., 2021).

As an inspiring initial attempt, 3DETR (Misra et al., 2021) has been proposed. Despite its simplicity, it is
surprisingly powerful to yield good end-to-end detection performance over 3D dense point clouds. The success
of 3DETR implies that the reasoning ability of a basic transformer, fed with scattered point cloud data in
3D space, is still valid even without additional structural design. However, its 2D siblings, DETR(Devlin
et al., 2019), cannot be naively generalized to fit in 3D data scenario. Hence, 3DETR is close to a universal
design of but without testing itself over other 3D tasks, and embrace 2D domain. Moreover, concurrent works
justify ViT can be extended onto 2D detection tasks without Feature Pyramid Network design as its 2D CNN
siblings (Chen et al., 2021; Fang et al., 2022; Li et al., 2022), leading a positive sign of transferring ViT into
different tasks. Uniform transformer model has been tested over multimodal data, especially in combination
with 1D and 2D data, and some 3D image data as well (Jaegle et al., 2021b; Girdhar et al., 2022).

Therefore, we are motivated to design an easily customized transformer by taking a minimalist step from
what we have in 2D, i.e., the standard 2D ViT (Dosovitskiy et al., 2020). The 2D ViT learns patch semantic
correlation mostly under pure stacking of transformer blocks, and is well-trained over large scale of real-world
images with annotations. However, there are two practical gaps when bringing 2D ViT to 3D space. i) Data
Modality Gaps. Compared with 2D grid data, the data generated in 3D space contains richer semantic and
geometric meanings, and the abundant information is recorded mostly in a spatially-scattered point cloud
data format. Even for voxel data, the additional dimension brings the extra semantic information known as
“depth”. ii) Task Knowledge Gaps. It is unclear whether or not a 3D visual understanding task can gain
from 2D semantic information, especially considering many 3D tasks are to infer the stereo structures(Yao
et al., 2020) which 2D images do not seem to directly offer.

To minimize the aforementioned gaps, we provide a candidate solution, named as Simple3D-Former, to
generate 3D understanding starting with a unified framework adapted from 2D ViTs. We propose an
easy-to-go model relying on the standard ViT backbone where we made no change to the basic pipeline nor
the self-attention module. Rather, we claim that properly modifying (i) positional embeddings; (ii) tokenized
scheme; (iii) down-streaming task heads, suffices to settle a high-performance vision transformer for 3D tasks,
that can also cross the “wall of dimensionality” to effectively utilize knowledge learned by 2D ViTs, such as
in the form of pre-trained weights.

Our Highlighted Contributions

• We propose Simple-3DFormer, which closely follows the standard 2D ViT backbone with only minimal
modifications at the input and output levels. Based on the data modality and the end task, we slightly
edit only the tokenizer, position embedding and head of Simple3D-Former, making it sufficiently
versatile, easy to deploy with maximal reusability.

• We are the first to lend 2D ViT’s knowledge to 3D ViT. We infuse the 2D ViT’s pre-trained weight
as a warm initialization, from which Simple-3DFormer can seamlessly adapt and continue training
over 3D data. We prove the concept that 2D vision knowledge can help further 3D learning through
a unified model.
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• Due to a unified 2D-3D ViT design, our Simple3D-Former can naturally extend to some different 3D
down-streaming tasks, with hassle-free changes. We empirically show that our model yield competitive
results in 3D understanding tasks including 3D object classification, 3D part segmentation, 3D indoor
scene segmentation and 3D indoor scene detection, with simpler and mode unified designs.
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Figure 1: Overview of Simple3D-Former Architecture. As a Simple3D-Former, our network consists of three
common components: tokenizer, transformer backbone (in our case we refer to 2D ViT), and a down-streaming
task-dependent head layer. All data modalities, including 2D images, can follow the same processing scheme
and share a universal transformer backbone. Therefore, we require minimal extension from the backbone and
it is simple to replace any part of the network to perform multi-task 3D understanding. Dashed arrow refers
a possible push forward features in the tokenizer when performing dense prediction tasks.

2 Related Work

2.1 Existing 2D Vision Transformer Designs

There is recently a growing interest in exploring the use of transformer architecture for vision tasks: works
in image generation (Chen et al., 2020a; Parmar et al., 2018) and image classification (Chen et al., 2020a)
learn the pixel distribution using transformer models. ViT (Dosovitskiy et al., 2020), DETR (Carion et al.,
2020) formulated object detection using transformer as a set of prediction problem. SWIN (Liu et al., 2021b)
is a more advanced, versatile transformer that infuses hierarchical, cyclic-shifted windows to assign more
focus within local features while maintaining global reasoning benefited from transformer architectures. In
parallel, the computation efficiency is discussed, since the pseudo-linear structure in a self-attention module
relates sequence globally, leading to a fast increasing time complexity. DeIT (Touvron et al., 2021) focus on
data-efficient training while DeepViT (Zhou et al., 2021) propose a deeper ViT model with feasible training.
Recently, MSA (He et al., 2021) was introduced to apply a masked autoencoder to lift the scaling of training
in 2D space. Recent works start exploring if a pure ViT backbone can be transferred as 2D object detection
backbone with minimal modification, and the result indicates it might be sufficient to use single scale feature
plus a Vanilla ViT without FPN structure to achieve a good detection performance (Chen et al., 2021; Fang
et al., 2022; Li et al., 2022).

2.2 Exploration of 3D Vision Transformers

Transformer is under active development in the 3D Vision world (Fan et al., 2021; 2022). For example, 3D
reconstruction for human body and hand is explored by the work (Lin et al., 2021) and 3D point cloud
completion has been discussed in (Yu et al., 2021a). Earlier works such as Point Transformer (Engel et al.,
2020) and Point Cloud Transformer (Guo et al., 2021) focus on point cloud classification and semantic
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segmentation. They closely follow the prior wisdom in PointNet (Qi et al., 2017a) and PointNet++ (Qi et al.,
2017b). These networks represent each 3D point as tokens using the Set Abstraction idea in PointNet and
design a hierarchical transformer-like architecture for point cloud processing. Nevertheless, the computing
power increases quadratically with respect to the number of points, leading to memory scalability bottleneck.
Latest works seek an efficient representation of token sequences. For instance, a concurrent work PatchFormer
(Cheng et al., 2021) explores the local voxel embedding as the tokens that feed in transformer layers. Inspired
by sparse CNN in object detection, VoTR (Mao et al., 2021) modifies the transformer to fit sparse voxel input
via heavy hand-crafted changes such as the sparse voxel module and the submanifold voxel module. The
advent of 3DETR (Misra et al., 2021) takes an inspiring step towards returning to the standard transformer
architecture and avoiding heavy customization. It attains good performance in object detection. Nevertheless,
the detection task requires sampling query and bounding box prediction. The semantics contains more
information from local queries compared with other general vision tasks in interest, and 3DETR contains
transform decoder designs whereas ViT contains transformer encoder only. At current stage, our work focuses
more on a simple, universal ViT design, i.e., transformer encoder-based design.

2.3 Transferring Knowledge between 2D and 3D

Transfer learning has always been a hot topic since the advent of deep learning architectures, and hereby
we focus our discussion on the transfer of the architecture or weight between 2D and 3D models. 3D Multi
View Fusion (Su et al., 2015; Kundu et al., 2020) has been viewed as one connection from Images to 3D
Shape domain. A 2D to 3D inflation solution of CNN has been discussed in Image2Point (Xu et al., 2021),
where the copy of convolutional kernels in inflated dimension can help 3D voxel/point cloud understanding
and requires less labeled training data in target 3D task. On a related note, for video as a 2D+1D data,
TimeSFormer (Bertasius et al., 2021) proposes an inflated design from 2D transformers, plus memorizing
information across frames using another transformer along the additional time dimension. Liu et al. (2021a)
provides a pixel-to-point knowledge distillation by contrastive learning.

It is also possible to apply a uniform transformer backbone in different data modalities, including 2D and
3D images, which is successfully shown by Perceiver (Jaegle et al., 2021b), Perceiver IO (Jaegle et al.,
2021a), Omnivore (Girdhar et al., 2022), SVT (Sajjadi et al., 2022), UViM (Kolesnikov et al., 2022) and
Transformer-M (Luo et al., 2022). All these works aim at projecting different types of data into latent
token embedding but incorporate knowledge from different modalities either with self-attention or with
cross-attention modules (with possibly one branch embedding from knowledge-abundant domain). Note
that among all these aforementioned work. Only Perceiver discuss the application in point cloud modality
with very preliminary result, and Omnivore discuss RGB-D data which is a primary version resembling
3D Voxel data. Contrary to prior works, our Simple3D-Former specifically aims at a model unifying 3D
modalities, where point cloud and voxels are two most common data types that has not been extensively
discussed in previous universal transformer model design. We discuss in particular how to design 3D data
token embeddings as well as how to add 2D prior knowledge. In this paper, we show that with the help of a
2D vanilla transformer, we do not need to specifically design or apply any 2D-3D transfer step - the unified
architecture itself acts as the natural bridge.

3 Our Simple3D-Former Design

3.1 Network Architecture

We briefly review the ViT and explain how our network differs from 2D ViTs when dealing with different 3D
data modalities. We look for both voxel input and point cloud input. Then we describe how we adapt the 2D
reasoning from pretrained weights of 2D ViTs. The overall architecture refers to Figure 1.

3.1.1 Preliminary

For a conventional 2D ViT (Dosovitskiy et al., 2020), the input image I ∈ RH×W ×C is assumed to be divided
into patches of size P by P , denoted as Ix,y with subscripts x, y. We assume H and W can be divided
by P , thus leading to a sequence of length total length N := HW

P 2 . We apply a patch embedding layers
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E : RP ×P → RD as the tokenizer that maps an image patch into a D-dimensional feature embedding vector.
Then, we collect those embeddings and prepend class tokens, denoted as xclass, as the target classification
feature vector. To incorporate positional information for each patch when flattened from 2D grid layout to
1D sequential layout, we add a positional embedding matrix Epos ∈ RD×(N+1) as a learn-able parameter with
respect to locations of patches. Then we apply L transformer blocks and output the class labeling y by a
head layer. The overall formula of a 2D ViT is:

z0 = [xclass; E(I1,1); · · · ; E(I H
P , W

P
)] + Epos; (1)

z̃l = MSA(LN(zl−1)) + zl−1; zl = MLP (LN(z̃l)) + z̃l; (2)
y = h(LN(zL,0)). (3)
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Figure 2: Three different voxel tokenizer
designs. The given example is a 23 cell
division. We number cells for under-
standing. Top: Naive Inflation; We pass
the entire voxel sequence in XYZ coor-
dinate ordering. Middle: 2D Projection;
We average along Z-dimension to gener-
ate 2D “patch” sequence unified with 2D
ViT design. Bottom: Group Embedding;
We introduce an additional, single layer
transformer encoder to encode along Z-
dimension, to generate 2D “group” tokens.
Then the flattened tokenized sequence can
thereby pass to a universal backbone.

Here MSA and MLP refer to the multi-head self-attention layer
and multi-layer perception, respectively. The MSA is a stan-
dard qkv dot-product attention scheme with multi-heads settings
(Vaswani et al., 2017a). The MLP contains two layers with a
GELU non-linearity. Before every block, Layernorm (LN, Wang
et al. (2019a); Baevski & Auli (2019)) is applied. The last layer
class token output zL,0 will be fed into head layer h to obtain
final class labelings. In 2D ViT setting, h is a single-layer MLP
that maps D-dimensional class tokens into class dimensions (1000
for ImageNet).

The primary design principle of our Simple3D-Former is to keep
transformer encoder blocks equation 2 same as in 2D ViT, while
maintaining the tokenizing pipeline, equation 1 and the task-
dependent head, equation 3. We state how to design our Simple3D-
Former specifically with minimum extension for different data
modalities.

3.1.2 Simple3D-Former of Voxel Input

We first consider the “patchable” data, voxels. We start from the
data V ∈ RH×W ×Z×C as the voxel of height H, width W , depth Z
and channel number C. We denote our 3D space tessellation unit
as cubes Vx,y,z ∈ RT ×T ×T ×C , where x, y, z are three dimensional
indices. We assume the cell is of size T by T by T and H, W, C
are divided by T . Let N = HW Z

T 3 be the number of total cubes
obtained. To reduce the gap from 2D ViT to derived 3D ViT, we
provide three different realizations of our Simple3D-Former, only
by manipulating tokenization that has been formed in equation 1.
We apply a same voxel embedding EV : RT ×T ×T → RD for all
following schemes. We refer readers to Figure 2 for a visual interpretation of three different schemes.

Naive Inflation One can consider straight-forward inflation by only changing patch embedding to a voxel
embedding EV , and reallocating a new positional encoding matrix Epos,V ∈ R(1+N)·D to arrive at a new
tokenized sequence:

zV
0 = [xclass; EV (x1,1,1); EV (x1,1,2); · · · ; EV (x1,2,1); · · · ; EV (x H

T , W
P , Z

P
)] + Epos,V . (4)

We then feed the voxel tokenized sequence zV
0 to the transformer block equation 2. The head layer h is

replaced by a linear MLP with the output of probability vector in Shape Classification task.

2D Projection (Averaging) It is unclear from equation 4 that feeding 3D tokizened cube features is
compatible with 2D ViT setting. A modification is to force our Simple3D-Former to think as if the data were
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in 2D case, with its 3rd dimensional data being compressed into one token, not consecutive tokens. This
resembles the occupancy of data at a certain viewpoint if compressed in 2D, and naturally a 2D ViT would
fit the 3D voxel modality. We average all tokenized cubes if they come from the same XY coordinates (i.e.
view directions). Therefore, we modify the input tokenized sequence as follows:

zV
0 = [xclass; T

Z

Z
T∑

z=1
E(x1,1,z); T

Z

Z
T∑

z=1
E(x1,2,z); · · · ; T

Z

Z
T∑

z=1
E(x H

T , W
T ,z)] + Epos,V . (5)

The average setting consider class tokens as a projection in 2D space, with Epos,V ∈ R(1+Ñ)·D, Ñ = HW
T 2 , and

henceforth Epos,V attempts to serve as the 2D projected positional encoding with Ñ “patches” encoded.

Group Embedding A more advanced way of tokenizing the cube data is to consider interpreting the
additional dimension as a “word group”. The idea comes from group word embedding in BERT-training
(Devlin et al., 2019). A similar idea was explored in TimesFormer (Bertasius et al., 2021) for space-time
dataset as well when considering inflation from image to video (with a temporal 2D+1D inflation). To train
an additional “word group” embedding, we introduce an additional 1D Transformer Encoder(TE) to translate
the inflated Z-dim data into a single, semantic token. Denote Vx,y,− = [Vx,y,1; Vx,y,2; · · · ; Vx,y, Z

P
] as the

stacking cube sequence along z-dimension, we have:

Ẽ(Vx,y,−) := TE(E(Vx,y,−)), (6)
zV

0 = [xclass; Ẽ(V1,1,−); · · · ; Ẽ(V H
P , W

P ,−)] + Epos,V . (7)

Here Ẽ as a compositional mapping of patch embedding and the 1D Transformer Encoder Layer (TE). The
grouping, as an “projection” from 3D space to 2D space, maintains more semantic meaning compared with
2D Projection.

3.1.3 Simple3D-Former of Point Cloud Data

It is not obvious how one can trust 2D ViT backbone’s reasoning power applied over point clouds, especially
when the target task changes from image classification to dense point cloud labeling. We show that, in our
Simple3D-Former, a universal framework is a valid option for 3D semantic segmentation, with point cloud
tokenization scheme combined with our universal transformer backbone. We modify the embedding layer
E, positional encoding Epos and task-specific head h originated from equation 1 and equation 3 jointly. We
state each module’s design specifically, but our structure does welcome different combinations.

Point Cloud Embedding We assume the input now has a form of (X, P ), X ∈ RN×3, P ∈ RN×C , referred
as point coordinate and input point features. For a given point cloud, we first adopt a MLP (two linear
layers with one ReLU nonlinearity) to aggregate positional information into point features and use another
MLP embedding to lift point cloud feature vectors. Then, we adopt the same Transition Down (TD) scheme
proposed in Point Transformer (Zhao et al., 2021). A TD layer contains a set abstraction downsampling
scheme, originated from PointNet++ (Qi et al., 2017b), a local graph convolution with kNN connectivity and
a local max-pooling layer. We do not adopt a simpler embedding only (for instance, a single MLP) for two
reasons. i) We need to lift input point features to the appropriate dimension to transformer blocks, by looking
loosely in local region; ii) We need to reduce the cardinality of dense sets for efficient reasoning. We denote
each layer of Transition Down operation as TD(X, P ), whose output is a new pair of point coordinate and
features (X ′, P ′) with fewer cardinality in X ′ and lifted feature dimension in P ′. To match a uniform setting,
we add a class token to the tokenized sequence. Later on, this token will not contribute to the segmentation
task.

Positional Embedding for Point Clouds We distinguish our positional embedding scheme from any
previous work in 3D space. The formula is a simple addition and we state it in equation 8. We adopt only
a single MLP to lift up point cloud coordinate X, and then we sum the result with the point features P
altogether for tokenizing. We did not require the transformer backbone to adopt any positional embedding
components to fit the point cloud modality.
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Segmentation Task Head Design For dense semantic segmentation, since we have proposed applying
a down-sampling layer, i.e. TD, to the input point cloud, we need to interpolate back to the same input
dimension. We adopt the Transition Up(TU) layer in Point Transformer (Zhao et al., 2021) to match TD
layers earlier in tokenized scheme. TU layer receives both input coordinate-feature pair from the previous
layer as well as the coordinate-feature pair from the same depth TD layer. Overall, the changes we made can
be formulated as:

P̃ = MLP2(P + MLP1(X)); zP C
0 = [xclass; TD(TD(X, P̃ ))]; (8)

y = h(TU(TU(LN(zL,1:N ), TD(X, P̃ )), (X, P̃ ))). (9)

We refer to Figure 3 as the overall visualized design of our Simple3D-Former for point cloud data. For detail
architecture of Simple3D-Former in segmentation, we refer readers to Appendix C.
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Figure 3: To transfer from a classification backbone into an object part segmentation backbone, we propose
some additional, yet easy extensions that fit into 3D data modality. Given input point clouds with its
coordinates X, features P , we compose positional information into features first and use a simple MLP to
elevate features into D/4 dimensions, given D the dimension of backbone. Then we apply two layers of
Transition down over pair (X, P ), then feed the abstracted point cloud tokens sequentially into the transformer
backbone. To generate the dense prediction. We follow the residual setting and add feature output from TD
layers together with the previous layers’ output into a transition up layer. Then we apply a final MLP layer
to generate dense object part predictions.

3.2 Incorporating 2D Reasoning Knowledge

The advantage of keeping the backbone transformer unchanged is to utilize the comprehensive learnt model
in 2D ViT. Our Simple3D-Former can learn from 2D pretrained tasks thanks to the flexibility of choice of
backbone structure, without any additional design within transformer blocks. We treat 2D knowledge as
either an initial step of finetuning Simple3D-Former or prior knowledge transferred from a distinguished task.
The overall idea is demonstrated in Figure 4.

Pretraining from 2D ViT As shown in Figure 1, we did not change the architecture of transformer
backbone. Therefore, one can load transformer backbone weight from 2D-pretrained checkpoints with any
difficulty. This is different from a direct 3D Convolutional Kernel Inflation (Shan et al., 2018; Xu et al.,
2021) by maintaining the pure reasoning from patch understanding. We observed that one needs to use a
small learning rates in first few epochs as a warm-up fine-tuning, to prevent catastrophic forgetting from
2D pretrained ViT. The observation motivates a better transfer learning scheme by infusing the knowledge
batch-by-batch.

Retrospecting From 2D Cases by Generalization As we are transferring a model trained on 2D
ImageNet to unseen 3D data, retaining the ImageNet domain knowledge is potentially beneficial to the
generalized 3D task. Following such a motivation, we require our Simple3D-Former to memorize the
representation learned from ImageNet while training on 3D. Therefore, apart from the loss function given in
3d task L3d, we propose adding the divergence measurement as a proxy guidance during our transfer learning
process (Chen et al., 2020b). We fix a pretrained teacher network (teacher ViT in Figure 4). When training
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Figure 4: Memorizing 2D knowledge. The teacher network (with all weights fixed) guide the current task by
comparing the performance over the pretrained task.

Table 1: Baseline Comparison in 3D Object Classification
Method Modality ModelNet40 ScanObjectNN

mAcc.(%) OA. (%) PB-T50-RS OA. (%)
VoxelNet(Maturana & Scherer, 2015) Voxel 83.0 85.9 -

PointNet(Qi et al., 2017a) Point 86.2 89.2 68.0
PointNet++(Qi et al., 2017b) Point - 91.9 77.9
Perceiver(Jaegle et al., 2021b) Point - 85.7 -
DGCNN (Wang et al., 2019b) Point 90.2 92.2 78.1
Image2Point(Xu et al., 2021) Voxel - 89.1 -

Point Transformer(Zhao et al., 2021) Point 90.6 93.7 81.2
PVT(Zhang et al., 2021) Point - 94.0 -

Point-BERT(Yu et al., 2021b) Point1 93.2 - 83.1

Simple3D-Former (ours)2

Voxel(NI) 82.8 86.5 -
Voxel(Avg.) 82.4 85.9 -
Voxel(GE) 84.0 88.0 -

Point 89.3 92.0 83.1
1 We report the result with 1024 point sample inputs here to match with other methods.
2 NI:Naive Embedding; Avg.: Averaging; GE: Group Embedding.

each mini-batch of 3D data, we additionally bring a mini-batch of images from ImageNet validation set (in
batch size M). To generate a valid output class vector, we borrow every part except Transformer blocks from
2D teacher ViT and generate 2D class labeling. We then apply an additional KL divergence to measure
knowledge memorizing power, denoted as:

L := L3d + λ

M∑
i=1

KL(yteacher||y). (10)

The original 3d task loss, L3d with additional KL divergence regularization, forms our teacher-student’s
training loss. The vector yteacher is from 2D teacher ViT output, and y comes from a same structure as
teacher ViT, with the transformer block weight updated as we learn 3D data. In practical implementation,
since the teacher ViT is fixed, the hyper-parameter λ depends on the task: see Section 4.

4 Experiments

We test our Simple-3DFormer over three different 3D tasks: object classification, semantic segmentation and
object detection. For detailed dataset setup and training implementations, we refer readers to Appendix A.

4.1 3D Object Classification

3D object classification tasks receives a 3D point cloud or 3D voxel as its input and output the object categories.
We test 3D classification performance over ModelNet40 (Wu et al., 2015) dataset and ScanObjectNN (Uy
et al., 2019) dataset. To generate voxel input of ModelNet40, We use binvoxMin (2004 - 2019); Nooruddin &
Turk (2003) to voxelize the data into a 303 input. The size 30 follows the standard setup in ModelNet40
setup. We choose to apply Group Embedding scheme as our best Simple3D-Former to compare with existing
state-of-the-art methods. We further report the result in Table 1, compared with other state-of-the-art
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Input Ground Truth Prediction(ours)

Figure 5: Selective visualizations of point cloud part segmentation.

Table 2: Comparison of 3D segmentation results on the ShapeNetPart and S3DIS dataset.
Method ShapeNetPartSeg S3DIS

cat. mIoU.(%) ins. mIoU.(%) mAcc.(%) ins. mIoU.(%)
PointNet(Qi et al., 2017a) 80.4 83.7 49.0 41.1

PointNet++(Qi et al., 2017b) 81.9 85.1 - -
PointCNN(Li et al., 2018) 84.6 86.1 75.6 65.4

DGCNN(Wang et al., 2019b) 82.3 85.1 56.1 -
KPConv(Thomas et al., 2019) 85.1 86.4 72.8 67.1

Point Transformer(Zhao et al., 2021) 83.7 86.6 76.5 70.4
PVT(Zhang et al., 2021) - 86.5 67.7 61.3

PatchFormer(Cheng et al., 2021) - 86.7 - 68.1
Simple3D-Former (ours) 83.3 86.0 72.5 67.0

methods over ModelNet40 dataset, and over ScanObjectNN dataset. We optimize the performance of our
Simple3D-Former with voxel input by setting up T = 6 in equation 7. We finetune with pretrained weight as
well as using memorizing regularization equation 10 with M equal to batch size. The classification result of
point cloud modality is generated by dropping out two TU layers and passing the class token into a linear
classifier head, with the same training setup as ShapeNetV2 case. Our network outperforms previous CNN
based designs, and yields a competitive performance compared with 3D transformers. Several prior works
observed that adding relative positional encoding within self-attention is important for a performance boost.
We appreciate these findings, but claim that a well-pretrained 2D ViT backbone, with real semantic knowledge
infused, does assist a simple, unified network to learn across different data modalities. The observation is
particularly true over ScanObjectNN dataset, where transformer-enlightened networks outperform all past
CNN based networks. Our method, with relatively small parameter space, achieves a similar result compared
with Point-BERT.

4.2 3D Point Cloud Segmentation

3D point cloud segmentation is a two-fold task. One receives a point cloud input (either an object or indoor
scene scans) and output a class labels per input point within the point cloud. The output simultaneously
contains segmentation as well as classification information. Figure 5 is a visual example of object part segmen-
tation task. We report our performance over object part segmentation task in Table 2. The target datasets

9
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Table 3: 3D Detection Result over SUN RGB-D data

Metric BoxNet VoteNet 3DETR 3DETR-masked H3DNet Simple3D-Former (ours)
AP25 52.4 58.3 58.0 59.1 60.1 57.6
AP50 25.1 33.4 30.3 32.7 39.0 32.0

are ShapeNetPart (Yi et al., 2016) dataset and Semantic 3D Indoor Scene dataset, S3DIS (Armeni et al.,
2016). We do observe that some articulated desiged transformer network, such as Point Trasnformers (Zhao
et al., 2021) and PatchFormer (Cheng et al., 2021) reach the overall best performance by designing their
transformer networks to fit 3D data with more geometric priors, while our model bond geometric information
only by a positional embedding at tokenization. Nevertheless, our model does not harm the performance and
is very flexible in designing. Figure 5 visualizes our Simple3D-Former prediction. The prediction is close
to ground truth and it is surprisingly coming from 2D vision transformer backbone without any further
geometric-aware infused knowledge. Moreover, the prior knowledge comes only from ImageNet classification
task, indicating a good generalization ability within our network.

4.3 3D Object Detection

3D object detection is a pose estimation task. For any given 3D input, one needs to return a 3D bounding
box of each detected objects of targeted class. In our experiments we use point cloud input data. We test
our simple-3DFormer for SUN RGB-D detection task (Song et al., 2015). We compare our results with
BoxNet (Qi et al., 2019), VoteNet (Qi et al., 2019), 3DETR (Misra et al., 2021) and H3DNet (Yin et al.,
2020). We follow the experiment setup from Misra et al. (2021): we report the detection performance on
the validation set using mean Average Precision (mAP) at IoU thresholds of 0.25 and 0.5, referred to as
AP25 and AP50. The result is shown in Table 3 and the evaluation is conducted over the 10 most frequent
categories for SUN RGB-D. Even though 3DETR is a simple coupled Transformer Encoder-Decoder coupled
system, we have shown that our scheme can achieve similar performance by replacing 3D backbone with our
simple3D-Former scheme.

4.4 Ablation Study

Different Performance With/Without 2D Infused Knowledge To justify our Simple3D-Former
can learn to generalize from 2D task to 3D task, we study the necessity of prior knowledge for performance
boost. We compare the performance among four different settings: i) train without any 2D knowledge; ii)
with pretrained 2D ViT weights loaded; iii) with a teacher ViT only, by applying additional 2D tasks and use
the loss in equation 10; iv) using both pretraining weights and a teacher ViT.

Results shown in Table 4 reflect our motivation. One does achieve the best performance by not only infusing
prior 2D pretraining weight at an early stage, but also getting pay-offs by learning without forgetting prior
knowledge. It probably benefits a more complex, large-scale task which is based upon our Simple3D-Former.

Table 4: Power of 2D Prior Knowledge, with 2D projection scheme and evaluated in OA. (%) The performance
is tested under ShapeNetV2 and ModelNet40 dataset.

Pretrain Usage ShapeNetV2 ModelNet40
Without Any 2D Knowledge 82.8 86.5

With 2D pretraining 83.5 86.6
Teacher ViT 84.3 87.6

Pretrain + Teacher ViT 84.5 88.0

10
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Table 5: Power of 2D Prior Knowledge (with teacher ViT) in 3D task, evaluated in cat. mIOU.(%) and ins.
mIoU.(%) over ShapeNet Part Segmentation

3D Data Portion M cat. mIoU.(%) ins, mIoU. (%)

25%
0 79.1 83.3
32 79.4 83.1
64 79.8 83.6

50%
0 79.5 84.1
32 79.9 84.0
64 80.3 84.5

100%
0 81.1 84.6
32 82.8 85.4
64 83.1 85.7

Performance in Low-Quantity 3D Data Regime The computation complexity of point cloud data
goes up as the number of sample points blows up. Even for a fixed point cloud sampling of 1024 points, it is
inefficient to train over the entire dataset. To test the generalization ability of our Simple3D-Former, we
perform a test to explore the power of 2D knowledge transferring. We use only a portion of training data
in 3D and change the batch size of source task images M at different scales. Result in Table 5 justify the
performance over point cloud part segmentation task. Though one needs more data to attain higher accuracy,
we found 2D pretrained knowledge offers an accuracy boost. The result indicates a potential joint-training
across different data modality and different tasks to find universal transformers with good generalization
ability.

4.5 Limitation of our work

Our method challenges the necessity of heavy-lifting design of transformers for 3D tasks. However, a potential
drawback of our simple3D-Former is an overlook in 3D-aware only knowledge in the tokenizing process. It
has been justified in Point Transformer(Zhao et al., 2021) the layer-wise positional encoding is beneficial for
point cloud understanding. While our method is flexible in choosing tokenizer and transformer backbone, the
performance might be hindered from a strict fixed transformer structure.

Another concern is that the performance of our method is strongly related with the complexity of selected
transformer backbone. Our Simple3D-Former outperforms early-stage point cloud CNN architectures with a
total of 29.59G Multiply Add Cumulations(MACs). On the contrary, Point Transformer Zhao et al. (2021)
has a total of 36.76G MACs. The detailed model complexity comparison is shown in Appendix B and D. We
observe that even with the most complex ViT model (deit-base) we have been testified, we cannot yield the
state-of-the-art performance compared with concurrent works. It is in particular true for large indoor scene
data (S3DIS) shown in Table 2. How to yield the best trade-off and how the result is different from choice of
backbone (especially the embedding dimension) need to be analized further by introduing different designs of
transformer backbones.

5 Conclusion

We retrospect the development of Vision Transformer and propose a unified version of a 3D transformer,
named as Simple3D-Former, that learns from 2D rich-knowledge domain. a 2D ViT can inflate into a 3D
ViT, by replacing 2D feature embedding, positional embedding and end-task head layer. Moreover, we justify
that 2D domain knowledge helps our model perform better when understanding 3D data and the power of
our model can be further strengthened by learning without forgetting. Our experimental result indicates
self-attention modules, if learnt from 2D domain knowledge, can be distilled and thereby help the learning
3D object classification, part segmentation and detection tasks under both voxel and point cloud data. In the
subsequent work, we hope to explore more versatile combinations of 2D transformer backbones attached with
distinguished 3D feature extracting layers, and include complex tasks in large scale datasets.
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A Dataset Setup and Implementation Details

A.1 3D Object Classcification

Dataset Setup ModelNet40 consists of 12311 samples with 9843 training samples and 2468 test samples.
It contains 40 classes in total. The original data is aligned and in point-cloud format. ScanObjectNN contains
2902 CAD objects with background knowledge provided in point cloud as well. It contains 15 classes in total.
We apply our model over the augmented PB_T50_RS batch samples, in which bounding boxes of objects can
shift up to 50% and objects are perturbed with rotation and scaling, resulting in 14510 total input train/test
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samples. We follow the standard sampling scheme to generate a subset of 1024 points for every point cloud
model in both datasets. We additionally use ShapeNetV2[47] to testify our Simple3D-Former for voxel input
as well. For details on ShapeNetV2 classification, we refer readers to Appendix B.

Implementation Details We use one TITAN A100 for training. For voxel classification task, we use the
Adam optimizer with an initial warm-up at starting learning rate of 0.01, which is decayed by a factor of 0.5
every 20 epochs. The batch size is set to 64. We trained 100 epochs in total. The hyperparameter λ is set to
0.1 back in (10). We evaluate mean of class-wise accuracy (mAcc), and overall point-wise accuracy (OA). The
voxel embedding EV we choose is a single convolutional layer with kernel size of T and stride T to generate
tokenized sequence and remain simple. The pretrained knowledge comes from DeIT. The experiment is
conducted with DeIT-base backbone with ImageNet-1K pretraining of image size 224. We justify the ablation
study for choosing backbones and appropriate positional embedding parameters for optimal performance. In
addition, we show that optimal performance is obtained by using not only ViT backbone but pretrained 2D
knowledge and the help of memorizing 2D tasks. We report the result in Appendix B accordingly.

A.2 3D Point Cloud Segmentation

Dataset Setup For object part segmentation, we test over ShapeNetPart dataset, containing 16, 881
pre-aligned shapes with dense labeling of 50 different parts over 16 distinguished categorical objects. We
sample 1024 points for every point cloud model with standard process. We evaluate our Simple3D-Former
over semantic indoor scene semantic segmentation dataset, S3DIS, as well. S3DIS contains 5 large-scale
indoor scans with 12 semantic elements. We use area 5 as the test case while the reamining areas are treated
as training data. We sample 4096 points for every partitioned indoor scene with standard process.

Implementation Details The training is conducted on one TITAN A100. For object part segmentation
task, we use the SGD optimizer with an initial learning rate of 0.05, which is decayed by a factor of 0.1 every
100 epochs. The batch size is set to 64. We trained our Simple3D-Former up-to 300 epochs. For semantic
segmentation task , we use the SGD optimizer with an initial learning rate of 0.1, which is decayed by a
factor of 0.5 every 20 epochs. We trained 100 epochs with batch size 8. We use DeIT-base as the backbone
ViT for both tasks. The hyperparameter λ is set to 0.1 back in equation 10. We evaluate categorical mean
intersection over union (cat. mIOU.) and instance mean intersection over union (ins. mIOU.) respectively
for ShapeNetPart dataset while we report the mean accuracy and instance mean intersection over union in
S3DIS dataset.

A.3 3D Point Cloud Object Detection

Dataset Setup We apply our Simple3D-Former onto a standard 3D indoor detection benchmark, SUN
RGB-D (v1). SUN RGB-D contains 5000 training samples with oriented bounding box annotations while
KITTI dataset contains 7518 raw 3d input.

Implementation Details To justify our simple3D-Former can be embedded naturally into a detection
model’s 3D backbone, we modify 3DETR’s backbone into our version, while keep the decoder head unchanged.
The training is conduced on one TITAN A100 and trained over 1080 epochs. Detailed architecture of
Simple3D-Former backbone used in detection task is explained in Appendix C.

B More Classification Result With Voxel Input

ShapeNetV2 dataset contains 52456 samples from 55 categories and we use a fixed 80% − 20% train-test split
throughout our experiments. The voxel data is of size 1283. Note that ShapeNetV2 is evaluated only when
we determine which Simple3D-Former setup optimizes the performance over voxel data.

It has been explored in 2D ViT the relationship between the size of patches and the classification accuracy
over image dataset. There is no such prior belief in 3D voxel data, so we test our Simple3D-Formers under
different settings to find the optimal scheme. For point cloud input, we fix our model all from the beginning.
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Table 6: Performance of Different Simple-3DFormer Design on ShapeNetV2 Classification evaluated on OA.
(%), either with pretrained 2D ViT weight guidance (W P.) or without pretrained 2D ViT guidance (W/O
P.).

Scheme Token Length Naive Transformer
W P. W/O P.

Naive Inflation 8 by 8 by 8 83.1 79.8
2D Projection 8 by 8 83.6 82.3

Group Embedding 8 by 8 85.0 84.9
Naive Inflation 14 by 14 by 14 85.5 85.5
2D Projection 14 by 14 83.5 82.8

Group Embedding 14 by 14 87.6 86.8

Table 6 shows the preliminary result. We test under two different cell size settings: T = 16 (8 cells per
axis) and T = 91 (14 cells per axis) in equation 4, equation 5 and equation 7 . Among all configurations,
Group Embedding outperforms Naive Inflation and 2D Projection. More importantly, the pretraining weight
adopted in transformer backbone before training over 3D data does help to improve the accuracy of object
classification. Another observation is that the size of token sequence affects the result as well. A 93 cell yields
more semantic meaning compare to that of a 163 cell, which neglects too many local connections. Hence, in
the following experiments over voxel data,

We further justify that among all transformer backbone mimic from 2D ViT siblings, DeIT-base attains
optimal performance. The result is shown in Table 7.

Table 7: Different 2D ViT backbone performance and complexity comparison. The table shows our Simple3D-
Former under Group Embedding setup.

Backbone Name ImageNet(2D) ModelNet40(3D)
Param. (M) FLOPs (G) Param. (M) OA. (%)

DeiT-tiny 5 0.28 5 84.5
DeiT-small 22 1.12 21 86.7
DeiT-base 86 4.46 85 88.0

Table 8: Performance under different
ordering of input voxels, with 2D Pro-
jection scheme and evaluated in OA. (%)

Projection View ShapeNetV2 ModelNet40
XYZ 83.6 82.1
YZX 84.5 83.2
ZXY 81.9 84.3

Different Performance Under Particular Ordering When
discussing 2D Projection tokenized scheme for voxel data, we implic-
itly assume we project along Z-dim. We show that we are not biased
from the choice of ordering. Table 8 explains different result of par-
ticular ordering in 2D Projection scheme, in both ShapeNetV2 and
ModelNet40 dataset. We denote the ordering XY Z as the normal
input order, where Z-dim data is projected or grouped. Similarly,
Y ZX refers to the X-dim data projection and ZXY refers to the
Y -dim data projection. The result indicates the optimal choice of
projection is dataset dependent, but the performance is optimal
further when considering group embedding scheme.

C Detailed architecture of Simple3D-Former In Point Cloud Modality

Simple3D-Former for Part Segmentation Task The overall Simple3D-Former of point cloud segmen-
tation has a different design of data tokenizer and downstream head (to produce information not from class
tokens). In point tokenizer part, two layers of point set abstractions are applied. The Transition Down
(TD) layer comes from Point Transformer. A TD layer contains a set abstraction downsampling scheme,
originated from PointNet++, a local graph convolution with kNN connectivity, and a local max-pooling layer.

1For T = 9 Group Embedding scheme, we use batch size of 32 instead.
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Rather than adding relative positional embedding in attention layers as most 3d-aware transformers did,
we propose to add the relative positional embedding in local convolution layers in pointnet++ skeleton (i.e.
PointSetAbstraction operation in PointNet++), to avoid artificial design in transformer attention modules,
but incorporate local embeddings beforehand. Each TD layer reduces the number of points by 4 with a
2x scale-up of the embedding dimension. The newly distilled point tokenized sequence is then fed into the
ViT backbone. The Transition Up (TU) layer comes from Point Transformer as well. It interpolates over
the original point coordinates by neighboring features and scales down the embedding dimension by 2. TU
module also contains a residual block that adds the point feature vectors back in the corresponding TD layer,
resulting in a U-Net architecture. We provide code snippets in Listing 1 and 2 for readers to match the
practical implementation with Figure 3.

Simple3D-Former for 3D Detection Task In our 3D detection experiment, we replace 3DETR’s
transformer encoder structure into our Simple3D-Former design, and generate the output head with same
structure as in 3detr, and fix other part to show the flexibility of our design.

1

2 self. transition_downs = nn. ModuleList ()
3 for i in range (2):
4 channel = self. embed_dim // 4 * 2 ** (i+1)
5 self. transition_downs . append ( TransitionDown ( npoints // 4 ** i, nneighbor , [ channel // 2

+ 3, channel , channel ]))
6

7 self. transition_ups = nn. ModuleList ()
8 for i in reversed ( range (2)):
9 channel = self. embed_dim // 4 * 2 ** i

10 self. transition_ups . append ( TransitionUp ( channel * 2, channel , channel ))
11

12 self.fc1 = nn. Sequential (
13 nn. Linear (d_points , self. embed_dim // 4) ,
14 nn.ReLU () ,
15 nn. Linear (self. embed_dim // 4, self. embed_dim // 4)
16 )
17

18 self. fc_pos_embed = nn. Sequential (
19 nn. Linear (3, self. embed_dim // 4) ,
20 nn.ReLU () ,
21 nn. Linear (self. embed_dim // 4, self. embed_dim // 4)
22 )

Listing 1: Code Snippet to define TD/TU layers and two MLPs

1 def forward_features (self , x):
2 xyz , f= x[... ,:3] , self.fc1(x)
3 f = self. pos_drop (f + self. fc_pos_embed (xyz))
4

5 xyz_0 , points_0 = ...
6 self. transition_downs [0]( xyz , f)
7 xyz_1 , points_1 = ...
8 self. transition_downs [1]( xyz_0 , points_0 )
9 x = points_1

10

11 # Add dummy class tokens to mimic ViT ’s style
12 cls_token = self. cls_token . expand (x. shape [0] , -1, -1)
13 x = torch .cat (( cls_token , x), dim =1)
14

15 for blk in self. blocks :
16 x = blk(x)
17 x = self.norm(x)
18 x = x[:, 1:]
19 x = self. transition_ups [0]( xyz_1 , x, xyz_0 , points_0 )
20 x = self. transition_ups [1]( xyz_0 , x, xyz , f)
21 return x.mean (1)

Listing 2: Code Snippet in forward function
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D Different Point Cloud Simple3D-Former Design

We additionally show different results regarding the number of TD/TU coupled layers as the ablation study
of Simple3D-Former structure. Note that if TD/TU layer number is 0, only a MLP layer is applied to lift
input point cloud features and another MLP is applied to encode absolute positions. Moreover, we fix two
MLP layers back in Eqn. (10) to have the same output dimension for a reasonable comparison, when testing
with 0 or 1 layer TD/TU setting. For 2 layer TD/TU setup, the dimension of MLP is changing according to
the embedding dimension D/4 based on different choices of backbones: DeIT-tiny, D = 192; DeIT-small,
D = 384; DeIT-base, D = 768.

As TD layer scales up the embedding dimension of point vectors while reducing the size of tokenized sequence,
different ViT backbones, when equipped with same number of TD/TU layers, have different scalings. The
experiment setup is the same as described in Section 4.2, with M = 64 for 2D knowledge infusing. All setups
applied pretrained weight from the corresponding backbones as well.

Table 9 shows the result regarding different TD/TU layers. We found that by introducing point abstraction,
the performance of a 2D pretrained ViT backbone can be further improved compared with MLP only setup (0
TD/TU layers), with the total computational cost relatively lower. This reflects the claim back in Section 3,
where we point out the necessity of point cloud data modality modification to fit into the universal transformer
backbone. Our Simple3D-Former can adapt from the change of data modality and obtain a good result,
compare with CNN-based schemes.

Table 9: Different Simple3D-Formers’ performance over part segmentation task, evaluated in cat. mIoU. (%),
ins. mIoU. (%) and MACs. (G).

# of TD/TU Layers ShapeNetPart
cat. mIoU. (%) ins. mIoU. (%) MACs. (G)

0 (DeIT-tiny) 81.7 84.7 5.53
1 (DeIT-small) 82.9 85.1 6.53
1 (DeIT-base) 82.5 84.9 26.04
2 (DeIT-tiny) 82.2 84.7 1.87

2 (DeIT-small) 82.5 84.7 7.42
2 (DeIT-base) 83.1 85.7 29.59
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