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Abstract
Generative Flow Networks (GFlowNets, GFNs)
are a generative framework for learning unnor-
malized probability mass functions over discrete
spaces. Since their inception, GFlowNets have
proven to be useful for learning generative mod-
els in applications where the majority of the dis-
crete space is unvisited during training. This has
inspired some to hypothesize that GFlowNets,
when paired with deep neural networks (DNNs),
have favourable generalization properties. In
this work, we empirically verify some of the
hypothesized mechanisms of generalization of
GFlowNets. In particular, we find that the func-
tions that GFlowNets learn to approximate have
an implicit underlying structure which facilitate
generalization. We also find that GFlowNets
are sensitive to being trained offline and off-
policy; however, the reward implicitly learned
by GFlowNets is robust to changes in the training
distribution.

1. Introduction
Generative Flow Networks (GFlowNets, or GFNs) have
emerged as a generative modelling framework for learn-
ing unnormalized probability mass functions of discrete
objects such as graphs, sequences, or sets (Bengio et al.,
2021; 2023). They have show particular promise for a wide
range of problems and applications where optimization is
conducted over very large combinatorial spaces. To name
a few, discrete probabilistic modelling (Zhang et al., 2022),
molecular discovery (Bengio et al., 2021; Jain et al., 2023),
biological sequence design (Jain et al., 2022), and causal dis-
covery (Deleu et al., 2022; 2023; Atanackovic et al., 2023)
are areas where the discrete spaces may be intractably large.
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In these applications, the model will realistically only visit
a small fraction of the overall state space. Therefore, under-
standing how well GFlowNets model and assign probability
mass to the unvisited areas of the state space is a critical
step. This is fundamentally a question of generalization –
and is yet to be practically investigated within GFlowNets.

It has been hypothesized that GFlowNets work well because
they synergistically leverage the generalization potential
of DNNs to assign probability mass in unvisited areas of
the state space (Bengio et al., 2021). Indeed, the ability of
GFlowNets to learn environment structure plays a critical
role in their ability to generalize – a familiar result found
in reinforcement learning (RL) (Cobbe et al., 2019; Schrit-
twieser et al., 2020). Although we have some insight into
how GFlowNets work, we know of many failure cases of
generalization which exist in RL (Zhang et al., 2018; Packer
et al., 2018; Bengio et al., 2020). With the close relationship
between GFlowNets and RL (Tiapkin et al., 2024; Deleu
et al., 2024; Mohammadpour et al., 2024), we can expect
to observe similar problems in GFlowNets when it comes
to generalization. Hence, constructing a systematic inves-
tigation into generalization within GFlowNets is useful for
future algorithmic development, advancement in scientific
applications, and our overall understanding.

While the works of Nica et al. (2022) and Shen et al. (2023)
probe at the question of generalization within GFlowNets,
they only do so superficially. Questions regarding the mecha-
nisms of generalization in GFlowNets have yet to be system-
atically investigated and wholly understood. Thus, unrav-
elling some intuitive notions on why and how GFlowNets
generalize motivates this work. We center our investiga-
tion around three primary hypotheses for generalization in
GFlowNets:

1. GFlowNets generalize well only under a narrow set
of distributions, which includes, but is not limited to,
sampling from PF (s

′|s; θ).
2. GFlowNets generalize well because the objects they

are learning have structure; PF (s
′|s) and F (s) are

not “arbitrary” functions.

3. The difficulty for GFlowNets to generalize is mod-
ulated more by the complexity of the reward
(functionally, the generalization error of a super-
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vised DNN) than the properties of the distribution in-
duced by the reward; e.g. skewness, temperature.

To investigate these hypotheses, we devise an empirical
investigation under 3 experimental settings. (1) Distilling
(regressing to) the true flows of the environment. This lets
us evaluate generalization on an unseen test set of states
and test Hypotheses 2 & 3. (2) Measuring memorization
gaps when learning the true flows while controlling for data
and environment structure. Here we can probe the effect of
environment structure on generalization to verify Hypothe-
sis 2. Finally, (3) training GFlowNets offline and off-policy
under different training distributions. This lets us explore
the effects of offline-off-policy training and changes in the
training distribution on generalization; testing Hypothe-
sis 1. These experimental settings help us isolate specific
factors of variation which may play a role in why GFlowNets
generalize. We describe the details of our experimental se-
tups in §3. In §2, we describe our set of comprehensive
benchmark tasks with well defined and tractably computable
p(x; θ),∀x ∈ X .1 Our main contributions are summarized
as follows:

• We propose a set of benchmark graph generation tasks
of varying difficulty, useful for evaluating GFlowNets’
generalization performance.

• We reify and validate some hypothesized characteris-
tics of GFlowNet generalization behaviour over dis-
crete spaces. We accomplish this empirically using
benchmark tasks.

• We identify and present a set of observations and em-
pirical findings that form a basis towards disentan-
gling some of the mechanisms for generalization of
GFlowNets.

1.1. Generative Flow Networks

Generative Flow Networks (GFlowNets, GFNs) are a gen-
erative modeling framework used to learn to sample from
an unnormalized probability distribution. We will refer to
this unnormalized function as a positive reward, R(s) > 0.
Introduced in the discrete setting (Bengio et al., 2021),
but since then extended to continuous settings (Lahlou
et al., 2023), GFlowNets work by learning a sequential,
constructive sampling policy. This policy, PF , is used to
sample trajectories τ = (s0, ..., st) where states s ∈ S
are partially constructed objects, making the state space a

1We note that our proposed empirical study helps us disentangle
some of the mechanisms of generalization in GFlowNets, but does
not necessarily determine the true underlying causal order of these
mechanisms. Nonetheless, we believe this work can pave a road-
map for how to approach testing generalization of GFlowNets and
view this as a key step towards understanding important properties
for this class of algorithms.

pointed directed acyclic graph (DAG) G = (S,A) where
(s → s′) ∈ A ⊂ S × S is a valid constructive step. There
is a unique initial state s0.

While they can be expressed in multiple equivalent ways,
we will think of GFlowNets in this work through three main
objects: the flow of a state F (s) > 0, and the forward
and backward policies, PF (s

′|s) and PB(s|s′). In a perfect
GFlowNet, these functions are such that for any valid partial
trajectory (sn, .., sm):

F (sn)

m−1∏
i=n

PF (si+1|si) = F (sm)

m−1∏
i=n

PB(si|si+1) (1)

where for terminal (leaf) states, F (s) = R(s) by construc-
tion. If the above equation is satisfied, then starting at s0 and
sampling from PF guarantees to reach a leaf state st ≡ x
with probability p(x) ∝ R(x), x ∈ X . We use X to denote
the set of terminal (leaf) states. Note that it may be useful
to think of PF and PB as representing fractions of flows
going forward and backward through the (DAG) network. It
may also be useful to think of the flow going through edges:
F (s → s′) = F (s)PF (s

′|s).

The so-called balance condition in (1) leads to a variety
of learning objectives. In this work we primarily use the
Sub-trajectory Balance (specifically SubTB(1)) introduced
by Madan et al. (2022) and now considered standard, which
takes the above conditions, parameterizes the log flow and
logits of policies, taking the squared error over all possible
subtrajectories of τ = (s0, ..., sT ):

LSubTB(τ) =
∑

n<m≤T

(
log

F (sn)
∏m−1

i=n PF (si+1|si)
F (sm)

∏m−1
i=n PB(si|si+1)

)2

.

(2)
We note that trajectory balance (TB) is a special case of the
above, where only n = 0 and m = T are used. We also note
that F (s) is upper bounded (when PB of all its descendant
edges is 1) by the sum of the rewards of all its descendant
leaves. For a complete overview of GFlowNets, we refer
readers to Bengio et al. (2023). We define terms that we
want to make as least ambiguous as possible in §A.

1.2. Related Work

Generalization in deep learning Generalization of deep
neural networks (DNNs) in supervised learning and deep
learning has been extensively studied (Leshno et al., 1993;
Pascanu et al., 2013; Zhang et al., 2017; 2021; Kawaguchi
et al., 2017). Although it is still not entirely understood,
certain mechanisms and intuitive notions for generalization
have emerged as the favored schools of thought (Arpit et al.,
2017) and inspire this work.

Generalization in reinforcement learning Due to their
close relationship with GFlowNets, works studying gen-
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eralization in Reinforcement Learning also inspire this
work (Zhang et al., 2018; Packer et al., 2018; Cobbe et al.,
2019; Bengio et al., 2020). For example, generalization
behaviours differ when learning the same function through
regression or through temporal credit assignment (Bengio
et al., 2020), which in some form GFlowNets make use of.

Generalization in GFlowNets It is uncontroversial that
GFlowNets generalize, to some extent. They learn a distri-
bution that matches the reward in-distribution (Bengio et al.,
2021), and on test sets (Malkin et al., 2022), are affected by
the choice of parameterization and flow distribution (Shen
et al., 2023), and more generally are able to perform much
better than random search in large scale intractable prob-
lems. That being said, no study so far has tried to zoom in
on whether anything is unique about generalization within
GFlowNets.

2. A Benchmark Task to Investigate
Generalization Behaviours of GFlowNets

As a first step, we present a novel benchmark environment
built on a series of graph-based tasks. We use graphs as
the foundation of the benchmark tasks as they are a natu-
ral choice for compositional discrete objects, and a wide
range of combinatorial problems can be expressed as graph
generation. We define tasks of varying difficulty on a fixed
state space, thus holding the environment constant while
the reward difficulty is varied. For completeness, we also
conduct experiments on two common benchmark tasks in
GFlowNet literature: the hypergrid and sequence tasks.

2.1. A Small Graph Environment

Consider a space of graphs X and an action space A ⊂
X × X of additive graph edits. We then define PF (·|s) :
As → R+;As = {(s, s′)|(s, s′) ∈ A}. The initial state s0
is the empty graph (no nodes and no edges). The action
space has 3 actions: (i) add a new node, (ii) add a new edge,
or (iii) stop/terminate. When adding nodes, there is a choice
between two ”colors” of nodes. This defines the state graph
G = (X ,A) for the graph environment; again note that
states are themselves graphs.

We setup an environment with all possible graphs of size
7 and less where the nodes can be one of two colors, for
a total of 72296 states. This allows us to compute exactly
p(x; θ) for all x ∈ X relatively quickly (in the order of 10
seconds on a GPU; see §C.1.2).

Reward complexity: We define three different reward func-
tions, which we hope to be of varying difficulty. The hardest
function, cliques, requires the model to identify subgraphs
in the state which are 4-cliques of at least 3 nodes of the
same color. neighbors, requires the model to verify whether
nodes have an even number of neighbors of the opposite

color. counting, simply requires the model to count the
number of nodes of each color in the state. We fully define
and show the distribution of logR(x) of the respective tasks
in §C.1. We can observe that the distribution of logR(x)
increases in complexity relative to the hardness of the un-
derlying task.2

We verify that our intuitive notion of hardness for these
tasks translates to graph neural networks (GNNs). To do
so we train standard graph attention networks (Veličković
et al., 2017)3 with varying capacity to regress to the (log)
reward functions. We use a 90%-10% train-test split, and
show the resulting test error in Figure 1(a). We see that the
ordering seems consistent with the difficulty of the task.

Structural generalization: The so-called structural gener-
alization hypothesis posits that function approximators like
DNNs capture regular patterns in the data (Arpit et al., 2017;
Zhang et al., 2021), i.e. structure. This enables models to
make accurate predictions on similarly structured inputs not
present in the training set. We reify this intuition by intro-
ducing a structured test set, which we generate by picking
states with at least 6 nodes and adding all their descendants
to the test set, until the test set is of the desired size; see
§C.1.3 for details. Generalizing to a “structured” test set
this way poses a more challenging problem than simply
selecting test samples i.i.d. from the data distribution; this is
relevant in domains such as molecular graphs (Tossou et al.,
2023), where the choice of split (e.g. based on scaffold)
practically matters.

Metrics for Performance: To evaluate how well
GFlowNets model the distribution p(x), we consider 2 distri-
butional metrics: Jensen-Shannon (JS) divergence and mean
absolute error (MAE) between log p(x) and the learned
log p(x; θ); see §C.4 for details. Note that when generating
graphs, taking into account isomorphic actions is essential to
learning the right p(x; θ) (see Ma et al., 2023, for reference).

Hypergrid and Sequence Environments: While the hy-
pergrid and sequence environments have been commonly
used to sanity-check GFlowNet implementations and meth-
ods, we believe them to be too simplistic to leverage the
generalization potential of the DNNs, as will be seen in our
experimental results.

2For example, the relative quantity of high reward states
(“sparseness” of rewards over states) and the general distribution
of logR(x) (“discontinuity” of reward distribution) are factors
that can drive learning difficulty.

3We also tried GCNs (Kipf & Welling, 2016) and GINs (Xu
et al., 2018), but found GATs to perform better, so chose them for
this work. See section D.1 Tables 3 and 4 for the ablation over
GNN architectures.
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Figure 1. (a) Training a GNN on 3 different tasks with models of varying capacity. Most of the variance comes from varying capacity.
Dashed lines are for the highest capacity models. (b) Training a GFlowNet (online and on-policy) on 4 different tasks. While ordering is
mostly preserved, apparent difficulty depends on the choice of metric.

2.2. Difficulty of Tasks is Preserved When Training
GFlowNets Online and On-policy

We verify that training GFlowNets on our proposed graph
environment and defined tasks yields the expected task rank-
ing. We train GFlowNets online with SubTB(1) and a uni-
form PB . To lower bound the modeling complexity, we add
a fourth reward, one where R(x) = 1,∀x ∈ X .4 Note that
for this specific experiment there are no states hidden from
the model, i.e. no test set, since the model is able to sample
from its policy and explore the entirety of the state space.
Results using test sets are presented in §4.1. Here, we only
verify the difficulty of the “usual” GFlowNet setup for these
tasks.

In Figure 1(b) we observe that the ordering of tasks is more
or less conserved, but depends on the metric we use to mea-
sure the discrepancy between p(x) and p(x; θ). Using a con-
stant reward indeed lower bounds other rewards, but not by
much. This suggests that there is, unsurprisingly, inherent
difficulty in modeling the dynamics of the environment. We
find that there are two main axes of difficulty with respect
to the task (aside of course from the scale of the problem,
which here is kept constant): (1) how difficult the reward is
to model, and (2) how the reward is distributed. Hopefully,
Figure 1(a) and Figure 1(b) are convincing evidence of (1).
We will come back to (2) later in §4.2.

Readers are hopefully now on board that this benchmark
is sufficiently complex, and is useful for empirical valida-
tion and hypothesis testing purposes. As mentioned, we
also consider 2 non-graph environments, a hypergrid envi-
ronment and sequence environment, with reasonably sized
states spaces such that we can tractably compute p(x; θ)

4Note that, hypothetically, this may be harder than other re-
wards. For a constant reward, the model has to learn to put equal
probability mass everywhere, which means being able to model
the entire state space. In contrast, more complex but “peakier”
reward functions may be in some sense easier to “get right” if
one cares more about modeling high-reward states, since there are
presumably fewer of them.

exactly. This allows us to investigate GFlowNet generaliza-
tion behaviours in contexts other than graphs. We use tasks
and reward functions used in prior GFlowNet work (Bengio
et al., 2021; Malkin et al., 2022; Jain et al., 2023). See §C.2
for details.

3. A Method for Disentangling Generalization
Mechanisms of GFlowNets

We consider 3 main experimental settings: (1) distilling
(regressing to) flow functions, (2) memorization gaps
in GFlowNets, and (3) offline and off-policy training
regimes. Each experimental setup is built on a series of
simplifying assumptions, allowing us control for different
moving parts and complexities that are present when train-
ing GFlowNets. We now present this experimental protocol,
and then report and discuss our findings in §4.

3.1. Distilling (Regressing to) Flow Functions

Just as we can compute the distribution p(x; θ) over X
exactly in this environment, we also compute edge flows
F (s → s′) and PF (s

′|s) exactly. We refer to these as
the true flow and forward policies, in opposition to the
approximated F (s → s′; θ) and PF (s

′|s; θ). Note that we
parameterize F (s → s′; θ) and PF (s

′|s; θ) as mappings
from S → R|n(s)| with n(s) the number of children of s.

In this set of experiments, we train DNNs by regressing to
the true flow5 F (s → s′) and forward policy PF (s

′|s). This
removes the use of the GFlowNet training objective, and
instead of the training distribution coming form trajectories
sampled from PF (s

′|s; θ) we sample s from the training
set, drastically simplifying the training procedure. As such,
we basically control for any non-ideal factors within the
GFlowNet training setup, such as shortcomings due to tem-
poral credit assignment (Malkin et al., 2022).

5In this sense, we are “distilling” the true flows into flow func-
tions parameterized by a DNN.
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Table 1. High level summary for the memorization gap experi-
ments. Each row lists an individual experiment showing the cor-
responding data pair coupling and structure of learning problem.
These experiments consider models trained with distilled/regressed
learning (not via online training using SubTB(1)).

Learning
(Regressing to)

Data Coupling
Reward (data)

Structure
Flow (environment)

Structure

R s⊥̸⊥ R(s) ✓ ✗

R s⊥⊥ R̃(s) ✗ ✗

PF (s, s′)⊥̸⊥ PF (s
′|s) ✓ ✓

PF (s, s′)⊥̸⊥ P̃F (s
′|s) ✗ ✓

PF (s, s′)⊥⊥ P random
F ✗ ✗

To regress to logF (s → s′) or logPF (s
′|s), both vec-

tors, we regress to each value independently and minimize
the mean squared error. Note that the true PF (s

′|s) =
softmax(logF (s → s′)). Regressing to logF (s → s′) is
thus almost like regressing to logPF (s

′|s), but the model
has to get the absolute magnitudes of each logit right, not
just the relative ones (the softmax in PF normalizes). Be-
cause of this, we expect that learning PF (s

′|s) is easier,
although learning flow magnitudes could help with general-
ization. We set PB to be the uniform policy to get unique F
and PF .

Using this setup we are able to asses how fundamentally
difficult these flow functions are to learn. Furthermore, we
can use our test set of unseen states. This allows us to asses
generalization performance for learning p(x) (which we are
able to tractably compute) by directly computing distribu-
tional errors. Because of the use of a test set, this is in some
sense more challenging than when training GFlowNets di-
rectly, i.e. online and on-policy, since standard training
of GFlowNets allows the model to potentially explore the
entire space and “see” the entire dataset6.

Overall, in this setting we can probe the question of “do”
GFlowNets generalize when learning F or PF and assess
Hypotheses 2 & 3. In the following sub-section, we de-
scribe a second approach that can help us investigate some
mechanistic intuitions of why flow functions might induce
generalization in GFlowNets, probing the question of “why
do” GFlowNets generalize.

3.2. Memorization Gaps in GFlowNets

We would like to probe our hypothesis on the contribution
to generalization of learning flows in GFlowNets. We take
the perspective of Zhang et al. (2017; 2021) and consider
generalization as the act of not memorizing. In other words,

6Readers may notice that because we’ve computed the regres-
sion targets F and PF exactly using the entire state space, some
information of the test set is leaking into the targets. Since the
purpose of this experiment is to assess how hard these functions
fundamentally are to learn, we knowingly allow the model to cheat.

Table 2. Details for different training distributions PX for offline
and off-policy experiments.

PX Resemblance to Sampling x

Uniform ∝ U(x) i.i.d.
Log-rewards ∝ R(x) from an ideal policy
Proxy for on-policy ∝ p(x; θ) ∝ to PF (s

′|s; θ)
Absolute error ∝ |p(x; θ)− p(x)| ∝ absolute loss
Squared log-error ∝ (log p(x; θ)− log p(x))2 ∝ squared log-loss (e.g. SubTB(1))

we can assess whether a model is generalizing or not by mea-
suring the gap (in training performance) between training
it on structured data and training on random unstructured
data. We use this notion of memorization gap to exam-
ine how learning flows with or without structure impacts
generalization.

We devise an experiment inspired from Zhang et al. (2017;
2021), where we train supervised models by regressing
to R(s) and PF (s

′|s) (using the framework described in
the previous section), but with various degrees of “de-
”structuring. Consider simply learning to predict R(s) with
R(s; θ). If instead of regressing from s to R(s) we shuf-
fle the reward labels of each state s, we end up with new
(s, R̃(s)) pairings. This induces independence between the
data pairings, i.e. s⊥⊥ R̃(s). Intuitively, training a DNN
with s⊥⊥ R̃(s) will force it to memorize, having removed
structure in the mapping from s to R.

Now consider regressing to PF (s
′|s); there are two ways to

destructure this function. Recall that F (s) (and so implicitly
PF (s

′|s)) is a function of the reward of all its descendants
as well as of the transition structure of the state space (the
ways to get to those descendants). Let D(s) be the set of
descendants of s. By shuffling R into R̃, we thus remove the
dependence between s and R̃(sd)∀sd ∈ D(s), but keep the
dependence between s and how to get to D(s). The second
way to de-structure PF is to simply regress to random logits,
which we will denote P random

F .

To recap, we regress to: R(s) using paired data, R(s) using
shuffled data, PF (s

′|s) using paired data, PF (s
′|s) using

shuffled data, and PF (s
′|s) using random logits P random

F

from a magnitude-preserving range. This is summarized in
Table 1.

Through this setup, we can assess the memorization gap
that occurs when training models. Destructuring the reward
but maintaining flow structure in the learning problem al-
lows us to assess the contribution that learning true flows
has on generalization (i.e. not memorization) when train-
ing GFlowNets. Following from Hypothesis 2, if learning
structured flows reduces the degree of memorization, per-
haps flow prediction inherently acts as a mechanism for
generalization in GFlowNets.
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3.3. Offline and Off-policy Training Regimes

Lastly, we investigate the effects of deviating from the self-
induced training distributions of GFlowNets on general-
ization. To do this, we consider the setting of training
GFlowNets offline and off-policy given a known dataset
of final states X . We sample x ∼ PX , where PX is some
training distribution over X . We consider different distri-
butions for PX that resemble different practical approaches
and techniques that are used for training GFlowNets (see
Table 2). This setting controls for the effect of sampling
from PF (s

′|s; θ) in training GFlowNets.

Given a terminal x, we sample a trajectory τ = (s0, . . . , sf )
backwards using a uniform PB

7. Hence, we term this
as offline training, since we are avoiding sampling x us-
ing PF (s

′|s; θ).We use a standard GFlowNet objective,
SubTB(1), to train PF (s

′|s; θ) using those τ . Note that this
setup can remove the data non-stationarity that normally
exists when using on-policy P (s′|s; θ) samples.

We also consider the online off-policy setting, to assess
to what degree deviating from PF (s

′|s; θ) during training
will affect learning p(x). Understanding this may be useful
to develop novel GFlowNet algorithms, considering that
in practice only few settings that deviate from on-policy
training work (Rector-Brooks et al., 2023). To achieve this,
we consider a policy interpolation experiment where we
sample trajectories from Pα(s

′|s) = (1− α)PF (s
′|s; θ) +

αPU (s
′|s), where 0 ≤ α ≤ 1 and PU (s

′|s) denotes a PF

that goes to every terminal state with equal probability, i.e.
such that p(x) ∝ 1. We do this because, as we will see, any
degree of deviation from PF (s

′|s; θ) during offline training
appears to have some negative effect. We observe this even
for values of α close to 0. We discuss this in further detail
in section 4.4.

This experimental setup helps us investigate the isolated ef-
fect of different data distributions PX on training dynamics
and generalization by changing the data distribution (and
non-stationarity) typically induced by P (s′|s; θ). We con-
sider both settings with and without a test set. This allows us
to assess Hypothesis 1 by observing the effects of various
deviations from the normal self-induced training distribution
coming from PF (s

′|s; θ).

4. Experiments
In this section, we report and discuss our observations and
findings of the experimental methodology defined in §3.
We conduct all experiments reported in this section over 3
random seeds. For training online and offline GFlowNets,

7Investigating the use of different PBs is another interesting
direction that may give insight into the effects of the backward
policy on the training dynamics of GFlowNets (see Shen et al.,
2023). We leave this for future work.

we use SubTB(1) (see §D.2) and a uniform PB .

4.1. Distilling Flow Functions

We run the setup explained in §3.1. To evaluate the models,
we look at the distributional errors on p(x; θ). We use a
90%-10% train-test split. We report results in Figure 2(a)
and Figure 2(b).

First, we can see that learning PF and learning F yield sim-
ilar difficulty in the sense that the distributional errors are
systematically close. Second, we see that the model is gen-
eralizing, getting sometimes even better scores than a model
trained online on the entire states space (i.e. with no test set)
as seen in Figure 2(b). While this result should be obvious,
it confirms that the difficulty of training a GFlowNet comes
from both learning to model the flow functions themselves
and performing temporal credit assignment.

Observation 4.1. Flow functions and flow policies
are learnable and standard neural networks generalize
when predicting them.

We confirm these observation in sequence and grid environ-
ments (see §E.1). Further results in §D.3 assess how well
GFlowNets (and TB (Malkin et al., 2022) and FM (Bengio
et al., 2021)) generalize in rank in the graph tasks.

4.2. Reward complexity and transformations

Consider a monotonic transform Hγ : R → R that maps
logR′(s) = Hγ(logR(s)),∀s ∈ S such that logR′(s) is
skewed as a function of γ (see §C.3 for further details).
We use the setup in §3.1 and also train online GFlowNets
in the setting of skewed reward distributions transformed
by Hγ as well as tempered distributions via a β parameter,
logR′(s) = β logR(s). Results are in Figure 3(a); as we
change γ and β, both distilled and online models are not
significantly affected.

Observation 4.2. Monotonic transformations of R(x)
do not have detrimental impact on generalization when
learning p(x) with GFlowNets.

This implies that applying minor reward transformations,
which is a standard technique in GFlowNet training, is not
detrimental to generalization about p(x) for a given task (of
course, e.g. sparsifying a reward makes exploration harder),
supporting Hypothesis 3. We repeat this experiment on the
sequence environment and find consistent results (see §E.2).

4.3. Memorization Gaps in GFlowNets

We run the setup explained in §3.2 and Table 1; results are
shown in Figure 4. Additional results with R(s) ∼ N (µ, σ)
and online trained GFlowNets are in §D.5. A typical obser-
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Figure 2. (a) Training a model to distill edge flows and policies. (i) doing so recovers the intended distribution, (ii) modeling PF appears
easier than modeling F . (b) JS-divergence and MAE gaps between SubTB(1) trained model and PF distilled model. Distilling to PF

appears to yield lower distributional error, except for JS-divergence on the cliques task.
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Figure 3. (a) Training models distilled to PF and models trained online/on-policy for a range of γ; (b) idem for a range of β. Transforming
the distribution of the reward does not significantly affect the generalization difficulty in approximating p(x).
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Figure 4. Memorization gap training curves for counting, neighbors, and cliques tasks. Maintaining flow structure in the learning problem
(learning PF under shuffled R̃) induces a smaller memorization gap relative to the fully de-structured setting. See Table 1 for reference of
experimental setup.

vation in the memorization gap setup is for the training loss
to initially plateau, until some phase change occurs (one can
imagine parameters have self-arranged to create separate
linear regions around each input point) and the training loss
goes to 0. We se similar trends here, regressing to R and
PF induce curves with no plateau, while regressing to R̃
and P random

F initially have very flat plateaus until a phase
change occurs. This shows a very clear memorization gap,
which was expected.

Most interesting is where PF is partially de-structured, and
we regress to the true PF of a shuffled reward R̃ and retain
the environment structure. While there is no plateau, PF

becomes harder to fit, and there remains a phase change.
These results support Hypothesis 2; PF captures structure

of both the reward function and the environment, since
removing either induces memorization gaps.

Observation 4.3. The existence of clear memorization
gaps, when removing reward structure but maintain-
ing environment structure, upholds that environment
structure facilitates generalization when learning flow
functions and flow policies.

This finding implies that state flows may play a mechanistic
role in why GFlowNets generalize to unseen states. We also
show similar results for sequences and grids (see §E.3).
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Figure 5. Evaluation curves for offline and off-policy trained GFlowNets on the neighbors task for different choices of PX . (a) When
training using the full dataset (no test set). (b) When training using a subset of the full dataset (90%-10% train-test split). Complete
experiments for all graph generation tasks and evaluation metrics are shown in §D.6.

4.4. Generalization in Offline and Off-policy Training of
GFlowNets

We run the offline training setup described in §3.3 and Ta-
ble 2; results on the neighbors task are shown in Figures 5(a)
and 5(b). Results for all tasks are in §D.6. First, we observe
that perfomance is dependent on environment/task difficulty,
the choice of PX , and on the evaluation metric. For exam-
ple, the best choice for PX on the counting task is typically
x ∼ U or x ∼ logR(x), while this is not always the case
for neighbors and cliques (see §D.6 Figure 12).

Second, we observe that when training PF (s
′|s; θ) offline

and off-policy in the full data (no test set) regime, conver-
gence rate depends on the choice of PX (see Figure 5(a)),
sometimes to a catastrophic degree. We see this for our
usual distributional metrics for approximating p(x)8. How-
ever, when considering the MAE between logR(s) the ap-
proximated log R̂(s), we do not observe this lack of con-
vergence (GFlowNets implictly learn to predict the reward:
log R̂(s) = logF (s; θ) + logPF (sf |s; θ)). Although train-
ing PF (s

′|s; θ) offline or off-policy may be tricky, learning
F (s; θ) jointly with PF (s

′|s; θ) might be beneficial: we
observing a reasonable estimate for log R̂(s) even when
PF (s

′|s; θ) fails to adequately model p(x)—the model is
learning something.

We then run the off-policy interpolations, with Pα =
(1 − α)PF + αPU . We find that for harder tasks, making
the data more off-policy makes p(x; θ) become worse and
R̂ better (see §D.6 Figure 13). When sampling on-policy
(from PF (s

′|s; θ), α = 0), approximating p(x) is reason-
able, but approximating R is best when sampling uniformly
off-policy (from PU (s

′|s), α = 1).

Observation 4.4. Deviating from the on-policy train-
ing distribution induced by PF (s

′|s; θ) can negatively
affect the ability of GFlowNets’ to learn p(x).

8It is possible that the drawbacks of this training regime over-
whelm our ability to make meaningful conclusions on the choice
of PX for offline training on the neighbors and cliques tasks.

This implies that training GFlowNets offline or off-policy
may come with challenges. However, the model could be
learning some informative structure in F (s) that helps it
generalize (seen by a reasonable log R̂(s)). We test this hy-
pothesis in our second offline and off-policy training setup,
and consider performance on a test set (Figure 5(b)). We
observe that offline and off-policy trained GFlowNets rea-
sonably approximate R on unseen states even when failing
to adequately model p(x).

Observation 4.5. Learning F (s) can facilitate models
learning to implicitly predict the reward on unseen
states, even when PF does not adequately approximate
p(x) on these states.

These results support Hypothesis 1; training GFlowNets
online and on-policy is ideal, where PF (s

′|s; θ) converges
to sampling in proportion to R. We repeat these experiments
for the sequence and hypergrid environments, where we
observe that p(x) is adequately modelled in the offline and
off-policy cases (see §E.4). This may be due to the lesser
complexity of these environments, which we establish by
comparing the difficulty of our tasks to that of fitting a
constant reward (see §E.1).

5. Conclusion
In this work, we conducted an empirical investigation into
the generalization behaviours of GFlowNets. We introduced
a set of graph generation tasks of varying difficulty to bench-
mark and measure GFlowNet generalization performance.
Our findings support existing hypothesized mechanisms
of generalization of GFlowNets as well as add to our un-
derstanding of why GFlowNets generalize. We found that
GFlowNets inherently learn to approximate functions which
contain structure favourable for generalization. In addition,
we found that the reward implicitly learned by GFlowNets
is robust to changes in the training distribution, but that
GFlowNets are sensitive to being trained off-policy. We
discuss limitations and future directions of this work in §B.
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Deleu, T., Góis, A., Emezue, C., Rankawat, M., Lacoste-
Julien, S., Bauer, S., and Bengio, Y. Bayesian structure
learning with generative flow networks. In Uncertainty
in Artificial Intelligence, pp. 518–528. PMLR, 2022.

Deleu, T., Nishikawa-Toomey, M., Subramanian, J., Malkin,
N., Charlin, L., and Bengio, Y. Joint bayesian inference
of graphical structure and parameters with a single gen-
erative flow network. arXiv preprint arXiv:2305.19366,
2023.

Deleu, T., Nouri, P., Malkin, N., Precup, D., and Bengio, Y.
Discrete probabilistic inference as control in multi-path
environments. arXiv preprint arXiv:2402.10309, 2024.

Jain, M., Bengio, E., Hernandez-Garcia, A., Rector-Brooks,
J., Dossou, B. F., Ekbote, C. A., Fu, J., Zhang, T., Kil-
gour, M., Zhang, D., et al. Biological sequence design
with gflownets. In International Conference on Machine
Learning, pp. 9786–9801. PMLR, 2022.

Jain, M., Raparthy, S. C., Hernández-Garcia, A., Rector-
Brooks, J., Bengio, Y., Miret, S., and Bengio, E. Multi-
objective gflownets. In International Conference on Ma-
chine Learning, pp. 14631–14653. PMLR, 2023.

Kawaguchi, K., Kaelbling, L. P., and Bengio, Y. Generaliza-
tion in deep learning. arXiv preprint arXiv:1710.05468,
1(8), 2017.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Lahlou, S., Deleu, T., Lemos, P., Zhang, D., Volokhova,
A., Hernández-Garcıa, A., Ezzine, L. N., Bengio, Y., and
Malkin, N. A theory of continuous generative flow net-
works. In International Conference on Machine Learning,
pp. 18269–18300. PMLR, 2023.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. Mul-
tilayer feedforward networks with a nonpolynomial ac-
tivation function can approximate any function. Neural
networks, 6(6):861–867, 1993.

Li, G., Xiong, C., Thabet, A., and Ghanem, B. Deep-
ergcn: All you need to train deeper gcns. arXiv preprint
arXiv:2006.07739, 2020.

Ma, G., Bengio, E., Bengio, Y., and Zhang, D. Baking
symmetry into gflownets. In NeurIPS 2023 AI for Science
Workshop, 2023.

Madan, K., Rector-Brooks, J., Korablyov, M., Bengio, E.,
Jain, M., Nica, A., Bosc, T., Bengio, Y., and Malkin, N.
Learning gflownets from partial episodes for improved
convergence and stability. arxiv e-prints, page. arXiv
preprint arXiv:2209.12782, 2022.

Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio,
Y. Trajectory balance: Improved credit assignment in
gflownets. Advances in Neural Information Processing
Systems, 35:5955–5967, 2022.

Mohammadpour, S., Bengio, E., Frejinger, E., and Bacon,
P.-L. Maximum entropy gflownets with soft q-learning.
In International Conference on Artificial Intelligence and
Statistics, pp. 2593–2601. PMLR, 2024.

9



Investigating Generalization Behaviours of Generative Flow Networks

Nica, A. C., Jain, M., Bengio, E., Liu, C.-H., Korablyov,
M., Bronstein, M. M., and Bengio, Y. Evaluating gener-
alization in gflownets for molecule design. In ICLR2022
Machine Learning for Drug Discovery, 2022.

Packer, C., Gao, K., Kos, J., Krähenbühl, P., Koltun, V., and
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A. Vocabulary
• The p(x; θ) distribution, when using GFNs we never explicitly model p(x; θ); instead this measure is induced by the

parameterization (F (s → s′; θ) or PF (s
′|s; θ)) of a sequential constructive policy. We use p(x; θ) as the shorthand for

the distribution over X induced by the chosen parameterization with parameters θ. See also §C.1.2.

• Online vs offline, a model is trained online when it is trained from data generated during the training process – typically
according to its own parameters, i.e. for some model p(x; θ), we may use X ∼ p(x; θ) to train p(x; θ). Conversely a
model trained offline is trained from a (usually fixed) data set, X ∼ D. It is possible to form a mixture of online and
offline data. GFNs are compatible with this paradigm (unlike RL methods such as policy gradient methods).

• On-policy vs off-policy, a model is trained on-policy if it is trained from data generated according to the unperturbed
distribution p(x; θ), whereas it is trained off-policy if it comes from any other distribution. For example, taking some
actions at random would be considered off-policy (although a mild version), but so would taking samples from an
entirely different distribution p(x; θ′) or from a dataset.

• Self-induced distribution, when training a model we refer to the distribution p(x; θ) as “self-induced”. This is mainly
to emphasize that this distribution changes as θ changes, which in online on-policy contexts is due to the model
generating its own training samples (thus the “self”-induced).

• True flows, we occasionally refer to true flows. What we mean by that is the exact calculation of F (s) or F (s → s′) as
a function of the reward R(s) and of PB . Note that for a fixed PB there is a unique solution to F (Bengio et al., 2021).
When the reward is corrupted, we talk about the true flow of the corrupted reward R̃, i.e. F (s) is the exact calculation
of the flow through s but for terminal (sink) flows set to R̃.

B. Limitations and Future Work
Limitations: We have shown that GFlowNets tend to generalize when learning unnormalized probability mass functions
for approximating p(x) over discrete spaces. In particular, we have investigate the generalization behaviours of GFlowNets
in the context of distributional errors for p(x). Because of the combinatorial nature of computing p(x) exactly, and likewise
computing p(x; θ) from P (s′|s; θ), we are limited in the fact that we need to work within reasonably sized discrete spaces
(as those we have proposed) to study GFlowNet generalization for approximating p(x). Secondly, we don’t explicitly test
generalization in online and on-policy trained GFlowNets. This in part a consequence of requiring an environment and state
space large enough such that a sufficient quantity of unseen states can be produced, while also being able to purposely hide
the visited states from parameters updates of the GFlowNet. Lastly, although our proposed problems and environments have
structure that induces difficult and interesting generalization tasks, they still may remain far from the structure of the real
world.

Future Directions: We hope to have formed a sound set of findings and observations that may lead to future research
in understanding and formalizing generalization in GFlowNets. For instance, our set of findings could be used as starting
points for formalizing some of our notions and intuitions for GFlowNet generalization (and the corresponding mechanisms)
into mathematical theory. Another direction that can stem from our work is to further empirically investigate GFlowNet
generalization in the online and on-policy setting. Since we don’t explicitly look at GFlowNet generalization in the online
and on-policy training regime (i.e. since we don’t hide any states from online trained GFlowNets); it would be interesting
in future work to explicitly investigate this. However, it is important to note that this is not necessarily a trivial task (as
described in limitations).

Impact Statement The outcomes of the research conducted in this work have practical implications for generative
modelling in applications that include drug discovery, material design, and general combinatorial optimization in commercial
settings. Because of this, we recognize the importance of considering safety and alignment in these closely related domains.
We believe that advancements in GFlowNet research could result in models with improved generalization, in turn leading
to models that are easier to align. Another important and useful application of GFlowNets is in the causal and reasoning
domains. We believe that advancements in these areas may lead to more interpretable, easier to understand, and safer models.
Lastly, we highlight that the applications of our findings for the advancements of GFlowNets may rely on building upon the
hypotheses put forward in this work.
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Figure 6. Distribution of log rewards for the given tasks: (left) counting, (middle) neighbors, and (right) cliques.

C. Experimental Details
C.1. Details for constructing graph benchmark task

C.1.1. REWARD FUNCTIONS

Here are the exact log-reward functions we use, as implemented in Python using the networkx (nx) and numpy (np)
libraries.

cliques counts the number of 4-cliques in a graph such that at least 3 of the 4 nodes of the cliques share the same color.
We then subtract to that number the total number of cliques in the graph, but add the number of nodes. This is so that the
maximal log-reward is 0. We clip log-rewards below -10.
def cliques(g, n=4):

cliques = list(nx.algorithms.clique.find_cliques(g))
# The number of cliques each node belongs to
num_cliques = np.bincount(sum(cliques, []))
colors = {i: g.nodes[i]["v"] for i in g.nodes}

def color_match(c):
return np.bincount([colors[i] for i in c]).max() >= n - 1

cliques_match = [float(len(i) == n) * (1 if color_match(i) else 0.5) for i in cliques]
return np.maximum(np.sum(cliques_match) - np.sum(num_cliques) + len(g) - 1, -10)

neighbors looks at all the neighbors of every node, counting the number of nodes with an even number of neighbors of the
opposite color. This total is modified as a function of the number of nodes in order to produce a nice log-reward distribution
between 0 and -10.

def neighbors(g):
total_correct = 0
for n in g:

num_diff_colr = 0
c = g.nodes[n]["v"]
for i in g.neighbors(n):

num_diff_colr += int(g.nodes[i]["v"] != c)
total_correct += int(num_diff_colr % 2 == 0) - (1 if num_diff_colr == 0 else 0)

return np.float32((total_correct - len(g.nodes) if len(g.nodes) > 3 else -5) * 10 / 7)

counting simply counts the number of red and green nodes, red nodes being ”worth” more, and again modifies this count in
order to produce a nice 0 to -10 log-reward distribution.

def counting(g):
ncols = np.bincount([g.nodes[i]["v"] for i in g], minlength=2)
return np.float32(-abs(ncols[0] + ncols[1] / 2 - 3) / 4 * 10)

C.1.2. COMPUTING p(x; θ), F (s), F (s → s′), AND PF

We compute the probability of a model with parameters θ sampling x, p(x; θ) via what is essentially Dynamic Programming.
We visit states s in topological order starting from s0. For every child of s, s′, (valid transition s → s′) we add
pv(s)PF (s

′|s; θ) to the probability of visiting pv(s
′), eventually accumulating visitation probability from all the parents of

s′. This is possible because we are visiting states in topological order. Note that we start with pv(s0) = 1 and pv set to 0 for
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every other state. p(s; θ) is computed as pv(s)PF (stop|s).

The above is fairly easy to batch, requires one forward pass per state. Computing PF is the most expensive operation and
can be batched, as long as values are accumulated by respecting a topological order afterwards. We also actually store values
on a log scale, using logaddexp operations for numerical stability.

To compute true flow functions, we do the reverse, visiting the DAG in reverse topological order. For every state s, we
add F (s)PB(s

′|s) units of flow to every parent s′ of s, starting at leaves (due to the reverse topological order) where
F (s) = R(s). We similarly set the value of the edge flow F (s → s′) = F (s)PB(s

′|s). PF is simply the softmax of edge
flows. Note that we use a uniform PB , as explained in the main text.

C.1.3. CONSTRUCTING TEST SET

Why 6 nodes? Considering the maximal number of nodes is 7, 6 may seem “too close”. On the other hand, picking a graph
and excluding its subtree means that this subgraph will never appear in the training set. This is quite aggressive, for example
creating a test set of 10% of the data only requires 35 such graphs whose subtrees are excluded. These graphs have an
average of 272 ± 205 descendants. Choosing graphs of 5 nodes would exclude an average of ∼ 4700 graphs per pick,
meaning that a test set of 10% of the data would only stem from the exclusion of 2 or 3 graphs. This may not have the
diversity we desire, thus our choice of 6 nodes.

Finally, we believe this is an interesting choice that relates to real-world applications of GFlowNets. In drug-discovery
of small molecules, given the enormous size of the state space, it is likely for most subgraphs of a sufficient size to never
appear in the training set (because a model can only train for so many iterations in practice). In a graph generation context
we are thus interested in how a model generalizes to subgraphs it’s never seen. In this proposed benchmark, 67994 of the
72296 states are graphs of 7 nodes; only excluding graphs of 6 or 7 nodes thus covers most of state space.

C.2. Details for hypergrid and sequence environments and tasks

C.2.1. (M ×M ) HYPERGRID:

Grid environments have been used in GFlowNet papers since their inception (Bengio et al., 2021) as a sanity check
environment, presumably inheriting this custom from Reinforcement Learning. We continue the tradition and report results
on a 2D grid environment. In it, the agent has 3 actions, move in the x+ direction, move in the y+ direction, or stop. The
agent navigates on a grid of size M (64 in our experiments), and is forced to stop if any of the coordinates reaches M − 1.

As a reward signal we use functions used in past work (Bengio et al., 2021; Jain et al., 2023).

C.2.2. BIT SEQUENCES:

Auto-regressive sequence environments have been used in a variety of past GFlowNet work (Malkin et al., 2022; Madan
et al., 2022; Pan et al., 2023). In this work, we consider a bit sequence environment akin to that originally introduced by
Malkin et al. (2022). We consider a reward of the form R(x) = exp(−minm∈M d(x,m))

l × 10), where d is the Levenshtein
edit distance between an input sequence x and the closest “mode” sequence m, M ⊂ X is the set of mode-sequences, and l
is the max sequence length. We select |M| = 60 sequences from M uniformly at random given the set X of all possible bit
sequences up to length l = 15 to be the “mode” sequences (we do this once at the start of each run). This yields a discrete
state space of 65, 535 states, comparable in size to our graph generation environment.

C.3. Monotonic reward transformation

We consider a monotonic transform of the form Hγ(logR(x)) = e−γ logR(x) logR(x). As described earlier, the transform
Hγ maps logR′(s) = Hγ(logR(s)),∀s ∈ S such that logR′(s) is skewed towards higher reward states as a function of
some parameter γ (see §C.3 for further details. Note, Hγ is monotonic for values of logR(x) ≤ 0 and γ ≥ 0. In our graph
and sequence generations tasks, logR(x) ≤ 0,∀x ∈ X , hence we are able to use Hγ as a monotonic transform for logR(x).
We show an example of Hγ applied to the cliques task in Figure 7 for various value sof γ.
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Figure 7. Example of monotonic transform Hγ . (left) distributions of logR(x) and logR′(x) for true log-rewards and skewed log-rewards
(using γ = 0.2). (right) plot of logR(x) versus logR′(x) for various values of γ. Points above the γ = 0 line yield skew towards higher
log-reward values.

C.4. Evaluation metrics

To measure the generative modelling performance of GFlowNets we consider the Jensen-Shannon (JS) divergence and the
MAE between the learned log p(x; θ) and the true log p(x). For JS divergence, we compute:

JS(p(x), p(x; θ)) =
1

2
KL(p(x)∥Q) +

1

2
KL(p(x; θ)∥Q), (3)

where Q = 1
2 (p(x) + p(x; θ)). For the MAE, we simply take the absolute error | log p(x; θ)− log p(x)| and average over

the cardinality of the state space.

C.5. Model architectures

For all graph experiments we use a modified graph transformer (Veličković et al., 2017; Shi et al., 2020). On top of the
normal attention mechanism, we augment the input of each layer with the output of one round of message passing (using
layers from the work of Li et al., 2020) with a sum aggregation–we found that this was useful in tasks where counting was
required. We use 8 layers with 128-dimensional embeddings and 4 attention heads; we use this architecture after having
tried different numbers of layers and embeddings in order to validate our task; this is coincidentally represented in Fig. 1(a).

For sequence tasks, we use a vanilla transformer (Vaswani et al., 2017) with 4 layers of 64 embeddings and 2 attention heads.
We did not search for hyperparameters, since this setup has been used in prior work (Malkin et al., 2022).

For grid tasks we use a LeakyReLU MLP with 3 layers of 128 units. The input is a one hot representation of each coordinate.

We use the Adam optimizer with learning rate 0.0001 for all models.

C.6. Implementation details

Our experiments are implemented in Pytorch and Pytorch Geometric. Our code is available at https://github.com/
lazaratan/gflownet-generalization

All experiments were run on a HPC cluster of NVIDIA A100 100GB GPUs for a total of approximately 2000 GPU hours.
Only 1 GPU is required for Eeach individual seed run of an experiment, typically taking between 24 hours to 3 days to
complete, depending on the experiment. Throughout the conception of this work, there were a small set of preliminary and
failed experimental runs as ideas were being formed.

D. Additional Graph Task Experiments
D.1. Graph neural network architectures for GFlowNet graph task experiments

We tried a few GNN architectures. GATs appeared the best. While they are not the simplest GNNs, they may be the most
general (because of the attention mechanism). We compared GATs, GCNs and GINs the experiment of Figure 2 (i.e. simply
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Table 3. Mean Absolute Error (MAE) when training GFlowNets for different GNN architectures.
Model Constant Counting Neighbors Cliques
GAT 0.08 ± 0.00 0.14 ± 0.01 0.30 ± 0.01 0.32 ± 0.03

GCN 0.48 ± 0.01 0.48 ± 0.01 2.23 ± 0.19 1.53 ± 0.27

GIN 0.34 ± 0.01 0.39 ± 0.01 1.48 ± 0.09 0.64 ± 0.05

Table 4. Jenson-Shannon (JS) divergence when training GFlowNets for different GNN architectures.
Model Constant Counting Neighbors Cliques
GAT 0.002 ± 0.000 0.002 ± 0.000 0.005 ± 0.001 0.008 ± 0.001

GCN 0.031 ± 0.001 0.037 ± 0.001 0.339 ± 0.017 0.240 ± 0.049

GIN 0.018 ± 0.000 0.018 ± 0.000 0.247 ± 0.007 0.061 ± 0.007

training GFlowNets online on-policy)s. We were careful to ensure that all models have almost-equal numbers of parameters.
We find GATs to be superior, but we acknowledge that this may not be the case in tasks beyond this benchmark, and that we
have obviously spent more time tuning our GAT model than these. We believe it unlikely that the choice of model would
affect our observations.

D.2. Other GFlowNet objectives

We elected to consider SubTB(1) since it has been shown to yield improved results over TB and Detailed Balance (DB).
Furthermore, we consider the Trajectory Balance (TB) and Flow Matching (FM) objectives in a set of offline experiments to
assess how GFlowNets assign probability mass to unvisited areas of the state space (see D.3). In Table 5, we show that
SubTB(1) performs best (compared to offline TB and offline FM) when ranking states in the graph tasks.

D.3. GFlowNets learn rank preservation of unseen states

Table 5. Comparing the rankings given by different ways of training a model on a dataset. Standard deviations are over 4 runs. In the last
three rows the number in brackets is the number of optimal objects in the test set.

Task Supervised Distilled F Distilled PF offline TB offline subTB offline FM
Test set Spearman correlation

cliques 0.92 ± 0.02 0.92 ± 0.01 0.93 ± 0.00 0.88 ± 0.01 0.90 ± 0.01 0.86 ± 0.03

neighbors 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.00

count 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.95 ± 0.01 0.95 ± 0.00 0.96 ± 0.00

Test set top-100 Spearman correlation
cliques 0.66 ± 0.02 0.74 ± 0.10 0.83 ± 0.04 0.67 ± 0.10 0.69 ± 0.11 0.53 ± 0.13

neighbors 0.87 ± 0.00 0.87 ± 0.00 0.87 ± 0.00 0.86 ± 0.01 0.86 ± 0.00 0.86 ± 0.01

count 0.44 ± 0.00 0.44 ± 0.00 0.44 ± 0.00 0.24 ± 0.06 0.24 ± 0.06 0.37 ± 0.02

Avg Rank of optimal objects
cliques (15) 21.5 ± 14.5 39.3 ± 30.2 13.3 ± 5.3 18.1 ± 4.9 12.1 ± 2.0 17.7 ± 5.2

neighbors (48) 23.5 ± 0.0 23.5 ± 0.0 23.5 ± 0.0 43.4 ± 5.5 43.6 ± 9.4 40.7 ± 2.2

count (7) 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0 62.7 ± 12.3 61.1 ± 15.1 25.6 ± 4.2

We want to assess more precisely where GFNs put probability mass, in particular in states they’ve never visited. More
specifically though, GFNs are often used to find likely hypotheses, i.e. generate objects “close enough” to the argmax(es).

Consider the following scenario, which is a common way to use GFNs. Some dataset of objects and scores D = {(xi, yi)}
is given to us. We train a reward proxy to regress to R(xi; θ) = yi, and then train a GFN on R(x; θ) in order to generate xs
(and commonly, find the most “interesting” x). If we assume that supervised learning is “as good as it gets” to approximate
R, then the task of finding argmaxx R(x) by finding argmaxx R(x; θ) should also be as good as it gets. This prompts us
to ask, how close are GFNs to this ideal?

In the following experiment, we look at three measures. First, the Spearman rank correlation on the probabilities p(x; θ) (or
R(x; θ) for the supervised model) of the test set, second we do the same for the top-100 graphs in the test set, and finally we
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look at the mean rank of the set of optimal xs in the test set (e.g. if there are 7 optimal graphs in the test set and the model
perfectly predicts their rank to be [0, 1, 2, 3, 4, 5, 6] then the mean rank is (0 + 1 + 2..+ 6)/7 = 3.0).

These measures are intended to be proxies for how likely it is that a model trained on some dataset would be able to generate
objects close enough to the optimal objects.

This third measure is also inspired by the following fact: it has been observed in a few setups that even though trajectory
balance objectives appeared to fit the distribution much better than flow matching, flow matching can be more efficient at
producing high-reward samples (which seems counter-intuitive).

We thus compare distilling edge flows to policies, as well as TB objectives to the FM objective. Specifically for GFN
objectives (TB, subTB, FM), we use an offline paradigm where we sample trajectories by sampling an x uniformly at random
from D and going backwards with PB uniformly at random (this is presumably a somewhat ideal training condition).

We report the results in Table 5. The results are quite dense, so let us make a few observations:

• When considering the entire test set, the supervised model is indeed the gold standard. Offline GFN models are slightly
worse. This isn’t too surprising, and is in fact reminiscent of results related to the difficulty of training value functions
via TD in RL (Bengio et al., 2020).

• When considering either the top-100 or the optimal objects, we see surprising results for the cliques task (the hardest
task)

– for the top-100 objects, the distilled models do better, and the offline TB models are on-par with (and occasionally
better than) the supervised model

– for the rank of optimal objects, not only does distilled PF do better, the offline GFN methods do better as well.
Recall that some test set information is leaking into training; it may explain the advantage of distilled models, but not
the advantage of offline GFN models.

• TB and subTB are generally better at fitting ranking than FM, except when it comes to optimal objects. This reproduces
past observations, suggesting flow matching over-weights high-reward states, even outside of its training data; we
unfortunately do not have a coherent explanation:

– F (s, s′) distillation being worse than PF distillation means modeling F is probably not the advantage;
– This phenomenon is consistent across training, although not on every task.
– This phenomenon is amplified when not correcting for idempotent actions. This is expected (Ma et al., 2023), but

useful to measure.

We repeat these three measures with different train-test ratios, shown in Figure 17, where we see that the results are as
expected, and consistent with Table 5. To summarize: GFlowNets implicitly learn to put more mass on high-reward objects
than low-reward objects outside their training set.

The above is interesting, but is still just a statement about ranking between unseen states. Obviously this says nothing about
the total probability mass given to unseen states.

D.4. Distilled flow experiments over only unseen states
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Figure 8. MAE error for only unseen states on constant, counting, neighbors, and clique graph generations tasks. (a) evaluation for model
trained to distill edge flows and policies. (b) evaluation an online trained GFlowNet via SubTB(1). We see that considering only the
unseen states for MAE metric leads to comparable observation to the case of evaluating MAE over all states. This is expected since error
on the unseen states should be driving the model’s overall evaluation performance when evaluating on the entire state space. Note, for the
online GFlowNet, there is no guarantee that the model has not “seen” the left out unseen states in this evaluation.
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Figure 9. MAE gap between online trained GFlowNet via SubTB(1) and distillation trained model regressing to PF on only unseen
states. We observe that when considering only unseen states, results are consistent with evaluation over the entire state space. This is also
expected since error on the unseen states should be driving the model’s overall evaluation performance when evaluating on the entire state
space.

D.5. Additional memorization experiments

In Figure 10 we look at reward corruption. This is another setting considered by Zhang et al. (2017; 2021) to achieve
de-structuring of the form s⊥⊥ R̃(s).

In Figure 11 we look at online trained vs distilled GFlowNets with true vs shuffled rewards.
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Figure 10. Memorization gap training curves for the constant reward on the graph generation task. In this experiment, we consider the
case where Gaussian noise corrupts the constant reward signal of the form R̃(x) = R(x) + ϵ, ϵ ∼ N (0, σ), thus inducing de-structuring.
Here we consider σ = 2. We observe behaviour consistent with that found in §4.3.
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Figure 11. Memorization gap training curves for counting, neighbors, and cliques tasks for distilled (regressing to PF ) and online trained
GFlowNet. We observe results are consistent with findings in §4.3 for the online trained GFlowNet.

D.6. Full Experimental results for offline and off-policy training of GFlowNets
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Figure 12. Evaluation curves for offline and off-policy trained GFlowNets on counting, neighbors, and cliques graph generations tasks
for different choices of PX when training using the full dataset (no test set). Model performance is dependent on the choice of PX .
When considering evaluation on the JS divergence and MAE metrics, depending on task and some choices of PX , p(x) is not adequately
approximated. However, regardless of task, offline and off-policy trained GFlowNets appear to robustly learn R.
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Figure 13. Results for policy mixing interpolation experiments. Here, we mix Pα(s
′|s) = (1 − α)PF (s

′|s; θ) + αPU (s
′|s), where

0 ≤ α ≤ 1. For α = 0, the model is fully on-policy, sampling trajectories from PF (s
′|s; θ). For α = 1, the model is sampling fully

off-policy using PU (s
′|s). This approximates the behaviour of training offline and off-policy when using x ∼ U(x) (i.e. uniform

sampling of x). Here we can observe the effects of deviating from on-policy samples during training. We see that at times, specifically for
the more difficult tasks (neighbors and cliques), even small degrees of deviation from PF (s

′|s; θ) can lead to worsened performance
when approximating p(x) (seen by sensitivity in distributional JS divergence and MAE metrics). In contrast, approximating R appears to
improve as the model samples more uniformly over X (if not entirely uniform, i.e. when α = 1). Interestingly, the counting task appears
generally invariant to minor changes in α.
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Figure 14. Evaluation curves for offline and off-policy trained GFlowNets on counting, neighbors, and cliques graph generations tasks for
different choices of PX when training using a subset of the full dataset (90%-10% train-test split). In this setting, agnostic to the choice
of PX and graph generation task, we observe the GFlowNet models struggles to converge when considering JS divergence and MAE
distributional metrics for approximating p(x). However, we observe the GFlowNet models remains robust when learning R.
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Figure 15. Continuation of Figure 14, but evaluated over only the unseen sates (test states). We observe performance is consistent with the
evaluations over the entire state space (Figure 14).
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D.7. Offline GFlowNets inadequately assign probability mass
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Figure 16. The total probability of the test set (dotted) and of the top-100 objects within the test set (full lines); means of 4 seeds. Each
color is a different training/test split ratio. As the model has access to more data, it seems to overfit more; it gives more total probability to
very few states, but particularly, to high reward states. We also plot in the bottom right (stars) what the “true” total probability of the
top-100 objects should be (it varies because of the random seeds and test set size, we show the seed average).

Let’s dig into the experiment of §D.3. We’ve established that offline GFNs manage to rank unseen states fairly well, but this
says nothing about how much probability it gives those states, only that the relative probabilities are well behaved.

In Figure 16 we show how much total probability (i.e.
∑

i∈test p(xi; θ)) is allocated to the test set. In particular, we show
the total probability of the whole test set, as well as of the top-100 objects within the test set.

We believe the following result is unexpected: as the training set grows larger, high-reward unseen objects take up
more total probability.

This seems to be counter to our intuition on generalization; which suggests that as a model gets more training data, it should
extrapolate better (which for a probability model should mean that p(x; θ) should get closer to p(x)).

This result seems to be both terrible news and great news. First the bad news; this result suggests that naively applying GFN
objectives to an offline training regime simply doesn’t work. Indeed, intuitively because Z is a free variable in GFNs, one of
two things seems likely to happen: either the model ends up learning Z =

∑
i∈train R(xi) and giving 0 probability to the

test set, or the model ends up learning an arbitrary large Z and giving 0 probability to the training set. The good news; while
the latter seems to happen (the training set ends up with fairly low total probability), there seems to be structure to which
states receive the most probability. This again seems particularly useful in the scenario where we are looking for the most
interesting (high-reward) x.
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Figure 17. Rank-related metrics during offline GFN training and supervised regression as a function of the size of the training set. Averages
are over 4 seeds (which influence the construction of the test).
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E. Sequence and Hypergrid Experiments
E.1. Online and distilled training

E.1.1. ONLINE TRAINED MODELS
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Figure 18. Training a GFlowNet (online and on-policy) on 4 different hypergrid tasks. Corners, the most frequently used task in the
hypergrid environment, appears to be most difficult for learning p(x).
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Figure 19. Training a GFlowNet (online and on-policy) on 2 different sequence tasks. The edit distance task appears to be significantly
more difficult than the constant task for learning p(x). Given the auto-regressive nature of the sequence environment, it is not unsurprising
how well a GFlowNet performs on the constant task (i.e. the sequence environment is not challenging on its own). In contrast, we reify
that the edit distance reward is indeed a challenging task in this environment.
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Figure 20. MAE error for only test states on the sequence task for online and on-policy. Note that for this experiment, the test states are
not necessarily unvisited by the model
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E.1.2. DISTILLED FLOWS AND FORWARD POLICY MODELS
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Figure 21. Training a MLP on 4 different tasks to regress to F (left) and R (right) in the hypergrid environment. Task difficulty between
supervised models and online and on-policy trained GFlowNets appears consistent.
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Figure 22. Training a model to distill edge flows and policies on 4 different hypergrid tasks for 90%-10% train-test split (top) and
60%-40% train-test split (bottom). It generally seems that (a) doing so recovers the intended distribution fairly well, and (b) modeling PF

appears easier than modeling F , insofar as it recovers p(x) better, in the hypergrid environment.
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Figure 23. Training a model to distill edge flows and policies on 2 different sequence tasks for 90%-10% train-test split. It generally
seems that (a) doing so recovers the intended distribution fairly well, and (b) modeling PF appears easier than modeling F , insofar as it
recovers p(x) better, in the sequence environment for the edit distance reward. For the constant reward, there appears to be no apparent
difference in difficulty between learning PF or F .
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Figure 24. MAE error for only test states on the sequence task for distilled model, regressed to PF . Note that for this experiment, the test
states are unvisited by the model.

E.2. Reward transformation
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Figure 25. Training models distilled to PF and GFlowNet models trained online/on-policy for a range of monotonic skew values γ on the
sequence task. Transforming the distribution of the edit distance reward to contain a larger proportion of high reward values generally
improves the performance for approximating p(x).

E.3. Memorization gap experiments

E.3.1. MEMORIZATION IN HYPERGRIDS
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Figure 26. Memorization gap training curves for branin, currin, and corners tasks on the hypergrid environment. Maintaining flow
structure in the learning problem (learning PF under shuffled R̃) generally induces a smaller memorization gap relative to the fully
de-structured setting. Note that for the branin reward, there is not apparent difference between learning the true R and the shuffled R̃,
suggesting the reward alongside the hypergrid environment induces a task with minimal difficulty.

E.3.2. MEMORIZATION IN SEQUENCES
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Figure 27. Memorization gap training curves for the edit distance task on the sequence environment. Maintaining flow structure in the
learning problem (learning PF under shuffled R̃) generally induces a smaller memorization gap relative to the fully de-structured setting.

E.4. Offline and off-policy training

E.4.1. OFFLINE AND OFF-POLICY IN HYPERGRIDS

0 100 200 300 400
10 5

10 4

10 3

10 2

10 1

JS
 D

iv
er

ge
nc

e

branin

0 100 200 300 400
10 5

10 4

10 3

10 2

10 1
currin

x U(x) x p(x; ) x R(x) x |p(x; ) p * (x)| x (log p(x; ) log p * (x))2

0 100 200 300 400
10 2

10 1

corners

0 100 200 300 400
Validation Epoch

10 2

10 1

100

|lo
gp

lo
gp

|

0 100 200 300 400
Validation Epoch

10 2

10 1

100

0 100 200 300 400
Validation Epoch

100

Figure 28. Evaluation curves for offline and off-policy trained GFlowNets on branin, currin, and corners hypergrid tasks for different
choices of PX when training using a subset of the full dataset (90%-10% train-test split). In this setting, agnostic to the choice of PX
and hypergrid reward, we observe the GFlowNet models converge when considering both the JS divergence and the MAE distributional
metrics for approximating p(x). This differs from the graph generation tasks where models struggle to converge on these metrics in this
setting. For the more difficult task (corners), sampling x from sets that include the proxy-policy p(x; θ) result in the best performance on
JS divergence while sampling x ∼ U and x ∼ | log p(x; θ)− log p(x)| results in the best performance on the MAE metric.

E.4.2. OFFLINE AND OFF-POLICY IN SEQUENCES
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Figure 29. Evaluation curves for offline and off-policy trained GFlowNets on edit distance sequence task for different choices of PX
when training using a subset of the full dataset (90%-10% train-test split). In this setting, agnostic to the choice of PX , we observe the
GFlowNet models converge when considering JS divergence and MAE distributional metrics for approximating p(x). This differs from
the graph generation tasks where models struggle to converge on these metrics in this setting.
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