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Abstract

Decision forests are popular tools for classification and regression. These forests1

naturally generate proximity matrices that measure the frequency of observations2

appearing in the same leaf node. While other kernels are known to have strong the-3

oretical properties such as being characteristic, there is no similar result available4

for decision forest-based kernels. In addition, existing approaches to independence5

and k-sample testing may require unfeasibly large sample sizes and are not inter-6

pretable. In this manuscript, we prove that the decision forest induced proximity7

is a characteristic kernel, enabling consistent independence and k-sample testing8

via decision forests. We leverage this to introduce kernel mean embedding random9

forest (KMERF), which is a valid and consistent method for independence and10

k-sample testing. Our extensive simulations demonstrate that KMERF outperforms11

other tests across a variety of independence and two-sample testing scenarios.12

Additionally, the test is interpretable, and its key features are readily discernible.13

This work therefore demonstrates the existence of a test that is both more powerful14

and more interpretable than existing methods, flying in the face of conventional15

wisdom of the trade-off between the two.16

1 Introduction17

Decision forests are ensemble method popularized by Breiman [3]. It is highly effective in classifica-18

tion and regression tasks, particularly in high-dimensional settings [5, 6, 37]. This is achieved by19

randomly partitioning the feature set and using subsampling techniques to construct multiple decision20

trees from the training data. To measure the similarity between two observations, a proximity matrix21

can be constructed, defined as the percentage of trees in which both observations lie in the same leaf22

node [4]. This proximity matrix serves as an induced kernel or similarity matrix for the decision23

forest. In general, any random partition algorithm may produce such a kernel matrix.24

As the complexity of datasets grow, it becomes increasingly necessary to develop methods that can25

efficiently perform independence and k-sample testing. We also desire methods that are interpretable,26

lending insight into how and why statistically significant results were determined. Parametric methods27

are often highly interpretable, such as Pearson’s correlation and its rank variants [22, 33, 16]. These28

methods are still popular to detect linear and monotonic relationships in univariate settings, but29

they are not consistent for detecting more complicated nonlinear relationships. Nonparametric30

methods can be very powerful. The more recent distance correlation (Dcorr) [36, 35] and the31

kernel correlation (HSIC) [10, 11] are consistent for testing independence against any distribution of32

finite second moments for any finite dimensionality; moreover, the energy-based statistics (such as33

Dcorr) and kernel-based statistics (such as HSIC) are known to be exactly equivalent for all finite34

samples [21, 30]. The theory supporting universal consistency of these methods (which we refer to as35

kernel methods hereafter, without loss of generality) depends on those kernels being characteristic36
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kernel [28, 18, 19, 30]. Unfortunately, the above tests do not attempt to further characterize the37

dependency structure. To the best of our knowledge, very few tests exist[38, 15].38

In addition, although these methods all have asymptotic guarantees, for finite samples, performance39

can be impaired by poorly choosing a particular characteristic kernel. Choosing an appropriate40

kernel that properly summarize geometries within the data is often times non-obvious [27]. High-41

dimensional data is particularly vexing [25, 38], and a number of extensions have been proposed to42

achieve better power such as adaptive metric kernel choice [12], low-dimensional projections [14],43

and marginal correlations [29].44

In this paper, we leverage the popular random forest method [3] and a recent chi-square test [32]45

for a more powerful and interpretable method for hypothesis testing. We prove that the random46

forest induced kernel is a characteristic kernel, and the resulting kernel mean embedding random47

forest (KMERF) is a valid and consistent method for independence and k-sample testing. We then48

demonstrate its empirical advantage over existing tools for high-dimensional testing in a variety49

of dependence settings, suggesting that it will often be more powerful than existing approaches in50

real data. As random forest can directly estimate feature importances [3], the outputs of KMERF51

are also interpretable, KMERF therefore flies in the face of conventional wisdom that one must52

choose between power and interpretability: KMERF is both empirically more powerful and more53

interpretable than existing approaches.54

2 Preliminaries55

2.1 Hypothesis Testing56

The testing independence hypothesis is formulated as follows: suppose xi ∈ Rp and yi ∈ Rq, and57

n samples of (xi, yi)
iid∼ FXY , i.e., xi and yi are realizations of random variables X and Y . The58

hypothesis for testing independence is59

H0 : FXY = FXFY ,

HA : FXY 6= FXFY .

Given any kernel function k(·, ·), we can formulate the kernel induced correlation measure as cnk (x,y)60

using the sample kernel matrices [10, 30], where x = {xi} and y = {yi}. When the kernel function61

k(·, ·) is characteristic, it has been shown that cnk (x,y)→ 0 if and only if x and y are independent62

[10].63

The k-sample hypothesis is formulated as follows: let uji ∈ Rp be the realization of random variable64

Uj for j = 1, . . . , l and i = 1, . . . , nj . Suppose the l datasets that are sampled i.i.d. from F1, . . . , Fl65

and independently from one another. Then,66

H0 : F1 = F2 = · · · = Fl,

HA : ∃ j 6= j′ s.t. Fj 6= Fj′ .

By concatenating the l datasets and introducing an auxiliary random variable, the kernel correlation67

measure can be used for k-sample testing [21].68

2.2 Characteristic Kernel69

Definition 1. Let X be a separable metric space, such as Rp. A kernel function k(·, ·) : X ×X → R70

measures the similarity between two observations in X , and an n× n kernel matrix for {xi ∈ X , i =71

1, . . . , n} is defined by K(i, j) = k(xi, xj).72

• A kernel k(·, ·) : X × X → R is positive definite if, for any n ≥ 2, x1, . . . , xn ∈ X and73

a1, . . . , an ∈ R, it satisfies74

n∑
i,j=1

aiajk(xi, xj) ≥ 0.

• A characteristic kernel is a positive definite kernel that has the following property: for any75

two random variables X1 and X2 with distributions FX1 and FX2 ,76

E[k(·, X1)] = E[k(·, X2)] if and only if FX1
= FX2

. (1)
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3 KMERF77

The proposed approach for hypothesis testing, KMERF, involves the following steps:78

1. Run random forest with m trees, with independent bootstrap samples of size nb ≤ n used79

to construct each tree. The tree structures (partitions) within the forest P are denoted as80

φw ∈ P, where w ∈ 1, . . . ,m and φw(xi) represents the partition assigned to xi.81

2. Calculate the proximity kernel by82

Kx
ij =

1

m

m∑
w=1

[I(φw(xi) = φw(xj))],

where I(·) is the indicator function that checks whether the two observations lie in the same83

partition in each tree.84

3. Compute the unbiased kernel transformation [34, 32] on Kx. Namely, let85

Lx
ij =

Kx
ij − 1

n−2

n∑
t=1

Kx
it − 1

n−2

n∑
s=1

Kx
sj +

1
(n−1)(n−2)

n∑
s,t=1

Kx
st i 6= j

0 i = j

4. Let Ky be the Euclidean distance induced kernel by Shen and Vogelstein [30], or the86

proximity kernel in the case that dimensions of x and y is the same, that is p = q, and87

compute Ly using the same unbiased transformation. Then the KMERF statistic for the88

induced kernel k is,89

cnk (x,y) =
1

n(n− 3)
trace(LxLy).

5. Compute the p-value via the following chi-square test [32]:90

p = 1− Fχ2
1−1

(
n · cnk (x,y)√

cnk (x,x) · cnk (y,y)

)
,

where χ2
1 is the chi-square distribution of degree 1. Reject the independence hypothesis if91

the p-value is less than a specified typer 1 error level, say 0.05.92

In the numerical implementation, the standard supervised random forest is used withm = 500 (which93

is also applicable to the unsupervised version or other random forest variants [2, 1, 37]). In the second94

step, we simply compute the proximity kernel defined by the random forest induced kernel. In the95

third step, we normalize the proximity kernel to ensure it obtains a consistent dependence measure;96

this is the KMERF test statistic. We found that utilizing the multiscale version of the kernel correlation97

[38, 31], which is equivalent for linear relationships while being better for nonlinear relationships,98

produced similar results to using distance correlation, but substantially increased runtimes.99

Note that one could also compute a p-value for KMERF via the permutation test, which is a standard100

procedure for testing independence [9]. Specifically, first compute a kernel on the observed {xi} and101

{yi}. Then randomly permute the index of {yi}, repeat the kernel generation process for {yi} for102

each permutation. This process involves training a new random forest for each permutation. Finally,103

compute the test statistic for each of the permutations, and the p-value equals the percentage the104

permuted statistics that are larger than the observed statistic. However, the permutation test is very105

slow for large sample size and almost always yields similar results as the chi-square test.106

4 Theoretical Properties107

Here, we show that the random forest kernel characteristic, and the induced test statistic used in108

KMERF allows for valid and universally consistent independence and k-sample testing. All proofs109

are in appendix.110

For a kernel to be characteristic, it first needs to be positive definite, which is indeed the case for the111

forest-induced kernel:112
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Theorem 1. The random forest induced kernel Kx is always positive definite.113

This theorem holds because the forest-induced kernel is a summation of a permuted block diagonal114

matrix, with each matrix coming from individual tree, that is positive definite [7]; and a summation115

of positive definite matrices is still positive definite.116

Next, we show the kernel is characteristic when the tree partition area converges to zero. A similar117

property is also used for proving classification consistency for k-nearest-neighbors [8], and we shall118

denote N(φw) as the maximum area of each part.119

Theorem 2. Suppose as n,m → ∞, N(φw) → 0 for each tree φw ∈ P and each observation xi.120

Then the random forest induced kernel Kx is asymptotically characteristic.121

Intuitively, for sufficiently many trees and sufficiently small leaf region, observations generated by122

two different distributions cannot always be in the same leaf region.123

This leads to the validity and consistency result of KMERF:124

Corollary 2.1. KMERF satisfies125

lim
n→∞

cnk (x,y) = c ≥ 0,

with equality to 0 if and only if FXY = FXFY . Moreover, for sufficiently large n and sufficiently126

small type 1 error level α, this method is valid and consistent for independence and k-sample testing.127

By Gretton et al. [10], any characteristic-kernel based dependence measure converges to 0 if and128

only if X and Y are independent. Moreover, Shen et al. [32] showed that the chi-square distribution129

χ2
1 − 1 approximates and upper-tail dominates the true null distribution of any unbiased kernel when130

using distance correlation, making it a valid and consistent test.131

5 Simulations132

In this section we exhibit the consistency and validity of KMERF, and compare its testing power133

with other competitors in a comprehensive simulation set-up. We utilize the hyppo package in134

Python [20], which uses scikit-learn [23] random forest with 500 trees and otherwise default135

hyper-parameters, and calculate the proximity matrix from this. The KMERF statistic and p-value136

then computed via the process in Section 3. The mathematical details for each simulation type is in137

the Appendix C.138

5.1 Testing Independence139

In this section we compare KMERF to Multiscale Graph Correlation (MGC), Distance Correlation140

(Dcorr), Hilbert-Schmidt Independence Criterion (Hsic), and Heller-Heller-Gorfine (HHG) method,141

Canonical Correlation Analysis (CCA), and the RV coefficient. The HHG method has been shown142

to work extremely well against nonlinear dependencies [13]. The MGC method has been shown143

to work well against linear, nonlinear, and high-dimensional dependencies [31]. The CCA and RV144

coefficients are popular multivariant extensions of Pearson correlation. For each method, we use the145

corresponding implementation in hyppo with default settings.146

We take 20 high-dimensional simulation settings [38], consisting of various linear, monotone, and147

strongly nonlinear dependencies with p increasing, q = 1, and n = 100. To estimate the testing148

power in each setting, we generate dependent (xi, yi) for i = 1, . . . , n, compute the test statistic149

for each method, repeat for r = 10000 times. Via the empirical alternative and null distribution of150

the test statistic, we estimate the testing power of each method at type 1 error level of α = 0.05.151

The power result is shown in Figure 1 shows that KMERF achieves superior performance for most152

simulation modalities, except a few like circle and ellipse.153

5.2 Two Sample Testing154

Here, we compare the performance in the two-sample testing regime. It has been shown that155

all independence measures can be used for two-sample testing [21, 30], allowing all previous156

independence testing methods to be compared here as well. Once again, we investigate statistical157
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Figure 1: Multivariate independence testing power for 20 different settings with increasing p, fixed
q = 1, and n = 100. For the majority of the simulations and simulation dimensions, KMERF
performs as well as, or better than, existing multivariate independence tests in high-dimensional
dependence testing.

power differences with 20 simulation settings consisting of various linear and nonlinear, monotonic158

and nonmonotonic functions with dimension increasing from p = 3, . . . , 10, q = 1, and n = 100.159

We then apply a random rotation to this generated simulation and generate the second independent160

sample (via a rigid transformation).161

Figure 2 shows that, once again, for the majority of simulations settings, KMERF performs at or162

better than other tests in nearly all simulations and simulation dimensions. For certain simulation163

settings, especially the exponential, cubic, and fourth root, KMERF vastly outperforms other metrics164

as dimensions increases.165

5.3 Interpretability166

Not only does KMERF typically offer empirically better statistical power compared to alternatives, it167

also offers insights into which features are the most important within the data set. Figure 3 shows168

normalized 95% confidence intervals of relative feature importances for each simulation, where the169

black line shows the mean and the light grey line shows the 95% confidence interval. Mean and170

individual tree feature importances were normalized using min-max feature scaling. The simulations171

were modified such that the weighting of each feature decreased as feature importance increased,172

with the expectation that the algorithm would detect a decrease in feature importance as dimension173

increased. With these simulations, we are able to determine that exact feature importance trend,174
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Figure 2: Multivariate two-sample testing power for 20 different settings with increasing p, fixed
q = 1, and n = 100. For nearly all simulations and simulation dimensions, KMERF performs as
well as, or better than, existing multivariate two-sample tests in high-dimensional dependence testing.

except for a few of the more complex simulations. The process we used to generate this figure can be175

trivially extended to a two-sample or k-sample case.176

6 Real Data177

We then applied KMERF to a date set consisting of proteolytic peptides derived from the blood178

samples of 95 individuals harboring pancreatic (n=10), ovarian (n=24), colorectal cancer (n=28), and179

healthy controls (n=33) [38]. The processed data included 318 peptides derived from 121 proteins180

(see Appendix D for full details). Figure 4 shows the p-values for KMERF between pancreatatic181

and healthy subjects compared to the p-values for KMERF between pancreatic cancer and all other182

subjects. The test identifies neurogranin as a potentially valuable marker for pancreatic cancer, which183

the literature also corroborates [41, 40]. Meanwhile, while some of the other tests identified this184

biomarker, they identified others that are upregulated in other types of cancers as well (false positives).185

We also show in the figure that the biomarker chosen be KMERF provides better true positive186

detection when compared to the other tests (there is no ground truth in this case, so a leave-one-out187

k-nearest-neighbor classification approach was used instead).188
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normalization for relative feature importances derived from random forest over five dimensions for
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all simulations except for the Independence simulation). As expected, estimated feature importance
decreases as dimension increases. A feature of KMERF is insights into interpretability, and we show
here which dimensions of our simulations influence the outcome of independence test the most.
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7 Discussion189

KMERF is, to the best of our knowledge, one of the first learned kernel that is proven to be190

characteristic. The empirical experiments presented here illustrate the potential advantages of191

learning kernels, specifically for independence and k-sample testing.192

In fact, multiscale graph correlation [38, 31] can be thought of, in a sense, as kernel learning: given n193

samples, and a pair of kernel or distance functions, it chooses one of the approximately n2 sparsified194

kernels, by excluding all but the nearest neighbors for each data point [38, 31]. Because random195

forest can be thought of as a nearest neighbor algorithm [17], in a sense, the forest induced kernel is196

a natural extension of Vogelstein et al. [38], which leads to far more data-adaptive estimates of the197

nearest neighbors using supervised information. Moreover, proving that the random-forest induced198

kernel is characteristic is a first step towards building lifelong learning kernel machines with strong199

theoretical guarantees [24, 39].200

As the choice of kernel is crucial for empirical performance, this manuscript offers a new kernel201

construction that is not only universally consistent for testing independence, but also exhibits strong202

empirical advantages, especially for high-dimensional testing. What is unique to this choice of kernel203

is the robustness and interpretability. It will be worthwhile to further understand the underlying204

theoretical mechanism of the induced characteristic kernel, as well as evaluating the performance205

of these forest induced kernels on other learning problems, including classification, regression,206

clustering, and embedding [26].207
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