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Abstract
Applying reinforcement learning (RL) to real-
world problems is often made challenging by the
inability to interact with the environment and the
difficulty of designing reward functions. Offline
RL addresses the first challenge by considering
access to an offline dataset of environment inter-
actions labeled by the reward function. In con-
trast, Preference-based RL does not assume ac-
cess to the reward function and learns it from
preferences, but typically requires an online in-
teraction with the environment. We bridge the
gap between these frameworks by exploring effi-
cient methods for acquiring preference feedback
in a fully offline setup. We propose Sim-OPRL,
an offline preference-based reinforcement learn-
ing algorithm, which leverages a learned environ-
ment model to elicit preference feedback on sim-
ulated rollouts. Drawing on insights from both
the offline RL and the preference-based RL lit-
erature, our algorithm employs a pessimistic ap-
proach for out-of-distribution data, and an opti-
mistic approach for acquiring informative prefer-
ences about the optimal policy. We provide theo-
retical guarantees regarding the sample complex-
ity of our approach, dependent on how well the
offline data covers the optimal policy. Finally, we
demonstrate the empirical performance of Sim-
OPRL in different environments.

1. Introduction
While reinforcement learning (RL) (Sutton and Barto,
2018) achieves excellent performance in various decision-
making tasks (Kendall et al., 2019; Mirhoseini et al., 2020;
Degrave et al., 2022), its practical deployment remains lim-
ited by the requirement of direct interaction with the envi-

1Department of Computer Science, ETH Zurich 2ETH AI
Center 3Max Planck Institute for Intelligent Systems, Tübin-
gen 4Faculty of Business, Economics and Informatics, Univer-
sity of Zürich (UZH). Correspondence to: Alizée Pace <al-
izee.pace@ai.ethz.ch>.

ICML 2024 Workshop on Models of Human Feedback for AI
Alignment, Vienna, Austria. Copyright 2024 by the author(s).

ronment. This can be impractical or unsafe in real-world
scenarios. For example, patient management and treatment
in intensive care units involve complex decision-making
that has often been framed as a reinforcement learning
problem (Raghu et al., 2017; Komorowski et al., 2018).
However, the timing, dosage, and combination of treat-
ments required are critical to patient safety, and incorrect
decisions can lead to severe complications or death, making
the use of traditional RL algorithms unfeasible (Gottesman
et al., 2019; Tang and Wiens, 2021). Offline RL emerges
as a promising solution, allowing policy learning from en-
tirely observational data (Levine et al., 2020).

Still, a challenge with Offline RL is its requirement for
an explicit reward function. Quantifying the numerical
value of taking a certain action in a given environment
state is challenging in many applications (Yu et al., 2021).
Preference-based RL offers a compelling alternative, rely-
ing on comparisons between different actions or trajecto-
ries (Wirth et al., 2017) and being often easier for humans
to provide (Christiano et al., 2017). In medical settings,
for instance, clinicians may be queried for feedback on
which trajectories lead to favorable outcomes. Unfortu-
nately, most algorithms for preference acquisition require
environment interaction (Saha et al., 2023; Chen et al.,
2022; Lindner et al., 2021) and are therefore not applica-
ble to the offline setting.

Lack of environment interaction and reward learning are
thus two critical challenges for real-world RL deployment
that are rarely tackled jointly. In this work, we address the
problem of preference elicitation for offline reinforcement
learning by asking: What trajectories should we sample to
minimize the number of human queries required to learn
the best offline policy? This presents a challenging prob-
lem as it combines learning from offline data and active
feedback acquisition, two frameworks that require oppos-
ing inductive biases for conservatism and exploration, re-
spectively. To the best of our knowledge, the only strategy
proposed in prior work is to acquire feedback directly over
samples within an offline dataset of trajectories (Shin et al.,
2022, Offline Preference-based Reward Learning (OPRL)).
We propose an alternative solution that queries feedback
on simulated rollouts by leveraging a learned environment
model. Our offline preference-based reinforcement learn-
ing algorithm, Sim-OPRL, strikes a balance between con-
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Table 1: Comparison of related work on preference elicitation.

Framework Offline Efficient Sampling Robustness Guarantees Practical Implementation

PbOP (Chen et al., 2022) ✗ ✓ ✓ ✗
REGIME (Zhan et al., 2023b) ✗ ✓ ✓ ✗
FREEHAND (Zhan et al., 2023a) ✓ ✗ ✓ ✗
OPRL (Shin et al., 2022) ✓ ✓1 ✗ ✓

Sim-OPRL (Ours) ✓ ✓ ✓ ✓

servatism and exploration by combining pessimism when
handling states out-of-distribution from the observational
data (Jin et al., 2021; Zhan et al., 2023a), and optimism in
acquiring informative preferences about the optimal policy
(Saha et al., 2023; Chen et al., 2022). We study the effi-
ciency of our approach through both theoretical and em-
pirical analysis, demonstrating the superior performance of
Sim-OPRL across various environments.

Our contributions are the following: (1) In Section 3, we
first formalize the new problem setting of preference elici-
tation for offline reinforcement learning, which allows for
complementing offline data with preference feedback.
This framework is crucial for real-world RL applications
where direct environment interaction is unsafe or impracti-
cal and reward functions are challenging to design manu-
ally, yet experts can be queried for their knowledge. (2) In
Section 4, we propose a novel offline preference-based RL
algorithm that is independent of the specific preference
elicitation strategy and recovers a robust policy from an
offline dataset and preference feedback. (3) Next, in Sec-
tion 5, we provide theoretical guarantees on eliciting pref-
erences over samples from the offline dataset, complement-
ing work from Shin et al. (2022). (4) Then, in Section 6
we propose our own efficient preference elicitation algo-
rithm based on simulated rollouts in a learned environment
model. (5) Finally, we establish the theoretical guarantees
of our algorithm and demonstrate its empirical efficiency
and scalability in different decision-making environments.

2. Related Work
Our problem setting shares similarities with Offline RL and
Preference-based RL, which we summarize below. We po-
sition ourselves relative to our closest related works in Ta-
ble 1.

Offline RL. Offline Reinforcement Learning has gained
significant traction in recent years, as the practicality of
training RL agents without environment interaction makes
it relevant to real-world applications (Levine et al., 2020).
However, learning from observational data only is a source
of bias in the model, as the data may not cover the entire
state-action space. Offline RL algorithms therefore output

1We demonstrate this in the present work.

pessimistic policies, which has been shown to minimize
suboptimality Jin et al. (2021). Model-based approaches
show particular promise for their sample efficiency (Yu
et al., 2020; Kidambi et al., 2020; Rigter et al., 2022; Zhai
et al., 2024; Uehara and Sun, 2021). In this work, we study
the setting where reward signals are unavailable and must
be estimated by actively querying preference feedback.

Preference-based RL. Rather than accessing numerical
reward values for each state-action pair as in traditional
online RL, preference-based RL learns the reward model
through collecting pairwise preferences over trajectories
(Wirth et al., 2017). Different preference elicitation strate-
gies have been proposed for this framework, generally
based on knowing the transition model exactly or on hav-
ing access to the environment for rollouts (Christiano et al.,
2017; Saha et al., 2023; Chen et al., 2022; Lindner et al.,
2021; Zhan et al., 2023b; Sadigh et al., 2018; Brown et al.,
2020).

Offline Preference-based RL. The development of
preference-based RL algorithms based on offline data only
is critical to settings where environment interaction is not
feasible for safety and efficiency reasons. Still, this frame-
work remains largely unexplored in the literature. While
Zhu et al. (2023); Zhan et al. (2023a) demonstrate the
value of pessimism in offline preference-based reinforce-
ment learning, they do not consider how to query feedback
actively. On the other hand, Shin et al. (2022) propose an
empirical comparison of different preference sampling tra-
jectories from an offline trajectories buffer. In Section 5, we
provide a theoretical analysis of their approach, then pro-
pose an alternative sampling strategy based on simulated
trajectory rollouts in Section 6, which enjoys both theoret-
ical and empirical motivation.

3. Problem formulation
3.1. Preliminaries

Markov Decision Process. We consider the episodic
Markov Decision Process (MDP), defined by the tuple
M = (S,A, H, T,R), where S is the state space, A is the
action space, H is the episode length, T : S × A → ∆S
is the transition function, R : S × A → R is the reward
function. We assume an initial state s0, but our analysis
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could be easily generalized to a fixed initial state distribu-
tion. At time t, the environment is at state st ∈ S and
an agent selects an action at ∈ A. The agent then re-
ceives a reward R(st, at) and the environment transitions to
state st+1 ∼ T ( · |st, at). We describe an agent’s behavior
through a policy function π : S → ∆A, such that π(a|s)
is the probability of taking action a in state s. Let τ =
(s0, a0, . . . sH , aH) denote the trajectory of state-action
pairs of an interaction episode with the environment. With
an abuse of notation, we also write R(τ) =

∑
t R(st, at).

Let dπT denote the distribution of trajectories induced by
rolling out policy π in transition model T . We denote the
expected return of policy π as V π

T,R = Eτ∼dπ
T
[R(τ)], and

π∗ = argmaxπV
π
T,R denotes the optimal policy inM.

Preference-based Reinforcement Learning. Rather than
observing numerical rewards at each state and action, we
receive preference feedback over trajectories. For a pair of
trajectories (τ1, τ2), we obtain binary feedback o ∈ {0, 1}
about whether τ1 is preferred to τ2. We assume that pref-
erence labels P (o = 1|τ1, τ2) := PR(τ1 ≻ τ2) follow the
Bradley-Terry model (Bradley and Terry, 1952):

PR(τ1 ≻ τ2) = σ (R(τ1)−R(τ2)) , (1)

where ≻ denotes a preference relationship and σ is the sig-
moid function. Within this framework, preference elicita-
tion refers to the process of sampling preferences to obtain
information about both the preference function and the sys-
tem dynamics (Wirth et al., 2017).

3.2. Offline Preference Elicitation

We assume access to an observational dataset of trajecto-
ries Doffline = {τ : τ ∼ d

πβ

T }, where πβ is an unknown
behavioural policy in M. As in Offline RL, we do not
have access to the decision-making environment to observe
transition dynamics or rewards under alternative action
choices. We assume not to have access to the reward func-
tion, but we can query preference feedback from a human
to generate a dataset of preferences Dpref = {(τ1, τ2, o)}.

Optimality Criterion. Based only on our offline dataset
Doffline, our goal is to recover a policy π̂∗ that minimizes
suboptimality in the true environment with as few human
preference queries as possible. Let π∗

offline denote the op-
timal offline policy estimated based on the offline data, with
access to the true reward function R, and let ϵT denote its
suboptimality. Since preference elicitation only allows us
to estimate the reward function, we do not aim to achieve a
suboptimality less than ϵT .2 Our objective is then formal-
ized as follows.
Definition 3.1 (Optimality Criterion of Offline Preference
Elicitation). Let π∗ be the optimal policy in M and π̂∗

2However, ϵT is not formally a lower bound for our problem,
as shown in Appendix A.3.

be the estimated optimal policy based on an offline dataset
Doffline and Np > 0 preference queries. Let ϵT be the in-
herent suboptimality assuming access to the true reward
function. We say that a sampling strategy is (ϵ, δ,Np)-
correct if for every ϵ ≥ ϵT , with probability at least (1−δ),
it holds that V π∗

T,R − V π̂∗

T,R ≤ ϵ.

Our work is the first to formalize this important problem,
which faces the challenge of balancing exploration when
actively acquiring feedback and bias mitigation in learning
from offline data.

Function classes. We estimate the reward function and
transition kernel with general function approximation; let
FR and FT denote the classes of functions considered re-
spectively. We also assume a policy class Π. Our the-
oretical analysis also requires the following assumptions
and definitions, which are standard in preference-based RL
(Chen et al., 2022; Zhan et al., 2023a).

Assumption 3.1 (Realizability). The true reward function
belongs to the reward class: R ∈ FR. The true transition
function belongs to the transition class: T ∈ FT . The
optimal policy belongs to the policy class: π∗ ∈ Π.

Assumption 3.2 (Boundedness). The reward function is
bounded: 0 ≤ R̃(τ) ≤ Rmax for all R̃ ∈ FR and all
trajectories τ .

Definition 3.2 (ϵ-bracketing number). Let F be a class of
real functions f : X → R. We say (l, u) is an ϵ-bracket if
l(x) ≤ u(x) and ∥u(x) − l(x)∥1 ≤ ϵ for all x ∈ X . The
ϵ-bracketing number of F , denoted NF (ϵ), is the minimal
number of ϵ-brackets (ln, un)Nn=1 needed so that for any
f ∈ F , there is a bracket i ∈ [N ] containing it, meaning
li(x) ≤ f(x) ≤ ui(x) for all x ∈ X .

Let NFR
(ϵ) and NFT

(ϵ) denote the ϵ-bracketing numbers
of FR and FT respectively. This measures the complex-
ity of the function classes (Geer, 2000). For instance, with
linear rewards FR := {R : τ → θTϕ(τ)}, the ϵ-bracket
number is bounded by NFR

(ϵ) ≤ O(d log BR
ϵ ), where

∥θ∥2 ≤ B and ∥ϕ(τ)∥2 ≤ R ∀τ ∈ T , and d is the di-
mension of the feature space (Zhan et al., 2023a).

Definition 3.3 (Transition concentrability coefficient, Zhan
et al. (2023a)). The concentrability coefficient w.r.t. transi-
tion classes FT and the optimal policy π∗ is defined as:

CT (FT , π
∗) = supT̃∈FT

[
E
(s,a)∼dπ

∗
T

[|T (·|s,a)−T̃ (·|s,a)|]√
E(s,a)∼Doffline

[|T (·|s,a)−T̃ (·|s,a)|2]

]

The concentrability coefficient measures the coverage of
the optimal policy in the offline dataset. Note that
CT is upper-bounded by the density-ratio coefficient:
CT (FT , π

∗) ≤ sup(s,a)∈S×A dπ
∗

T (s, a)/d
πβ

T (s, a), where
πβ is the behavioural policy underlying Doffline.
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Algorithm 1 Offline Preference-based Reinforcement Learning with Preference Elicitation

1: Input: Observational trajectories dataset Doffline. Significance δ ∈ (0, 1), preference budget Np.
2: Output: π̂∗

3: Estimate T̂ and uT via maximum likelihood over the observational data Doffline.
4: Dpref ← ∅.
5: for k = 1, ...Np do
6: Generate trajectory pairs (τ1, τ2). {Preference Elicitation: Sections 5 and 6}
7: Collect preference label o for (τ1, τ2).
8: Dpref ← Dpref ∪ {(τ1, τ2, o)}.
9: Estimate R̂ and uR via maximum likelihood over the preference data Dpref .

10: end for
11: π̂∗ ← argmaxπ∈ΠEτ∼dπ

T̂
[R̂(τ)− uR(τ)− uT (τ)]

4. Offline Preference-based RL with
Preference Elicitation

In this section, we propose a general framework for offline
preference-based reinforcement learning. The next two
sections propose two different preference elicitation strate-
gies. As learning must be carried out in two stages, with en-
vironment dynamics based on Doffline and reward learn-
ing on Dpref , we adopt a model-based approach which we
summarize in Algorithm 1.

Model Learning. We first leverage the offline data to learn
a model of the environment dynamics, fitting a transition
model T̂ and an uncertainty function uT through maximum
likelihood:

T̂ = argmaxT̃∈FT
E(s,a,s′)∼Doffline

[
log T̃ (s′|s, a)

]
,

uT (s, a) = max
T̃1,T̃2∈T

|T̃1(·|s, a)− T̃2(·|s, a)| ·Rmax,

where we define a confidence set: T = {T̃ ∈
FT | E(s,a,s′)∼Doffline

[
log T̂ (s′|s, a)/T̃ (s′|s, a)

]
≤ βT }

over the MLE estimate, and βT is a hyperparameter. In a
practical implementation, this can be achieved by training
an ensemble of models on different data bootstraps (Lak-
shminarayanan et al., 2017).

Iterative Preference Elicitation and Reward Learning.
As with the transition model, our algorithm estimates the
reward function R̂ and its uncertainty function through
maximum likelihood over iteratively collected preference
data Dpref :

R̂ = argmaxR̃∈FR
E(τ1,τ2,o)∼Dpref

[
o logPR̃(τ1 ≻ τ2)

+ (1− o) logPR̃(τ2 ≻ τ1)
]
,

uR(τ) = max
R̃1,R̃2∈R

|R̃1(τ)− R̃2(τ)|,

where we define a confidence set: R = {R̃ ∈
FR | E(τ1,τ2,o)∼Dpref

[
logPR̂(τ1 ≻ τ2)/PR̃(τ1 ≻ τ2)

]
≤

βR} and βR is a hyperparameter. We also define
preference uncertainty between two trajectories τ1, τ2 as

uPR
(τ1, τ2) = maxR̃1,R̃2∈R |PR̃1

(τ1 ≻ τ2) − PR̃2
(τ1 ≻

τ2)|.

The choice of trajectory sampling strategy for preference
elicitation in line 4 is critical to efficiently obtaining an
ϵ-optimal policy. We present two possible strategies in
Sections 5 and 6. Note that by focusing on sample ef-
ficiency as in prior work on preference elicitation (Chen
et al., 2022), we do not necessarily optimize for computa-
tional efficiency; this could be improved by collecting pref-
erences in batches to reduce the number of reward training
loops.

Pessimistic Policy Optimization. Finally, our algorithm
outputs a policy π̂∗ that is optimal while ensuring robust-
ness to modeling error. This means optimizing for the
worst-case value function over the remaining transition and
reward uncertainties (Levine et al., 2020):

π̂∗ = argmaxπ∈Π min
T̃∈T ,R̃∈R

V π
T̃ ,R̃

.

This analysis provides a worst-case robustness guarantee
when considering well-calibrated confidence intervals, as
detailed in Sections 5.1 and 6.1. For a practical implemen-
tation of our algorithm, we penalize the reward function by
the uncertainty as in model-based offline RL methods (Yu
et al., 2020; Chang et al., 2021). Our optimal robust policy
therefore maximizes the following objective:

π̂∗ = argmaxπ∈ΠEτ∼dπ
T̂
[R̂(τ)− uR(τ)− uT (τ)]. (2)

We show in Appendix A.2 that this is indeed a lower bound
of the true value function. The degree of conservatism can
be controlled in practice through the width of the confi-
dence intervals used to determine uR and uT .

5. Preference Elicitation from Offline
Trajectories

A first strategy for preference elicitation without environ-
ment interaction is to sample trajectories directly from the
offline dataset. Shin et al. (2022) propose this approach
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Algorithm 2 Preference Elicitation through Simulated Trajectory Sampling.

1: Input: Pessimistic transition model T̂inf . Reward confidence setR and preference uncertainty function uPR .
2: Output: (τ1, τ2)
3: Estimate optimal offline policy set: Πoffline = {π | π = argmaxπ∈ΠEτ∼dπ

T̂inf

[
R̃(τ)

]
∀R̃ ∈ R}.

4: Identify exploratory policies: π1, π2 = argmaxπ1,π2∈Πoffline
Eτ1∼d

π1
T̂inf

,τ2∼d
π2
T̂inf

[uPR(τ1, τ2)]

5: Rollouts in model: τ1 ∼ dπ1

T̂inf
, τ2 ∼ dπ2

T̂inf
.

as Offline Preference-based Reward Learning (OPRL), and
design a uniform and uncertainty-sampling variant:

OPRL Uniform:
τ1, τ2 ∼ Doffline

OPRL Uncertainty:
τ1, τ2 = argmaxτ1,τ2∈Doffline

uPR
(τ1, τ2)

We provide a theoretical analysis of OPRL.

5.1. Theoretical Guarantees.

We obtain the following result, demonstrated in Ap-
pendix A.4. The suboptimality of the estimated policy π̂∗

is bounded by the policy evaluation error for the optimal
policy π∗. This error decomposes into a term depending
on transition model estimation, and one on reward model
estimation.

Theorem 5.1. For any δ ∈ (0, 1], let
βT = c′T log(HNFT

(1/No)/δ)/No and βR =
c′R log(NFR

(1/Np)/δ)/Np, where No = H|Doffline| is
the number of observed transitions in the observational
dataset and c′T , c

′
R are universal constants. The policy π̂∗

estimated by Algorithm 1, with preference elicitation based
on offline trajectories, achieves the following suboptimality
with probability 1− δ:

V π∗ − V π̂∗ ≤ HRmaxCT (FT , π
∗)

√
cT log(HNFT

)(1/No)/δ)

No︸ ︷︷ ︸
transition term ϵT

+2ακCR(FR, π
∗)

√
cR log(NFR

(1/Np)/δ)

Np︸ ︷︷ ︸
reward term

,

where α = 1 for uniform sampling or α ≤ 1 for uncer-
tainty sampling, CR is a concentrability measure for the re-
ward function, κ = supr∈[−Rmax,Rmax]

1
σ′(r) measures the

degree of non-linearity of the sigmoid function, and cT , cR
are universal constants.

In the special case where both the transition and reward
functions are learned on a fixed initial preference dataset
(no preference elicitation; |Doffline| = 2Np), we recover
Theorem 1 from Zhan et al. (2023a). Importantly, param-
eter α allows us to motivate the superior efficiency of un-

certainty sampling over uniform sampling, observed em-
pirically in Shin et al. (2022) and in our own experiments
(Section 7). Uncertainty sampling learns accurate reward
models with fewer preference queries when α < 1, but can
perform like uniform sampling in harder problems (α = 1).

6. Preference Elicitation from Simulated
Trajectories

We now propose our alternative strategy for generating tra-
jectories for offline preference elicitation: Simulated Of-
fline Preference-based Reward Learning (Sim-OPRL).
This method simulates trajectories (τ1, τ2) by leveraging
the learned environment model. This overcomes a limita-
tion of OPRL, which is only designed to reduce uncertainty
about the reward functions inR, by instead reducing uncer-
tainty about which policies are plausibly optimal. Our ap-
proach is inspired by efficient online preference elicitation
algorithms (Saha et al., 2023; Chen et al., 2022), which we
modify for practical implementation. We account for the
offline nature of our problem by avoiding regions out of the
distribution of the data: the sampling strategy is optimistic
with respect to uncertainty in rewards, but pessimistic with
respect to uncertainty in transitions.

We summarize our approach to generating simulated tra-
jectories for preference elicitation in Algorithm 2 and re-
fer the reader to Appendix B for practical implementa-
tion details. First, we construct a set of candidate opti-
mal policies Πoffline, containing policy π∗

offline (optimal
under the pessimistic model and the true reward function)
with high probability – as demonstrated in Appendix A.5.2.
Next, within this set of candidate policies, we identify the
two most exploratory policies π1, π2, chosen to maximize
preference uncertainty uPR

. Finally, we roll out these poli-
cies within our learned transition model to generate a tra-
jectory pair (τ1, τ2) for preference feedback.

6.1. Theoretical Guarantees

We decompose suboptimality in a similar way to Sec-
tion 5.1, but obtain a reward suboptimality term that de-
pends on the learned dynamics model instead of the true

5



one, and on π∗
offline instead of π∗:

V π∗
−V π̂∗

≤ (V π∗

T,R − V π∗

T̂inf ,R
)︸ ︷︷ ︸

transition term ϵT

+(V
π∗
offline

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf
)︸ ︷︷ ︸

reward term

.

Analysis of the suboptimality due to transition error is iden-
tical to above, but the reward term is thus significantly
different. By design, our sampling strategy ensures good
coverage of preferences over π∗

offline within the learned
environment model, which eliminates the concentrabil-
ity term for the reward CR. We refer the reader to Ap-
pendix A.5 for the proof of Theorem 6.1.

Theorem 6.1. For any δ ∈ (0, 1], let
βT = c′T log(HNFT

(1/No)/δ)/No and βR =
c′R log(NFR

(1/Np)/δ)/Np, where No = H|Doffline| is
the number of observed transitions in the observational
dataset and c′T , c

′
R are universal constants. The policy

π̂∗ estimated by Algorithm 1, with a preference sampling
strategy based on rollouts in the learned transition model,
achieves the following suboptimality with probability
1− δ:

V π∗ − V π̂∗ ≤ HRmaxCT (FT , π
∗)

√
cT log(HNFT

)(1/No)/δ)

No︸ ︷︷ ︸
transition term ϵT

+2ακ

√
cR log(NFR

(1/Np)/δ)

Np︸ ︷︷ ︸
reward term

,

where κ = supr∈[−Rmax,Rmax]
1

σ′(r) measures the degree
of non-linearity of the sigmoid function, and cT , cR are uni-
versal constants.

6.2. Discussion

Our theoretical results demonstrate that the learned pol-
icy can achieve performance comparable to the optimal
policy, and thus satisfy our optimality criterion in Def-
inition 3.1, provided it is covered by the offline data
(CT (FT , π

∗), CR(FR, π
∗) < ∞). Empirical results in

Section 7 confirm that performance is poor when the be-
havioral policy is suboptimal, inducing a large CT or CR.

Offline Trajectories vs. Simulated Rollouts. While
both OPRL and Sim-OPRL depend on the offline dataset
for estimating environment dynamics, they induce differ-
ent suboptimality in modeling preference feedback. Sim-
ulated rollouts are designed to achieve good coverage of
the optimal offline policy π∗

offline, which avoids wast-
ing preference budget on trajectories with low rewards or
high transition uncertainty. In contrast, as shown in Zhan
et al. (2023a), due to the dependence of preferences on full
trajectories, the reward concentrability term CR in Theo-
rem 5.1 can be very large. An advantage of sampling from

the offline buffer, however, is that it is not sensitive to the
quality of the model.

Transition vs. Preference Model Quality. Our theoretical
analysis also suggests an interesting trade-off in the sample
efficiency of our approach, depending on the accuracy of
the transition model. The width of the confidence inter-
val reduces as significance parameter δ or dataset size in-
crease, or as function class complexityNFT

decreases. For
a target suboptimality gap ϵ, provided the optimal offline
policy π∗

offline has a gap ϵT < ϵ, then the number of pref-
erences required is of the order of O(log(1/δ)/(ϵ− ϵT )

2).
A more accurate transition model should therefore require
fewer preference samples to achieve a given suboptimality,
which we again confirm empirically.

7. Experimental results
We demonstrate the effectiveness of preference elicitation
for offline reinforcement learning in practice and compare
the different sampling strategies introduced in Sections 5
and 6: OPRL with uniform and uncertainty-sampling, and
Sim-OPRL. Our experiments explore both simple MDPs
and more complex decision-making environments.

Baselines. For comparison, we also propose a practi-
cal implementation of Preference-based Optimistic Plan-
ning (PbOP), an uncertainty-based preference elicitation
approach over trajectory rollouts in the true environment
(Chen et al., 2022). Finally, we report the performance of
π∗
offline and π∗ as upper bounds for the performance of

our algorithm: the former is trained in the learned transi-
tion model with access to the true reward, and the latter has
full knowledge of both transition and reward function. We
refer the reader to Appendix B for implementation details.

Star MDP. First, consider the simple tabular MDP illus-
trated in Figure 1a, consisting of four states branching from
a central state. We defer transition and reward details to
Appendix C. Preferences collected over samples from the
offline dataset learn slowly about the negative reward in
the bottom state, as it is always included in the sampled
trajectories. Instead, simulated rollouts can query a direct
comparison between the optimal path and one that includes
it. We thus find in Figure 1 that our preference elicitation
strategy based on simulated rollouts achieves better envi-
ronment returns than OPRL approaches which sample from
the offline buffer, with much fewer preference queries.

This example also illustrates the importance of pessimism
with respect to the transition model. Even with access to
true rewards, π∗

offline is pessimistic to avoid the out-of-
distribution state, as it is unclear how to reach it. Thus, in
Figure 1c, we see a drop in performance if pessimism is not
applied to the output policy (purple lines). This confirms
the theoretical insights from Zhu et al. (2023); Zhan et al.
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(b) Comparison against baselines.
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Figure 1: Empirical results on the Star MDP. Mean and 95% confidence interval over 20 experiments. Environment returns are
normalized between 0 and 100. Only OPRL and Sim-OPRL are fully offline, all other methods have access to either environment
interaction and/or to the true reward function.
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(a) As a function of offline dataset size.
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(b) As a function of optimal coverage.

Figure 2: Preference sample complexity Np as function of the properties of the observational data, to reach a suboptimality gap of
ϵ = 20 over normalized environment returns (Star MDP). Mean and 95% confidence intervals over 20 experiments. × marks when the
target suboptimality could not be achieved.

(2023a), who demonstrate the importance of pessimism in
offline preference-based RL problems. Pessimism is also
crucial in simulated rollouts, to avoid wasting preference
budget on regions of low confidence — as value estimates
are inaccurate in any case. This is reflected in the lower
sample efficiency of model rollouts which do not apply pes-
simism with respect to the transition model in Figure 1c
(brown line), and which could be seen as the naive adap-
tation of online preference elicitation methods to our set-
ting (Chen et al., 2022; Lindner et al., 2022). We also note
the importance of optimism with respect to the reward un-
certainty, both in OPRL in Figure 1b and in our own model-
based rollouts in Figure 1c.

Finally, as an upper bound for the performance of our al-
gorithm, we include baselines that have access to the en-
vironment in Figure 1b: we report the performance of the
optimal policy π∗, as well as that of an algorithm query-
ing feedback over optimistic rollouts in the real environ-
ment (Chen et al., 2022, PbOP). Final environment returns
are higher than with our method, as they do not suffer from
the limited coverage of the transition model. As supported
by our theoretical analysis, this result stresses the impor-

tance of having a high-quality transition model to make our
method effective. We explore this in more detail in the fol-
lowing experiment.

Transition vs. Preference Model Quality. Next, we em-
pirically study the trade-off between transition and prefer-
ence model performance in our problem setting. In the low-
data regime, the error ϵT incurred in estimating the value
function due to the misspecification of the transition model
is large. As dictated by our theoretical analysis and as visu-
alized in Figure 2a, this significantly increases the number
of preference samples Np required to achieve good final
performance. At the other end of the spectrum, if the offline
dataset is large and allows modeling the transition model
accurately, then ϵT is small and the number of preference
samples Np needed shrinks. We observe a similar trend
for both Sim-OPRL and our OPRL uncertainty-sampling
baseline.

We also measure how the coverage of the optimal policy
affects performance in our setting. In Figure 2b, we vary
the behavioral policy πβ underlying the offline data, rang-
ing from optimal (density ratio coefficient = 1) to highly

7



Table 2: Comparison of preference sample complexity Np with different sampling methods, to reach a suboptimality gap of ϵ = 20
over normalized returns. Mean and 95% confidence interval over 20 experiments. The best-performing offline method is highlighted in
bold. Note that PbOP has an advantage by having access to direct interaction with the environment.

Environment OPRL Uniform OPRL Uncertainty Sim-OPRL (Ours) PbOP (Online)

Star MDP (Figure 1a) 32 ± 4 30 ± 4 4 ± 2 4 ± 2
Gridworld 105 ± 11 66 ± 7 49 ± 7 32 ± 4
Sepsis Simulation 18,856 ± 427 2,246 ± 143 830 ± 88 261 ± 59

suboptimal (large density ratio coefficient). The concen-
trability terms CT and CR are challenging to measure as
they require considering entire function classes, but we re-
port the accuracy of the maximum likelihood estimate for
both models in Appendix D. We observe that preference
elicitation methods perform best when the data is close to
optimal (with the exception of a fully optimal, non-diverse
dataset making reward learning from preferences challeng-
ing). More preference samples are required if the observa-
tional dataset has poor coverage of the optimal policy (large
CT (FT , π

∗)), as the transition and reward models become
less accurate for the trajectory distribution of interest.

Gridworld and Sepsis Simulation. Finally, we validate
our empirical findings on more complex environments de-
tailed in Appendix C. We explore a gridworld experi-
ment as well as a simulation of patient evolution in the
intensive care unit from Oberst and Sontag (2019), de-
signed to model the evolution of patients with sepsis. This
medically-motivated example highlights another interest-
ing and potentially important advantage of Sim-OPRL over
OPRL, as it does not require feedback on real trajectories
from the observational dataset. In a sensitive setting such
as healthcare where data access is carefully controlled, it
may be attractive to query experts about synthetic trajecto-
ries rather than real data samples. Sample complexity re-
sults across the different environments considered are given
in Table 2, with similar conclusions: Sim-OPRL affords
a higher preference sampling efficiency than OPRL base-
lines. For the sepsis environment, we note the number of
preference samples needed to achieve our target subopti-
mality is very large, likely due to the sparse nature of the
reward function. In a real-world application, we could po-
tentially warm-start the reward model by leveraging proxy
rewards signals in the offline data (Yu et al., 2021).

8. Conclusion
Our work shows the potential of integrating human feed-
back within the framework of offline RL. We address the
challenges of preference elicitation in a fully offline setup
by exploring two key methods: sampling from the of-
fline dataset (Shin et al., 2022, OPRL) and generating
model rollouts (Sim-OPRL). By employing a pessimistic
approach to handle out-of-distribution data and an opti-

mistic strategy to acquire informative preferences, Sim-
OPRL balances the need for robustness and informative-
ness in learning an optimal policy.

We provide theoretical guarantees on the sample complex-
ity of both approaches, demonstrating that performance de-
pends on how well the offline data covers the optimal pol-
icy. Empirical evaluations in various environments confirm
the practical effectiveness of our algorithm, as Sim-OPRL
consistently outperforms OPRL baselines across different
environments.

Overall, our approach not only advances the state-of-the-art
in offline preference-based RL but also takes a significant
step toward improving the practical utility of offline RL.
This opens up new avenues for real-world applications of
RL in healthcare, robotics, and manufacturing, where in-
teraction with the environment is challenging but domain
experts can be queried for feedback. Looking forward, a
natural extension will be to explore alternative sources of
information from experts, still without direct environment
interaction.
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A. Theoretical Details
This appendix provides proofs for the presented theorems and lemmas. In subsection A.1, we provide details on how we
define the maximum likelihood estimators and confidence intervals of the preference and transition models. In subsection
A.2 we provide the proof that our uncertainty-penalized objective in Equation (2) lower bounds the true value function and
thus forms a valid pessimistic framework. In Appendix A.3, we show that the suboptimality of our offline preference elici-
tation framework is not lower-bounded by the performance of the optimal offline policy. In Appendix A.4, we provide our
proof of theorem 5.1, analyzing the suboptimality of preferences sampled from an offline dataset. Finally, in Appendix A.5,
we prove Theorem 6.1, which analyzes the suboptimality of preference sampling over simulated rollouts.

A.1. Maximum Likelihood and Confidence Intervals

Let Fg denote a function class over X → ∆Y , where X ,Y are measurable sets, and g ∈ Fg denotes a function to be
estimated.

Let ĝ denote the maximum likelihood estimator (MLE) of g based on a dataset D = {(xn, yn)}Nn=1: ĝ =
argmaxg̃∈Fg

E(x,y)∼D log(g̃(y|x)). We construct the confidence set around the MLE as follows:

G = {g̃ ∈ Fg | E(x,y)∼D

[
log

ĝ(y|x)
g̃(y|x)

]
≤ β}

Lemma A.1 (MLE Guarantee, Lemma 1 in Zhan et al. (2023a)). Let δ ∈ (0, 1] and define the event E that g ∈ G. If

β =
cMLE log(NFg

(1/N)/δ)

N
,

where cMLE > 0 is a universal constant, then P (E) ≥ 1− δ/2.

Proof. The proof follows that of Lemma 1 in Zhan et al. (2023a) and uses Cramér-Chernoff’s method.

Let B̄ be a 1/N -bracket of Fg with |B̄| = NFg
(1/N). Denote the set of all right brackets in B̄ by B̃ = {b : ∃b′s.t.[b′, b] ∈

B̄}. For b ∈ B̃, we have:

E

[
exp

(
N∑

n=1

log
b(yn|xn)

g(yn|xn)

)]
=

N∏
n=1

E
[
exp

(
log

b(yn|xn)

g(yn|xn)

)]

=

N∏
n=1

E
[
b(yn|xn)

g(yn|xn)

]

=

N∏
n=1

E

[∑
y

b(y|xn)

]
≤ (1 + 1/N)

N ≤ e.

as samples in D as i.i.d. We use the Tower property in the third step and the fact that b is a 1/N -bracket for Fg in the
fourth: there exists g′ ∈ Fg such that ∥g(·|x)− b(·|x)∥1 ≤ 1/N and thus ∥b(·|x)∥1 ≤ 1 + 1/N , for all x ∈ X .

Then by Markov’s inequality, for any δ ∈ (0, 1], we have:

P

(
N∑

n=1

log
b(yn|xn)

g(yn|xn)
> log(1δ)

)
≤ E

[
exp

(
N∑

n=1

log
b(yn|xn)

g(yn|xn)

)]
· exp(− log(1/δ))

≤ eδ.

By union bound, we have for all b ∈ B̃,

P

(
N∑

n=1

log
b(yn|xn)

g(yn|xn)
> cMLE log(NFg

(1/N)/δ)

)
≤ δ/2,
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where cMLE > 0 is a universal constant.

Finally, for all g̃ ∈ Fg , there exists b ∈ B̃ such that g(·|x) ≤ g̃(·|x) for all x ∈ X . As a result, for all g̃ ∈ Fg , we have:

P

(
N∑

n=1

log
g̃(yn|xn)

g(yn|xn)
> cMLE log(NFg (1/N)/δ)

)
≤ δ/2.

Under this event E , we have g ∈ G with probability 1 − δ/2. A confidence interval constructed via loglikelihood also
incurs a bound on the total variation (TV) distance between g and g̃ ∈ G:

Lemma A.2 (TV-distance to MLE). Under the event E , we have, with probability 1− δ, for all g̃ ∈ G:

Ex∼D
[
∥g(·|x)− g̃(·|x)∥21

]
≤

c log(NFg
(1/N)/δ)

N
, (3)

where c > 0 is a universal constant.

Proof. The proof follows that of Liu et al. (2022), Proposition 14.

This guarantees that the true reward function is within an interval around the MLE estimate with high probability.

We apply these lemmas to our MLE estimates of transition and reward functions in Algorithm 1 to obtain the following
guarantees.

Let ER denote the event R ∈ R and ET denote the event T ∈ T , R and T denote the respective confidence sets around
the MLE. By Lemma A.1, events ER and ET have probability 1− δ/2 if we choose βR = c′R log(NFR

(1/Np)/δ)/Np and
βT = c′T log(HNFT

(1/No)/δ)/No, where c′R, c
′
T are universal constants.

A.2. Model-based Pessimism and Uncertainty Penalties

Lemma A.3 (Telescoping Lemma). For any reward model R ∈ FR, and any two transition models T, T̂ ∈ FT :

V π
T,R − V π

T̂ ,R
≤ Eτ∼dπ

T̂

 ∑
sj ,aj∈τ

∥T (·|sj , aj)− T̂ (·|sj , aj)∥1

 ·Rmax

Proof. The proof follows that of Lemma 4.1 in Yu et al. (2020) or Lemma 4 in Zhan et al. (2023a).

Let Wj be the expected return under policy π, with transition model T̂ for the first j steps, then transition model T for the
rest of the episode. We have:

V π
T,R − V π

T̂ ,R
=

H−1∑
j=0

Wj −Wj+1.

Now,

Wj = Rj + Esj ,aj∼π,T̂

[
Esj+1∼T (·|sj ,aj)[V

π
T,R(sj+1)]

]
Wj+1 = Rj + Esj ,aj∼π,T̂

[
Esj+1∼T̂ (sj ,aj)

[V π
T,R(sj+1)]

]
where Rj is the expected return of the first j steps taken in T̂ . Therefore,

Wj −Wj+1 = Esj ,aj∼π,T̂

[
Esj+1∼T (·|sj ,aj)[V

π
T,R(sj+1)]− Esj+1∼T̂ (sj ,aj)

[V π
T,R(sj+1)]

]
≤ Esj ,aj∼π,T̂

[
∥T (·|sj , aj)− T̂ (·|sj , aj)∥1 ·Rmax

]
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under the boundedness assumption for R. Finally, we have:

V π
T,R − V π

T̂ ,R
=

H−1∑
j=0

Wj −Wj+1

=

H−1∑
j=0

Esj ,aj∼π,T̂

[
Esj+1∼T (·|sj ,aj)[V

π
T,R(sj+1)]− Esj+1∼T̂ (sj ,aj)

[V π
T,R(sj+1)]

]

≤
H−1∑
j=0

Esj ,aj∼π,T̂

[
∥T (·|sj , aj)− T̂ (·|sj , aj)∥1 ·Rmax

]

= Eτ∼dπ
T̂

 ∑
sj ,aj∈τ

∥T (·|sj , aj)− T̂ (·|sj , aj) ·Rmax∥1



Lemma A.4 (Pessimistic Transition Model). Under event ET , for all π ∈ Π, R̃ ∈ FR:

V π
T̂ ,R̃−uT

≤ V π
T,R̃

.

Proof.

V π
T,R̃

= V π
T̂ ,R̃
− (V π

T̂ ,R̃
− V π

T,R̃
)

≥ Eτ∼dπ
T̂

[
R̃(τ)

]
− Eτ∼dπ

T̂
[uT (τ)]

= Eτ∼dπ
T̂

[
R̃(τ)− uT (τ)

]
where we have used the telescoping lemma (Lemma A.3), and where uT (τ) =

∑
(s,a)∈τ uT (s, a) ≥

∑
(s,a)∈τ ∥T̂ (·|s, a)−

T (·|s, a)∥1 ·Rmax under event ET .

Lemma A.5 (Pessimistic Reward Model). Under event ER, for all π ∈ Π, T̃ ∈ FT :

V π
T̃ ,R̂−uR

≤ V π
T̃ ,R

.

Proof.

V π
T̃ ,R

= V π
T̃ ,R̂
− (V π

T̃ ,R̂
− V π

T̃ ,R
)

= Eτ∼dπ
T̃

[
R̂(τ)

]
− Eτ∼dπ

T̃

[
R̂(τ)−R(τ)

]
≥ Eτ∼dπ

T̃

[
R̂(τ)− uR(τ)

]
where we have used the fact that |R̂(τ)−R(τ)| ≤

∑
s,a∈τ |R̂(s, a)−R(s, a)| =

∑
(s,a)∈τ uR(s, a) = uR(τ) under event

ER.

Combining the above two lemmas gives the following result:

Corollary A.1. Under events ET and ER, for all π ∈ Π:

V π
T̂ ,R̂−uT−uR

≤ V π
T,R.

This justifies the overall objective considered in our pessimistic policy optimization procedure in Section 4.
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Figure 3: Tabular MDP. The environment starts in state s0 and has horizon H = 1. Transition probabilities from state s0 are given for
the two binary actions a0, a1 (which send the agent to the other state with complementary probability).

A.3. Suboptimality lower bound: a counterexample

Let π∗
offline = argmaxπ∈Π minT̃∈T V π

T̃ ,R
denote the optimal offline policy, which has access to the ground-truth reward

function. In this section, we ask whether its suboptimality ϵT = V π∗

T,R − V
π∗
offline

T,R is a lower bound for the suboptimality
of our learned policy π̂∗ after preference elicitation.

Counterexample. Consider the MDP illustrated in Figure 3. Assume the following MLE estimate and uncertainty func-
tion for both the transition and reward models:

T̂ (s1|s0, a0) = 0.5; uT (s0, a0) = 0.4

T̂ (s1|s0, a1) = 0.5; uT (s0, a1) = 0.1

r̂(s1) = r̂(s2) = 0.5; uR(s1) = uR(s2) = 0.5

Assuming access to the learned transition model and the true reward function, we pessimistically estimate the value of both
actions:

V a0

T̂inf ,R
= 0.1 · 1 + 0.9 · 0 = 0.1

V a1

T̂inf ,R
= 0.6 · 0 + 0.4 · 1 = 0.4

Thus, we have: π∗
offline(s0) = argmaxaV

a
T̂inf ,R

= a1. The offline policy picks the suboptimal action since the worst-
case returns of this action are lower than those estimated for a0. Evaluating this policy in the real environment, we get
ϵT = V π∗

T,R − V
π∗
offline

T,R = 0.6 · 0 + 0.4 · 1 = 0.4.

We now estimate the optimal policy in the learned transition and reward model. Applying pessimism with respect to both
models, we get an equal estimated value of 0 for both actions a0 and a1. If policy optimization converges to π̂∗ = a0, we
reach the suboptimality V π∗

T,R − V π̂∗

T,R = 0.8 · 1 + 0.2 · 0 = 0.8 > ϵT .

This example demonstrates that ϵT is not a lower bound for the suboptimality of π̂∗, as policy π̂∗ can achieve lower
suboptimality than π∗

offline if errors in transition and reward model estimation compensate each other.
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A.4. Suboptimality of OPRL: Proof of Theorem 5.1

A.4.1. SUBOPTIMALITY DECOMPOSITION

Recall that T̂inf , R̂inf = argminT̃∈T ,R̃∈RV π
T̂ ,R̂

denote the pessimistic transition and reward models, such that π̂∗ =

argmaxπ∈ΠV
π
T̂inf ,R̂inf

. We have:

V π∗
− V π̂∗

= V π∗

T,R − V π̂∗

T,R

= (V π∗

T,R − V π∗

T̂inf ,R̂inf
)− (V π̂∗

T,R − V π∗

T̂inf ,R̂inf
)

≤ (V π∗

T,R − V π∗

T̂inf ,R̂inf
)− (V π̂∗

T,R − V π̂∗

T̂inf ,R̂inf
)

≤ V π∗

T,R − V π∗

T̂inf ,R̂inf
, (4)

where we have first used the optimality of π̂∗ (stating that V π̂∗

T̂inf ,R̂inf
≥ V π

T̂inf ,R̂inf
, for all π) and then the pessimism

principle (stating that V π̂∗

T̂inf ,R̂inf
≤ V π̂∗

T,R).

Finally, we decompose the last term above as follows:

V π∗
− V π̂∗

≤ (V π∗

T,R̂inf
− V π∗

T̂inf ,R̂inf
)︸ ︷︷ ︸

transition term

+(V π∗

T,R − V π∗

T,R̂inf
)︸ ︷︷ ︸

reward term

(5)

We further analyze each term in the following sections.

A.4.2. ANALYSIS OF THE TRANSITION TERM

In this section, we now upper bound the transition term defined in Equation (5).

Lemma A.6 (Lemma 4, Zhan et al. (2023a)). Under the event ET , with probability 1 − δ, we have for all T̃ ∈ T , for all
R̃ ∈ GR, for all π:

Edπ
T
[R̃(τ)]− Edπ

T̃
[R̃(τ)] ≤ HRmaxCT (FT , π)

√
cT log(HNFT

(1/No)/δ)

No
,

where cT > 0 is a constant.

Proof. From the telescoping lemma (Lemma A.3), we have:

V π
T,R̃
− V π

T̃ ,R̃
≤ RmaxEτ∼dπ

T

 ∑
sj ,aj∈τ

∥T (·|sj , aj)− T̃ (·|sj , aj)∥1


≤ HRmaxE(s,a)∼dπ

T

[
∥T (·|s, a)− T̃ (·|s, a)∥1

]
≤ HRmaxCT (FT , π)

√
E(s,a)∼Doffline

[∥T (·|s, a)− T̃ (·|s, a)∥21]

Under event ET , by Lemma A.2, we have, with probability 1− δ, for all T̃ ∈ T :

E(s,a)∼Doffline
[∥T (·|s, a)− T̃ (·|s, a)∥21] ≤

1

No
cT log(HNFT

(1/No)/δ)

This concludes our proof.
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A.4.3. ANALYSIS OF THE REWARD TERM

Next, we upper bound the reward term defined in Equation (5).

As in Zhan et al. (2023a), we consider the following value function: V π
T,R = Eτ∼dπ

T
[R(τ)] − Eτ∼dpref

[R(τ)], where
dpref is a fixed reference trajectory distribution. This baseline subtraction, which doesn’t affect either the optimal policy
or the analysis of the transition term, is needed as the approximated confidence set is based on the uncertainty in preference
between two trajectories, not in the reward of a single one.
Definition A.1 (Preference concentrability coefficient). The concentrability coefficient w.r.t. reward classes FR, a target
policy π∗ and a reference trajectory distribution dpref is defined as:

CR(FR, π
∗) =

Eτ1∼dπ∗
T ,τ2∼dpref

[uPR
(τ1, τ2)]

Eτ1,τ2∼Doffline
[uPR

(τ1, τ2)]

Note that, for the purpose of our analysis, our definition differs from that of Zhan et al. (2023a) who instead consider the
max ratio of difference in rewards term: |R(τ1)−R(τ2)− R̃(τ1) + R̃(τ2)| over the entire function class FR.
Lemma A.7. Let trajectories for preference elicitation be sampled uniformly from the offline dataset. Under the event ER,
with probability 1− δ, we have for all T̃ ∈ GT , for all R̃ ∈ R, for all π:

V π∗

T,R − V π∗

T,R̂inf
≤ 2κCR(FT , π)

√
cR log(NFR

(1/Np)/δ)

Np
,

where cR > 0 is a constant and κ = supr∈[−Rmax,Rmax]
1

σ′(r) measures the degree of non-linearity of the sigmoid function.

Proof.

V π∗

T,R − V π∗

T,R̂inf
= Eτ∼dπ∗

T
[R(τ)]− Eτ∼dpref

[R(τ)]− Eτ∼dπ∗
T
[R̂inf (τ)] + Eτ∼dpref

[R̂inf (τ)]

= Eτ1∼dπ∗
T ,τ2∼dpref

[R(τ1)−R(τ2)]− (R̂inf (τ1)− R̂inf (τ2))]

≤ κEτ1∼dπ∗
T ,τ2∼dpref

[|PR(τ1 ≻ τ2)− PR̂inf
(τ1 ≻ τ2)|]

≤ κEτ1∼dπ∗
T ,τ2∼dpref

[uPR
(τ1, τ2)]

= κCR(FT , π
∗)Eτ1,τ2∼Doffline

[uPR
(τ1, τ2)] (6)

where κ = supr∈[−Rmax,Rmax]
1

σ′(r) measures the degree of non-linearity of the sigmoid function. In the first inequality,
we have applied the mean value theorem, under Assumption 3.2. In the second inequality, we have used the definition of
uncertainty function uPR

as we know R̂inf ∈ R.

Now, under event ER, by Lemma A.2, we have, with probability 1− δ for all R̃ ∈ R:

E(τ1,τ2)∼Dpref
[∥PR(τ1 ≻ τ2)− PR̃(τ1 ≻ τ2)∥21] ≤

cR log(NFR
(1/Np)/δ)

Np
, (7)

where cR > 0 is a constant. This implies the following upper bound for the preference uncertainty function:

E(τ1,τ2)∼Dpref
[uPR

(τ1, τ2)] ≤ 2

√
cR log(NFg

(1/Np)/δ)

Np
(8)

Under uniform sampling, the distribution of preferences in Dpref is that of the offline dataset:

E(τ1,τ2)∼Doffline
[uPR

(τ1, τ2)] = E(τ1,τ2)∼Dpref
[uPR

(τ1, τ2)]

Thus,

V π∗

T,R − V π∗

T,R̂inf
≤ 2κCR(FT , π)

√
cR log(NFR

(1/Np)/δ)

Np
.
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Lemma A.8. Let trajectories for preference elicitation be sampled through uncertainty sampling from the offline dataset.
Under the event ER, with probability 1− δ, we have for all T̃ ∈ GT , for all R̃ ∈ R, for all π:

V π∗

T,R − V π∗

T,R̂inf
≤ 2ακCR(FT , π)

√
cR log(NFR

(1/Np)/δ)

Np
,

where cR > 0 is a constant and α ≤ 1.

Proof. The proof follows closely that of Lemma A.7. We introduce the preference concentrability coefficient defined for a
general preference dataset:

C ′
R(FR, π

∗) =
Eτ1∼dπ∗

T ,τ2∼dpref
[uPR

(τ1, τ2)]

Eτ1,τ2∼Dpref
[uPR

(τ1, τ2)]

We start from Equation (6):

V π∗

T,R − V π∗

T,R̂inf
≤ κEτ1∼dπ∗

T ,τ2∼dpref
[uPR

(τ1, τ2)]

= κC ′
R(FT , π

∗)Eτ1,τ2∼Dpref
[uPR

(τ1, τ2)]

≤ 2κC ′
R(FT , π

∗)

√
cR log(NFg

(1/Np)/δ)

Np

where we have used Equation (8).

Now consider the dataset of uncertainty-sampled preferences Dpref . By definition, we have:

Eτ1,τ2∼Dpref
[uPR

(τ1, τ2)] ≥ Eτ1,τ2∼Doffline
[uPR

(τ1, τ2)]

Thus, we have: C ′
R(FT , π

∗) ≤ CR(FT , π
∗). In other words, we can write: C ′

R(FT , π
∗) = αCR(FT , π

∗), where α ≤ 1.
This concludes our proof.

We now conclude the proof of Theorem 5.1 under events ER and ET .

From Lemma A.6, we upper bound the transition term:

V π∗

T,R̂inf
− V π∗

T̂inf ,R̂inf
≤ HRmaxCT (FT , π

∗)

√
cT log(HNFT

(1/No)/δ)

No

From Lemmas A.7 and A.8, we upper bound the reward term:

V π∗

T,R − V π∗

T,R̂inf
≤ 2ακCR(FT , π

∗)

√
cR log(NFR

(1/Np)/δ)

Np
,

where α = 1 for uniform sampling or α ≤ 1 for uncertainty sampling.

Combining with Equation (5), we obtain Theorem 5.1.
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A.5. Suboptimality of Sim-OPRL: Proof of Theorem 6.1

A.5.1. SUBOPTIMALITY DECOMPOSITION

We decompose the suboptimality slightly differently to Equation (4), introducing the optimal offline policy (optimal in the
pessimistic model under the true reward function): π∗

offline = argmaxπ∈ΠV
π
T̂inf ,R

.

V π∗
− V π̂∗

= V π∗

T,R − V π̂∗

T,R

= (V π∗

T,R − V
π∗
offline

T̂inf ,R̂inf
)− (V π̂∗

T,R − V
π∗
offline

T̂inf ,R̂inf
)

≤ (V π∗

T,R − V
π∗
offline

T̂inf ,R̂inf
)− (V π̂∗

T,R − V π̂∗

T̂inf ,R̂inf
)

≤ V π∗

T,R − V
π∗
offline

T̂inf ,R̂inf

= (V π∗

T,R − V π∗

T̂inf ,R
) + (V π∗

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf
)

≤ (V π∗

T,R − V π∗

T̂inf ,R
)︸ ︷︷ ︸

transition term

+(V
π∗
offline

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf
)︸ ︷︷ ︸

reward term

(9)

where we have followed the same analysis as in Appendix A.4.1 and used the optimality of π∗
offline in the last inequality.

The analysis of the transition term is identical to the above (Appendix A.4.2). We analyze the reward term next.

A.5.2. ANALYSIS OF THE REWARD TERM

Lemma A.9 (Optimal Offline Policy In Set). Let Πoffline denote the following set of near-optimal pessimistic policies,
under the pessimitic transition model T̂inf and the reward confidence setR:

Πoffline = {π | π = argmaxπ∈ΠEτ∼dπ
T̂inf

[
R̃(τ)

]
∀R̃ ∈ R}

Under event ER, we have π∗
offline ∈ Πoffline.

Proof. Recall the definition of π∗
offline: π∗

offline = argmaxπ∈ΠV
π
T̂inf ,R

. Note that there is no need to consider the
preference baseline term in V π when building Πoffline since it is independent of the policy. Under event ER, we have
R ∈ R. Thus, π∗

offline ∈ Πoffline.

Lemma A.10. Under event ER, we have, with probability 1− δ:

V
π∗
offline

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf
≤ 2
√
κ2cR/Np log(NFR

(1/Np)/δ)

Proof.

V
π∗
offline

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf

= (V π∗

T̂inf ,R
− V π∗

T̂inf ,R̂
) + (V π∗

T̂inf ,R̂
− V π∗

T̂inf ,R̂inf
)

= E
τ∼d

π∗
offline

T̂inf

[R(τ)]− Eτ∼dpref
[R(τ)]− E

τ∼d
π∗
offline

T̂inf

[R̂inf (τ)] + Eτ∼dpref
[R̂inf (τ)]

= E
τ1∼d

π∗
offline

T̂inf
,τ2∼dpref

[R(τ1)−R(τ2)]− E
τ1∼d

π∗
offline

T̂inf
,τ2∼dpref

[R̂inf (τ1)− R̂inf (τ2)]

≤ κE
τ1∼d

π∗
offline

T̂inf
,τ2∼dpref

[PR(τ1 ≻ τ2)− PR̂inf
(τ1 ≻ τ2)],

where κ = supr∈[−Rmax,Rmax]
1

σ′(r) measures the degree of non-linearity of the sigmoid function. We have applied the
mean value theorem, under Assumption 3.2.
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As Rinf ∈ R, we have: PR(τ1 ≻ τ2)− PR̂inf
(τ1 ≻ τ2) ≤ uPR

(τ1, τ2).

Let dpref correspond to the distribution of the preference data, which consists of rollouts from exploratory policies within
the learned environment model: dpref = dπ1

T̂inf
/2 + dπ2

T̂inf
/2. Recall that the near-optimal policy set Πoffline includes

policy π∗
offline (Lemma A.9) and that π1, π2 are the two more exploratory policies within this set:

E
τ1∼d

π∗
offline

T̂
,τ2∼dpref

[uPR
(τ1, τ2)] ≤ max

π1,π2∈Πoffline

Eτ1∼d
π1

T̂ ,τ2∼d
π2
T̂

[uPR
(τ1, τ2)].

Now, under event ER, by Lemma A.2, we have, with probability 1− δ for all R̃ ∈ R:

E(τ1,τ2)∼Dpref
[∥PR(τ1 ≻ τ2)− PR̃(τ1 ≻ τ2)∥21] ≤

cR log(NFR
(1/Np)/δ)

Np
,

where cR > 0 is a constant. This implies the following upper bound for the preference uncertainty function:

E(τ1,τ2)∼Dpref
[uPR

(τ1, τ2)] ≤ 2

√
cR log(NFg (1/Np)/δ)

Np
.

Thus, we obtain:

V
π∗
offline

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf
≤ 2κ

√
cR log(NFg

(1/Np)/δ)

Np
.

The resulting sample complexity of O(κ
2d
ϵ2 ) matches that of active preference learning within a known environment (Saha

et al., 2023; Chen et al., 2022).

We now conclude the proof of Theorem 6.1 under events ER and ET .

From Lemma A.6, we upper bound the transition term:

V π∗

T,R − V π∗

T̂inf ,R
≤ HRmaxCT (FT , π

∗)

√
cT log(HNFT

(1/No)/δ)

No
.

From Lemma A.10, we upper bound the reward term:

V
π∗
offline

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf
≤ 2κ

√
cR log(NFR

(1/Np)/δ)

Np
.

Combining with Equation (9), we obtain Theorem 6.1.

B. Implementation Details
We trained all models on two 64-core AMD processors or a single NVIDIA RTX2080Ti GPU. The total wall-clock time
for running all experiments presented in this paper amounted to less than 72 hours.

Transition and Reward Function Training. For all baselines, transition and reward models were implemented as linear
classifiers (for the Star MDP) or as two-layer perceptions with ReLU activation and hidden layer dimension 32 (Gridworld
and Sepsis environments). Training was carried out for two or one epochs for the transition and reward models respectively,
with the Adam optimizer (Kingma and Ba, 2014) and a learning rate of 10−3.

We provide a more detailed practical algorithm for Sim-OPRL in Algorithm 3. For both our method and baselines relying
on uncertainty sets (OPRL and PbOP), we estimated uncertainty sets by training models initialized with different random
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seeds on different bootstraps of the data (sampling 90% of the data with replacement). We consider ensembles of size
|T | = |R| = 5 for both transition and reward models. Hyperparameters λT , λR control the degree of pessimism in
practice and could be considered equivalent to adjusting margin parameters βT , βR in our conceptual algorithm proposed
in Section 4. Since the exact values prescribed by our theoretical analysis cannot be estimated, the user must set these
parameters themselves. Hyperparameter optimization in offline RL is a challenging problem (Levine et al., 2020); for our
experiments, we simply set λT = 0.5, λR = 0.1 (StarMDP, Gridworld) and λT = λR = 1 for the Sepsis environment.

Algorithm 3 Sim-OPRL: Practical Algorithm

1: Input: Observational trajectories dataset Doffline. Hyperparameters λT , λR.
2: Output: π̂∗

3: Train an ensemble T of transition models via bootstrapping on the observational data Doffline:

T̂ (·|s, a) = 1

|T |
∑
T̃∈T

T̃ (·|s, a); uT (s, a) = max
T1,T2∈T

|T1(·|s, a)− T2(·|s, a)| ·Rmax

4: Dpref ← ∅.
5: for k = 1, ...Np do
6: Estimate optimal offline policy set:

Πoffline = {π | π = argmaxπ∈ΠE(s,a)∼dπ
T̂

[
R̃(s, a)− λTuT (s, a)

]
∀R̃ ∈ R}

7: Identify exploratory policies: π1, π2 = argmaxπ1,π2∈Πoffline
Eτ1∼d

π1
T̂

,τ2∼d
π2
T̂

[uPR
(τ1, τ2)]

8: Rollouts in model: τ1 ∼ dπ1

T̂
, τ2 ∼ dπ2

T̂
.

9: Collect preference label o for (τ1, τ2).
10: Dpref ← Dpref ∪ {(τ1, τ2, o)}.
11: Train an ensembleR of reward models via bootstrapping of the preference data Dpref :

R̂(s, a) =
1

|R|
∑
R̃∈R

R̃(s, a); uR(s, a) = max
R1,R2∈R

|R1(·|s, a)−R2(·|s, a)|

12: end for
13: π̂∗ ← argmaxπ∈ΠE(s,a)∼dπ

T̂
[R̂(s, a)− λRuR(s, a)− λTuT (s, a)]

Near-Optimal Policy Set and Exploratory Policies. Both Sim-OPRL and PbOP require constructing a set of near-
optimal policies within a learned model of the environment. Note that the PbOP algorithm in Chen et al. (2022) proposes
to construct the near-optimal policy set by considering all policies that have a preference greater than 1/2 over all other
policies in Π, under a transition and preference uncertainty bonus. This is infeasible to estimate in practice; we modified the
algorithm to allow for practical implementation. The motivation in building the set of plausibly optimal policies remains
the same, but the theoretical guarantees may not hold.

We build Πoffline by maintaining a policy model for all R̃ ∈ R, i.e., each element of the reward ensemble. Policy models
are optimized to maximize returns under the transition model T̂ and the reward function R̃ − λTuT (Sim-OPRL) or R̃ +
λTuT (PbOP). Next, the most exploratory policies are identified by generating 10 rollouts of each of the candidate policies
within the learned (SimOPRL) or true (PbOP) model. The trajectories (τ1, τ2) maximizing the preference uncertainty
function uPR

(τ1, τ2) are used for preference feedback. In PbOP, the trajectories are then added to the trajectories buffer
and the transition model is retrained for 20 (Star MDP, Gridworld) or 200 steps (Sepsis).

Preference Feedback Collection. Preference labels are provided through the ground-truth reward function associated
with every environment. As stated in Section 4, for computational efficiency, we sample preferences in batches of 4 (Star
MDP, Gridworld) or 100 (Sepsis) to reduce the number of model updates needed.
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Policy Optimization. Policy optimization stages, both in estimating optimal policy sets in Sim-OPRL and PbOP and
in outputting final policies, are carried out exactly through linear programming for the Star MDP and Gridworld using
cvxopt (Diamond and Boyd, 2016), based on code from Lindner et al. (2021), and using Proximal Policy Optimization
(Schulman et al., 2017) implemented in stable-baselines3 (Raffin et al., 2021) for the Sepsis environment. In the
latter case, after every preference collection episode, reward and policy models were trained from the checkpoint of the
previous iteration, for only 20 steps to minimize computation.

Baselines and Ablations. We implement both OPRL baselines within our model-based offline preference-based algo-
rithm described in Section 4. Uncertainty sampling is taking the pair with maximum preference uncertainty over 45 pairs
for every sample, to reduce the load of computing preference uncertainty over the entire trajectory buffer.

Our ablation study for Figure 1c is conducted as follows. For Sim-OPRL without pessimism in the output policy, we output
the policy that maximizes the value function under the MLE estimate of the transition and reward function, T̂ and R̂, after
preference acquisition. For Sim-OPRL without pessimism in the simulated rollouts, we estimate the optimal policy set
Πoffline in the MLE estimate of the transition model instead of its pessimistic counterpart. Finally, for Sim-OPRL without
optimism in the simulated rollouts, we generate rollouts from any two policies in Πoffline instead of the most explorative
ones.

C. Environment Details

s1

s4 R = 10

s2

R = 6

s3 R = −1

s0

a0

a1

a0

a1a
3a

2
a
2

a
3

Figure 4: Star MDP illustrated in Figure 1a. Transition probabilities are 0.9 for all solid arrows. Omitted actions or complementary
transitions keep the state unchanged.

Star MDP. We illustrate the transition dynamics underlying the Star MDP in Figure 4. Transition probabilities are 0.9
for all depicted solid arrows, and leave the state unchanged otherwise. Other actions also keep the state unchanged with
probability 1. Episodes have length H = 3 and start from s0. Unless specified otherwise, the offline dataset Doffline

consists of 40 trajectories which only cover states (s0, s1, s3) and (s3, s1, s2).

Start

10

−1

−1

−1

−1

20

Figure 5: Gridworld environment. Rewards at every state are indicated if non-zero. Transition probabilities are 0.9. Thick lines
indicate an obstacle, through which state transitions have probability zero.
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Gridworld. We illustrate the gridworld environment in Figure 5. The environment consists of a 4 × 4 grid with states
associated with different rewards, including a negative-reward region in the top-right corner, a high-reward but unreachable
state, and a moderate-reward state at the bottom right corner. Each episode starts in the top-left corner. Transition prob-
abilities for each of the four actions (top, left, bottom, right) are 0.9 for the intended direction, and 0.1 for
the others; and action stay remains in the current state with probability 1. Transitions beyond the grid limits or through
obstacles have probability zero, with the remainder of the probability mass for each action being distributed amongst other
directions equally. The offline dataset contains 150 episodes and the behavioral policy is ϵ-optimal with noise ϵ = 0.1.
Episodes have length H = 10.

Sepsis Simulation. The sepsis simulator (Oberst and Sontag, 2019) is a commonly used environment for medically-
motivated RL work (Tang and Wiens, 2021). We use the original authors’ publicly available code: https://github.
com/clinicalml/gumbel-max-scm/tree/sim-v2/sepsisSimDiabetes (MIT license). The state space
consists of five discrete observational variables (heart rate, blood pressure, oxygen concentration, glucose, diabetes status)
and the action space consists of three different binary treatment options (antibiotic administration, vasopressor adminis-
tration, mechanical ventilation). The probability that each treatment affects the value of each vital sign is determined by
Oberst and Sontag (2019) to reflect patients’ physiology. The ground truth reward function is sparse and only assigns a
positive reward of +1 to surviving patients and a negative reward of −1 if death occurs (3 or more abnormal vitals) during
their stay. The offline trajectories dataset includes 10,000 episodes following an ϵ-optimal policy with noise ϵ = 0.1 and
the episode length is H = 20.

D. Additional Results
We include additional results in this section.
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Figure 6: Transition and preference model accuracy as function of the properties of the observational data (Star MDP). Preference
elicitation is carried out until 10 preferences are queried. Mean and 95% confidence intervals over 20 experiments. Note that the
transition model is the same for the two methods, as they have access to the same dataset.

In Figure 6, we report the accuracy of the transition and preference model achieved for the Star MDP as we vary the size of
optimality of the offline dataset. Accuracy is measured against all possible state transitions and over 100 pairs of random
trajectories (random combinations of the 5 states and 4 actions in a sequence of H = 3). This complements our analysis in
Section 7 and fig. 2. We see a steady improvement in both transition and reward model quality as we increase the amount
of observational data in Figure 6a, which explains the observed dependence of Np on No in Figure 2a.

In Figure 6b, we notice low model performance at both extremes of the x-axis. When the dataset is fully optimal, we find
that all trajectories involve the same sequence of actions and states, so learning a transition or reward model from this data
is challenging. We reach a similar conclusion at the other end of the spectrum at high density ratios, where the coverage
the optimal states reduces. We reach highest performance for both models at intermediate values, when diversity of the
observational data is high.
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Still, it is important to stress that the highest accuracy of both models does not necessarily translate to the best-performing
policy: good performance on the distribution induced by the optimal policy is more important, as formalized by the
concentrability coefficients.

Next, we plot performance as a function of preferences sampled for our two additional environments in Figure 7. We reach
similar conclusion to those drawn from the Star MDP in Section 7: within the offline preference elicitation approaches,
OPRL with uniform sampling is the least efficient, OPRL with uncertainty sampling performs better, and Sim-OPRL even
better. The PbOP method naturally reaches a superior policy with fewer samples as it allows environment interaction and
can thus improve its estimate of the transition model in parallel to learning the preference function.
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(a) Gridworld.
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(b) Sepsis simulation.

Figure 7: Empirical results on additional environments. Mean and 95% confidence interval over 20 experiments. Environment returns
are normalised between 0 and 100. Only OPRL and Sim-OPRL are fully offline.

E. Broader Impact
Better preference elicitation strategies for offline reinforcement learning have the potential to facilitate and improve
decision-making in real-world safety-critical domains like healthcare or economics, by reducing reliance on direct envi-
ronment interaction and reducing human effort in providing feedback. Potential downsides could include the amplification
of biases in the offline data, potentially leading to suboptimal or unfair policies. Thorough evaluation is therefore cru-
cial to mitigate this before deploying models in such real-world applications. In addition, human preferences may not be
fully captured by binary comparisons. As noted in our conclusion, we hope that future work will explore richer feedback
mechanisms to better model complex decision-making objectives.
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