
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

An Analysis of Action-Value Temporal-Difference
Methods That Learn State Values

Anonymous authors
Paper under double-blind review

Keywords: TD learning, QV-learning, Dueling DQN, advantage estimation.

Summary
The hallmark feature of temporal-difference (TD) learning is bootstrapping: using value

predictions to generate new value predictions. The vast majority of TD methods for con-
trol learn a policy by bootstrapping from a single action-value function (e.g., Q-learning and
Sarsa). Significantly less attention has been given to methods that bootstrap from two asym-
metric value functions: i.e., methods that learn state values as an intermediate step in learning
action values. Existing algorithms in this vein can be categorized as either QV-learning or
AV-learning. Though these algorithms have been investigated to some degree in prior work,
it remains unclear if and when it is advantageous to learn two value functions instead of just
one—and whether such approaches are theoretically sound in general. In this paper, we analyze
these algorithmic families in terms of convergence and sample efficiency. We find that while
both families are more efficient than Expected Sarsa in the prediction setting, only AV-learning
methods offer any major benefit over Q-learning in the control setting. Finally, we introduce a
new AV-learning algorithm called Regularized Dueling Q-learning (RDQ), which significantly
outperforms Dueling Deep Q-Network in the MinAtar benchmark.

Contribution(s)
1. We prove that QV-learning converges for on-policy prediction under standard assumptions.

Context: Wiering (2005) introduced the QV-learning algorithm, but omitted a convergence
proof. To our knowledge, there is no published convergence proof of QV-learning to date.

2. We raise the issue that QVMAX, the main off-policy control variant of QV-learning, is bi-
ased. We empirically demonstrate that such bias can significantly impact performance. We
then introduce a new, unbiased algorithm, BC-QVMAX, and empirically demonstrate that
it converges to a similar solution to that of Q-learning in our considered settings.
Context: Wiering & van Hasselt (2009) introduced QVMAX without theoretical justifica-
tion, heuristically mirroring the Q-learning update. Its bias has not been identified until now.
Our empirical results were obtained with parametric MDP experiments that we designed;
they should be interpreted only as anecdotal evidence for the convergence of BC-QVMAX.

3. In the context of AV-learning algorithms, we formalize a tabular version of Dueling DQN,
and we introduce a new algorithm, Regularized Dueling Q-learning (RDQ). RDQ addresses
the identifiability issue of the naive dueling decomposition by using an l2 penalty instead of
subtracting the mean advantage. We empirically demonstrate that, given the same network
architecture, RDQ significantly outperforms Dueling DQN in the MinAtar domain.
Context: Wang et al. (2016) introduced Dueling DQN from the perspective of an im-
provement to the neural network architecture used by DQN. RDQ is the result of relaxing
the semantics behind estimating Q(s, a) through two value functions. Instead of requiring
Q(s, a) to be approximated by V (s) and A(s, a), RDQ searches for the closest point on the
hyperplane defined by two arbitrary functions that sum to Q(s, a). We used heavily tuned
versions of DQN and Dueling DQN as baselines for MinAtar (Ceron & Castro, 2021).

An Analysis of Action-Value TD Methods That Learn State Values

An Analysis of Action-Value Temporal-Difference
Methods That Learn State Values

Anonymous authors
Paper under double-blind review

Abstract
The hallmark feature of temporal-difference (TD) learning is bootstrapping: using value1
predictions to generate new value predictions. The vast majority of TD methods for con-2
trol learn a policy by bootstrapping from a single action-value function (e.g., Q-learning3
and Sarsa). Significantly less attention has been given to methods that bootstrap from4
two asymmetric value functions: i.e., methods that learn state values as an intermediate5
step in learning action values. Existing algorithms in this vein can be categorized as6
either QV-learning or AV-learning. Though these algorithms have been investigated to7
some degree in prior work, it remains unclear if and when it is advantageous to learn8
two value functions instead of just one—and whether such approaches are theoreti-9
cally sound in general. In this paper, we analyze these algorithmic families in terms10
of convergence and sample efficiency. We find that while both families are more effi-11
cient than Expected Sarsa in the prediction setting, only AV-learning methods offer any12
major benefit over Q-learning in the control setting. Finally, we introduce a new AV-13
learning algorithm called Regularized Dueling Q-learning (RDQ), which significantly14
outperforms Dueling Deep Q-Network in the MinAtar benchmark.15

1 Introduction16

Reinforcement learning (RL) is the study of decision-making agents that interact with their envi-17
ronment to maximize a notion of cumulative reward. Temporal-difference (TD) learning is among18
the most widely used classes of RL algorithms. Like dynamic programming, TD methods learn19
one or more value functions to guide policy improvement. However, unlike dynamic programming,20
TD approaches do not assume access or knowledge of the environment’s dynamics, and as such21
value-function estimates must be generated iteratively through direct interaction with the MDP.22

The key feature of TD is bootstrapping: constructing new value predictions from other value pre-23
dictions. How such predictions should be integrated for the purposes of bootstrapping to learn as24
efficiently as possible has been the subject of much RL research. For example, classic methods like25
Q-learning (Watkins, 1989), Sarsa (Rummery & Niranjan, 1994), and Expected Sarsa (John, 1994)26
all learn action-value functions, and differ only by their bootstrapping terms, but exhibit dramatically27
different learning properties in terms of risk aversion, bias-variance trade-off, and convergence.28

The vast majority of TD algorithms that attempt to learn an optimal control policy, including the29
three algorithms mentioned above, rely on just a single action-value function, denoted by Q(s, a)30
where (s, a) is a state-action pair. A far less common paradigm is to jointly learn a secondary state-31
value function, V (s), in the process of estimating Q(s, a). That is to say, such TD methods learn32
state values as an intermediate step in learning action values.133

We broadly categorize such methods as either QV-learning or AV-learning. In QV-learning, the agent34
directly estimates Q(s, a) and V (s), with mutual bootstrapping between the two value functions. For35

1Note that this precise definition of learning state and action values excludes double action-value methods such as Double
Q-learning (van Hasselt, 2010), which are beyond the scope of this paper.

1

Under review for RLC 2025, to be published in RLJ 2025

instance, the classic QV-learning method (Wiering, 2005) essentially replaces the bootstrap term36
of Expected Sarsa (John, 1994) with a learned approximation generated by TD(0) (Sutton, 1988).37
Conversely, AV-learning makes use of the advantage decomposition (Baird, 1993), which breaks38
down the action value as Q(s, a) = V (s) + Adv(s, a). In contrast to QV-learning, Adv(s, a) and39
V (s) do not explicitly bootstrap from one another, but do bootstrap from the composite action-value40
function, Q(s, a). This technique was popularized in deep RL by the dueling network architecture41
(Wang et al., 2016). Analyzing the behavior of the underlying Dueling Q-learning algorithm is42
important to understand how these networks learn.43

In spite of past empirical evidence supporting QV-learning (e.g., Sabatelli et al., 2020; Modayil44
& Abbas, 2023) and AV-learning (Baird, 1993; Wang et al., 2016; Tang et al., 2023), the exact45
circumstances and mechanisms behind these improvements remain unclear. After all, estimating two46
value functions instead of one inherently requires more parameters to be learned. On the other hand,47
it seems that there are opportunities for synergistic information sharing between the value functions48
which could potentially explain the observed sample-efficiency gains. Still, it is unknown when or49
how reliably such gains can be obtained. Furthermore, several of these methods—particularly in the50
QV-learning family—are missing formal convergence guarantees.51

Towards an understanding of when and how state-value estimation can be leveraged to learn action52
values more quickly (and soundly), we investigate the theoretical underpinnings of both QV-learning53
and AV-learning algorithms and conduct experiments to isolate some of their unique properties. We54
show that QV-learning is often more efficient than Expected Sarsa for on-policy prediction and that55
the performance gap increases with more available actions. However, QV-learning’s main extension56
for off-policy control, QVMAX (Wiering & van Hasselt, 2009), suffers from bias; even when we57
correct this bias, we show empirically that its sample efficiency is surpassed by that of Q-learning.58
In contrast, we find that AV-learning methods work much more consistently for control problems59
overall and easily outperform Q-learning. We discuss the implicit assumptions encoded by Dueling60
Q-learning and introduce an algorithm called Regularized Dueling Q-learning (RDQ) that converges61
to a different AV-decomposition. An advantage of RDQ is that it easily extends to function approx-62
imation, and we show that it is significantly more sample efficient than Dueling DQN (Wang et al.,63
2016) in the five MinAtar games (Young & Tian, 2019) when using the same network architecture64
and hyperparameters. Our results help to characterize the nuanced distinction between these two65
main algorithm families, and ultimately motivate state-value estimation as a sound and effective66
way to accelerate action-value estimation.67

2 Background68

We formalize the RL problem as a standard Markov decision process (MDP) described by69
(S,A, p,R, γ). At each time step t ≥ 0, the agent makes an observation of the environment state,70
St ∈ S, and executes an action, At ∈ A. The environment consequently transitions to a new state,71
St+1 ∈ S, and returns a reward, Rt+1 ∈ R, with probability p(St+1, Rt+1 | St, At).72

In the policy evaluation setting, the agent’s goal is to predict the action-value function: the expected73
discounted returns achieved when behaving according to some policy π, a mapping from states to74
distributions over actions. Letting Gt =

∑∞
i=0 γ

iRt+1+i be the discounted return at time t, the75
action-value function is defined as76

qπ(s, a) = Eπ[Gt | (St, At) = (s, a)] , (1)

where the expectation Eπ indicates that actions are sampled according to π. For any policy π, the77
corresponding action-value function qπ uniquely solves the action-value Bellman equation (Bell-78
man, 1966):79

qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r|s, a)

(
r + γ

∑
a′∈A

π(a′|s′) qπ(s′, a′)

)
. (2)

2

An Analysis of Action-Value TD Methods That Learn State Values

In the control setting, the agent’s goal is to find an optimal policy: one that simultaneously max-80
imizes qπ(s, a) for every state-action pair (s, a). Every optimal policy has the same action-value81
function, denoted by q∗, which uniquely solves the action-value Bellman optimality equation:82

q∗(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
(
r + γmax

a′∈A
q∗(s

′, a′)

)
. (3)

The policy evaluation and control settings are closely related, as accurate estimates of the expected83
returns under a particular policy can be leveraged to generate a better policy.84

Temporal-difference (TD) methods for control estimate action-value functions, either qπ or q∗, from85
sample-based interaction with the environment. Given a transition (St, At, St+1, Rt+1), the agent86
then conducts an incremental update to its estimate of the action-value function, Q(St, At). In the87
off-policy setting, the agent is assumed to select actions with probability b(At|St), where b is a88
behavior policy which differs from the target policy, π.89

Most of the algorithms considered in this paper are off-policy methods. They learn an action-value90
function Q(s, a) that estimates either qπ(s, a) or q∗(s, a) using samples obtained from executing91
policy b in the environment. For example, Expected Sarsa (John, 1994) is an off-policy TD method92
that uses explicit knowledge of the target policy π to approximate the solution to Eq. (2) from93
sample-based approximation:94

Q(St, At)← Q(St, At) + α

(
Rt+1 + γ

∑
a′∈A

π(a′|St+1)Q(St+1, a
′)−Q(St, At)

)
, (4)

where α ∈ (0, 1] is the step size of the update. We revisit Expected Sarsa as an important baseline95
several times in our work because it generalizes a number of fundamental bootstrapping algorithms96
(van Hasselt, 2011). For instance, when the target policy is greedy with respect to Q, the expectation97
becomes equivalent to maxa′ Q(s′, a′), yielding the Q-learning algorithm:98

Q(St, At)← Q(St, At) + α

(
Rt+1 + γmax

a′∈A
Q(St+1, a

′)−Q(St, At)

)
, (5)

which will be useful for the control case in Section 3.2.99

2.1 QV-learning100

We now begin to discuss methods that learn state values as a means to estimate action values. The101
state-value function vπ is defined analogously to as102

vπ(s) = Eπ[Gt | St = s] (6)

and uniquely solves the Bellman equation103

vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
(
r + γv(s′)

)
. (7)

The state-value function is related to the action-value function by vπ(s) =
∑

a∈A π(a|s)qπ(s, a).104
This implies that vπ(s′) can be substituted as an intermediate quantity in Eq. (2) to avoid the summa-105
tion over actions. QV-learning (Wiering, 2005) is an on-policy TD algorithm based on this concept.106
The idea is to use TD(0) (Sutton, 1988) to independently learn V (s) ≈ vb(s), while concurrently107
bootstrapping from these estimated state values to learn Q(s, a) ≈ qb(s, a). The specific value-108
function updates become109

Q(St, At)← Q(St, At) + α (Rt+1 + γV (St+1)−Q(St, At)) , (8)
V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St)) . (9)

3

Under review for RLC 2025, to be published in RLJ 2025

Wiering (2005, Sec. 2) is explicit that Q(St, At) is always updated before V (St), though the order110
is irrelevant in the tabular case. Additionally, it is commonly assumed that both updates share the111
same step size, α, as is shown here. We analyze this algorithm in Section 3.1.112

The main variant of QV-learning for off-policy control is QVMAX (Wiering & van Hasselt, 2009),113
which essentially substitutes the max operator from Q-learning into Eq. (9) in an attempt to induce114
convergence to q∗ instead of qb:115

V (St)← V (St) + α

(
Rt+1 + γmax

a′∈A
Q(St+1, a

′)− V (St)

)
.

The update to Q(St, At) remains the same as Eq. (8) and is still conducted prior to Eq. (12) on each116
time step. We analyze this algorithm in Section 3.2.117

2.2 Dueling Q-learning118

The basic idea behind Dueling Q-learning (Wang et al., 2016) is to decompose the action-value func-119
tion, Q(s, a), into a state-value function, V (s), and an advantage function, A(s, a). The particular120
decomposition used by Wang et al. (2016) is121

Q(s, a) = V (s) +A(s, a)− 1

|A|
∑
a′∈A

A(s, a′) , (10)

where the last term is subtracted to make the solution unique (we further discuss this point in Sec-122
tion 4.2). Then, the squared-error Q-learning loss is minimized by stochastic gradient descent (SGD)123
with respect to the action-value function’s subcomponents:124

Q(St, At)← Q(St, At) + α

(
Rt+1 + γmax

a′∈A
Q(St+1, a

′)−Q(St, At)

)
∇Q(St, At) . (11)

Substituting Eq. (10) into ∇Q(St, At) and applying the chain rule would yield the complete up-125
date. In practice, the decomposition in Eq. (10) is represented by a branching and merging neural126
network, and the chain rule is automatically handled by backpropagation (Rumelhart et al., 1986)127
which computes the partial derivatives with respect to the neural network’s many parameters. In128
Section 4.1, we instead apply the chain rule to Eq. (10) assuming tabular value functions to derive a129
Dueling Q-learning update without function approximation, allowing us to gain further insight into130
this fundamental algorithm beyond the deep RL setting.131

3 QV-learning Algorithms132

In this section, we analyze QV-learning algorithms, which jointly learn an action-value function133
Q(s, a) and a state-value function V (s). Although the fundamental QV-learning algorithm has134
existed for about 20 years and several studies, theoretical analysis has been limited.135

3.1 On-Policy Prediction136

In this subsection, we conduct a focused experiment to determine when QV-learning these questions.137
We then conclude with a formal convergence analysis of QV-learning.138

During our experiments, we revisit Expected Sarsa several times as a prototypical baseline for TD139
learning with action values. Recall from Section 2 that Expected Sarsa’s update rule is140

Q(St, At)← Q(St, At) + α
(
Rt+1 + γ

∑
a′∈A

π(a′|St+1)Q(St+1, a
′)︸ ︷︷ ︸

V (St+1)

−Q(St, At)
)
,

4

An Analysis of Action-Value TD Methods That Learn State Values

Figure 1: On-policy prediction performance with increasing number of actions.

The comparison to Expected Sarsa is natural because QV-learning can be seen as learning approxi-141
mation V (St+1) to the expected next action value, which we have underscored above. This provides142
a clue as to when QV-learning may have an advantage over Expected Sarsa; as the action-space car-143
dinality |A| of the MDP grows, Expected Sarsa requires many more sample interactions to estimate144
all of the action values in the expectation, whereas QV-learning can simply learn V (St+1) with a145
small number of samples that is roughly independent of |A|.146

To test this, we design a parametric MDP experiment where the environment has 4 states and |A|147
actions. Taking any action in any state triggers a transition to a random state (possibly the same148
one) with equal probability. The agents’ behavior policy is uniform random in every state. Agents149
receive a reward of +1 whenever the first action, a0, is taken, and a reward of 0 otherwise.150

Because the MDP dynamics are state invariant, vπ(s) is a constant for all s ∈ S. Solving the state-151
value Bellman equation, Eq. (7), yields vπ(s) = 1 /

(
(1 − γ) |A|

)
. It follows that qπ(s, ai) =152

1i=0 + γ /
(
(1− γ) |A|

)
for all ai ∈ A, where 1 is the indicator function.153

We evaluate the agents’ performance by measuring the root mean square (RMS) prediction error,154
∥qπ − Q∥2, as a function of the number of environment interactions. We normalize the errors by155
expressing them as a percentage of the initial RMS error, ∥qπ −Q0∥2, where Q0 is initialized with156
zeros. We compare Expected Sarsa and QV-learning, training both agents for 20,000 time steps. In157
Figure 1 (left), we plot the learning curves for the case where |A| = 18, the largest instantiation158
of our MDP that we consider here. We then average the results over 100 independent trials, with159
shading to indicate 95% confidence intervals. The agents’ step sizes are chosen from a natural-160
logarithmic grid search of 61 values over the interval (0, 1], similarly to the random walk experiment161
of Sutton & Barto (2018, Sec. 12.1). The selection criterion is to minimize the area under the curve162
(AUC), which we normalized as a percentage. Specifically, an AUC of 100% indicates that the initial163
error did not change at all, whereas a lower percentage indicates faster average progress towards the164
fixed point. In Figure 1 (center), we plot the corresponding AUCs for each step size tested by the165
sweep. The dashed horizontal line corresponds to the smallest AUC achieved by each agent.166

To investigate the scalability of these methods, we repeat this experiment setup for167
|A| ∈ {2, 6, 10, 14, 18}. We then plot the best AUC achieved in each problem instance in Fig-168
ure 1 (right). The slope of the resulting lines roughly correspond to the scalability of the algorithms.169
We note that QV-learning’s line is much closer to the horizontal, indicating better robustness to large170
action-space cardinalities, as we hypothesized earlier. However, the trade-off for this improved sam-171
ple efficiency is a much noisier update, which can be seen in Figure 1 (left); if we were to train for172
longer, Expected Sarsa would eventually obtain a more accurate solution. This indicates that QV-173
learning is perhaps best suited for cases where learning a decent—but possibly imperfect—value174
function is required in a short amount of time (e.g., policy learning).175

These results do not, however, suggest that QV-learning fails to converge to the correct pair of on-176
policy value functions, qb and vb. The noisy behavior observed in Figure 1 (left) is primarily due to177

5

Under review for RLC 2025, to be published in RLJ 2025

the fact that the step size is not being annealed. The following theorem shows that, in expectation,178
the joint update of QV-learning is a contraction mapping when we represent the two value functions179
as a concatenated vector of size |S|+ |S × A|.180

Theorem 3.1 (QV-learning contraction). The expected QV-learning update corresponds to a linear181

joint operator H : [vq] 7→ b +A[vq], where b = [Pπr
r] and A =

[
γPπPp 0
γPp 0

]
. The operator H is a182

contraction mapping with its unique fixed point equal to [vπ
qπ].183

Proof. See Appendix A.184

The significance of this result is that it shows that both value functions make progress (on average)185
towards their respective fixed points, without having to wait for V to converge first. This is in186
contrast to less formal convergence arguments for QV-learning, which may rely on the assumption187
that TD(0) would first converge to vπ based on well-established convergence results, and then Eq. (8)188
would be able to bootstrap from it to extract qπ . The issue with this two-timescale approach is that189
V may never exactly equal vπ after any finite amount of time, meaning that Q would still incur some190
bootstrapping bias—a caveat that is directly addressed by considering the joint operator space, as191
we have done here.192

The fact that H is a contraction mapping implies that both Q and V converge to their respective193
fixed points even when updates are conducted asynchronously, under the additional (but standard)194
technical assumptions that the step size α is appropriately annealed and the conditional variances195
of the updates are bounded (see Bertsekas & Tsitsiklis, 1996, Prop. 4.4). We note that the latter196
assumption is automatically satisfied by our MDP definition, which has finite sets of states, actions,197
and rewards. Finally, we remark that our analysis considers only the prediction setting in which the198
target policy π is fixed; for the control case, we would likely need to invoke a greedy in the limit199
with infinite exploration (GLIE) assumption (Singh et al., 2000) to prove eventual convergence to200
an optimal policy, but we leave this as an open problem.201

3.2 Off-Policy Control202

The previous experiment shows that bootstrapping from state values when learning action values can203
be much more efficient than directly learning the action values. Unfortunately, we cannot leverage204
this same technique for off-policy control, as this would require a model-free method for estimating205
v∗ directly from environment samples.206

To get around this, Wiering & van Hasselt (2009) introduced an off-policy variant of QV-learning207
called QVMAX which borrows the max operator from Q-learning when updating V (St):208

V (St)← V (St) + α
(
Rt+1 + γmax

a′∈A
Q(St+1, a

′)− V (St)
)
. (12)

V Q

QV-learning

V Q

QVMAX

Figure 2: Depiction of bootstrapping in QV-
learning variants. The arrows point from
the bootstrapped value function to the value
function being updated.

One consequence of this change is that now there is209
a two-way information flow between Q and V . Pre-210
viously, with QV-learning, we had only a one-way211
information flow: V bootstrapped from itself, and212
Q bootstrapped from V ; hence, Q could not corrupt213
the state values in any way. We illustrate this point214
in Figure 2. Although this is not necessarily a bad215
property, it is worth noting that the fundamental216
characteristic of the algorithm has changed.217

Another, more serious consequence of this change is218
that the update now suffers from off-policy bias. Wiering & van Hasselt (2009) hypothesized that the219
use of the max operator in Eq. (12) would induce convergence to q∗, just as it does in Q-learning.220
Unfortunately, this is not true; the update fails to correct the distribution of the observed reward,221
Rt+1, which is collected by the behavior policy. This is because Eq. (12) is not conditioned on the222

6

An Analysis of Action-Value TD Methods That Learn State Values

Figure 3: Off-policy control performance with a variable number of actions. Note that Q-learning is
sometimes eclipsed by BC-QVMAX.

state-action pair, (St, At), as is normally the case for Q-learning, but is instead conditioned only on223
the state, St. The additional freedom in the selection of At means that the expected reward observed224
in state St now depends on behavior policy b.225

To eliminate the bias, the update cannot depend explicitly on the sampled reward, Rt+1. We there-226
fore propose to modify Eq. (12) to227

V (St)← V (St) + α

(
max
a∈A

Q(St, a)− V (St)

)
. (13)

We call this new variant Bias-Corrected QVMAX, or BC-QVMAX for short. This is the proper228
algorithm for learning q∗, as the update now approximates the Bellman optimality relationship229
v∗(s) = maxa∈A q∗(s, a). However, a peculiarity of this update is that it closely resembles that230
of Q-learning in Eq. (5). In fact, if we set α = 1, then Eq. (13) simply becomes a table overwrite:231
V (St) ← maxa∈A Q(s, a). This would make the algorithm almost equivalent to Q-learning, but232
with an artificial delay introduced between bootstrapping. When α < 1, then Eq. (13) has an ex-233
tra smoothing effect, mixing together stale estimates of the maximal action value in each state and234
exacerbating this delay.235

We slightly modify the prediction experiment from Section 3.1 to demonstrate the bias of QVMAX.236
This time, we target a greedy policy with respect to the current action-value function, making Ex-237
pected Sarsa equivalent to Q-learning. We additionally compare QVMAX and BC-QVMAX. The238
optimal policy is to select a0 unconditionally, making q∗(s, a0) = 1 / (1 − γ). It follows that239
q∗(s, ai) = γ / (1− γ) for i ̸= 0.240

All experiment and plotting procedures remain the same as before, except that now the RMS error241
is defined in terms of q∗: i.e., ∥q∗−Q∥2. We plot the results in Figure 3. As can be seen in Figure 3242
(left), and as our theory predicted, QVMAX asymptotes substantially above the zero-error mark due243
to its biased update. In contrast, BC-QVMAX achieves a much lower error. However, as we also244
discussed above, the smoothing effect of BC-QVMAX makes it similar to, but rather slower than,245
Q-learning. The results in Figure 3 (left) are identical only because α = 1 happens to be the best246
step size for both methods, which makes them nearly equivalent (up to the 1-step delay mentioned247
previously). However, for all α < 1, we can see from Figure 3 (center) that BC-QVMAX slightly248
lags behind Q-learning.249

These results unfortunately indicate that off-policy control with QV-learning algorithms is much250
harder than on-policy prediction, since model-free estimation of v∗ is not straightforward. While251
we note that this one experiment is not enough to rule out the viability of QVMAX approaches in252
this setting, it does provide convincing evidence against it. In particular, the theoretically correct253
version of the algorithm, BC-QVMAX, is similar to a learned approximation of Q-learning which254
introduces delay into the bootstrapping. This does not serve an immediately obvious benefit and255

7

Under review for RLC 2025, to be published in RLJ 2025

appears to negatively impact sample efficiency, though there is the possibility that this smoothing256
effect could have utility elsewhere (e.g., to enhance stability in tracking problems).257

4 AV-learning Algorithms258

Rather than learning explicit state- and action-value functions that bootstrap from each other like259
QV-learning methods do, an alternative approach is to decompose the action-value function into260
constituent state-value and advantage functions that can be implicitly updated using gradient de-261
scent. This dueling strategy was introduced by Wang et al. (2016), but we generalize it significantly262
in this section.263

4.1 Dueling Q-learning264

To obtain a tabular Dueling Q-learning update, we evaluate the chain rule in Eq. (11), as we discussed265
earlier in Section 2.2. Let δt = Rt+1+γmaxa′∈A Q(St+1, a

′)−Q(St, At) be the Q-learning error.266
Because Q(s, a) is defined according to Eq. (10), the chain rule preserves the error δt inside the267
quadratic term and then scales it in the following manner:268

Adv(St, a)← Adv(St, a) + α

(
1a=At

− 1

|A|

)
δt , ∀a ∈ A , (14)

V (St)← V (St) + αδt . (15)

It may seem unusual to write out these updates in this manner; Dueling Q-learning was originally269
proposed for deep RL, and backpropagation would just handle the partial derivatives automatically.270
Nevertheless, these updates are well defined for tabular value functions. Furthermore, they reveal271
an property behind this particular style of dueling. On each time step, a single advantage value is272
incremented in proportion to δt, and then the |A| advantage values are decremented in the same273
proportion to δt / |A|. This implies that the arithmetic mean of the advantages is an invariant274
quantity; if we initialize the advantage values to zero, then the mean will remain zero throughout275
training.276

4.2 Regularized Dueling Q-learning277

We propose a new dueling algorithm which does not rely on subtracting the identifiability term in278
Eq. (10). We start with the most general decomposition of the action-value function,279

Q(s, a) = V (s) + Adv(s, a) . (16)

As noted by Wang et al. (2016, Sec. 3), this decomposition is unidentifiable; we can add a constant280
to V (s) and subtract the same constant A(s, a) without changing Q(s, a). Consequently, there are281
infinitely many valid decompositions that satisfy Eq. (16) and no way for an algorithm to choose282
between them.283

Dueling DQN seeks to approximate both vπ(s) and Advπ(s, a) = qπ(s, a) − vπ(s) accurately in284
order to estimate qπ(s, a), which motivates the subtraction of the mean advantage (which is meant285
to coarsely approximate the expected advantage under the target policy). We propose an alternative286
approach in which we search for any two functions V (s) and Adv(s, a) that accurately reconstruct287
qπ(s, a), even if that means sacrificing the semantics of vπ and Advπ .288

Let us consider the underdetermined system of equations in Eq. (16) to motivate our algorithm.289
For a particular state-action pair (s, a), we can represent the specific solution found by Dueling Q-290
learning as an ordered pair, (Adv(s, a), V (s)). This particular solution is just one of infinitely many291
ordered pairs that satisfy Eq. (16), and form a negatively sloped line in the Adv-V plane: V (s) =292
qπ(s, a)−Adv(s, a). When Q(s, a) is initialized with zeros, the locus of possible initializations of293
V (s) and A(s, a) is also a negatively sloped line that passes through the origin: V (s) = −A(s, a).294

8

An Analysis of Action-Value TD Methods That Learn State Values

Figure 4: Off-policy control performance with a variable number of actions.

These two lines are parallel, and therefore the shortest directional path between them is the vector295
orthogonal to both of them—the minimum-norm projection. This fact remains true even if we apply296
a different initialization to Q(s, a), since the slope of both lines is always −1 with respect to the297
advantage.298

For this reason, we hypothesize that a good solution to Eq. (16) is the point on the solution line299
closest to the initialization of V (s) and Adv(s, a), since it may require fewer updates to reach. In300
practice, because the state-value and advantage functions are typically initialized near zero for both301
tabular and deep RL, we can approximate this solution more simply as the closest point to the origin.302

We therefore propose to apply an l2 regularization to Eq. (11) to restore identifiability to Eq. (16)303
and encourage the algorithm to find this minimum-norm approximation. Specifically, we penalize304
the squared-error loss from Eq. (11) with a term of305

1

2
V (s)2 +

∑
a∈A

Adv(s, a)2 . (17)

Since we now have Q(s, a) = V (s) + Adv(a) (no identifiability term), evaluating the chain rule306
gives us the following updates:307

Adv(St, a)← (1− β)Adv(St, a) + α1a=At
δt , ∀a ∈ A , (18)

V (St)← (1− β)V (St) + αδt , (19)

where β ∈ [0, 1) is the regularization strength. We call this new algorithm Regularized Dueling308
Q-learning (RDQ). Specifically, we refer to this variant with the l2 penalty as Soft RDQ. In practice,309
we found Soft RDQ to be rather noisy in the tabular setting, since the state and advantage values310
become leaky—they get pushed towards zero by the 1 − β factor, and then have to compensate311
using the stochastic TD error, δt. However, it is very useful in the case of function approximation,312
since the penalty in Eq. (17) is architecturally agnostic and can be combined with complex neural313
architectures. We experiment with this in Section 4.3.314

In the tabular setting, we do not need to utilize an l2 penalty to obtain the desired minimum-norm315
solution. This is because the penalty in Eq. (17) is equal to V (s)2 +

∑
a∈A

(
Q(s, a)− V (s)

)2
.316

Taking the derivative with respect to V (s) and then solving it for zero gives us317

V (s) =
∑
a′∈A

Adv(s, a′) . (20)

Furthermore, when we remove the l2 penalty from Eqs. (18) and (19) by setting β = 0, we see318
that both V (s) and exactly one advantage value, Adv(s, a), are incremented by exactly the same319
amount one each time step—indicating that Eq. (20) is another invariant quantity. This implies320
that, regardless of how V and Adv are initialized, Eq. (20) always remains true (at least, up to a321
translation determined by the difference at initialization: V0(s) −

∑
a∈A Adv0(s, a)). Therefore,322

9

Under review for RLC 2025, to be published in RLJ 2025

rather than using an explicit L2 penalty, we can directly apply the RDQ update without a penalty to323
achieve the minimum-norm solution in the tabular setting:324

Adv(St, a)← Adv(St, a) + α1a=At
δt , ∀a ∈ A , (21)

V (St)← V (St) + αδt . (22)

We call this variant Hard RDQ, since it explicitly follows the minimum-norm path (on average)325
to the solution without the use of a soft penalty. Unfortunately, there does not appear to be an326
easy extension of this idea to the function approximation case. If we were to apply these update327
rules under function approximation, the different gradients calculated for V (s) and Adv(s, a) would328
violate the invariant and ruin the minimum-norm convergence property.329

To test this new dueling algorithm, we repeat the off-policy control experiment from Section 3.2.330
We once again use Q-learning as a baseline, and then additionally compare Dueling Q-learning with331
Hard RDQ. The only minor modifications we make is that we now change the suboptimal reward332
from 0 to−1 (which does not change the optimal policy), set γ = 0.999, initialize V and Adv using333
zero-centered Gaussian noise with a standard deviation of 2.334

We plot the results in Figure 4. All experiment and plotting procedures remain the same as before.335
In contrast to the QVMAX algorithm tested earlier, both dueling methods dramatically outperform336
Q-learning, showing that the advantage decomposition is a highly effective strategy in general. In337
the largest instantiation of our MDP, where |A| = 18, Hard RDQ slightly outperforms Dueling Q-338
learning across the range of step sizes (see Figure 4; left, center). Across the various MDP instances339
(see Figure 4; right), Hard RDQ performs slightly better than Dueling Q-learning in a small majority340
of cases, but both algorithms perform very well overall.341

4.3 Deep RL Experiments342

Because Dueling Q-learning was originally proposed as a network architecture for Deep Q-Network343
(DQN; Mnih et al., 2015), we test the performance of RDQ in a deep RL setting, where a neural344
network is used to approximate the action-value function. Our benchmark is the MinAtar domain345
(Young & Tian, 2019), which includes five Atari-like games: Asterix, Breakout, Freeway, Seaquest,346
Space Invaders. The state representation for MinAtar is 10 × 10 multi-channel binary images347
revealing various objects and their velocities. The reward function is the incremental game score.348

We compare the soft variant of RDQ against DQN and Dueling DQN, using the hyperparameters349
from Ceron & Castro (2021). The action-value function Q(s, a;θt) is approximated by a neural350
network, where θt is the network parameters at time t. The network architecture we use for DQN is351
the same as that from Young & Tian (2019): a 16-filter, 3× 3 convolutional layer, a 128-unit dense352
layer, and a final linear layer which maps to the |A| action values. All layers except the last apply353
a rectified linear unit (ReLU) activation function. We initialize the parameters using the LeCun354
normal scheme (LeCun et al., 2002).355

For RDQ and Dueling DQN, we adapt this to a dueling architecture following Wang et al.’s 2016356
procedure. We duplicate the 128-unit hidden layer to branch the network in parallel streams, and357
then separately map these into linear outputs of size |A| and 1 for estimating Adv(s, a;θt) and358
V (s, a;θt), respectively. These are added together (with broadcasting) to compute Q(s, a;θt). Du-359
eling DQN additionally subtracts the identifiability term 1

|A|
∑

a′∈A Adv(s, a′;θt) per Eq. (10).360

The agents execute an ϵ-greedy policy, where ϵ is fixed to 1 for the first 1,000 time steps of training361
and then linearly annealed to 0.01 over the next 250,000 time steps. Each experience transition362
(St, At, St+1, Rt+1) is stored in a replay buffer with a capacity of 100,000 transitions. We let Dt363
denote the contents of the replay memory at time t. Every 4 time steps, the agents take a stochastic364
descent update on the parameters using the Adam optimizer (Kingma & Ba, 2014) with a learning365
rate of 2.5× 10−4 and a denominator constant of ϵ = 3.125× 10−4. Both DQN and Dueling DQN366

10

An Analysis of Action-Value TD Methods That Learn State Values

Figure 5: Deep RL results across five MinAtar games. Each algorithm is run for 30 seeds in each
environment. The dark lines represent the mean across these 30 seeds, and the shaded region corre-
sponds to a 95% confidence interval.

are trained to minimize the loss367

LDQN
t

def
=

1

2
E

[(
R+ γmaxQ(S,A;θ−)−Q(S,A;θ)

)2]
, (23)

where θ− is the target network parameters copied from θ every 1,000 time steps. The expectation in368
Eq. (23) is taken over the uniform distribution of samples (S,A,R, S′) in Dt; in practice, we approx-369
imate this with minibatches of size 32. RDQ inherits the same loss, but adds the regularization term:370

LRDQ
t

def
= LDQN

t +
β

2
E

[
V (S; θ)2 +

∑
a∈A

Adv(S, a)2

]
. (24)

We choose β = 10−3 for the regularization strength; we did not tune this value.371

Each agent was trained for a total of 10 million time steps. Every 1 million time steps, we evaluated372
the current agent with an ϵ-greedy policy for 1,000 episodes with ϵ = 0.01. In Figure 5, we plot the373
mean undiscounted return for the evaluation episodes as a function of training time; these results are374
averaged over 30 independent trials and the shading indicates 95% confidence intervals.375

Figure 5 depicts our results. We see that between DQN and Dueling DQN, there does not appear to376
be a clearly superior algorithm, and one algorithm may outperform the other depending on the envi-377
ronment. However, we also see that RDQ significantly outperforms DQN and Dueling DQN in all378
five environments. Note that RDQ shares an identical architecture with Dueling DQN. Although β =379
10−3 works well in this setting, more experiments would be needed to determine its utility for other380
domains. Given that we did not tune β, it is also possible that performance could improve if tuned.381

5 Conclusion382

In this paper, we made several advances in the understanding of TD-learning algorithms in which383
state-value functions are learned in tandem with action-value functions. We showed that on-policy384
QV-learning algorithms have benefits for prediction, as in the original setting for which they were385
proposed, but tend to be much slower when the target policy is greedy. We also demonstrated that the386
prevailing off-policy control variant of QV-learning, QVMAX, is biased, and we introduced a new387

11

Under review for RLC 2025, to be published in RLJ 2025

variant called BC-QVMAX which empirically restores convergence. Lastly, we introduced a novel388
Dueling Q-learning method called RDQ, which does not require the subtraction of an identifiability389
term, and has desirable properties in terms of the geometry of the learned value functions. In a deep390
RL setting based on the MinAtar games, we showed that RDQ greatly outperforms Dueling DQN,391
despite having identical network architectures and the same, well-tuned hyperparameters. Although392
there is still much to learn about these algorithms, our analysis helps to clarify their efficacy and393
distinguishing properties, and has already demonstrated potential for the development of new and394
effective RL algorithms.395

References396

Leemon C. Baird. Advantage updating. Technical report, Wright-Patterson Air Force Base, 1993.397

Richard Bellman. Dynamic programming. science, 153(3731):34–37, 1966.398

Dimitri Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.399

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insight-400
ful and inclusive deep reinforcement learning research. In International Conference on Machine401
Learning, pp. 1373–1383. PMLR, 2021.402

George H. John. When the best move isn’t optimal: Q-learning with exploration. In AAAI, volume403
1464, 1994.404

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint405
arXiv:1412.6980, 2014.406

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In407
Neural networks: Tricks of the trade, pp. 9–50. Springer, 2002.408

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-409
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level410
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.411

Joseph Modayil and Zaheer Abbas. Towards model-free rl algorithms that scale well with unstruc-412
tured data. arXiv preprint arXiv:2311.02215, 2023.413

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-414
propagating errors. nature, 323(6088):533–536, 1986.415

Gavin A. Rummery and Mahesan Niranjan. On-line Q-Learning using connectionist systems. Tech-416
nical report, University of Cambridge, 1994.417

Matthia Sabatelli, Gilles Louppe, Pierre Geurts, and Marco A Wiering. The Deep Quality-Value418
Family of Deep Reinforcement Learning Algorithms. In 2020 International Joint Conference on419
Neural Networks (IJCNN), pp. 1–8. IEEE, 2020.420

Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári. Convergence results for421
single-step on-policy reinforcement-learning algorithms. Machine Learning, 38:287–308, 2000.422

Richard S. Sutton. Learning to Predict by the Methods of Temporal Differences. Machine Learning,423
3:9–44, 1988.424

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. 2018.425

Yunhao Tang, Rémi Munos, Mark Rowland, and Michal Valko. Va-learning as a more efficient426
alternative to q-learning. In International Conference on Machine Learning, pp. 33739–33757.427
PMLR, 2023.428

12

An Analysis of Action-Value TD Methods That Learn State Values

Hado van Hasselt. Double Q-learning. Advances in neural information processing systems, 23,429
2010.430

Hado van Hasselt. Insights in reinforcement learning. PhD thesis, 2011.431

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling432
network architectures for deep reinforcement learning. In International conference on machine433
learning, pp. 1995–2003. PMLR, 2016.434

Christopher J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, University of Cam-435
bridge, 1989.436

Marco A Wiering. QV(λ)-learning: A New On-policy Reinforcement Learning Algorithm. In437
Proceedings of the 7th European Workshop on Reinforcement Learning, volume 7. Univ. Naples438
Dep. Math. Stat. Naples, Italy, 2005.439

Marco A Wiering and Hado van Hasselt. The QV family compared to other reinforcement learning440
algorithms. In 2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement441
Learning, pp. 101–108. IEEE, 2009.442

Kenny Young and Tian Tian. Minatar: An Atari-inspired testbed for thorough and reproducible443
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.444

13

Under review for RLC 2025, to be published in RLJ 2025

Supplementary Materials445

The following content was not necessarily subject to peer review.446
447

A Proofs448

Theorem 3.1 (QV-learning contraction). The expected QV-learning update corresponds to a linear449

joint operator H : [vq] 7→ b +A[vq], where b = [Pπr
r] and A =

[
γPπPp 0
γPp 0

]
. The operator H is a450

contraction mapping with its unique fixed point equal to [vπ
qπ].451

Define the following partial transition operators:452

(Ppv)(s, a) =
∑
s′∈S

p(s′|s, a)v(s) (25)

(Pπq)(s) =
∑
a∈A

π(a|s)q(s, a) (26)

Bellman equation for vπ:453
vπ = Pπ(r + γPpvπ) (27)

Bellman equation for qπ:454
qπ = r + γPpPπqπ (28)

Proof. We need to jointly solve these equations:455

v = Pπ(r + γPpv) (29)
q = r + γPpv (30)

The fixed points of these equations are individually vπ and qπ . For a block matrix M = [A B
C D]456

with B = 0, the matrix inversion is457

M−1 =

[
A−1 0

−D−1CA−1 D−1

]
(31)

which gives us458

(I −A)−1 =

[
(I − γPπPp)

−1 0
γPp(I − γPπPp)

−1 I

]
(32)

and thus the fixed point is459

(I −A)−1b =

[
(I − γPπPp)

−1Pπr
r + γPp(I − γPπPp)

−1Pπr

]
=

[
vπ

r + γPpvπ

]
=

[
vπ

qπ

]
.

The Bellman equations are simultaneously satisfied when460 [
v
q

]
=

[
Pπr
r

]
+

[
γPπPp 0
γPp 0

] [
v
q

]
. (33)

Letting Y = [vq] be a joint value function, i.e., the concatenation of state- and action-value functions,461
then Eq. (33) has the simple linear form of y = b+Ay, where b = 0 and A = 0.462

Finally, we can see that ∥A∥∞ = γ because each row is a probability distribution scaled by γ. For463
any two joint value functions y, y′, we therefore have464

∥Hy −Hy′∥∞ = ∥Ay −Ay′∥ ≤ γ ∥y − y′∥ ,

and the operator H is a contraction mapping. By the Banach fixed-point theorem, we have465
limi→∞ Hiy = [vπ

qπ] for any initial vector y, which completes the proof.466

14

