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Summary
The hallmark feature of temporal-difference (TD) learning is bootstrapping: using value

predictions to generate new value predictions. The vast majority of TD methods for con-
trol learn a policy by bootstrapping from a single action-value function (e.g., Q-learning and
Sarsa). Significantly less attention has been given to methods that bootstrap from two asym-
metric value functions: i.e., methods that learn state values as an intermediate step in learning
action values. Existing algorithms in this vein can be categorized as either QV-learning or
AV-learning. Though these algorithms have been investigated to some degree in prior work,
it remains unclear if and when it is advantageous to learn two value functions instead of just
one—and whether such approaches are theoretically sound in general. In this paper, we analyze
these algorithmic families in terms of convergence and sample efficiency. We find that while
both families are more efficient than Expected Sarsa in the prediction setting, only AV-learning
methods offer any major benefit over Q-learning in the control setting. Finally, we introduce a
new AV-learning algorithm called Regularized Dueling Q-learning (RDQ), which significantly
outperforms Dueling DQN in the MinAtar benchmark.

Contribution(s)
1. We prove the expected contraction of QV-learning for on-policy prediction.

Context: Wiering (2005) introduced the QV-learning algorithm, but omitted a convergence
proof. To our knowledge, there is no published convergence proof of QV-learning to date.

2. We raise the issue that QVMAX, the main off-policy control variant of QV-learning, is bi-
ased. We empirically demonstrate that such bias can significantly impact performance. We
then introduce a new, unbiased algorithm, BC-QVMAX, and empirically demonstrate that
it converges to a similar solution to that of Q-learning in our considered settings.
Context: Wiering & van Hasselt (2009) introduced QVMAX without theoretical justifica-
tion, heuristically mirroring the Q-learning update. Its bias has not been identified until now.
Our empirical results were obtained with parametric MDP experiments that we designed;
they should be interpreted only as anecdotal evidence for the convergence of BC-QVMAX.

3. In the context of AV-learning algorithms, we formalize a tabular version of Dueling DQN,
and we introduce a new algorithm, Regularized Dueling Q-learning (RDQ). RDQ addresses
the identifiability issue of the naive dueling decomposition by using an l2 penalty instead of
subtracting the mean advantage. We empirically demonstrate that, given the same network
architecture, RDQ significantly outperforms Dueling DQN in the MinAtar domain.
Context: Wang et al. (2016) introduced Dueling DQN from the perspective of an im-
provement to the neural network architecture used by DQN. RDQ is the result of relaxing
the semantics behind estimating Q(s, a) through two value functions. Instead of generating
Q(s, a) from approximations of V (s) and A(s, a), RDQ searches for the closest point on
the hyperplane defined by two arbitrary functions that sum to Q(s, a). We used tuned ver-
sions of DQN and Dueling DQN as baselines for MinAtar (Obando-Ceron & Castro, 2021).
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Abstract

The hallmark feature of temporal-difference (TD) learning is bootstrapping: using value
predictions to generate new value predictions. The vast majority of TD methods for con-
trol learn a policy by bootstrapping from a single action-value function (e.g., Q-learning
and Sarsa). Significantly less attention has been given to methods that bootstrap from
two asymmetric value functions: i.e., methods that learn state values as an intermediate
step in learning action values. Existing algorithms in this vein can be categorized as
either QV-learning or AV-learning. Though these algorithms have been investigated to
some degree in prior work, it remains unclear if and when it is advantageous to learn
two value functions instead of just one—and whether such approaches are theoreti-
cally sound in general. In this paper, we analyze these algorithmic families in terms
of convergence and sample efficiency. We find that while both families are more effi-
cient than Expected Sarsa in the prediction setting, only AV-learning methods offer any
major benefit over Q-learning in the control setting. Finally, we introduce a new AV-
learning algorithm called Regularized Dueling Q-learning (RDQ), which significantly
outperforms Dueling DQN in the MinAtar benchmark.

1 Introduction

Reinforcement learning (RL) is the study of decision-making agents that interact with their envi-
ronment to maximize a notion of cumulative reward. Temporal-difference (TD) learning (Sutton,
1988) is among the most widely used classes of RL algorithms. Like dynamic programming (Bell-
man, 1957), TD methods learn one or more value functions to guide policy improvement. However,
unlike dynamic programming, TD approaches do not assume access to or knowledge of the envi-
ronment’s dynamics. As such, value-function estimates must be generated iteratively through direct
interaction with the MDP.

A key feature of TD is bootstrapping: constructing new value predictions from other value pre-
dictions. How such predictions should be integrated for the purposes of bootstrapping to learn as
efficiently as possible has been the subject of much RL research. Classic methods like Q-learning
(Watkins, 1989), Sarsa (Rummery & Niranjan, 1994), and Expected Sarsa (John, 1994) all learn
action-value functions, and differ only by their bootstrapped targets, but exhibit dramatically differ-
ent properties in terms of risk aversion, bias-variance trade-off, and convergence.

The vast majority of TD algorithms that attempt to learn good control policies—including the three
algorithms mentioned above—rely on just a single action-value function, denoted by Q(s, a) where
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(s, a) is a state-action pair. A far less common paradigm is to jointly learn a secondary state-value
function, V (s), in the process of learning Q(s, a). That is to say, such TD methods learn state values
as an intermediate step in learning action values.1

We broadly categorize such methods as either QV-learning or AV-learning.2 In QV-learning, the
agent directly estimates Q(s, a) and V (s), with some bootstrapping between the two value functions.
For instance, the classic QV-learning method (Wiering, 2005) essentially replaces the bootstrap term
of Expected Sarsa with a learned approximation generated by TD(0) (Sutton, 1988). Conversely, AV-
learning methods make use of the advantage decomposition (Baird, 1993), which breaks down the
action value as Q(s, a) = V (s) + Adv(s, a). In contrast to QV-learning, the two value functions
do not directly bootstrap from one another, but rather bootstrap from the composite action-value
function, Q(s, a). AV-learning techniques were popularized in deep RL by the dueling network
architecture (Wang et al., 2016). Analyzing the behavior of its underlying algorithm, Dueling Q-
learning, is important to understand how these networks learn.

In spite of past empirical evidence supporting QV-learning (e.g., Sabatelli et al., 2020; Modayil
& Abbas, 2023) and AV-learning (Baird, 1993; Wang et al., 2016; Tang et al., 2023), the exact
circumstances and mechanisms behind these improvements remain unclear. After all, estimating two
value functions instead of one inherently requires more parameters to be learned. On the other hand,
it seems that there are opportunities for synergistic information sharing between the value functions
which could potentially explain the observed sample-efficiency gains. Still, it is unknown when, or
how reliably, such gains can be obtained. Furthermore, several of these methods—particularly in
the QV-learning family—are missing formal convergence guarantees.

Toward an understanding of when and how state-value estimation can be leveraged to learn action
values more efficiently (and soundly), we investigate the theoretical underpinnings of both QV-
learning and AV-learning algorithms and conduct experiments to isolate some of their unique prop-
erties. We show that QV-learning can be more efficient than Expected Sarsa for on-policy prediction
and that the performance gap increases with the cardinality of the action set. However, QV-learning’s
main extension for off-policy control, QVMAX (Wiering & van Hasselt, 2009), suffers from bias;
even when we correct this bias, we show empirically that its sample efficiency is surpassed by that of
Q-learning. In contrast, we find that AV-learning methods work much more consistently for control
problems overall and easily outperform Q-learning.

We also discuss the implicit assumptions underlying Dueling Q-learning and introduce an algorithm
called Regularized Dueling Q-learning (RDQ) that converges to a different pair of value functions.
An advantage of RDQ is that it easily extends to function approximation, and we show that it is sig-
nificantly more sample efficient than Dueling DQN (Wang et al., 2016) in the five MinAtar games
(Young & Tian, 2019) when using the same network architecture and hyperparameters. All of our
experiment code is available online.3 Our results help to characterize the nuanced distinction be-
tween these two algorithm families, and ultimately motivate state-value learning as a sound and
effective way to accelerate action-value learning.

2 Background

We formalize the RL problem as a finite Markov decision process (MDP) described by
(S,A, p,R, γ). At each time step t ≥ 0, the agent observes the environment state, St ∈ S, and
executes an action, At ∈ A. The environment consequently transitions to a new state, St+1 ∈ S,
and returns a reward, Rt+1 ∈ R, with probability p(St+1, Rt+1 | St, At).

1Note that this precise definition of learning state and action values excludes double action-value methods such as Double
Q-learning (van Hasselt, 2010), which are beyond the scope of this paper.

2We introduce the term AV-learning to refer to value-based RL methods that learn both advantage and state-value func-
tions. AV-learning should not be confused with VA-learning (Tang et al., 2023), a specific algorithmic instance of AV-learning.
Although VA-learning is inspired by Dueling DQN, it is not the exact tabular analog of it, which we derive in Section 4.1.

3https://github.com/brett-daley/reg-duel-q

https://github.com/brett-daley/reg-duel-q
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In the policy-evaluation setting, the agent’s goal is to learn the action-value function: the expected
discounted return achieved by each state-action pair (s, a) under a fixed agent behavior. The agent’s
behavior is defined by a policy, a mapping from states to distributions over actions. Letting Gt =∑∞

i=0 γ
iRt+1+i be the discounted return at time t, the action-value function for policy π is defined as

qπ(s, a) = Eπ[Gt | (St, At) = (s, a)] ,

where the expectation Eπ indicates that actions are sampled according to π. For any policy π, the
corresponding action-value function qπ uniquely solves the Bellman equation (Bellman, 1957) for
action values:

qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r|s, a)

(
r + γ

∑
a′∈A

π(a′|s′) qπ(s′, a′)

)
. (1)

In the control setting, the agent’s goal is to find an optimal policy, π∗: one such that qπ∗(s, a) ≥
qπ(s, a) for every policy π and every state-action pair (s, a). Every optimal policy has the same
action-value function, q∗, which uniquely solves the action-value Bellman optimality equation:

q∗(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
(
r + γmax

a′∈A
q∗(s

′, a′)

)
.

Temporal-difference (TD) methods for control estimate action-value functions, either qπ or q∗, from
sample-based interaction with the environment. Given a transition (St, At, Rt+1, St+1), the agent
then conducts an incremental update to its estimate of the action-value function, Q(St, At). In the
off-policy setting, the agent is assumed to select actions with probability b(At|St), where b is a
behavior policy which differs from the target policy, π.

Most of the algorithms considered in this paper are off-policy methods. They learn an action-value
function Q(s, a) that estimates either qπ(s, a) or q∗(s, a) using samples obtained from executing
policy b in the environment. For example, Expected Sarsa (John, 1994) is an off-policy TD method
that uses explicit knowledge of the target policy π to approximate the solution to Eq. (1) from
sampled data:

Q(St, At)← Q(St, At) + α

(
Rt+1 + γ

∑
a′∈A

π(a′|St+1)Q(St+1, a
′)−Q(St, At)

)
, (2)

where α ∈ (0, 1] is the step size of the update. We revisit Expected Sarsa as an important baseline
several times in this paper because it generalizes a number of fundamental bootstrapping algorithms
(van Hasselt, 2011). For instance, when the target policy is greedy with respect to Q, the expectation
in Eq. (2) becomes equivalent to maxa′∈A Q(s′, a′), yielding the Q-learning algorithm:

Q(St, At)← Q(St, At) + α

(
Rt+1 + γmax

a′∈A
Q(St+1, a

′)−Q(St, At)

)
, (3)

which will be useful for the control case in Section 3.2.

2.1 QV-learning

We now begin to discuss methods that learn state values as a means to estimate action values. The
state-value function, vπ , is defined analogously to qπ as

vπ(s) = Eπ[Gt | St = s]

and uniquely solves the Bellman equation

vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
(
r + γ vπ(s

′)
)
. (4)
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The state-value function is related to the action-value function by vπ(s) =
∑

a∈A π(a|s)qπ(s, a).
This implies that an approximation of vπ(s′) can be substituted in Eq. (1) to avoid the summation
over actions. QV-learning (Wiering, 2005) is an on-policy TD algorithm based on this concept. The
idea is to use TD(0) to independently learn V (s) ≈ vb(s), while concurrently bootstrapping from
these estimated state values to learn Q(s, a) ≈ qb(s, a). The specific value-function updates for
QV-learning become

Q(St, At)← Q(St, At) + α
(
Rt+1 + γV (St+1)−Q(St, At)

)
, (5)

V (St)← V (St) + α
(
Rt+1 + γV (St+1)− V (St)

)
. (6)

Wiering (2005, Sec. 2) is explicit that Q is always updated before V in each iteration. Additionally,
it is commonly assumed that both updates share the same step size, α, as is shown above. We analyze
this algorithm in Section 3.1.

The main variant of QV-learning for off-policy control is QVMAX (Wiering & van Hasselt, 2009),
which essentially substitutes the max operator from Q-learning into Eq. (6) in an attempt to induce
convergence to q∗ instead of qb:

Q(St, At)← Q(St, At) + α
(
Rt+1 + γV (St+1)−Q(St, At)

)
, (5)

V (St)← V (St) + α
(
Rt+1 + γmax

a′∈A
Q(St+1, a

′)− V (St)
)
. (7)

The update to Q(St, At) remains the same as Eq. (5) and is still conducted prior to Eq. (7) at each
time step. We analyze this algorithm in Section 3.2.

2.2 Dueling Q-learning

The basic idea behind Dueling Q-learning (Wang et al., 2016) is to decompose the action-value
function, Q(s, a), into a state-value function, V (s), and an advantage function, Adv(s, a). The
particular decomposition used by Wang et al. (2016) is

Q(s, a) = V (s) + Adv(s, a)− 1

|A|
∑
a′∈A

Adv(s, a′) , (8)

where the last term is subtracted to make the solution unique (we further discuss this point in Sec-
tion 4.2). The updates to V (s) and Adv(s, a) are then derived implicitly from Q-learning by refram-
ing its update as stochastic semi-gradient descent. Let θ be the vector of all learnable value-function
parameters involved in Eq. (8). We therefore write Q(s, a;θ) for the action-value estimate of state-
action pair (s, a). Additionally, let θ− be the target parameters for bootstrapping (Mnih et al., 2015).
The Q-learning update in Eq. (3) is rewritten as the following squared-error loss minimization:

θ ← θ − α
1

2
∇θ

(
Rt+1 + γmax

a′∈A
Q(St+1, a

′;θ−)−Q(St, At;θ)

)2

= θ + α

(
Rt+1 + γmax

a′∈A
Q(St+1, a

′;θ−)−Q(St, At;θ)

)
∇θ Q(St, At;θ) . (9)

Applying the chain rule to∇θ Q(St, At;θ) in Eq. (9) according to the value decomposition in Eq. (8)
yields the final dueling update. In practice, the decomposition in Eq. (8) is represented by a branch-
ing and merging neural network, and the chain rule is handled by automatic differentiation. In
Section 4.1, we instead apply the chain rule to Eq. (8) manually, assuming tabular value functions,
to derive a Dueling Q-learning update without function approximation. This allows us to gain further
insight into this fundamental algorithm beyond the deep RL setting.



An Analysis of Action-Value TD Methods That Learn State Values

3 QV-learning Algorithms

In this section, we investigate QV-learning algorithms, which jointly learn an action-value function
Q(s, a) and a state-value function V (s). Although the fundamental QV-learning algorithm has ex-
isted for around 20 years and several studies have pointed to its effectiveness (e.g., Wiering, 2005;
Wiering & van Hasselt, 2007; Sabatelli et al., 2020; Modayil & Abbas, 2023), empirical and theo-
retical analysis has still been limited.

3.1 On-Policy Prediction

In this subsection, we conduct a focused experiment to determine when QV-learning improves per-
formance versus a single action-value function. We then conclude with an expected convergence
analysis of QV-learning.

Throughout this paper, we will revisit Expected Sarsa as a prototypical baseline for TD learning of
action values. Recall that Expected Sarsa’s update rule is

Q(St, At)← Q(St, At) + α
(
Rt+1 + γ

∑
a′∈A

π(a′|St+1)Q(St+1, a
′)︸ ︷︷ ︸

≈vπ(St+1)

−Q(St, At)
)
. (2)

The comparison to Expected Sarsa is natural because QV-learning can be seen as learning an ap-
proximation, V (St+1), of the expected next action value, which we have underscored above. This
provides an indication as to when QV-learning may have an advantage over Expected Sarsa; as the
action-space cardinality |A| of the MDP grows, Expected Sarsa requires many more sample inter-
actions to estimate all of the action values in the expectation, whereas QV-learning can simply learn
V (St+1) with a small number of samples that is roughly insensitive to the number of actions, |A|.

To test this, we design a parametric MDP experiment where the environment has 4 states and |A|
actions. Taking any action in any state triggers a transition to a random state (possibly the same
one) with equal probability. The agents’ behavior policy is uniform random in every state. Agents
receive a reward of +1 whenever the first action, a0, is taken, and a reward of 0 otherwise.

Because the MDP dynamics are state-invariant, vb(s) is constant for all s ∈ S. Solving the state-
value Bellman equation, Eq. (4), yields vb(s) = 1 /

(
(1 − γ) |A|

)
. It follows that qb(s, ai) =

1{i=0} + γ /
(
(1− γ) |A|

)
for all ai ∈ A, where 1 is the indicator function. We set γ = 0.99.

We evaluate the agents’ performance by measuring the root mean square (RMS) prediction error,
∥qb − Q∥2, as a function of the number of environment interactions. We normalize the errors by
expressing them as a percentage of the initial RMS error, ∥qb −Q0∥2, where Q0 is initialized with
zeros. We compare Expected Sarsa and QV-learning, training both agents for 20,000 time steps. In
Figure 1 (left), we plot the learning curves for the case where |A| = 18, the largest instantiation
of our action set that we consider here. We then average the results over 100 independent trials,
with shading indicating 95% confidence intervals. The agents’ step sizes are chosen from a natural-
logarithmic grid search of 61 values over the interval (0, 1], similarly to the random walk experiment
by Sutton & Barto (2018, Sec. 12.1). The selection criterion is to minimize the area under the curve
(AUC), which we normalized as a percentage. Specifically, an AUC of 100% indicates that the initial
error did not change at all, whereas a lower percentage indicates faster average progress towards the
fixed point. In Figure 1 (center), we plot the corresponding AUCs for each step size tested by the
sweep. The dashed horizontal line corresponds to the smallest AUC achieved by each agent.

To investigate the scalability of these methods, we repeat this experiment setup for
|A| ∈ {2, 6, 10, 14, 18}. We then plot the best AUC achieved in each problem instance in Fig-
ure 1 (right). The slope of the resulting lines roughly correspond to the scalability of the algorithms.
We note that QV-learning’s line is more horizontal, indicating better scaling to large action-space
cardinalities, as we hypothesized earlier. However, the trade-off for this improved sample efficiency
is a much noisier update, which can be seen in Figure 1 (left); if we were to train for longer, Ex-
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Figure 1: On-policy prediction performance of QV-learning compared to Expected Sarsa in the
4-state MDP. (Left) Root mean square (RMS) prediction error versus the number of learning steps,
after optimizing the step size, α ∈ (0, 1]. (Center) Area under the learning curve (AUC), normalized
as a percentage, for each step size. The dashed lines correspond to the AUCs for the learning curves
in the left subplot. (Right) The smallest AUC obtained across all step sizes, as the number of MDP
actions is increased. Averaged across 100 trials; shading represents 95% confidence intervals.

pected Sarsa would eventually obtain a more accurate solution. This indicates that QV-learning is
perhaps best suited for cases where learning a satisfactory—but possibly imperfect—value function
is desired within a small number of samples.

These results do not, however, suggest that QV-learning fails to converge to the correct pair of on-
policy value functions, qb and vb. The noisy behavior observed in Figure 1 (left) is primarily due
to the fact that the step size is not annealed. The following theorem states that, in expectation, the
joint update of QV-learning is a contraction mapping when we represent the two value functions as
a concatenated vector of size |S|+ |S × A|.

Theorem 3.1 (QV-learning Contraction). The expected QV-learning update corresponds to an affine
joint operator H : [ qv ] 7→ b + A[ qv ], where b = [ r

Ebr ] and A = γ
[
0 P
0 EbP

]
. The operator H is a

contraction mapping with its unique fixed point equal to [ qb
vb
].

Proof. See Appendix A.1.

The significance of this result is that it shows that both of QV-learning’s value functions make
progress (on average) towards their respective fixed points, without requiring V to converge first.
This is in contrast to less formal convergence arguments for QV-learning, which may rely on the
assumption that TD(0) would first converge to vb based on well-established convergence results,
and then the update rule in Eq. (5) would be able to bootstrap from it to extract qb. The issue with
this two-timescale approach is that V may never exactly equal vb after any finite amount of time,
meaning that Q would still incur some bootstrapping bias—a caveat that is directly addressed by
considering the joint operator space, as we have done here.

The fact that H is a contraction mapping implies that both Q and V converge to their respective
fixed points even when updates are asynchronous, under the additional (but standard) technical as-
sumptions that the step size α is appropriately annealed and the conditional variances of the updates
are bounded (see Bertsekas & Tsitsiklis, 1996, Prop. 4.4). We note that the latter assumption is
automatically satisfied by our MDP definition, which has finite sets of states, actions, and rewards.
Finally, we remark that our analysis considers only the prediction setting in which the behavior
policy b is fixed; for the control case, we would likely need to invoke the “greedy in the limit with
infinite exploration” (GLIE) assumption (Singh et al., 2000) to prove eventual convergence to an
optimal policy, but we leave this as an open problem.
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3.2 Off-Policy Control

The previous experiment shows that bootstrapping from state values when learning action values can
be much more efficient than directly learning the action values. Unfortunately, we cannot leverage
this same technique for off-policy control, as this would require a model-free method for estimating
v∗ directly from environment samples.

To circumvent this, Wiering & van Hasselt (2009) introduced an off-policy variant of QV-learning
called QVMAX which borrows the max operator from Q-learning when updating V (St):

Q(St, At)← Q(St, At) + α
(
Rt+1 + γV (St+1)−Q(St, At)

)
, (5)

V (St)← V (St) + α
(
Rt+1 + γmax

a′∈A
Q(St+1, a

′)− V (St)
)
. (7)

V Q

QV-learning

V Q

QVMAX

Figure 2: Depiction of bootstrapping in QV-
learning variants. The arrows point from
the bootstrapped value function to the value
function being updated.

One consequence of this change is that now there
is reciprocal bootstrapping between Q and V . Pre-
viously, with QV-learning, we had only a unidirec-
tional information flow: V bootstrapped from itself,
and Q bootstrapped from V . Hence, Q could not
corrupt the state values in any way. We illustrate this
distinction in Figure 2. Although reciprocal boot-
strapping is not necessarily an undesirable property,
it is worth noting that a fundamental characteristic
of the algorithm has changed.

A more serious consequence of this change is that the update now suffers from off-policy bias. Wier-
ing & van Hasselt (2009) hypothesized that the max operator in Eq. (7) would induce convergence
to q∗, as it does in Q-learning. Unfortunately, this is not true, as we show in the next proposition.

Proposition 3.2. Unless the behavior policy, b, satisfies Eb[Rt+1 + γ v∗(St+1) | St = s] =
Eπ∗ [Rt+1 + γ v∗(St+1) | St = s] for all s ∈ S, then [ q∗

v∗ ] is not a fixed point of QVMAX.

Proof. See Appendix A.2.

The update fails to correct the distribution of the observed reward, Rt+1, which is collected by the
behavior policy. This is because Eq. (7) is not conditioned on the state-action pair, (St, At), as is
normally the case for Q-learning, but is instead conditioned only on the state, St. The freedom in the
choice of At means the expected reward observed from state St now depends on behavior policy b.

To eliminate the bias, the update cannot depend explicitly on the sampled reward, Rt+1. We there-
fore propose to modify Eq. (7) in the QVMAX updates such that we have

Q(St, At)← Q(St, At) + α
(
Rt+1 + γV (St+1)−Q(St, At)

)
, (5)

V (St)← V (St) + α
(
max
a∈A

Q(St, a)− V (St)
)
. (10)

We call this Bias-Corrected QVMAX (BC-QVMAX). This is the proper algorithm for learning q∗,
as the update now approximates the Bellman optimality relationship v∗(s) = maxa∈A q∗(s, a).

Proposition 3.3. [ q∗
v∗ ] is the unique fixed point of BC-QVMAX.

Proof. See Appendix A.3.

A peculiarity of the updates in Eqs. (5) and (10) is that they closely resemble Q-learning in Eq. (3). In
fact, if we set α = 1, then Eq. (10) simply becomes a table overwrite: V (St)← maxa∈A Q(St, a).
This would make the algorithm almost the same as Q-learning, but with a delay introduced before
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Figure 3: Off-policy control performance of BC-QVMAX compared to QVMAX and Q-learning
in the 4-state MDP. Experiment setup is the same as that of Figure 1. (Note that Q-learning is
sometimes eclipsed by BC-QVMAX.)

bootstrapping. When α < 1, then Eq. (10) has an extra smoothing effect, mixing together stale
estimates of the maximum action value in each state and exacerbating this delay.

We slightly modify the prediction experiment from Section 3.1 to demonstrate the bias of QV-
MAX. This time, we target a greedy policy with respect to the current action-value function, making
Expected Sarsa equivalent to Q-learning. We therefore compare Q-learning, QVMAX, and BC-
QVMAX. The optimal policy is to select a0 unconditionally, making q∗(s, a0) = 1 / (1 − γ). It
follows that q∗(s, ai) = γ / (1− γ) for i ̸= 0.

All experiment and plotting procedures remain the same as before, except that now the RMS error
is defined in terms of q∗: i.e., ∥q∗−Q∥2. We plot the results in Figure 3. As can be seen in Figure 3
(left), and as our theory predicted, QVMAX asymptotes substantially above the zero-error mark due
to its biased update. In contrast, BC-QVMAX achieves a much lower error. However, as we also
discussed above, the smoothing effect of BC-QVMAX makes it similar to, but rather slower than,
Q-learning. The results in Figure 3 (left) are identical only because α = 1 happens to be the best
step size for both methods, which makes them nearly equivalent (except for the delay mentioned
previously). However, for all α < 1, we can see from Figure 3 (center) that BC-QVMAX slightly
lags behind Q-learning.

These results unfortunately indicate that off-policy control with QV-learning algorithms is much
harder than on-policy prediction, since model-free estimation of v∗ is not straightforward. While
we note that this one experiment is not enough to rule out the viability of QVMAX approaches in
this setting, it does provide convincing evidence against it. In particular, the theoretically correct
version of the algorithm, BC-QVMAX, is similar to a learned approximation of Q-learning which
introduces delay into the bootstrapping. This does not serve an immediately obvious benefit and
appears to negatively impact sample efficiency, though there is the possibility that this smoothing
effect may have utility in some settings (e.g., to enhance stability in tracking problems).

4 AV-learning Algorithms

Rather than learning explicit state- and action-value functions like QV-learning methods do, an alter-
native approach is to decompose the action-value function into constituent state-value and advantage
functions that can be implicitly updated using gradient descent. This dueling strategy was introduced
by Wang et al. (2016), but we generalize it in this section.

4.1 Dueling Q-learning

To obtain a tabular Dueling Q-learning update, we evaluate the chain rule in Eq. (9), as discussed
earlier in Section 2.2. Q-learning’s TD error is δt = Rt+1 + γmaxa′∈A Q(St+1, a

′) − Q(St, At).
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Because Q(s, a) is defined according to Eq. (8), the chain rule preserves the error, δt, inside the
quadratic term and then scales it in the following manner:

Adv(St, a)← Adv(St, a) + α

(
1{a=At} −

1

|A|

)
δt , ∀a ∈ A ,

V (St)← V (St) + αδt .

It may seem unusual to write out these updates in this manner; Dueling Q-learning was originally
proposed for deep RL, where automatic differentiation would handle the partial derivatives. Nev-
ertheless, these updates are well-defined for tabular value functions. Furthermore, they reveal a
property behind this particular style of dueling. At each time step, a single advantage value is
incremented in proportion to δt, and then the |A| advantage values are decremented in the same pro-
portion to δt / |A|. This implies that the arithmetic mean of the advantages is an invariant quantity;
if we initialize the advantage values to zero, then the mean will remain zero throughout training.

4.2 Regularized Dueling Q-learning

0 1

1

chosen initialization

minimum-norm solution

possible initializations

possible solutions

Adv(s,a)

V(s)

Figure 4: RDQ finds the minimum-norm solu-
tion to the underdetermined system of equations
Q(s, a) = V (s) + Adv(s, a), ∀a ∈ A. Thus,
RDQ may require fewer updates than Dueling Q-
learning to converge in practice.

We propose a new dueling algorithm which
does not rely on subtracting the identifiability
term in Eq. (8). We start with the most general
decomposition of the action-value function,

Q(s, a) = V (s) + Adv(s, a) . (11)

This decomposition is unidentifiable (Wang
et al., 2016, Sec. 3); we can add a constant
to V (s) and subtract the same constant from
Adv(s, a) without changing Q(s, a). Conse-
quently, there are infinitely many valid decom-
positions that satisfy Eq. (11) and no clear way
for an algorithm to choose between them.

Dueling DQN seeks to accurately approximate
both vπ(s) and Advπ(s, a)

def
= qπ(s, a)− vπ(s)

in order to estimate qπ(s, a), which motivates
the subtraction of the mean advantage to get
Eq. (8) from Eq. (11). The mean advantage is
meant to coarsely approximate the expected ad-
vantage under the target policy, but sacrifices the precise semantics of vπ and Advπ . We propose an
alternative approach in which we search for any two functions, V (s) and Adv(s, a), that accurately
reconstruct qπ(s, a), further relaxing these semantics in order to expedite learning.

Let us consider the underdetermined system of equations in Eq. (11) to motivate our algorithm.
For a particular state-action pair (s, a), we can represent the specific solution found by Dueling
Q-learning as an ordered pair: (V (s),Adv(s, a)). This particular solution is just one of infinitely
many ordered pairs that satisfy Eq. (11), which form a negatively sloped line in the V -Adv plane:
Adv(s, a) = qπ(s, a) − V (s), depicted in Figure 4. When Q(s, a) is initialized, the locus of valid
initializations of V (s) and Adv(s, a) is also a negatively sloped line: Adv(s, a) = Q(s, a)− V (s),
again depicted in Figure 4. These two lines are parallel, and therefore the shortest directional path
between them is the vector orthogonal to both of them—the minimum-norm projection. This fact
remains true regardless of how Q(s, a) is initialized, since the slope of both lines is always −1.

For this reason, we hypothesize that a good solution to Eq. (11) is the point on the solution line
closest to the initialization of V (s) and Adv(s, a), since it may require fewer updates to reach. In
practice, because the state-value and advantage functions are typically initialized near zero for both
tabular and deep RL, we can approximate this solution more simply as the closest point to the origin.
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We therefore propose to apply l2 regularization to Eq. (9) to simultaneously restore identifiability to
Eq. (11) and encourage the algorithm to find this minimum-norm approximation. Specifically, we
penalize the squared-error loss from Eq. (9) with a term of

1

2
V (s)2 +

1

2

∑
a∈A

Adv(s, a)2 . (12)

Since we now have Q(s, a) = V (s) + Adv(s, a) from Eq. (11) (no identifiability term), evaluating
the chain rule in Eq. (9) gives us the following updates:

Adv(St, a)← (1− β)Adv(St, a) + α1{a=At}δt , ∀a ∈ A , (13)
V (St)← (1− β)V (St) + αδt , (14)

where β ∈ [0, 1) is the regularization coefficient. We call this new algorithm Regularized Dueling
Q-learning (RDQ). Specifically, we refer to this variant with the l2 penalty as Soft RDQ. In practice,
we found Soft RDQ to be noisy in the tabular setting, since the state and advantage values become
leaky—they get pushed towards zero by the 1 − β factor, and then have to compensate using the
stochastic TD error, δt. However, Soft RDQ is very useful in the case of function approximation,
since the penalty in Eq. (12) is architecture-agnostic and can be easily combined with complex
neural networks. We experiment with this in Section 4.3.

In the tabular setting, we do not need an l2 penalty to obtain the desired minimum-norm solution.
This is because substituting Adv(s, a) = Q(s, a)−V (s) into the penalty in Eq. (12), differentiating
with respect to V (s), and setting the derivative to zero yields

V (s) =
∑
a∈A

Adv(s, a) . (15)

Furthermore, when we remove the l2 penalty from Eqs. (13) and (14) by setting β = 0, we see
that both V (s) and exactly one advantage value, Adv(s, a), are incremented by exactly the same
amount at each time step—indicating that Eq. (15) is another invariant quantity. This implies that,
regardless of how V and Adv are initialized, Eq. (15) always remains true.4 Therefore, rather than
using an explicit l2 penalty, we can directly apply the RDQ update without a penalty to achieve the
minimum-norm solution in the tabular setting:

Adv(St, a)← Adv(St, a) + α1{a=At} δt , ∀a ∈ A ,

V (St)← V (St) + αδt .

We call this variant Hard RDQ, since it explicitly follows the minimum-norm path (on average)
without the use of a soft penalty. Unfortunately, there does not appear to be a simple extension of
this idea to the function approximation case. If we were to apply these update rules under function
approximation, the different gradients calculated for V (s) and Adv(s, a) would violate the invariant
quantity in Eq. (15) and lose the minimum-norm convergence property.

To test this new algorithm, we repeat the off-policy control experiment from Section 3.2. We once
again use Q-learning as a baseline, and then additionally compare Dueling Q-learning with Hard
RDQ. The only minor modifications we make is that we now change the suboptimal reward from 0
to −1 (which does not change the optimal policy), set γ = 0.999, and initialize V (s) and Adv(s, a)
using zero-mean Gaussian noise with a standard deviation of 2. The rationale for the nonzero reward
is so that Q does not correctly estimate either of the actions’ true values initially (on average).

We plot the results in Figure 5. All experiment and plotting procedures remain the same as before.
In contrast to the QVMAX algorithm tested earlier, both dueling methods dramatically outperform
Q-learning, showing that the advantage decomposition is a highly effective strategy in general. In

4That is, up to a fixed translation determined by the difference at initialization: V0(s)−
∑

a∈A
Adv0(s, a).
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Figure 5: Off-policy control performance of Hard RDQ compared to Dueling Q-learning and Q-
learning in the 4-state MDP. Experiment setup is the same as that of Figure 1.

the largest instantiation of our MDP, where |A| = 18, Hard RDQ slightly outperforms Dueling Q-
learning across the range of step sizes (see Figure 5; left, center). The spike at α = 0.5 is due to
the fact that AV-learning methods sum the updates to V and Adv, making the total effective step
size equal to 1 and therefore unstable. Across the various MDP instances (see Figure 5; right),
Hard RDQ performs slightly better than Dueling Q-learning in a small majority of cases, but both
algorithms perform very well overall.

4.3 Deep RL Experiments

Because Dueling Q-learning was originally proposed as a network architecture for Deep Q-Network
(DQN; Mnih et al., 2015), we test the performance of RDQ in a deep RL setting, where a neural
network is used to approximate the action-value function. We implement our agents using the PFRL
library (Fujita et al., 2021). Our benchmark is the MinAtar domain (Young & Tian, 2019), which
includes five Atari-like games: Asterix, Breakout, Freeway, Seaquest, Space Invaders. The state
representation for MinAtar is 10 × 10 multi-channel binary images displaying various objects and
their velocities. The reward function is the incremental game score.

We compare the soft variant of RDQ against DQN and Dueling DQN, using the hyperparameters
used by Obando-Ceron & Castro (2021). The action-value function Q(s, a;θt) is approximated by
a neural network, where θt is the network parameters at time t. The network architecture we use
for DQN is the same used by Young & Tian (2019): a 16-filter, 3 × 3 convolutional layer, a 128-
unit dense layer, and a final linear layer which maps to the |A| action values. All layers except the
last apply a rectified linear unit (ReLU) activation function. We apply LeCun normal initialization
(LeCun et al., 2002) to the network parameters.

For RDQ and Dueling DQN, we create a dueling architecture following Wang et al.’s 2016 proce-
dure. We duplicate the 128-unit hidden layer to branch the network in parallel streams, and then
separately map these into linear outputs of size |A| and 1 for estimating Adv(s, a;θt) and V (s;θt),
respectively. These are summed together (with broadcasting) to compute Q(s, a;θt). Dueling DQN
additionally subtracts the identifiability term, 1

|A|
∑

a′∈A Adv(s, a′;θt), per Eq. (8).

The agents execute an ϵ-greedy policy, where ϵ is fixed to 1 for the first 1,000 time steps of
training and then linearly annealed to 0.01 over the next 250,000 time steps. Each transition,
(St, At, Rt+1, St+1), is stored in a replay buffer with a capacity of 100,000 transitions. We let
Dt denote the replay memory at time t. Every 4 time steps, the agents update the parameters using
the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 2.5 × 10−4 and a denominator
constant of ϵ = 3.125× 10−4. Both DQN and Dueling DQN are trained to minimize the loss

LDQN
t

def
=

1

2
E

[(
R+ γmaxQ(S,A;θ−

t )−Q(S,A;θt)

)2]
, (16)
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Figure 6: Deep RL results for five MinAtar games. Averaged across 30 trials; shading represents
95% confidence intervals.

where θ−
t is the target network parameters copied from θt every 1,000 time steps. The expectation in

Eq. (16) is taken over the uniform distribution of samples (S,A,R, S′) inDt; in practice, we approx-
imate this with minibatches of size 32. RDQ inherits the same loss, but adds the regularization term:

LRDQ
t

def
= LDQN

t +
β

2
E

[
V (S;θt)

2 +
∑
a∈A

Adv(S, a;θt)
2

]
.

We choose β = 10−3 for the regularization strength; we did not tune this value.

Each agent was trained for a total of 10 million time steps. Every 1 million time steps, the agent
was evaluated with an ϵ-greedy policy for 1,000 episodes with ϵ = 0.01. In Figure 6, we plot the
mean undiscounted return for the evaluation episodes as a function of training time; these results are
averaged over 30 independent trials and the shading indicates 95% confidence intervals.

Figure 6 depicts our results. We see that between DQN and Dueling DQN, there does not appear
to be a clearly superior algorithm, and one algorithm may outperform the other depending on the
environment. However, we also see that RDQ significantly outperforms DQN and Dueling DQN in
all five environments. Note that RDQ shares the same architecture as Dueling DQN. Although β =
10−3 works well in this setting, more experiments would be needed to determine its efficacy in other
domains. Given that we did not tune β, it is also possible that performance could improve if tuned.

5 Conclusion

We made several advances in the understanding of TD algorithms in which state-value functions are
learned in tandem with action-value functions. We showed that QV-learning algorithms have benefits
for on-policy prediction—the original setting for which they were proposed—but tend to be much
slower when the target policy is greedy. We also demonstrated that the prevailing off-policy control
variant of QV-learning, QVMAX, is biased, and we introduced a new variant called BC-QVMAX
which empirically restores convergence. Lastly, we introduced a novel Dueling Q-learning method
called RDQ, which does not require the subtraction of an identifiability term, and has desirable
properties in terms of the geometry of the learned value functions. In a deep RL setting based on the
MinAtar games, we showed that RDQ greatly outperforms Dueling DQN, despite having identical
network architectures and the same, well-tuned hyperparameters. Although there is still much to
learn about these algorithms, our analysis helps to clarify their efficacy and distinguishing properties,
and has already demonstrated potential for the development of new and effective RL algorithms.
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A Proofs

This section contains the proofs for all theoretical results in the paper. These results rely on the anal-
ysis of dynamic-programming operators for MDPs, which we introduce here rather than Section 2
for clarity of exposition.

In this context, value functions can be represented as vectors: v ∈ R|S| for state values and q ∈
R|S×A| for action values. Each element of a vector corresponds to the value estimate for a state or a
state-action pair; the order of the elements does not matter as long as it is consistent. Likewise, the
expected reward

r(s, a)
def
=
∑
r∈R

r
∑
s′∈S

p(s′, r | s, a)

is an action-value function which can be represented as a vector, r ∈ R|S×A|.

Operators are then mappings between these vector spaces, which often represent an expected TD
update applied simultaneously to every element. In other words, TD methods are asynchronous,
stochastic approximations of their underlying dynamic-programming operators. Analyzing these
operators gives insight into convergence properties.

We adopt the operator convention of Daley (2025), summarized in Table 1, which decomposes the
standard Bellman operators into three fundamental operators: one for state transitions (P ) and two
for action selection (Eπ and E). The major benefit to this notation is that these fundamental oper-
ators are never overloaded; each applies to either v or q but not both. This allows us to expand the
Bellman operators for v and q into unambiguous expressions below—especially useful for analyz-
ing QV-learning methods.

Given these preliminaries, the Bellman operator, Tπ , is overloaded such that

Tπq
def
= r + γPEπq ,

Tπv
def
= Eπ(r + γPv) .

The Bellman expectation equations, Eqs. (1) and (4), can now be expressed succinctly as qπ = Tπqπ
and vπ = Tπvπ . In other words, the unique fixed point of Tπ is either qπ or vπ depending on
whether it acts on action values or state values, respectively. Additionally, these fixed points are
related by vπ = Eπqπ .

Table 1: Fundamental operators for MDPs (Daley, 2025, Ch. 2).

Symbol Input/Output Definition

P R|S| → R|S×A| (Pv)(s, a)
def
=
∑
s′∈S

v(s′)
∑
r∈R

p(s′, r | s, a)

Eπ R|S×A| → R|S| (Eπq)(s)
def
=
∑
a∈A

π(a | s) q(s, a)

E R|S×A| → R|S| (Eq)(s)
def
= max

a∈A
q(s, a)
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The Bellman optimality operator, T , is overloaded similarly but uses the greedy-policy operator E
instead of the expected-policy operator Eπ:

Tq
def
= r + γPEq ,

Tv
def
= E(r + γPv) .

The subtle difference here is that T is a nonlinear operator and admits the optimal value functions as
the fixed points: q∗ = Tq∗ and v∗ = Tv∗. These fixed points are analogously related by v∗ = Eq∗.

These complete our operator definitions. Our following theoretical results in the remainder of this
section are derived from the fundamental properties of these operators.

A.1 Proof of Theorem 3.1

Theorem 3.1 (QV-learning Contraction). The expected QV-learning update corresponds to an affine
joint operator H : [ qv ] 7→ b + A[ qv ], where b = [ r

Ebr ] and A = γ
[
0 P
0 EbP

]
. The operator H is a

contraction mapping with its unique fixed point equal to [ qb
vb
].

Proof. The operator updates corresponding to the QV-learning, Eqs. (5) and (6), are

q = r + γPv ,

v = Eb(r + γPv) .

The fixed points of these updates are individually qb and vb, respectively, which we show now by
substituting these quantities. The first update returns qb because of the relation vb = Ebqb:

r + γPvb = r + γPEbqb = Tbqb = qb .

The second update is just equivalent to the Bellman operator, Tb, applied to v, which admits vb as
its unique fixed point.

We next write these updates as a joint operator update[
q
v

]
←
[

r
Ebr

]
︸ ︷︷ ︸

b

+ γ

[
0 P
0 EbP

]
︸ ︷︷ ︸

A

[
q
v

]
,

which we just established has a fixed point at [ qb
vb
]. Moreover, this is an affine operator of the form

H : y 7→ b + Ay, where we let y = [ qv ] for brevity. To complete the proof, we show that H is a
maximum-norm contraction mapping, which implies the fixed point [ qb

vb
] is unique. Because each

row of A is a probability distribution scaled by γ, it follows that ∥A∥∞ = γ. For any two vectors
y,y′ ∈ R|S×A|+|S|, we therefore have

∥Hy −Hy′∥∞ = ∥A(y − y′)∥∞ ≤ γ ∥y − y′∥∞ ,

so H is indeed a maximum-norm contraction mapping. By the Banach fixed-point theorem (Banach,
1922), the fixed point [ qb

vb
] is unique and hence lim

i→∞
Hiy = [ qb

vb
] for any initial vector y.

A.2 Proof of Proposition 3.2

Proposition 3.2. Unless the behavior policy, b, satisfies Eb[Rt+1 + γ v∗(St+1) | St = s] =
Eπ∗ [Rt+1 + γ v∗(St+1) | St = s] for all s ∈ S, then [ q∗

v∗ ] is not a fixed point of QVMAX.

Proof. The operator updates corresponding to Eqs. (5) and (7) are

q ← r + γPv ,

v ← Eb(r + γPEq) .



An Analysis of Action-Value TD Methods That Learn State Values

If [ q∗
v∗ ] were a fixed point of QVMAX, then substituting these vectors into the above operator updates

would return the same result.

The first update (which reassigns q) correctly remains invariant when applied to the fixed point. This
is because v∗ = Eq∗ and therefore

r + γPv∗ = r + γPEq∗

= Tq∗

= q∗ .

However, the second update (which reassigns v) does not remain invariant when applied to the fixed
point—the root cause of the bias in QVMAX. This can be seen because

Eb(r + γPEq∗) = Eb(r + γPv∗)

̸= E(r + γPv∗)

= Tv∗

= v∗ .

This mismatch stems from the fact that the updates to v are conditioned only on the states of the
MDP and do not correct for the influence of taken actions. As such, the updates are subject to
changes to the reward and next-state distributions induced by the particular behavior policy, b. This
manifests as the discrepancy Eb ̸= E in the above equations. These two operators only coincide
in the serendipitous case that b happens to simultaneously maximize the expected 1-step returns,
r + γPv, but not in general. Ultimately, the above analysis demonstrates that [ q∗

v∗ ] cannot be the
fixed point of QVMAX for an arbitrary behavior policy and MDP, which completes the proof.

A.3 Proof of Proposition 3.3

Proposition 3.3. [ q∗
v∗ ] is the unique fixed point of BC-QVMAX.

Proof. The operator updates corresponding to BC-QVMAX, Eqs. (5) and (10), are

q ← r + γPv ,

v ← Eq .

We can unroll these updates by substituting them into each other—exploiting the fact that the updates
are interleaved and not conducted simultaneously.

The first update (which reassigns q) becomes

q ← r + γPv

= r + γPEq

= Tq .

The second update (which reassigns v) becomes

v ← Eq

= E(r + γPv)

= Tv .

Both unrolled updates are equivalent to their overloaded Bellman optimality operators, T , which are
contraction mappings and respectively admit q∗ and v∗ as their unique fixed points. Therefore, [ q∗

v∗ ]
is the unique fixed point of BC-QVMAX.


