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ABSTRACT

Predicting the binding sites of target proteins plays a fundamental role in drug dis-
covery. Most existing deep-learning methods consider a protein as a 3D image by
spatially clustering its atoms into voxels and then feed the voxelized protein into
a 3D CNN for prediction. However, the CNN-based methods encounter several
critical issues: 1) defective in representing irregular protein structures; 2) sensi-
tive to rotations; 3) insufficient to characterize the protein surface; 4) unaware of
protein size shift. To address the above issues, this work proposes EquiPocket,
an E(3)-equivariant Graph Neural Network (GNN) for binding site prediction. In
particular, EquiPocket consists of the three modules: the first one to extract local
geometric information for each surface atom, the second one to model both the
chemical and spatial structure of protein and the last one to capture the geometry
of the surface via equivariant message passing over the surface atoms. We fur-
ther propose a dense attention output layer to alleviate the effect incurred by the
variable protein size. Extensive experiments on several representative benchmarks
demonstrate the superiority of our framework to the state-of-the-art methods. Re-
lated codes can be found at the anonymous link [1].

1 INTRODUCTION

Nearly all biological and pharmacological processes in living systems involve interactions between
receptors (i.e. target proteins) and ligands (i.e. small molecules or other proteins) [40]. These inter-
actions take place at specific regions that are referred to as binding sites/pockets on the target protein
structures. Predicting the ligand binding sites via in-silico algorithms forms an indispensable and
even the first step for various tasks, including docking [57; 58; 34] and drug molecule design [53].

Through the past years, various computational methods for binding site detection have emerged,
broadly categorized [35] into geometry-based[32; 16; 55; 30; 6; 11], probe-based [28; 29; 38; 12],
and template-based methods [5; 50]. These methods exploit hand-crafted algorithms guided by do-
main knowledge or external templates, leading to insufficient expressivity in representing proteins.
Motivated by the breakthrough of deep learning in a variety of fields, Convolutional Neural Net-
works (CNNs) have been applied successfully for the binding site prediction [21]. Typical works
include DeepSite [20], DeepPocket [3], DeepSurf [37], etc. The CNN-based methods consider a
protein as a 3D image by spatially clustering its atoms into the nearest voxels, and then model
the binding site prediction as a object detection problem or a semantic segmentation task on 3D
grids. These CNN-based methods have demonstrated superiority over traditional learning-based
approaches and tend to achieve top performance on various public benchmarks [37].

In spite of the impressive progress, existing CNN-based methods still encounter several issues:

Issue 1. Defective in leveraging regular voxels to model the proteins of irregular shape. First, a
considerable number of voxels probably contain no atom due to the uneven spatial distribution of
protein atoms, which yields unnecessary redundancy in computation and memory. Moreover, the
voxelization is usually constrained within a fixed-size (e.g. 70Å×70Å×70Å ) [20; 47]. The outside
atoms will be directly discarded, resulting in incomplete and inaccurate modeling for large proteins.

Issue 2. Sensitive to rotations. The CNN-based methods rely on fixed coordinate bases for dis-
cretizing proteins into 3D grids. When rotating the protein, the voxelization results could be dis-

1



Under review as a conference paper at ICLR 2024

(a) Previous CNN-based methods
Local GeometryChemical Info

Protein Atom
Surface Probe
Binding Site

(b) Our EquiPocket

Figure 1: Illustrative comparison between previous CNN-based methods and our EquiPocket.

tinct, affecting predicted binding sites. This contradicts the fact that any protein rotation keeps the
binding sites invariant. While it can be alleviated by local grid [37] or augmenting data with random
rotations [39; 47], which yet is data-dependent and unable to guarantee rotation invariance in theory.

Issue 3. Insufficient to characterize the geometry of the protein surface. Surface atoms comprise
the major part of the binding pocket, which should be elaborately modeled. In the CNN-based
methods, surface atoms are situated within voxels surrounded by empty voxels, which somehow
encodes the surface geometry. Nevertheless, such information is too coarse to depict how surface
atoms interact and what their local geometry is. Indeed, the description of surface atoms is purely
driven by the geometric shape of the solvent-accessible surface of the protein [41] (Figure 1(b)),
which, unfortunately, is less explored in current learning-based works.

Issue 4. Unaware of protein size shift. In practical scenarios, the size of the proteins varies greatly
across different datasets. It requires the deep learning model we apply to be well generalizable and
adaptive, so that it is able to overcome the distribution shift incurred by the variable protein size.
However, this point is not seriously discussed previously.

To address the above issues, this paper proposes to apply Graph Neural Networks (GNNs) [22; 7; 44]
instead of CNNs to represent proteins. By considering atoms as nodes, interactions as edges,
GNNs are able to encode the irregular protein structures. More importantly, a recent line of re-
searches [44; 18; 15] has enhanced GNNs by encapsulating E(3) equivariance/invariance with re-
spect to translations/rotations; in this way, equivariant GNNs yield outputs that are independent of
the choice of the coordinate systems. That being said, trivially applying equivariant GNNs for the
binding site prediction task is still incapable of providing desirable performance, and even achieves
worse accuracy than the CNN-based counterparts. By looking into their design, equivariant GNNs
naturally cope with the first two issues as mentioned above, yet leave the other two unsolved. To
this end, we make the contributions as follows:

1) To the best of our knowledge, we are the first to apply an E(3)-equivariant GNN for binding
site prediction, which is dubbed EquiPocket. In contrast to conventional CNN-based methods,
EquiPocket is free of the voxelization process, able to model irregular protein structures by nature,
and insensitive to any Euclidean transformation, thereby addressing Issue 1 and 2.

2) EquiPocket consists of three modules: the first one to extract local geometric information for
each surface atom with the help of the solvent-accessible surface technique [41], the second one
to model both the chemical and the spatial structures of the protein, and the last one to capture the
comprehensive geometry of the surface via equivariant message passing over the surface atoms. The
first and the last modules are proposed to tackle Issue 3.

3) To alleviate the effect by protein size shift in Issue 4, we further propose a novel output layer called
dense attention output layer, which enables us to adaptively balance the scope of the receptive field
for each atom based on the density distribution of the neighbor atoms.

4) Extensive experiments demonstrate the superiority of our framework to the state-of-the-art meth-
ods in prediction accuracy. The design of our model is sufficiently ablated as well.

It is worth to mention that some researchers have adopted typical GNNs for protein pocket detec-
tion and other relevant tasks [51; 36; 13]. However, all these methods are non-equivariant and not
geometry-aware, and can solely extract the structure information of the target protein, leading to
worse performance than 3D CNN-based methods, which will be shown in our experiments.
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2 NOTATIONS AND DEFINITIONS

Protein Graph. A protein such as the example in Figure 1(b) is denoted as a graph GP =
(VP , EC , ED), where VP = {v0, ..., vN} forms the set of N atoms, EC represents the chemical-
bond edges, and ED collects the spatial edges between any two atoms if their spatial distance is less
than a cutoff θ > 0. In particular, each node (i.e. atom) is associated with a feature (xi, ci), where
xi ∈ R3 denotes the 3D coordinates and ci ∈ R5 is the chemical feature.

Surface Probe Set. The surface geometry of a protein is of crucial interest for binding site detection.

Atom

Atom

Atom

Atom

Atom

Atom

Atom
Atom

Atom
Atom

Atom

Surface Probe

Solvent Accessible Surface

Solvent Excluded Surface

Figure 2: An illustration of protein surface.

By employing the open source MSMS [43], as showed in Fig-
ure 2, we move a probe (the grey circle) of a certain radius along
the protein to calculate the Solvent Accessibility Surface (SAS)
and Solvent Excluded Surface (SES) [31]. The resulting coordi-
nates of probe are considered as surface probes. Here we define
the set of surface probes, by S = {s0, ..., sM}, M ≫ N . Each
surface probe si corresponds to (xi, pi), where xi ∈ R3 repre-
sents the 3D coordinates of si and pi ∈ VP indicates the index
of the nearest protein atom in VP to si.

Protein Surface Graph. Referring to the surface probes defined above, we collect all the nearest
protein atoms pi of the surface probes, forming the surface graph GS = (VS , ES), and clearly
GS ⊆ GP . Notably, the edges of the surface graph, i.e. , ES is only composed of spatial edges from
ED, since those chemical edges are mostly broken among the extracted atoms.

Equivariance and Invariance. In 3D space, the symmetry of the physical laws requires the de-
tection model to be equivariant with respect to arbitrary coordinate systems [15]. In form, suppose
X to be 3D geometric vectors (positions, velocities, etc) that are steerable by E(3) group (rota-
tions/translations/reflections), and h non-steerable features. The function f is E(3)-equivariant, if
for any transformation g ∈ E(3), f(g ·X,h) = g · f(X,h), ∀X ∈ R3×m,h ∈ Rd. Similarly, f
is invariant if f(g · X,h) = f(X,h). The group action · is instantiated as g · X := X + b for
translation b ∈ R3 and g ·X(t) := OX for rotation/reflection O ∈ R3×3.

Problem Statement. Given a protein GP , its surface probes S, and constructed surface graph GS ,
our goal is to learn an E(3)-invariant model f(GP ,S,GS) to predict the atoms VB of the binding site.

3 THE PROPOSED METHODOLOGY

Figure 4 illustrates the overall framework of our EquiPocket, which consists of three modules: the
local geometric modeling module § 3.1 that focuses on extracting the geometric information of
each surface atom, the global structure modeling module § 3.2 to characterize both the chemical and
spatial structures of the protein, and the surface message passing module § 3.3 which concentrates on
capturing the entire surface geometry based on the extracted information by the two former modules.
The training losses are also presented. We defer the pseudo codes of EquiPocket to Appendix 1.

3.1 LOCAL GEOMETRIC MODELING MODULE

This subsection presents how to extract the local geometric information of the protein surface
GS , with the help of surface probes S. The local geometry of each protein atom closely de-
termines if the region nearby is appropriate or not to become part of binding sites. We adopt
the surrounding surface probes of each protein surface atom to describe the local geometry.

Surface Atom Surface Probe Surface Center

Figure 3: An illustration of local geometric features.

To be specific, for every surface atom i ∈ VS , its surrounding
surface probes are returned by a subset of S, namely, Si = {sj =
(xj , pj) ∈ S | pj = i}, where pj , indicates the nearest protein
atom. We now construct the geometric information based on Si.
We denote the center/mean of all 3D coordinates in Si as x̄i. For
each surrounding surface probe sj ∈ Si, we first search its two
nearest surface probes from S as sj1 and sj2 , and then calculate
the following relative position vectors:

xjj1 = xj − xj1 ,xjj2 = xj − xj2 ,

xj,center = xj − x̄i,xj,protein = xj − xi,xcenter,protein = x̄i − xi.
(1)
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Figure 4: An illustration of the scheme of our EquiPocket framework.

We further derive the following scalars upon Eq. 1:

g(sj) := [∥xjj1∥2, ∥xjj2∥2,∠1, ∥xj,center∥2, ∥xj,protein∥2, ∥xprotein,center∥2,∠2], (2)

where the angels are computed by ∠1 =
xjj1 ·xjj2

∥xjj1
∥2∥xjj2

∥2
and ∠2 =

xj,center·xcenter,protein

∥xj,center∥2∥xcenter,protein∥2
; here the

operator · defines the inner-product between two vectors. Basically, as displayed in Figure 3, the
first three quantities in g(sj) depict how the nearby surface probes are arranged around sj , and the
last four ones describe where sj is located within the global region of Si.

We aggregate the geometric information g(sj) over all surface probes in Si and obtain a readout
descriptor for surface atom i as

gi =[Pooling({MLP(g(sj))}sj∈Si),MLP(Pooling{(g(sj))}sj∈Si)] (3)

Here, MLP denotes multi-layer perceptron, and the function Pooling is implemented as a concate-
nation of mean pooling and max pooling throughout our experiments. The front part in Eq. 3 is
used to gather local geometric features, while the latter part attempts to compute the global size of
surrounding surface probes. Notably, the geometric descriptor gi is E(3)-invariant.

3.2 GLOBAL STRUCTURE MODELING MODULE

This module aims at processing the information of the whole protein GP , including atom type,
chemical bonds, relevant spatial positions, etc. Although the binding pocket is majorly comprised of
surface atoms, the global structure of the protein in general influences how the ligand is interacted
with and how the pocket is formulated, which should be modeled. We fulfil this purpose via two
concatenated processes: chemical-graph modeling and spatial-graph modeling.

The chemical-graph modeling process copes with the chemical features {ci}i∈VP
and the chemical

interactions EC of the protein graph. For each atom in the protein, its chemical type, the numbers of
electrons around, and the chemical bonds connected to other atoms are important clues to identify
the interaction between the protein and the ligand [57]. We employ typical GNNs [23; 52; 42] to
distill this type of information. Formally, we proceed:

{c′i}i∈VP
= GNN({ci}i∈VP

, EC), (4)

where c′i is the updated chemical feature for atom vi. While various GNNs can be used in Eq. 4,
here we implement GAT [52] given its desirable performance observed in our experiments.

The spatial-graph modeling process further involves the 3D coordinates {xi}i∈VP
to better depict

the spatial interactions ED within the protein. Different from chemical features c′i, the 3D coordi-
nates provide the spatial position of each atom and reflect the pair-wise distances in 3D space, which
is helpful for physical interaction modeling. We leverage EGNN [44] as it conforms to E(3) equiv-
ariance/invariance and achieves promising performance on modeling spatial graphs. Specifically,
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we process EGNN as follows:
{c′′i }i∈VP

= EGNN({xi, c
′
i}i∈VP

, ED). (5)
Here, we only reserve the invariant output (i.e. , c′′i ) and have discarded the equivariant output (e.g.
updated 3D coordinates) of EGNN, since the goal of this module is to provide invariant features.
We select the updated features of the surface atoms VS , which will be fed into the module in § 3.3.

3.3 SURFACE MESSAGE PASSING MODULE.

Given the local geometric features {gi}i∈VS
from § 3.1, and the globally-encoded features of the

surface atoms {c′′i }i∈VS
from § 3.2, the module in this subsection carries out equivariant message

passing on the surface graph GS to renew the entire features of the protein surface. We mainly focus
on the surface atoms here, because firstly the surface atoms are more relevant to the binding sites
than the interior atoms, and secondly the features {c′′i }i∈VS

that are considered as the input have
somehow encoded the information of the interior structure via the processes in 3.2.

Surface-EGNN. During the l-th layer message passing, each node is associated with an invariant
feature h

(l)
i ∈ Rml and an equivariant double-channel matrix X

(l)
i ∈ R3×2. We first concatenate

c′′i with gi as the initial invariant feature, h(0)
i = [c′′i , gi]. The equivariant matrix X

(0)
i is initialized

by the 3D coordinates of the atom and the center of its surrounding surface probes, that is, X(0)
i =

[xi, x̄i]. We update h
(l)
i ∈ Rdl and X

(l)
i ∈ R3×2 synchronously to unveil both the topological

and geometrical patterns. Inspired from EGNN [44] and its multi-channel version GMN [18], we
formulate the l-th layer for each surface atom i ∈ VS as:

mij = ϕm

(
h
(l)
i ,h

(l)
j , fx(X

(l)
i ,X

(l)
j ), eij

)
,h

(l+1)
i = ϕh

(
h
(l)
i ,

∑
j∈N(i)

mij

)
(6)

X
(l+1)
i = X

(l)
i +

1

|N(i)|
∑

j∈N (i)
(x

(l)
i,1 − x

(l)
j,1)ϕx(mij), (7)

where the functions ϕm, ϕh, ϕx are MLPs, xi,1 (xj,1) denotes the first channel of Xi (Xj), N(i)
denotes the spatial neighbors of node i, | · | counts the size of the input set, and the invariant message
mij from node j to i is employed to update the invariant feature h

(l+1)
i via ϕh and the equivariant

matrix X
(l+1)
i via the aggregation of the relative position x

(l)
i,1 − x

(l)
j,1 multiplied with ϕx.

As a core operator in the message passing above, the function fx(Xi,Xj) is defined as follows:
fx(Xi,Xj) := [∥xij∥2, ∥xci∥2, ∥xcj∥2,∠ci,ij ,∠cj,ij ,∠ci,cj ], (8)

where, the relative positions are given by xij = xi,1 − xj,1, xci = xi,2 − xi,1 and xcj = xj,2 −
xj,2; the angles ∠ci,ij ,∠cj,ij ,∠ci,cj are defined as the inner-products of the corresponding vectors
denoted in the subscripts, e.g. , ∠ci,ij =

xci·xij

∥xci∥2∥xij∥2
. Through the design in Eq. 8, fx(Xi,Xj)

elaborates the critical information (including relative distances and angles) around the four points:
xi,1,xi,2,xj,1,xj,2, which largely characterizes the geometrical interaction between the two input
matrices. Nicely, fx(Xi,Xj) is invariant, ensuring the equivariance of Surface-EGNN.

Dense Attention Output Layer. Conventionally, we can apply the output of the final layer, i.e. ,
(h

(L)
i ,X

(L)
i ) to estimate the binding site. Nevertheless, such flat output overlooks the discrepancy of

size and shape between different proteins. As showed in Figure 6(b), for small or densely-connected
proteins, the receptive field of each node will easily cover most nodes after a small number of
message-passing layers, and excessive message passing will lead to over-smoothing [17] that will
incurs performance detriment. For large or sparsely-connected proteins, on the contrary, insufficient
message passing can hardly attain the receptive field with a desirable scope, which will also decrease
the performance. It thus requires us to develop an adaptive mechanism to balance the message
passing scope between different proteins. We propose the dense attention output layer (showed in
Figure 5) to achieve this goal.

Intuitively, for each target atom, the spatial distribution of neighbors can reflect the density of spa-
tial connections around. This motivates us to calculate the proportion of the atoms with different
distance ranges. we take θ as the distance unit to create the spatial graph and compute by:

n
(l)
i =

|{j ∈ VP | 0 ≤ ∥xi − xj∥2 < lθ}|
NP

, (9)
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Figure 5: An illustration of Dense Attention.

where, the proportion is evaluated within the distance range [0, lθ],
NP = |VP |, and the neighbor hop l ∈ Z+. We collect the pro-
portions of all hops from 0 to L, yielding the proportion vector
ni = [n

(0)
i , n

(1)
i , · · · , n(L)

i , NP ] ∈ RL+2 with NP plus to empha-
size the total number of the protein atoms. Clearly, ni contains
rich information of the spatial density, and we apply it to deter-
mine the importance of different layers, by producing the attention
ai = Sigmoid(ϕa(ni)). Here, ϕa is an MLP with the number of
output channels as L + 1, the Sigmoid function1 is applied for each
channel, implying that ai ∈ (0, 1)L+1.

Subsequently, we multiply the hidden feature of corresponding layer with each channel of atten-
tion vector. The results are then concatenated into a vector denoted as hout

i . To retain translation
equivariance, we calculate the mean coordinates of all layers as Xout

i :

hout
i = Concat(ai0h

(0)
i , ..., aiLh

(L)
i ), Xout

i =
1

L+ 1

∑L

l=0
X

(l)
i , (10)

where ail is the l-th channel of ai. By making use of Eq. 10, the learnable attentions enable the
model to adaptively balance the importance of different layers for different input proteins. We will
illustrate the benefit of the proposed strategy in our experiments.

3.4 OPTIMIZATION OBJECTIVE

Binding Sites Prediction. We set yi = 1 if a surface atom i is within 4Å to any ligand atom [37]
and compute ŷi = Sigmoid(MLP(hout

i )) as the probability of being a part of binding site according
its dense embedding hout

i . The loss Lb for this task is computed with Dice loss [20; 21].

Relative Direction Prediction. Beyond the CNN-based methods, our EquiPocket is an E(3)-
equivariant model, which can not only output the embedding hout

i but also the coordinate matrix
Xout

i (with initial position vector xi). To enhance our framework for gathering local geometric
features, we further leverage the position vector mi to compute the relative direction of its near-
est ligand atom by di = mi−xi

∥mi−xi∥2
, which is predicted as d̂i =

xout
i −xi

∥xout
i −xi∥2

. The task loss Ld is
computed with cosine loss. We compute the eventual loss by L = Lb + Ld.

4 EXPERIMENTS

In this section, we will perform experiments on various datasets to assess the performance of our
framework and individual modules. Related codes and resources for our experiments can be found
at the anonymous link [1].

4.1 EXPERIMENTAL SETTINGS

Dataset. scPDB [10] is the famous dataset for binding site prediction, which contains the protein,
ligand, and 3D cavity structure generated by VolSite [9]. The 2017 release is used for training and
cross-validation. PDBbind [54] is a commonly used dataset for researching protein-ligand complex,
which contains the 3D structures of proteins, ligands, binding sites, and binding affinity results de-
termined in the laboratory. We use the v2020 release for evaluation. COACH 420 and HOLO4K [27]
are two test datasets for binding site prediction. We use the mlig subsets for evaluation [27; 37; 3].
The data summary and preparation process are detailed in Appendix A.4.1 and A.5.

Target of Binding Sites. Following [37], the protein atoms within 4Å of any ligand atom are set as
positive and negative otherwise. After obtaining the probability that an atom is a candidate binding
site, we use the mean-shift algorithm [8] to predict the binding site center, which can determine the
number of clusters on its own (details in Appendix A.5.2). The CNN-based methods [20; 3; 47]
mark a grid as positive if its distance from the binding site’s geometric center is less than 4Å.

Evaluation Metrics. We take the metrics including DCC (Distance between the predicted binding
site center and the true binding site center), DCA (Shortest distance between the predicted binding

1Note that the sum of all channels of ai is unnecessarily equal to 1, since the Sigmoid function instead of
the previously-used SoftMax function is applied here.
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Table 1: Experimental and ablation results of baseline models and our framework.a

Methods Type Param Failure COACH420 HOLO4K PDBbind2020

(M) Rate ↓ DCC↑ DCA↑ DCC↑ DCA↑ DCC↑ DCA↑
Fpocketb Geometric-based \ 0.000 0.228 0.444 0.192 0.457 0.253 0.371

DeepSiteb

3D-CNN
1.00 \ \ 0.564 \ 0.456 \ \

Kalasantyb 70.64 0.120 0.335 0.636 0.244 0.515 0.416 0.625
DeepSurfb 33.06 0.054 0.386 0.658 0.289 0.635 0.510 0.708

GAT 0.03 0.11 0.039(0.005) 0.130(0.009) 0.036(0.003) 0.110(0.010) 0.032(0.001) 0.088(0.011)
GCN Topological 0.06 0.163 0.049(0.001) 0.139(0.010) 0.044(0.003) 0.174(0.003) 0.018(0.001) 0.070(0.002)
GAT + GCN Graph 0.08 0.31 0.036(0.009) 0.131(0.021) 0.042(0.003) 0.152(0.020) 0.022(0.008) 0.074(0.007)
GCN2 0.11 0.466 0.042(0.098) 0.131(0.017) 0.051(0.004) 0.163(0.008) 0.023(0.007) 0.089(0.013)

SchNet Spatial 0.49 0.14 0.168(0.019) 0.444(0.020) 0.192(0.005) 0.501(0.004) 0.263(0.003) 0.457(0.004)
Egnn Graph 0.41 0.270 0.156(0.017) 0.361(0.020) 0.127(0.005) 0.406(0.004) 0.143(0.007) 0.302(0.006)

EquiPocket-L

Ours

0.15 0.552 0.070(0.009) 0.171(0.008) 0.044(0.004) 0.138(0.006) 0.051(0.003) 0.132(0.009)
EquiPocket-G 0.42 0.292 0.159(0.016) 0.373(0.021) 0.129(0.005) 0.411(0.005) 0.145(0.007) 0.311(0.007)
EquiPocket-LG 0.50 0.220 0.212(0.016) 0.443(0.011) 0.183(0.004) 0.502(0.008) 0.274(0.004) 0.462(0.005)
EquiPocket 1.70 0.051 0.423(0.014) 0.656(0.007) 0.337(0.006) 0.662(0.007) 0.545(0.010) 0.721(0.004)
a The standard deviation of each index is indicated in brackets. The result of 5-fold for EquiPocket is shown in Appendix A.10.1.
b We use their published pretrained models or published results, details in Appendix A.5.5.

site center and any grid of the ligand) and Failures Rate (Sample rate without any predicted binding
site center). Success rate is determined for samples with the DCC(DCA) values below a predeter-
mined threshold. Following [20; 37; 3; 47], we set the threshold to 4 Å. Details in Appendix A.5.1.

EquiPocket Framework. We implement our EquiPocket framework based on
(GAT [52]+EGNN [44]) as our global structure modeling module. The the radius of the
probe, cutoff θ and depth in our surface-egnn model are set to 1.5, 6 and 4 . To indicate the
EquiPocket Framework with different modules, we adopt the following symbol as follows: i)
EquiPocket-L: Only contain the local geometric modeling module. ii) EquiPocket-G: Only
contain the global structure modeling module. iii) EquiPocket-LG: Only contain both the local
geometric and global structure modeling modules. iii) EquiPocket: Contain all the modules.

Baseline Models. 1) geometric-based method(Fpocket [30]); 2) CNN-based methods (Deep-
Site [20], Kalasanty [47] and DeepSurf [37]); 3) topological graph-based models (GAT [52],
GCN [22] and GCN2 [7]); 4) spatial graph-based models (SchNet [46], EGNN [45]).

4.2 MODEL COMPARISON

In Table 1, we compared our EquiPocket framework with baseline methods mentioned above. As can
be observed, the performance of the computational method Fpocket is inferior, with no failure rate,
since it simply employs the geometric feature of a protein. The performance of CNN-based methods
is much superior to that of the conventional method, with DCC and DCA metrics improving by more
than 50 percent but requiring enormous parameter values and computing resources. However, these
two early methods DeepSite and Kalasanty are hampered by protein size shift (Issue 4) and their
inability to process big proteins, which may fail prediction. The recently proposed method Deepsurf
employs the local-grid concept to handle any size of proteins, although CNN architecture also still
results in inevitable failures.

For graph models, the poor performance of topological-graph models (GCN, GAT, GCN2) is pri-
marily due to the fact that they only consider atom attributes and chemical bond information, ignor-
ing the spatial structure in a protein. The performance of spatial-graph models is generally better
than that of topological-graph models. EGNN model utilizes not only the properties of atoms but
also their relative and absolute spatial positions, resulting in a better effect. SchNet merely up-
dates the information of atoms based on the relative distance of atoms. We attempt to execute the
Dimenet++ [24], which uses the angle info between atoms, but it requires too many computing re-
sources, resulting in an OOM (Out Of Memory) error. However, the performance of spatial-graph
model is worse than that of CNN-based and geometric-based methods because the former cannot
obtain enough geometric features (Issue 3) and cannot address the protein size shift (Issue 4).

As the above results indicate, geometric info of protein surface and multi-level structure info in a
protein is essential for binding site prediction. In addition, it reflects the limitations of the current
GNN models, where it is difficult to collect sufficient geometric information from the protein surface
or the calculation resources are too large to apply to macromolecular systems like proteins. Conse-
quently, our EquiPocket framework is not only able to update chemical and spatial information from
an atomic perspective but also able to effectively collect geometric information without excessive
computing expense, resulting in a 10-20% increase in effect over previous results. Case study based
on different methods is showed in Appendix A.5.7.
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(a) (b) (c)
Figure 6: The protein size shift and model performances for proteins of various sizes

4.3 ABLATION STUDY

As shown in Table 1, we conduct ablation experiments on our EquiPocket with different modules.

Local Geometric Modeling Module. This module is used to extract the geometric features of pro-
tein atoms from their nearest surface probes. EquiPocket-G consists solely of this module, and the
performance is negligible. There are two primary causes for this result. First, geometric information
can only determine part of the binding sites. Second, it can only reflect the geometric features over
a relatively small distance and cannot cover an expansive area.

Global Structure Modeling Module. The primary purpose of this module is to extract information
about the whole protein, such as atom type, chemical bonds, relevant spatial positions, etc. We im-
plement EquiPocket-G based on (GAT + EGNN) models, which is E(3) equivariance/invariance and
has a better effect than its predecessor, EquiPocket-L. In comparison, the value of DCC increased
by about 10%, and DCA increased by about 20%. This demonstrates that structure information
of the whole protein is necessary for binding site prediction. In addition, when the two modules
are combined as the EquiPocket-LG, the prediction effect is significantly improved, proving the
complementarity of surface geometric information and global structure information.

Surface Message Passing Module. In the previous model, EquiPocket-LG, information was ex-
tracted solely from atoms and their closest surface probes. Nonetheless, the binding site is deter-
mined not only by the information of a single atom but also by the atoms surrounding it. Therefore,
the surface message passing module is proposed to collect and update the atom’s features from its
neighbors. After adding this module, the performance of EquiPocket has been significantly en-
hanced, DCC and DCA have increased by approximately 20% on average, and the failure rate has
been significantly reduced. Through the addition of multiple modules, we address the Issue 3 and
the performance of our framework eventually surpasses that of the existing SOTA method, demon-
strating the efficacy of our framework design.

4.4 PROTEIN SIZE SHIFT

As depicted in the Figure 6(a) and 6(b) that after data processing, there is a significant gap in pro-
tein size and distribution between the training dataset (scPDB) and the test dataset (COACH420,
HOLO4k, PDBbind). The number of atoms within a protein ranges from hundreds to tens of thou-
sands. As for protein distribution in datasets, scPDB has the longest average structure, followed by
HOLO4k and PDBbind, with COACH420 having the shortest average protein structure. This fact
will hurt model learning and generalization.
We calculate the average DCC with the distribution of various sizes proteins presented in Fig-
ure 6(c). The geometric-based method Fpocket only utilizes the geometric features of a protein
surface. Therefore, its performance is superior to that of most other methods for proteins with fewer
than 1,000 atoms, but its prediction effect decreases significantly as the size of the protein increases.
Kalasanty is a CNN-based and learn-based method. As the number of atoms in the protein varies,
the prediction effect exhibits an increasing and then a decreasing trend, which is not only influenced
by the size of the protein but also has a significant correlation with the dataset’s distribution. Accord-
ing to the train data (scPDB), the majority of proteins contain fewer than 2,000 protein atoms (as
depicted in Figure 6(a)). Consequently, the model’s parameters will be biased toward this protein
size. In addition, for proteins with more than 8000 atoms, the prediction effect is not even as good as
the geometric-based method. This is due to the fact that CNN methods typically restrict the protein
space to 70Å * 70Å * 70Å, and for proteins larger than this size, the prediction frequently fails. For
our EquiPocket framework, we do not need to cut the protein into grids, and we utilize both geomet-
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(a) (b) (c) (d)
Figure 7: The influences of the probe radius of MSMS, cutoff θ and depth of surface-egnn

ric information from the surface probes and global structure information from the whole protein, so
the performance for proteins of varying sizes is significantly superior to that of other methods.

Dense Attention. The Dense Attention is introduced in § 3.3 to reduce the negative impact caused
by the protein size shift (Issue 4). As shown in 6(c), when the number of atoms contained in a
protein is less than 3000, the result of the EquiPocket (w/o Dense Attention) is weaker than that
of the original EquiPocket, whereas when the protein is larger, there is no significant distinction
between the two models. It simply reflects the role of Dense Attention, which, by weighting the
surface-egnn layer at different depths, mitigates the detrimental effect of the protein size shift.

Direction Loss. Direction loss is a novel task designed to improve the extraction of local geometric
features. The result of the EquiPocket (w/o Direction Loss) in Figure 6(c) demonstrates conclusively
that the prediction performance of small proteins with fewer than 3,000 atoms is diminished in the
absence of this task, which reveals the importance of the task.

4.5 HYPERPARAMETERS ANALYSIS

In our EquiPocket framework, the probe radius of MSMS, the cutoff θ and depth of surface-egnn
are crucial parameters that can impact performance and computational efficiency.

Probe Radius. We implement various radius of probe (1, 1.5, 2), which can control the number
and density of surface probes. As showed in Figure 7(a) and 7(b), when reducing the radius from
1.5 to 1, the DCC accuracy shows a slight improvement. Conversely, when increasing the radius
from 1.5 to 2, the DCC accuracy notably worsens. This is understandable since a smaller radius
allows for a more detailed capture of geometric information around the protein surface, leading to
more precise pocket detection. However, a smaller radius also results in a larger number of surface
probes, increasing the GPU memory usage. To strike a balance between memory consumption and
detection accuracy, we opt for the default radius value of 1.5 in our experiments. The detail results
are provided in Appendix A.5.6.

Cutoff θ. We set the depth of surface-egnn to 4 and implement various cutoff values (2, 4, 6, 8,
10). Figure 7(c) indicates that with the cutoff set to 2, the average DCC of our framework is poor,
and GPU memory is relatively low (22GB). This is due to the fact that when the cutoff is small,
the surface-egnn can only observe a tiny receptive field. As the cutoff increases, the performance
and GPU memory continue to rise until the DCC reaches a bottleneck when the cutoff is 10, and
the GPU memory reaches 62GB. Therefore, when selecting parameters for our framework, we must
strike a balance between performance and efficiency.

Depth. The depth of surface-egnn has an immediate influences on the performance and computation
cost. We set the cutoff to 6 and implement various depth (1, 2, 3, 4, 5, 6). Figure 7(d) demonstrates
that as depth increases, performance steadily improves and becomes stable as GPU memory con-
tinues to expand. Because the prediction of binding sites is highly influenced by their surrounding
atoms, therefore, an excessively large receptive field may not offer any benefits but will necessitate
additional computing resources.

5 CONCLUSION

In this paper, concentrating on the ligand binding site prediction, we propose a novel E(3)-
Equivariant geometric graph framework called EquiPocket, which contains the local geometric mod-
eling module, global structure modeling module, and surface passing module to gather the surface
geometric and multi-level structure features in a protein. Experiments demonstrate that our frame-
work is highly generalizable and beneficial, and achieves superior prediction accuracy and compu-
tational efficiency compared with the existing methods.

9
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REPRODUCIBILITY STATEMENT

We provide the source code of our framework and the dataset information at the anonymous link [1]
and supplementary materials for reproducibility.
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[4] Mariana Belgiu and Lucian Drăguţ. Random forest in remote sensing: A review of applications
and future directions. ISPRS journal of photogrammetry and remote sensing, 114:24–31, 2016.

[5] Michal Brylinski and Jeffrey Skolnick. A threading-based method (findsite) for ligand-binding
site prediction and functional annotation. Proceedings of the National Academy of sciences,
105(1):129–134, 2008.

[6] Ke Chen, Marcin J Mizianty, Jianzhao Gao, and Lukasz Kurgan. A critical comparative as-
sessment of predictions of protein-binding sites for biologically relevant organic compounds.
Structure, 19(5):613–621, 2011.

[7] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks, 2020.

[8] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis.
IEEE Transactions on pattern analysis and machine intelligence, 24(5):603–619, 2002.

[9] Franck Da Silva, Jeremy Desaphy, and Didier Rognan. Ichem: a versatile toolkit for detecting,
comparing, and predicting protein–ligand interactions. ChemMedChem, 13(6):507–510, 2018.
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A APPENDIX

A.1 THE PSEUDO-CODE OF OUR EQUIPOCKET FRAMEWORK

Algorithm 1: EquiPocket
Input: Protein structure GP

Output: Candidate Binding sites and their ligandability score
1: Clean Structure by removing solvent, hydrogens atoms
2: Create the solvent accessible surface of the protein S use MSMS
3: for every si in S do
4: Get its closed protein atom pi
5: end for
6: Get the surface atom VS according to the surface points‘s closed protein atom
7: for every surface atom i ∈ VS do
8: Get their surrounding surface points set Si
9: Get the geometric embedding gi

10: end for
11: Get the global structure embedding c

′′

i of the protein
12: for every surface atom i ∈ VS do
13: Get its invariant feature h

(0)
i = [c′′i , gi].] and equivariant position matrix X

(0)
i = [xi, x̄i]

14: Get the updated embedding h
(l)
i and updated coordinates X(l)

i based on our surface-egnn
model

15: Get the dense embedding hi and position Xi according to its dense attention ai

16: predict the probability ŷi as ligandability score and the nearest ligand atom direction di

17: end for
18: Discard protein atoms with probability less than T (T=0.5 in our experiments);
19: Cluster the remaining protein atoms;
20: Form binding sites and get the average ligandability score for each cluster;
21: Rank the predicted binding sites by their ligandability score;
22: return The candidate binding sites and ligandability score;

A.2 THE SUPPLEMENT DETAILS FOR EXPERIMENT PROCESS

Number of Binding Sites Number of Proteins
COACH420 Holo4k PDBbind

1 235 2442 5025
2 36 635 0
3 7 67 0
4 4 22 0

>=5 2 38 0

As indicated by the data distribution presented in the table above, the majority of samples in the test
dataset consist of a single binding site, with only a subset of samples containing multiple binding
sites.

To address your concern, we provide more details here. Following related methods [27; 20; 37; 3;
30], the specific processing steps of our method are outlined below, and further details can be found
in Section 4.1 and Appendix A.1 of our paper:

Training Process:

a. Following DeepSurf [37], the protein atoms within 4 Ångströms of any ligand atom are set as
positive, otherwise negative.

b. EquiPocket predicts the druggability probability for each atom, using the Dice loss function for
model optimization.

Validation and Testing:
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a. In accordance with related methods [27; 20; 37; 3; 30], we define the center of a binding site as
the mean position of the ligand atoms. This definition allows us to handle the proteins with multiple
binding sites (N ≥ 1).

b. We focus on predicting druggability probabilities for each atom rather than identifying specific
binding site atoms.

c. Our method uses predicted atom-level probabilities in a clustering process [8] to autonomously
identify ligand binding site centers and druggability, which are crucial for metrics and downstream
docking tasks.

Performance Evaluation:

a. We evaluate based on the top-n predicted binding site centers, where n does not exceed the actual
number of binding sites. If no predicted binding sites center is found, it is considered a failure.

b. The predicted ligand binding center with the DCC/DCA falls below a predetermined threshold,
typically set to 4, is classified as successful.

Through the aforementioned process, we are able to effectively handle proteins with more than one
binding site during training, validation, and testing.

A.3 RELATED WORK

A.3.1 BINDING SITE PREDICTION

Computational Methods. The computational methods for binding site prediction include
geometry-based [32; 16; 55; 30; 6; 11], probe- and energy-based [28; 29; 38] and template-
based [5; 50] methods: 1) Since most ligand binding sites occur on the 3D structure, geometry-
based methods (POCKET [32], CriticalFinder [11], LigSite [16], Fpocket [30], etc. ) are designed
to identify these hollow spaces and then rank them using the expert design geometric features.
2) Probe-based methods (SURFNET [28], Q-SiteFinder [29], etc. [12]), also known as energy-
based methods, calculate the energy resulting from the interaction between protein atoms and a
small-molecule probe, whose value dictates the existence of binding sites. 3)Template-based meth-
ods (FINDSITE [5], LIBRA [50], etc.) are mainly to compare the required query protein with the
published protein structure database to identify the binding sites.

Traditional Learning-based Methods. PRANK [26] is a learning-based method that employs the
traditional machine learning algorithm random forest(RF) [4]. Based on the pocket points and chem-
ical properties from Fpocket [30] and Concavity [6], this method measures the ”ligandibility” as the
binding ability of a candidate pocket using the RF model. P2rank [27] is a widely used package for
locating the ligand-binding pockets based on protein structures. We have studied P2Rank in the early
stage of research. However, we didn’t include P2Rank as a baseline mainly due to the differences in
training and validation data between it and deep learning methods including DeepSite [20], Kalas-
anty [47], DeepSurf [37], and our EquiPocket. Specifically, P2Rank uses data from CHEN11 and
JOINED datasets, while deep learning methods commonly use scPDB. P2Rank’s paper men-
tions that CHEN11 is more diverse than scPDB [10], affecting model performance. However,
those methods require the manual extraction of numerous features with limit upgrading.

DCA COACH420 HOLO4K
P2Rank[protrusion] 0.642 0.593

P2rank 0.683 0.706
DeepSite 0.564 0.456
Kalasanty 0.636 0.515
deepsurf 0.658 0.635

EquiPocket 0.656 0.662

The results in above table show that our method essentially matches or surpasses most deep learning
methods, even outperforming P2Rank [protrusion], which uses only geometric information, and
slightly trailing behind P2Rank, which benefits from a more diverse dataset.
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CNN-based Methods. Over the last few years, deep learning has surpassed far more traditional ML
methods in many domains. For binding site prediction task, many researchers [20; 47; 37; 21; 3]
regard a protein as a 3D image, and model this task as a computer vision problem. DeepSite [20] is
the first attempt to employ the CNN architecture for binding site prediction, which like P2Rank [27]
treats this task as a binary classification problem and converts a protein to 3D voxelized grids. The
methods FRSite [19] and Kalasanty [47] adhere to the principle of deepsite, but the former regards
this task as an object detection problem, and the latter regards this task as a semantic segmentation
task.

Deeppocket [3] is a method similar to p2rank, but implements a CNN-based segmentation model as
the scoring function in order to more precisely locate the the binding sites. The recent CNN-based
method DeepSurf [37] constructs a local 3D grid and updates the 3D-CNN architecture to mitigate
the detrimental effects of protein rotation.

A.3.2 GRAPH NEURAL NETWORKS FOR MOLECULE MODELING

There are multi-level information in molecules including atom info, chemical bonds, spatial struc-
ture, physical constraints, etc. Numerous researchers view molecules as topological structures
and apply topological-based GNN models (like graph2vec [14], GAT [52], GCN [22], GCN2 [7],
GIN [56] and etc. [48]) to extract the chemical info, which achieve positive outcomes. With
the accumulation of structure data for molecules, spatial-based graph models (DimeNet [25] ,
DimeNet++ [24], SphereNet [33], SchNet [46], Egnn [44], [18], [15] and etc.) are proposed for
molecule task which aggregates spatial and topological information. However, these models may
not be adequate for macro-molecules due to their high calculation and resource requirements.

A.3.3 GNN-BASED METHODS FOR POCKET TASK.

ScanNet [51]: This model constructs atom and amino acid representations based on the spatial and
chemical arrangement of neighboring entities. It is trained to detect protein-protein and protein-
antibody binding sites, showcasing its accuracy even with unseen protein folds. However, it should
be noted that ScanNet doesn’t incorporate surface geometric information of proteins, and it isn’t tai-
lored specifically for ligand-protein datasets. It utilizes a straightforward message passing approach
and lacks consideration of geometric invariance. Besides, ScanNet is designed for predicting bind-
ing sites in protein and protein, protein and antibody, and protein and disordered protein interactions,
making it unsuitable for ligand binding site prediction. PocketMiner [36]: This model utilizes a
geometric graph model to identify cryptic pockets. Unlike our study, PocketMiner doesn’t focus
on pinpointing where a structure becomes a pocket, which is related to target detection or semantic
tasks. Instead, its main goal is predicting the locations where cryptic pockets, already known in ad-
vance, will open—a classification prediction task. The evaluation metric used is ROC-AUC, and it
is compared against molecular simulation methods. NodeCoder [2]: NodeCoder is a computational
model designed for the prediction of protein residue types based on a geometric graph represen-
tation. The model encompasses six distinct residue classifications, namely ligands, peptides, ions,
nucleic acid binding sites, post-translational modifications, and transmembrane regions. It is crucial
to emphasize that NodeCoder primarily serves as a residue classification tool rather than a protein
pocket detection algorithm. PIPGCN [13]: This model employs GNN model to aggregate informa-
tion from different protein residues and predict their categories in the Docking Benchmark Dataset.
These categories include residues that interact with ligands and those that do not. It’s crucial to
emphasize that PIPGCN is designed for a classification task rather than target detection or semantic
segmentation.

A.4 EXPERIMENT DETAILS

A.4.1 DATASET

scPDB [10] is the famous dataset for binding site prediction, which contains the protein structure,
ligand structure, and 3D cavity structure generated by VolSite [9]. The 2017 release of scPDB is used
for training and cross-validation of our framework, which contains 17,594 structures, 16,034 entries,
4,782 proteins, and 6,326 ligands. PDBbind [54] is a well-known and commonly used dataset for
the research of protein-ligand complex. It contains the 3D structures of proteins, ligands, binding
sites, and accurate binding affinity results determined in the laboratory. We use the release of v2020,
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Table 2: Summary of Dataset

DataSet Average

Atom Num Atom in Surface Surface Points Target Atoms

scPDB 4205 2317 24010 47
COACH420 2123 1217 12325 58

HOLO4k 3845 2052 20023 106
PDBbind 3104 1677 17357 37

which consists of two parts: general set (14, 127 complexes) and refined set (5,316 complexes). The
general set contains all protein-ligand complexes. The refined set contains better-quality compounds
selected from the general set, which is used for the test in our experiments. COACH 420 and
HOLO4K are two test datasets for the binding site prediction, which are first introduced by [27].
Consistent with [27; 37; 3], we use the mlig subsets of each dataset for evaluation, which contain
the relevant ligands for binding site prediction.

A.5 DATA PREPARATION

We perform the following four processing steps: i) Cluster the structures in scPDB by their Uniprot
IDs, and select the longest sequenced protein structures from every cluster as the train data [21]. Fi-
nally, 5,372 structures are selected out. ii) Split proteins and ligands for the structures in COACH420
and HOLO4k, according to the research [27] . iii) Clean protein by removing the solvent, hydro-
gens atoms. Using MSMS [43] to generate the solvent-accessible surface of a protein. iv) Read the
protein file by RDKIT [49], and extract the atom and chemical bond features. Remove the error
structures.

A.5.1 EVALUATION METRICS

DCC is the distance between the predicted binding site center and the true binding site center. DCA
is the shortest distance between the predicted binding site center and any atom of the ligand. The
samples with DCC(DCA) less than the threshold are considered successful. The samples without
any binding site center are considered failures. Consistent with [20; 37; 3; 47], threshold is set to 4
Å. We use Success Rate and Failure Rate to evaluate experimental performance.

Success Rate(DCC/DCA) =
1({Predicted sites|DCC/DCA < threshold})

1({True sites})
,

Failure Rate =
1({Protein|1(predicted binding center) = 0})

1({Protein})
,

(11)

where 1(·) represents the cardinality of a set. After ranking the predicted binding sites, we take the
same number with the true binding sites to calculate the success rate.

A.5.2 BINDING SITES CENTER

The CNN-based methods [20; 3; 47] consider a protein as a 3D image, convert it to a voxel repre-
sentation by discretizing it into grids and calculate the geometric center of binding site centercnn
according to the grid of the cavity or ligand. They label the grid as positive if its geometric center
is closer than 4Å to the binding sites geometric center. Therefore, the prediction objects of these
models actually contain the grid of ligand atoms. The predicted binding site center ˆcentercnn of
CNN-based methods is calculated according to the positive grid. For our EquiPocket, we label the
protein atoms within 4Å of any ligand atom as positive and negative otherwise. Therefore, there is
a natural gap in the prediction object between our framework and CNN-based methods, which also
lead to the natural gap for the center of predicted binding site. In order to reduce the metric difference
caused by the different prediction objects, we get the predicted binding site center ˆcenterequipocket
as follow: Ww use posi ∈ R3 to represent the position of protein atom vi, centeri ∈ R3 to repre-
sent the nearest surface point center, ˆposLi ∈ R3 to represent the predicted position of nearest ligand
atom from the protein atom vi. The ˆposLi is used to calculate the geometric center of binding site.

p̂os
L
i = posi + threshold · (centeri − posi)

|centeri − posi|
, (12)
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Where threshold4 is set to 4, because we label the protein atoms within 4Å of any ligand atom as
positive and negative otherwise.

A.5.3 CROSS-VALIDATION

We shuffled the training data and divided the data into 5 parts, taking one of them at a time as the
validation set. We use 5-fold cross-validation and report the mean and standard deviation.

A.5.4 ENVIRONMENT AND PARAMETER SETTINGS

For geometric-based method Fpocket, we use its published tool. For CNN-based methods kalasanty
and DeepSurf, we use their published pre-train models. For GNN-based models, the number of
layers is set to 3 except GAT. For GAT, we set the number to 1. For GIN, we set the initial ϵ to 0
and make it trainable. For GCN2, we set the strength of the initial residual connection α to 0.5 and
the strength of the identity mapping β to 1. For SchNet, EGNN, DimeNet++, SphereNet as baseline
models, we set the cutoff distance to 5. For our EquiPocket, we use Adam optimizer for model
training with a learning rate of 0.0001 and set the batch size as 8. The basic dimensions of node and
edge embeddings are both set to 128. The dropout rate is set to 0.1. The probe radius in MSMS
to generate solvent-accessible surface of a protein is set to 1.5. We implement our EquiPocket
framework in PyTorch Geometric, all the experiments are conducted on a machine with an NVIDIA
A100 GPU (80GB memory). We take 5-fold cross validation on training data scPDB and use valid
loss to save checkpoint.

A.5.5 BASELINE CODES

The result of DeepSite comes from [37], because they did not provide a pre-train model. Table 3
describes sources of baseline codes.

Table 3: Sources of baseline codes and pre-train models.

Methods URL

Fpocker https://github.com/Discngine/fpocket
kalasanty https://gitlab.com/cheminfIBB/kalasanty
DeepSurf https://github.com/stemylonas/DeepSurf

GAT https://github.com/pyg-team/pytorch geometric
GCN https://github.com/pyg-team/pytorch geometric

GCN2 https://github.com/chennnM/GCNII
SchNet https://github.com/pyg-team/pytorch geometric

DimeNet++ https://github.com/pyg-team/pytorch geometric
EGNN https://github.com/vgsatorras/egnn/

A.5.6 PROBE RADIUS

To evaluate the sensitivities of this parameter, we implement various radius of probe (1, 1.5, 2)
and provide the number of surface points, GPU memory consumption, failure rate, and the DCC
accuracy of our EquiPocket on the test sets.

Table 4: Experimental results with different probe radius by MSMS.
Radius Surface Points GPU Failure Rate COACH420 HOLO4K PDBbind2020

1 28030 44 0.053 0.433(0.018) 0.338(0.008) 0.549(0.005)
1.5 24010 33 0.051 0.423(0.014) 0.337(0.006) 0.545(0.010)
2 21725 28 0.096 0.393(0.024) 0.289(0.004) 0.524(0.012)

A.5.7 CASE STUDY

We also display two examples of our EquiPocket and other methods in Figure 8. We take two pro-
teins, 1f8e (with 12,268 atoms) and 5ei3 (with 1,572 atoms), from the test dataset PDBbind. As
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Figure 8: Case Study.

can be seen from Figure 8: The binding sites predicted by the geometry-based method Fpocket are
extremely distant from the actual binding sites. This is due to the fact that this method prioritizes
local geometric information and disregards the multi-level structure information of proteins, result-
ing in limited scope and weak performance. The CNN-based method Kalasanty did not provide any
predicted binding site for protein 1f8e. We conjecture that this method restricts the protein within a
specific space size which is highly susceptible to failure with large proteins. The recently-proposed
CNN-based method DeepSurf takes local grids on the protein surface, which can address the issue
of fixed space size. However, the prediction of binding sites in protein 5ei3 by DeepSurf is far from
the ground truth because the CNN-based methods are defective in obtaining geometric and chemi-
cal features. Our EquiPocket framework is unaffected by the shortcomings of the aforementioned
methods, allowing it to achieve superior outcomes for both large and small proteins.

A.6 THE INFERENCE SPEED OF DIFFERENT METHODS

The comparison of various methods for predicting 100 proteins reveals the following:

Table 5: The inference speed of different methods.

Method Type Time (s) per 100 proteins Average DCC
fpocket Geometric-based 23 0.214

Kalasanty 3D-CNN 86 0.321
DeepSurf 641 0.366

EquiPocket Ours 37 0.431

Table 6: The summary of our test dataset.

dataset Average Atom Num Average Atom in Surface Average True binding sites
COACH420 2123 1217 1.2
HOLO4K 3845 2052 2.4
PDBbind 3104 1677 1
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fpocket[5]: Fastest with only 23 seconds for 100 proteins, leveraging manually defined geometric
features. However, its performance metrics are not notable.

Kalasanty[6] and DeepSurf[7]: Both are 3D-CNN-based. DeepSurf, using detailed local grids on
protein surfaces, outperforms Kalasanty in metrics but is slower and the least efficient among the
methods compared.

EquiPocket: Our method takes 47 seconds per 100 proteins and shows the best DCC metrics. It’s
faster than 3D-CNN methods but slower than geometric-based ones. This is due to 3D-CNN meth-
ods transforming proteins into 3D images (eg. 36 * 36 * 36 grids [6, 7, 8]), increasing computational
costs compared to our using atom information (averages 2000-3000 nodes in a protein). EquiPocket
also integrates surface features with Surface-EGNN, enhancing efficiency over DeepSurf.

A.7 THE INFORMATIVE ABLATION EXPERIMENT FOR OUR TWO FEATURE EXTRACTORS

Table 7: The informative ablation experiment for our two feature extractors.

COACH420 HOLO4k PDBbind
Fail Ratio DCC DCA DCC DCA DCC DCA

EquiPocket/L 0.13 0.355 0.546 0.296 0.574 0.465 0.606
EquiPocket/R 0.09 0.364 0.541 0.294 0.598 0.474 0.627
EquiPocket/LR 0.16 0.308 0.502 0.268 0.543 0.409 0.566
EquiPocket 0.05 0.423 0.656 0.337 0.662 0.545 0.721

Our model predominantly comprises two feature extractors: local geometric modeling module and
global structural modeling module, subsequently followed by the surface-EGNN model. In response
to your valuable suggestion, we propose the following definitions:

EquiPocket/L: This variant of EquiPocket excludes local geometric modeling module.

EquiPocket/R: This variant of EquiPocket excludes global structural modeling module.

EquiPocket/LR: This variant of EquiPocket excludes both local geometric modeling module and
global structural modeling module.

Analysis shows that omitting any of these modules negatively impacts performance. Specifically,
excluding either the local geometric (L) or global structural (R) module leads to a 10%-15% de-
crease in DCC/DCA metrics; removing both L and R modules results in a more significant drop of
20%-25%. These results highlight the essential role of both feature extractors in predicting ligand
binding sites. Notably, the more pronounced performance decline when omitting the local geometric
module (L) suggests its higher importance in protein pocket prediction. This finding is consistent
with current trends where methods like Fpocket[5], P2rank[4], and DeepSurf[7] primarily utilize
geometric features for binding site prediction.

A.8 THE DETAILED EXPERIMENT RESULTS OF DENSE ATTENTION

Table 8: The detailed experiment results of Dense attention.

Atom Num Protein Num Ratio Cumsum Ratio DCC of EquiPocket(w/o attention) DCC of EquiPocket
0-1000 296 0.04 0.04 0.328 0.428

1000-2000 2193 0.27 0.3 0.547 0.621
2000-3000 2534 0.31 0.61 0.551 0.590
3000-4000 1143 0.14 0.75 0.343 0.388
4000-5000 619 0.08 0.82 0.261 0.255
>=5000 1440 0.18 1 0.161 0.153

Our paper’s Figure 6C compares EquiPocket with/without the Dense Attention module. We re-
moved the Attention Module in EquiPocket (w/o attention) for this comparison. The above table
presents results across different protein sizes: It is evident that Dense Attention notably improves
prediction for proteins with less than 4000 nodes. However, for larger proteins, exceeding 4000
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nodes, there’s no significant performance difference. These findings highlight that Dense Attention
boosts predictive accuracy for smaller proteins while maintaining performance for larger ones.

A.9 THE DETAILED EXPERIMENT RESULTS OF RELATIVE DIRECTION

The core reasons are as follows: the relative direction between a protein atom and its nearest ligand
atom effectively captures the local geometric information of the binding sites on a protein. Different
from the previous work [27; 20; 37], our method can output E(3)-equivariant coordinates (detailed
in Section 3.3 of our paper). To better capture the geometric details of the protein surface, we
introduced more detailed relative direction as a supplementary target.

Table 9: The detailed experiment results of relative direction.

Atom num Protein num Ratio Cumsum ratio DCC of EquiPocket(w/o Direction loss) DCC of EquiPocket
0-1000 296 0.04 0.04 0.319 0.428

1000-2000 2193 0.27 0.3 0.587 0.621
2000-3000 2534 0.31 0.61 0.551 0.590
3000-4000 1143 0.14 0.75 0.371 0.388
4000-5000 619 0.08 0.82 0.258 0.255
>=5000 1440 0.18 1 0.144 0.153

The corresponding ablation results have been shown in Figure 6 (c) of our original paper, and
detailed results are presented below. EquiPocket (w/o Direction Loss) represents our EquiPocket
method removing the relative direction prediction module. It can be observed that when the relative
direction prediction module is removed, our method’s performance drops for proteins of different
sizes. This is especially notable for proteins with fewer than 3000 atoms, which account for 60% of
the samples. If the relative direction prediction is removed, the performance drops by approximately
10%. These results demonstrate the effectiveness of our designed relative direction target.

A.10 THE COMPARISON RESULTS FOR EQ.3

In Eq.3, gi is the geometric embedding for a protein atom, learned from surrounding surface probes,
and si denotes the local geometric properties of these probes with properties such as distances and
angle to protein atoms, the surface center, neighboring probes, and so on. Initially, we apply an
MLP to these features, followed by pooling. This process transforms the geometric properties be-
fore aggregating them into the protein node’s geometric embedding. However, since each property
of si itself carries meaningful information. We are concerned that applying MLP first and then pool-
ing might weaken the transmission of this information. Therefore, we take the second part of the
equation.

Table 10: The comparison results for Eq.3

Coach429 HOLO4k PDBbind
Model Fail Ratio DCC DCA DCC DCA DCC DCA

EquiPocket-former 0.16 0.389 0.606 0.330 0.637 0.507 0.660
EquiPocket-latter 0.16 0.407 0.617 0.319 0.644 0.529 0.676

EquiPocket 0.05 0.423 0.656 0.337 0.662 0.545 0.721

To highlight the effectiveness of the features in Eq.3, we carried out extra experiments with
”EquiPocket-former” focusing on the equation’s initial part and ”EquiPocket-latter” on its latter part.
The findings show: Using either feature alone diminishes the predictive performance compared to
the full EquiPocket model. Specifically, ”EquiPocket-former” alone sees about a 10% drop, while
”EquiPocket-latter” alone results in around a 5% reduction. This outcome underscores the necessity
of both features, with the latter part having a more substantial impact on our model’s performance.

A.10.1 THE 5-FOLD RESULTS FOR EQUIPOCKET
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Table 11: The 5-fold results for EquiPocket.

Methods Fold Param failure COACH420 HOLO4K PDBbind2020

(M) Rate ↓ DCC↑ DCA↑ DCC↑ DCA↑ DCC↑ DCA↑
EquiPocket-L 0 0.15 0.598 0.083 0.160 0.038 0.128 0.049 0.124
EquiPocket-L 1 0.15 0.557 0.064 0.165 0.046 0.138 0.055 0.142
EquiPocket-L 2 0.15 0.571 0.074 0.177 0.045 0.139 0.052 0.122
EquiPocket-L 3 0.15 0.462 0.059 0.173 0.042 0.138 0.052 0.129
EquiPocket-L 4 0.15 0.472 0.072 0.180 0.048 0.146 0.049 0.143

EquiPocket-G 0 0.42 0.305 0.135 0.330 0.122 0.400 0.142 0.302
EquiPocket-G 1 0.42 0.291 0.175 0.385 0.128 0.405 0.145 0.302
EquiPocket-G 2 0.42 0.295 0.145 0.357 0.121 0.407 0.145 0.305
EquiPocket-G 3 0.42 0.278 0.169 0.367 0.127 0.406 0.133 0.292
EquiPocket-G 4 0.42 0.292 0.152 0.367 0.133 0.411 0.151 0.308

EquiPocket-LG 0 0.50 0.235 0.225 0.442 0.183 0.498 0.273 0.463
EquiPocket-LG 1 0.50 0.207 0.220 0.460 0.189 0.509 0.280 0.468
EquiPocket-LG 2 0.50 0.203 0.184 0.440 0.180 0.510 0.269 0.459
EquiPocket-LG 3 0.50 0.224 0.215 0.448 0.186 0.500 0.275 0.465
EquiPocket-LG 4 0.50 0.231 0.213 0.431 0.179 0.492 0.272 0.456

EquiPocket 0 1.70 0.054 0.423 0.656 0.341 0.665 0.558 0.715
EquiPocket 1 1.70 0.053 0.431 0.660 0.329 0.668 0.538 0.725
EquiPocket 2 1.70 0.041 0.443 0.664 0.336 0.660 0.550 0.724
EquiPocket 3 1.70 0.051 0.411 0.646 0.338 0.668 0.532 0.723
EquiPocket 4 1.70 0.053 0.407 0.654 0.345 0.652 0.546 0.719
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