
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ANNEALING BRIDGES OFFLINE AND ONLINE RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Adopting the pretrain-finetune paradigm, offline-to-online reinforcement learn-
ing (RL) first pretrains an agent on historical offline data and then finetunes it
through online interactions, aiming to leverage prior knowledge while adapting
efficiently and safely to the new environment. A central challenge, however, is the
tradeoff between catastrophic failure, i.e., a sharp early collapse in performance
when the agent first transitions from offline to online, and the asymptotic success
rate, i.e., the long-term performance the agent ultimately achieves after sufficient
training. In this article, we first conduct a systematic study using various control
benchmarks and find that existing offline and offline-to-online RL methods fail to
simultaneously prevent catastrophic failure and achieve high asymptotic success
rates. Next, we examine how offline data and conservative regularization influ-
ence this tradeoff. Then, we identify spurious Q-optimism as the key driver of
collapse, i.e., early in fine-tuning, the learned value function can mistakenly rank
inferior actions above those from offline training, steering the policy toward fail-
ure. Finally, we introduce Smooth Offline-to-Online Annealing for RL (SOAR), a
simple but effective dual annealing scheme that gradually reduces reliance on of-
fline data and conservative penalties, thereby mitigating catastrophic failure while
improving long-term performance. We carry out extensive numerical experiments
to confirm the efficacy and robustness of SOAR across diverse RL tasks.

1 INTRODUCTION

The pretrain-finetune paradigm has driven much of the recent success in modern machine learning
across diverse domains such as natural language processing and computer vision (Min et al., 2023;
Khan et al., 2024). Inspired by these advances, reinforcement learning (RL) has adopted a similar
paradigm: an agent is first pretrained offline using historical static data, is then subsequently fine-
tuned via online interactions with the target environment (Agarwal et al., 2022; Luo et al., 2024).
This setting, known as offline-to-online RL, allows the agent to leverage effectively the prior knowl-
edge, while adapting efficiently and safely to the new environment, reducing the reliance on costly
and risky online interactions.

Previous studies along this direction have shown that modifying the training objective or algorithmic
structure during the online phase leads to a better long-term performance than naively deploying
offline RL algorithms without modification (Nakamoto et al., 2023; Zhou et al., 2025; Xiao et al.,
2025). However, catastrophic failure often occurs, i.e., there is a sharp early collapse in performance
when the agent first transitions from offline to online. This raises a challenging and open question:
how can we achieve both high asymptotic success rates and reduced catastrophic failure during the
transition to the online phase?

This question is particularly critical in safety-sensitive applications such as healthcare and robotics
(Singh et al., 2022; Liu et al., 2020). For instance, in the medical domain, offline datasets may
capture prior treatment information, while online fine-tuning involves real-time patient interactions.
Catastrophic failure in this scenario could result in harmful interventions. Ideally, the agent should
remain aligned with the optimal actions learned from the offline data, while using online explorations
to uncover additional optimal actions not represented in the offline data.

To address this question, we first conduct a systematic study on complex and realistic robot control
environments from D4RL (Fu et al., 2020), Adroit, FrankaKitchen, and AntMaze. We evaluate two
representative offline RL algorithms, IQL (Kostrikov et al., 2022) and CQL (Kumar et al., 2020), as

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

well as three offline-to-online RL algorithms, Cal-QL (Nakamoto et al., 2023), PORL (Xiao et al.,
2025), and recent state-of-the-art WSRL (Zhou et al., 2025). We analyze their catastrophic failure
modes and success rates during online fine-tuning. On AntMaze, we further extend our study to the
challenging ultra-diverse variant, where none of the baseline methods achieves a perfect success rate,
thereby stress-testing the algorithms in the most difficult settings. We have found that the existing
methods cannot simultaneously prevent catastrophic failure and achieve high long-term success rate.

Next, to better understand the drivers of collapse and the ingredients for high asymptotic perfor-
mance, we perform a controlled study with CQL. We have found that, eliminating the conservative
regularizer improves the asymptotic performance, whereas phasing out the offline data yields faster
convergence. Nevertheless, removing either the conservative regularizer, which serve as inductive
biases tailored to offline training, or the offline data, substantially increases the incidence of catas-
trophic failure. Nevertheless, removing either the conservative regularizer, an inductive bias tailored
to offline training, or the offline data substantially increases the incidence of catastrophic failure.

We further hypothesize that a main driving factor for catastrophic failure is Spurious Q-Optimism.
That is, early in online fine-tuning, the agent incorrectly reverses the relative value ordering between
the actions from offline pre-training and those proposed by the current policy for the same state,
causing the agent to favor the actions that later prove inferior under convergence. We quantify this
effect via a new metric called Spurious Q-Optimism Ratio (SQOR), which is defined as the fraction
of states whose current versus final value ordering disagrees, and show that SQOR closely tracks
the incidence of collapses across tasks and settings. Furthermore, we show that alternative strategies
proposed in prior works (Fujimoto & Gu, 2021; Zhou et al., 2025; Xiao et al., 2025), including regu-
larizing critic KL divergence, adjusting update-to-data (UTD) ratios, modifying warmup lengths, or
tuning hyperparameters such as batch size, network dimensions and learning rates, are insufficient
to effectively mitigate catastrophic failure.

Finally, motivated by these insights, we propose Smooth Offline-to-Online Annealing for RL
(SOAR), a simple yet effective method that gradually decreases both the offline data ratio and the
conservative regularizer weight α via annealing during online fine-tuning. Empirical results show
that this dual annealing strategy lowers the incidence of catastrophic failure compared with exist-
ing baselines, while achieving superior long-term performance. We also conduct extensive ablation
studies on SOAR’s hyperparameters and on the contribution of each annealing component. These
studies offer an actionable guidance: to prioritize stability and suppress early catastrophic failures,
one may apply a single-component annealing in a task-dependent manner. We also outline concrete
design choices and practical heuristics for hyperparameter selection.

Our contributions are four-fold. First, we provide a systematic study demonstrating that prevail-
ing offline and offline-to-online methods fail to balance catastrophic failure suppression with high
asymptotic success. Second, we show how offline data and conservative regularization shape this
trade-off, which points to a pathway toward achieving both goals simultaneously. Third, we identify
the key driving factor behind catastrophic failure and derive a metric to quantify it. Finally, we in-
troduce SOAR, a simple yet effective dual annealing scheme that consistently reduces catastrophic
failure and improves long-term performance.

2 RELATED WORKS

Offline-to-Online RL. While offline RL methods such as CQL (Kumar et al., 2020), IQL (Kostrikov
et al., 2022), and others (Kostrikov et al., 2021; Tarasov et al., 2023) can be deployed online, strong
online performance typically requires additional fine-tuning. Simply fine-tuning the offline objective
without modification often limits gains (Nakamoto et al., 2023), motivating methods that explicitly
leverage online interaction. Proposed approaches include relaxing excessive conservatism in value
estimates (Nakamoto et al., 2023; Luo et al., 2024; Hu et al., 2024), inserting an adaptation phase
between offline pre-training and online fine-tuning (Zhou et al., 2025; Shin et al., 2025; Xiao et al.,
2025), using multiple Q-functions (Lee et al., 2022; Zhao et al., 2023), tuning the UTD ratio (Feng
et al., 2024; Xiao et al., 2025), and incorporating uncertainty (Guo et al., 2023; Wen et al., 2024b). In
contrast to methods that update both value functions and policies (including ours), some approaches
rely exclusively on pretrained policies (Uchendu et al., 2023; Xiao et al., 2025; Hu et al., 2023).

Several works observe catastrophic failure during the transition from offline pre-training to on-
line fine-tuning, attributing it to distributional shift and unstable Q-learning (Wen et al., 2024a;

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Nakamoto et al., 2023). Many proposed remedies introduce additional computation, e.g., uncertainty
estimation (Wen et al., 2024a), calibration penalties (Nakamoto et al., 2023), or actor-critic align-
ment (Yu & Zhang, 2023). In contrast, our method employs a minimal design based on annealing,
which adds essentially no computational overhead while also improving asymptotic performance.

3 EXPERIMENTAL SETUP

Environments and Datasets. Following the evaluation protocol of WSRL (Zhou et al., 2025), we
assess our method on three challenging, realistic environments: FrankaKitchen and AntMaze from
D4RL (Fu et al., 2020), and the dexterous manipulation environment Adroit from AWAC (Nair
et al., 2020). Within these environments, we evaluate the following tasks: for Adroit, pen-binary
and door-binary; for FrankaKitchen, kitchen-mixed and kitchen-partial; and for AntMaze, antmaze-
large-diverse and antmaze-large-play. All offline pre-training datasets match those used in WSRL.
Further details on the tasks and datasets are provided in Appendix G.

Figure 1: Evaluated Environments.
Illustration of the environments used in
our experiments: AntMaze, FrankaK-
itchen, and Adroit.

Training Procedure. For training, we pretrain for 1M
steps in AntMaze, 250K steps in FrankaKitchen, and 40K
steps in Adroit, followed by 400K online fine-tuning steps
for all tasks. Compared to WSRL (Zhou et al., 2025),
which used only 300K fine-tuning steps, we extend fine-
tuning steps to 400K steps to better observe asymptotic
performance trends. On Adroit, we found that increas-
ing pen-binary pre-training from 20K (used in WSRL) to
40K yields more consistent gains; for door-binary, offline
pre-training variance is higher and the difference between
20K and 40K is less pronounced, but we adopt 40K to sta-
bilize trends.

Baseline Methods. We include WSRL (Zhou et al., 2025) and PORL (Xiao et al., 2025) as recent
offline-to-online methods, Cal-QL (Nakamoto et al., 2023) due to its explicit treatment of catas-
trophic failure, and CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022), and SAC (Haarnoja
et al., 2018) to align with prior evaluations in WSRL and ensure comprehensive comparisons. Fur-
ther details on all baselines are provided in Appendix F.

We largely follow the experimental setup of WSRL (Zhou et al., 2025). Modifications on the exper-
imental setup to stabilize training are detailed in Appendix G.3. Due to computational constraints,
we use five random seeds in all experiments (unless otherwise noted) and report 95% confidence in-
tervals with shaded regions in the plots. Across all experimental results, Step 0 marks the beginning
of the online fine-tuning phase.

CQL. We adopt CQL as the backbone of our method, following WSRL and Cal-QL. In offline
RL, the agent is trained using a fixed dataset D = {(si, ai, ri, s′i)}Ni=1 collected by some behav-
ior policy, without interacting with the environment. A key challenge is that standard Q-learning
objectives can assign erroneously high values to actions not present in the dataset, leading to poor
policy performance when deployed online. CQL (Kumar et al., 2020) addresses this by adding a
regularization term to the standard Bellman error that penalizes Q-values of actions sampled from
the policy relative to those from the dataset:

LCQL = LTD + α
(
Es∼D,a∼π[Qθ(s, a)]− Es,a∼D[Qθ(s, a)]

)
, (1)

where α > 0 controls penalty strength. This discourages high Q-values for OOD actions.

Metrics. We define catastrophic failure as the drop between the success rate at the start of fine-
tuning and the minimum success rate observed within the first 100K steps, isolating the effect of
the offline-to-online transition from training stochasticity. As reported in Appendix K, extending
the window to the full 400K steps yields no statistically significant change in the measured failure
magnitude, which justifies our choice of a 100K step window.

We define the asymptotic success rate as the mean success rate over 350K-400K steps. As evident in
Figure 2, all baselines have converged by 350K, and Appendix K confirms no statistically significant
difference between performance at 350K and 400K. Hence, performance in this interval is a valid
proxy for asymptotic behavior.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
antmaze-large-play-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
door-binary-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
pen-binary-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
Aggregated Over All Envs

SOAR (Ours) WSRL PORL Cal-QL CQL IQL SAC

Figure 2: Annealing Bridges Offline and Online RL. Existing offline and offline-to-online meth-
ods fail to simultaneously mitigate catastrophic failure and attain high asymptotic success. In con-
trast, our method (SOAR) reduces early performance collapse and achieves superior final perfor-
mance across tasks. Step 0 marks the start of online fine-tuning.

4 CHALLENGES IN BRIDGING OFFLINE AND ONLINE RL: PERFORMANCE
VS. STABILITY

We first show that existing offline RL algorithms and offline-to-online approaches are unable to
simultaneously prevent catastrophic failure during online fine-tuning and attain high asymptotic
success rates. As illustrated in Figure 2, when baselines are finetuned without retaining offline data,
none of the methods meet both objectives. Notably, the only objective-level difference between the
offline algorithm CQL and the online algorithm SAC is CQL’s conservative regularizer (Equation 1).
Among offline-to-online methods, WSRL and PORL set CQL’s conservative weight α to zero during
fine-tuning, whereas CQL and Cal-QL keep α equal to its offline pre-training value. Empirically,
WSRL and PORL achieve higher asymptotic performance than CQL and Cal-QL, but suffer larger
catastrophic failures. This motivates a controlled analysis of how removing the conservative regu-
larizer affects both outcomes. In addition, because the availability of offline data is a key distinction
between the offline and online phases, we also study how retaining versus discarding offline data
influences performance and stability.

5 ROLE OF OFFLINE DATA AND CONSERVATIVE REGULARIZATION IN
ONLINE FINE-TUNING

To disentangle the effects of offline data and conservative regularization, we conduct controlled
studies with CQL during online fine-tuning. As shown later, removing either α or offline data
increases the incidence of catastrophic failure. Accordingly, when analyzing catastrophic failure,
we vary one factor while holding the other fixed: we keep α at its offline-pre-training value when
assessing the effect of offline data, and we fix the offline replay mixture at 25% per update when
assessing the effect of α. Conversely, when analyzing asymptotic performance, we ablate one factor
by removing it entirely while varying the other, so as to evaluate the agent’s ability to discover
optimal actions absent from the offline prior. The 25% offline data ratio is held constant across all
tasks and seeds for these experiments.

We observe on kitchen-partial, kitchen-mixed, and pen-binary that retaining offline data and main-
taining the conservative regularizer α both mitigate catastrophic failure, whereas keeping α sup-
presses asymptotic performance (Figure 3). When offline data is fully removed, final returns are
typically lower than when using a fixed mini-batch composition of 25% offline samples at every
update. In contrast, annealing the offline fraction to zero, as in our method (Section 7.1), yields
faster convergence and final performance comparable to retaining offline data. As highlighted by
WSRL (Zhou et al., 2025), persisting offline data during online fine-tuning can depress asymptotic
performance, especially when the online and offline distributions are mismatched or the offline data
are of lower quality, and also incurs storage/throughput overhead. Hence, if one can avoid using
offline data online without sacrificing performance, avoiding offline data online is preferable.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a)
0 100k 200k 300k 400k

Steps
0.0

0.5

1.0

Su
cc

es
s R

at
e kitchen-partial-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
door-binary-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
pen-binary-v0

(b)
0 100k 200k 300k 400k

Steps
0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

(c)
0 100k 200k 300k 400k

Steps
0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

(d)
0 100k 200k 300k 400k

Steps
0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

offline data O offline data X offline data annealing  O  X

Figure 3: Controlled analysis of offline data and conservative regularization. Success rates of
CQL during online fine-tuning across four tasks (kitchen-partial, kitchen-mixed, door-binary, pen-
binary). (a) Keeping the conservative regularizer (α) reduces early collapses. (b) Keeping α lowers
asymptotic performance. (c) Dropping offline data induces severe early drops. (d) Annealing offline
data speeds convergence; with a suitable schedule, performance can match retaining offline data.

In the door-binary, the low initial success rate makes it difficult to meaningfully compare the effect
of each factor on catastrophic failure. However, the conclusion regarding success rates remains con-
sistent with the other tasks. These findings suggest that the inductive bias inherited from offline RL,
as well as the continued reliance on offline data during online training, hinder effective exploration
of the optimal policy. Thus, while mechanisms to mitigate catastrophic failure remain necessary,
removing these constraints is essential for achieving higher asymptotic performance.

6 SPURIOUS Q-OPTIMISM AS A DRIVER OF CATASTROPHIC FAILURE

Why does removing the conservative regularizer and offline data in CQL trigger catastrophic failure
during online fine-tuning? We posit a single overarching mechanism: Spurious Q-Optimism. Early
in fine-tuning, the critic can erroneously reverse the relative value ordering between the offline-
pretrained policy’s action and the action proposed by the current policy for the same state, which
steers learning toward actions that later prove inferior under the converged critic. In this section, we
(i) formalize this phenomenon, (ii) show that its incidence tracks catastrophic failure across tasks,
and (iii) demonstrate that neither tuning hyperparameter in baselines nor slowing the critic’s drift
from its offline initialization reliably prevents collapse.

6.1 QUANTIFYING SPURIOUS Q-OPTIMISM

To test this mechanism, we quantify spurious Q-optimism at each online step via a preference sign
mismatch between the current and converged critics. For a minibatch of states s, define ∆t(s) =
Qt

(
s, acurr

)
− Qt

(
s, aoff

)
, ∆final(s) = Qfinal

(
s, acurr

)
− Qfinal

(
s, aoff

)
, where acurr is sampled

from the policy at step t and aoff from the offline-pretrained policy on the same states. A state is
flagged as optimistic if the signs disagree, equivalently, when ∆t(s)∆final(s) < 0. The Spurious
Q-Optimism Ratio (SQOR) is the fraction of batch states satisfying this sign mismatch at step t.

To analyze the association between SQOR and catastrophic failure, we consider the two stress set-
tings that induce failures in Figure 3: (i) removing offline data during fine-tuning and (ii) removing

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 10k 20k 30k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 10k 20k 30k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 10k 20k 30k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 10k 20k 30k
Steps

0.0

0.5

1.0
pen-binary-v0

0 10k 20k 30k
Steps

0.2

0.4

0.6

SQ
OR

0 10k 20k 30k
Steps

0.2

0.4

0.6

0 10k 20k 30k
Steps

0.2

0.4

0.6

0 10k 20k 30k
Steps

0.2

0.4

0.6

0 10k 20k 30k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 10k 20k 30k
Steps

0.0

0.5

1.0

0 10k 20k 30k
Steps

0.0

0.5

1.0

0 10k 20k 30k
Steps

0.0

0.5

1.0

0 10k 20k 30k
Steps

0.2

0.4

0.6

SQ
OR

0 10k 20k 30k
Steps

0.2

0.4

0.6

0 10k 20k 30k
Steps

0.2

0.4

0.6

0 10k 20k 30k
Steps

0.2

0.4

0.6

offline data O offline data X  O  X

Figure 4: SQOR tracks catastrophic failure across tasks. Lower Spurious Q-Optimism Ratio
(SQOR) consistently aligns with fewer and milder collapses across all four tasks. Vertical lines
mark the onset of catastrophic failure for each method.

the conservative regularizer α. Because door-binary exhibits a very low initial success rate and does
not manifest a meaningful failure drop (Figure 3), we report results on four tasks, antmaze-large-
diverse, kitchen-partial, kitchen-mixed, and pen-binary.

To obtain Qfinal, we use the checkpoint after 400K online steps for the same random seed, since
success rates are stable by that point (Figure 3). Because catastrophic failure emerges within <
30K steps (Figure 3), we report SQOR over the first 30K steps to capture onset dynamics while
keeping computation tractable. Due to computational constraints, all experiments analyzing SQOR
are conducted with three random seeds.

Empirically, SQOR exhibits a strong correlation with catastrophic failure. As shown in Figure 4,
across four tasks and both stress settings, lower SQOR coincides with fewer and milder collapses.
In Appendix A, we further examine related diagnostics, the Spurious Q-Optimism Gap (SQOG)
(aggregate magnitude of preference mismatch), Online-only SQOR (O-SQOR) (counts only cases
with ∆t(s) > 0 and ∆final(s) < 0), and volatility (step-to-step Q-value fluctuations). None of these
alternatives consistently explain failures across all tasks.

This pattern suggests that the count of misordered state-action comparisons (SQOR) is the primary
predictor of collapse. SQOR captures (i) direct errors, where the current policy is pulled toward ac-
tions that ultimately underperform the offline-pretrained actions (the immediate trigger of collapse),
and (ii) an indirect effect, where unusually high values assigned to offline-pretrained actions reveal
critic instability, although not a direct cause when those actions are selected, such instability can
precipitate future direct errors. The fact that O-SQOR (which removes the indirect component) fails
to account for failures while SQOR does indicates that this indirect effect materially contributes to
catastrophic failure. Formal definitions and full correlation analyses are provided in Appendix A.

6.2 CAN CATASTROPHIC FAILURE BE MITIGATED BY HYPERPARAMETER TUNING?

We next investigate whether catastrophic failure can be mitigated solely through tuning hyperpa-
rameters in baselines when both α and offline data are removed during online fine-tuning with CQL.
One candidate is the UTD ratio, which increases the frequency of critic updates per online interac-
tion and was suggested by Xiao et al. (2025) as a means to alleviate catastrophic failure. However,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

UTD
1
4
16

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
antmaze-large-play-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
pen-binary-v0

Warmup
5k
10k
20k

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
Su

cc
es

s R
at

e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Cal QL

5
10
15 0 100k 200k 300k 400k

Steps
0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Figure 5: Hyperparameter tuning does not prevent catastrophic failure. Effects of varying
hyperparameters on online fine-tuning across antmaze-large-diverse, antmaze-large-play, kitchen-
mixed, and pen-binary. Top: UTD ratio; Middle: warmup length; Bottom: Cal-QL’s conservative-
regularizer weight (αCal-QL). Increasing UTD, extending warmup, or tuning αCal-QL fails to avert
early performance collapse.

0 100k 200k 300k 400k
Steps

0
50

100
150

D
KL

antmaze-large-diverse-v2

0 100k 200k 300k 400k
Steps

0
50

100
150 antmaze-large-play-v2

0 100k 200k 300k 400k
Steps

0.0

2.5

5.0 kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0

100

200 pen-binary-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

KL 0.1 0.5 2.0

Figure 6: Regularizing the critic’s shift does not prevent collapse. Top: Critic distribution shift
during online fine-tuning, measured as DKL

(
softmax(Qoffline)|softmax(Qonline)

)
under varying

KL-penalty strengths αKL (larger αKL slows the shift). Bottom: Corresponding success rates.
Across four tasks (antmaze-large-diverse, antmaze-large-play, kitchen-mixed, pen-binary), even
when the shift is substantially reduced, early-stage catastrophic failure persists.

as shown in Figure 5, simply increasing the UTD ratio does not effectively reduce catastrophic fail-
ure across tasks. We also evaluated the use of a warmup phase, where the agent does not update
its parameters but collects trajectories via online interaction using the offline-pretrained policy, as
proposed in Zhou et al. (2025). Increasing the warmup length likewise fails to reduce catastrophic
failure across tasks.

In addition, Cal-QL proposed modifying the conservative regularizer in CQL as a potential rem-
edy (Nakamoto et al., 2023). We experimented with retaining the regularizer while varying its
weight (αCal-QL). However, increasing the weight did not produce meaningful reductions in catas-
trophic failure across tasks. This indicates that even the modified conservative regularizer in Cal-QL
does not provide a significant mitigation effect.

Beyond hyperparameter tuning, we also examine whether moderating the critic’s distributional shift
away from the offline-pretrained critic can alleviate catastrophic failure. To control the shift speed,
we augment the TD loss with a KL penalty between the action distributions induced by the offline
and online critics, optimizing

min
θ
LTD(θ) + αKL Es,a∼B

[
DKL

(
softmax

(
Qoffline

θ (s, ·)
)
|softmax

(
Qonline

θ (s, ·)
))]

,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

where B denotes the replay buffer and αKL > 0 controls the strength of the KL penalty, with larger
values more strongly suppressing the distributional shift, as empirically illustrated in Figure 6. This
objective is motivated by the hypothesis of Zhou et al. (2025) that slowing the critic’s distributional
shift may reduce catastrophic failure. However, Figure 6 shows that in practice, more aggressive
regularization of the critic’s shift does not reduce catastrophic failure.

Further analyses of hyperparameter adjustments, including batch size, network dimensions, and
learning rates, are presented in Appendix C. None of these adjustments produced substantial im-
provements across tasks, reinforcing our claim that Spurious Q-Optimism is the fundamental driver
of catastrophic failure.

7 ANNEALING BRIDGES OFFLINE AND ONLINE RL

Building on the analyses in Sections 5 and 6, we propose SOAR (Smooth Offline-to-Online Anneal-
ing for RL), a simple yet effective method that mitigates catastrophic failure while attaining superior
asymptotic performance. The core idea is to gradually remove conservative regularizer and offline
data that stabilize early fine-tuning but hinder long-term performance. In addition, through extensive
ablations, we disentangle the respective roles of offline data and α annealing, and show how practi-
tioners can tailor SOAR’s components as practical design choices depending on whether robustness
or final performance is prioritized.

7.1 SOAR (SMOOTH OFFLINE-TO-ONLINE ANNEALING FOR RL)

5k 10k 15k 20k 25k 30k
Steps

0.3
0.4
0.5
0.6
0.7

SQ
OR

antmaze-large-diverse-v2

5k 10k 15k 20k 25k 30k
Steps

0.3
0.4
0.5
0.6
0.7

kitchen-partial-v0

5k 10k 15k 20k 25k 30k
Steps

0.3
0.4
0.5
0.6
0.7

kitchen-mixed-v0

5k 10k 15k 20k 25k 30k
Steps

0.3
0.4
0.5
0.6
0.7

pen-binary-v0

SOAR WSRL

Figure 7: WSRL vs. SOAR on SQOR. Spurious Q-Optimism Ratio (SQOR) over the early online
phase across four tasks. SQOR trajectories for WSRL and SOAR are statistically indistinguish-
able on antmaze-large-diverse, kitchen-partial, and kitchen-mixed, whereas WSRL exhibits higher
SQOR on pen-binary, aligning with its larger catastrophic failure in Figure 2.

SOAR uses standard CQL for offline pre-training on Doff and modifies only the online fine-tuning
phase. The key idea is to gradually remove (i) the offline data used in replay and (ii) the conservative
regularizer, to stabilize at the beginning of fine-tuning while enabling unconstrained exploration
later. Concretely, at online step t we form a minibatch Bt by mixing samples from the offline and
online buffers, Bt ∼ λtDoff + (1 − λt)Don, where λt ∈ [0, 1] is a replay composition schedule
that monotonically decreases to 0. The critic is updated with the usual CQL objective, but with a
time-varying conservative weight αt:

LSOAR
t (θ) = LTD(θ;Bt) + αt

(
Es∼Bt, a∼πθ(·|s)[Qθ(s, a)]− E(s,a)∼Bt

[Qθ(s, a)]
)
, (2)

and the actor is optimized as in CQL with no architectural changes. Thus, SOAR is algorithmically
minimal: it introduces no new losses beyond CQL, only two annealing schedules.

We employ a linear schedule for the offline data-ratio, λt = max{0, λ0(1 − t/Tλ)}, so that the
fraction of offline samples decays monotonically to zero, and an exponential schedule for the conser-
vative weight with separate controls for decay rate and annealing interval: αt = max{0, α0 exp

(
−

r · (t/Tα)
)
}. Here, λ0 denotes the initial offline data fraction, Tλ the annealing horizon for replay

composition, α0 the conservative weight used during offline pre-training, r > 0 the decay rate, and
Tα > 0 the annealing interval. Task-specific settings for (λ0, Tλ, α0, r, Tα) are provided in Ap-
pendix G. Early in fine-tuning, larger λt and αt damp catastrophic failure by anchoring to offline
support and pessimism; as t increases, both terms vanish, allowing the agent to fully exploit online
interaction. We provide the pseudocode for SOAR in Algorithms 1.

Despite its simplicity, SOAR consistently reduces catastrophic failure and improves asymptotic per-
formance across tasks (Figure 2). Examining the diagnostics, SQOR levels for SOAR and WSRL

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
pen-binary-v0

SOAR  annealing only offline data annealing only

Figure 8: Single-component annealing ablations. Comparison of (i) conservative-weight (α) an-
nealing only and (ii) offline data-ratio annealing. Offline data-ratio annealing reduces early perfor-
mance collapse but can limit final success rate, while combining both (SOAR) achieves the best
overall performance across all four tasks.

are statistically indistinguishable on antmaze-large-diverse, kitchen-partial, and kitchen-mixed (Fig-
ure 7). However, on pen-binary, WSRL exhibits a significantly higher SQOR than SOAR, mirroring
the relative magnitude of catastrophic failure observed in Figure 2.

Crucially, the dual annealing schedules enable a complete phase-out of both the offline replay (data
ratio λt → 0) and the conservative penalty (weight αt → 0) during fine-tuning, yielding a smooth
transition to fully online, non-conservative training without the large performance collapses ob-
served in prior methods. For complete numerical results across all tasks, see Appendix K.

7.2 ABLATION: WHAT DOES EACH ANNEALING COMPONENT CONTRIBUTE?

To quantify the contribution of each component in SOAR, we ablate the dual annealing design into
two single-component variants and compare them against the full method. (i) Offline data-ratio
annealing only: λt decays linearly to 0 while the conservative penalty is disabled throughout online
fine-tuning (αt = 0). (ii) Conservative-weight (α) annealing only: αt decays exponentially to 0
while no offline data are mixed into replay (λt = 0). For the scheduling in each variant, we use the
same hyperparameters as in SOAR. We also report ablation on the antmaze-ultra-diverse task which
is a harder version of antmaze-large-diverse, in Appendix D.

Results in Figures 8 and 13 indicate a task-dependent trade-off. The preferred annealing depends on
the severity of exploration-induced collapse and on whether risk mitigation or asymptotic return is
prioritized. When exploration risk is severe, retaining conservatism while annealing only the data
ratio tends to yield the most stable learning. Otherwise, as a robust default across tasks, using both
annealings (SOAR) provides the most reliable risk-return balance.

8 CONCLUSION

We introduced SOAR, a simple offline-to-online fine-tuning procedure that jointly anneals the of-
fline replay ratio and the conservative regularizer. This dual schedule balances two competing objec-
tives, reducing early catastrophic failure and achieving strong asymptotic performance, by retaining
offline data and pessimism at the start of fine-tuning and then smoothly phasing both out to enable
unconstrained online improvement.

Our analysis identifies spurious Q-optimism as a primary driver of collapse: early critics can mis-
order the current-policy and offline-pretrained actions for the same state, and the resulting Spurious
Q-Optimism Ratio (SQOR) closely tracks catastrophic failures across tasks. In contrast, a range of
alternatives, including hyperparameter variations, warmup, higher UTD ratios, and explicit penalties
that slow the critic’s drift from its offline initialization, do not reliably prevent collapse. Ablations
further show that while single-component schedules (only data-ratio or only conservative-weight
annealing) offer useful knobs for safety or speed, their combination (SOAR) delivers the most fa-
vorable stability-performance trade-off overall.

Beyond a practical recipe, SOAR offers a lens on offline-to-online RL: the transition is best viewed
as balancing stability against exploration. This suggests several directions for future work, includ-
ing adaptive or performance-aware scheduling, tighter theory linking spurious Q-Optimism to fail-
ure probabilities, and extensions to vision-based and real-robot settings. We hope these findings
encourage more principled designs for bridging offline pre-training and online improvement.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. Ad-
vances in Neural Information Processing Systems, 35:28955–28971, 2022.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in Neural Information Processing
Systems, 34:7436–7447, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement
learning with offline data. In Proceedings of the International Conference on Machine Learn-
ing (ICML), pp. 1577–1594. PMLR, 2023.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-
policy evaluation. Advances in Neural Information Processing Systems, 34:4933–4946, 2021.

Xiaocong Chen, Siyu Wang, Julian McAuley, Dietmar Jannach, and Lina Yao. On the opportunities
and challenges of offline reinforcement learning for recommender systems. ACM Transactions
on Information Systems, 42(6):1–26, 2024.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning:
Learning fast without a model. In Proceedings of the International Conference on Learning
Representations (ICLR), 2021. arXiv preprint arXiv:2101.05982.

Rohan Chitnis, Yingchen Xu, Bobak Hashemi, Lucas Lehnert, Urun Dogan, Zheqing Zhu, and
Olivier Delalleau. Iql-td-mpc: Implicit q-learning for hierarchical model predictive control. In
2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 9154–9160. IEEE,
2024.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learn-
ing as goal-conditioned reinforcement learning. Advances in Neural Information Processing Sys-
tems, 35:35603–35620, 2022.

Jiaheng Feng, Mingxiao Feng, Haolin Song, Wengang Zhou, and Houqiang Li. Suf: Stabilized
unconstrained fine-tuning for offline-to-online reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 11961–11969, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in Neural Information Processing Systems, 34:20132–20145, 2021.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
without entropy. arXiv preprint arXiv:2301.02328, 2023.

Siyuan Guo, Yanchao Sun, Jifeng Hu, Sili Huang, Hechang Chen, Haiyin Piao, Lichao Sun, and
Yi Chang. A simple unified uncertainty-guided framework for offline-to-online reinforcement
learning. arXiv preprint arXiv:2306.07541, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
International Conference on Machine Learning (ICML), pp. 1861–1870. PMLR, 2018.

Hao Hu, Yiqin Yang, Jianing Ye, Chengjie Wu, Ziqing Mai, Yujing Hu, Tangjie Lv, Changjie Fan,
Qianchuan Zhao, and Chongjie Zhang. Bayesian design principles for offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2405.20984, 2024.

Hengyuan Hu, Suvir Mirchandani, and Dorsa Sadigh. Imitation bootstrapped reinforcement learn-
ing. arXiv preprint arXiv:2311.02198, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Asifullah Khan, Anabia Sohail, Mustansar Fiaz, Mehdi Hassan, Tariq Habib Afridi, Sibghat Ul-
lah Marwat, Farzeen Munir, Safdar Ali, Hannan Naseem, Muhammad Zaigham Zaheer, et al.
A survey of the self supervised learning mechanisms for vision transformers. arXiv preprint
arXiv:2408.17059, 2024.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in Neural Information Processing Systems, 33:
21810–21823, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In Proceedings of the International Conference on
Machine Learning (ICML), pp. 5774–5783. PMLR, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In Proceedings of the International Conference on Learning Representations (ICLR),
2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, volume 33, pp.
1179–1191, 2020.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Siqi Liu, Kay Choong See, Kee Yuan Ngiam, Leo Anthony Celi, Xudong Sun, and Mengling Feng.
Reinforcement learning for clinical decision support in critical care: Comprehensive review. Jour-
nal of Medical Internet Research, 22(7):e18477, 2020. doi: 10.2196/18477.

Qin-Wen Luo, Ming-Kun Xie, Yewen Wang, and Sheng-Jun Huang. Optimistic critic reconstruc-
tion and constrained fine-tuning for general offline-to-online rl. Advances in Neural Information
Processing Systems, 37:108167–108207, 2024.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural language processing via
large pre-trained language models: A survey. ACM Computing Surveys, 56(2):1–40, 2023.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. In Advances in Neural Information Processing Systems, volume 36, pp. 62244–62269,
2023.

Whitney K Newey and James L Powell. Asymmetric least squares estimation and testing. Econo-
metrica: Journal of the Econometric Society, pp. 819–847, 1987.

Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration
by random network distillation. In Proceedings of the International Conference on Machine
Learning (ICML), pp. 26228–26244. PMLR, 2023.

Kwanyoung Park and Youngwoon Lee. Model-based offline reinforcement learning with lower
expectile q-learning. arXiv preprint arXiv:2407.00699, 2024.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. arXiv preprint arXiv:2502.02538,
2025.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 35(8):10237–10257, 2023.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Yongjae Shin, Jeonghye Kim, Whiyoung Jung, Sunghoon Hong, Deunsol Yoon, Youngsoo Jang,
Geonhyeong Kim, Jongseong Chae, Youngchul Sung, Kanghoon Lee, et al. Online pre-training
for offline-to-online reinforcement learning. arXiv preprint arXiv:2507.08387, 2025.

Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. Reinforcement learning in robotic appli-
cations: A comprehensive survey. Artificial Intelligence Review, 55(2):945–990, 2022. doi:
10.1007/s10462-021-10067-x.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-
imalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36:11592–11620, 2023.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In
Proceedings of the International Conference on Machine Learning (ICML), pp. 34556–34583.
PMLR, 2023.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.

Xiaoyu Wen, Xudong Yu, Rui Yang, Haoyuan Chen, Chenjia Bai, and Zhen Wang. Towards Robust
Offline-to-Online Reinforcement Learning via Uncertainty and Smoothness. Journal of Artificial
Intelligence Research, 81:481–509, 2024a. doi: 10.1613/jair.1.16457. URL https://jair.
org/index.php/jair/article/view/16457.

Xiaoyu Wen, Xudong Yu, Rui Yang, Haoyuan Chen, Chenjia Bai, and Zhen Wang. Towards robust
offline-to-online reinforcement learning via uncertainty and smoothness. Journal of Artificial
Intelligence Research, 81:481–509, 2024b.

Wei Xiao, Jiacheng Liu, Zifeng Zhuang, Runze Suo, Shangke Lyu, and Donglin Wang. Efficient
online rl fine tuning with offline pre-trained policy only. arXiv preprint arXiv:2505.16856, 2025.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
anyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization.
arXiv preprint arXiv:2303.15810, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in Neural Information
Processing Systems, 34:28954–28967, 2021.

Zishun Yu and Xinhua Zhang. Actor-Critic Alignment for Offline-to-Online Reinforcement Learn-
ing. In ICML, pp. 40452–40474, 2023.

Kai Zhao, Jianye Hao, Yi Ma, Jinyi Liu, Yan Zheng, and Zhaopeng Meng. Enoto: Improving offline-
to-online reinforcement learning with q-ensembles. arXiv preprint arXiv:2306.06871, 2023.

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online rein-
forcement learning fine-tuning need not retain offline data. In Proceedings of the International
Conference on Learning Representations (ICLR), 2025.

12

https://jair.org/index.php/jair/article/view/16457
https://jair.org/index.php/jair/article/view/16457


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL ANALYSIS ON CATASTROPHIC FAILURE

0 10k 20k 30k
Steps

0.0

0.5

1.0
Su

cc
es

s R
at

e antmaze-large-diverse-v2

0 10k 20k 30k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 10k 20k 30k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 10k 20k 30k
Steps

0.0

0.5

1.0
pen-binary-v0

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

O-
SQ

OR

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

0 10k 20k 30k
Steps

0

2

4

6

SQ
OG

0 10k 20k 30k
Steps

0

2

4

6

0 10k 20k 30k
Steps

0

2

4

6

0 10k 20k 30k
Steps

2
4
6
8

10

0 10k 20k 30k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 10k 20k 30k
Steps

0.0

0.5

1.0

0 10k 20k 30k
Steps

0.0

0.5

1.0

0 10k 20k 30k
Steps

0.0

0.5

1.0

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

O-
SQ

OR

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

0 10k 20k 30k
Steps

0

2

4

6

SQ
OG

0 10k 20k 30k
Steps

2

4

6

8

0 10k 20k 30k
Steps

2

4

6

8

0 10k 20k 30k
Steps

4
6
8

10
12

offline data O offline data X  O  X

Figure 9: SQOG and O-SQOR do not predict collapse. Across four tasks and two stress settings,
SQOG (magnitude of mismatch) and O-SQOR (one-sided optimism) show inconsistent alignment
with catastrophic failures.

In Section 6, we showed that the Spurious Q-Optimism Ratio (SQOR) exhibits a strong correlation
with catastrophic failure. Could other factors be responsible? In this section, we systematically
investigate alternative explanations and find none that consistently account for the observed failures.
Mirroring the SQOR analysis, we examine correlations between catastrophic failure and candidate
metrics under two stress settings, removing offline data and removing the conservative regularizer
α, across four tasks, antmaze-ultra-diverse, kitchen-partial, kitchen-mixed, and pen-binary.

Spurious Q-Optimism Gap (SQOG). Let ∆t(s) = Qt(s, acurr) − Qt(s, aoff) and ∆final(s) =
Qfinal(s, acurr)−Qfinal(s, aoff). WithMt = { s : sgn(∆t(s)) ̸= sgn(∆final(s)) }, we define

SQOG(t) =
1

|Mt|
∑

s∈Mt

∣∣∆t(s)−∆final(s)
∣∣.

SQOG measures the magnitude of preference mismatch on misordered states. As shown in Figure 9,
SQOG does not exhibit a consistent trend with catastrophic failure across tasks, suggesting that the
number of misordered states (captured by SQOR) is more predictive of collapse than the size of a
few large errors.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Online Spurious Q-Optimism Ratio (O-SQOR). Focusing on the one-sided, harmful optimism
cases, we define

O-SQOR(t) =
1

|Bt|
∑
s∈Bt

1
[
∆t(s) > 0 ∧ ∆final(s) < 0

]
,

i.e., the current critic prefers the current-policy action, while the converged critic prefers the of-
fline action. O-SQOR does not consistently align with catastrophic failure across tasks than SQOR
(Figure 9), indicating that both mismatch directions contribute to overall collapse risk.

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0
pen-binary-v0

0 10k 20k 30k 40k 50k
Steps

-1

0

1

lo
g(

Vo
la

til
ity

)

0 10k 20k 30k 40k 50k
Steps

-2

0

2

0 10k 20k 30k 40k 50k
Steps

-2

0

2

0 10k 20k 30k 40k 50k
Steps

0

2

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0

0 10k 20k 30k 40k 50k
Steps

-2

0

lo
g(

Vo
la

til
ity

)

0 10k 20k 30k 40k 50k
Steps

0

2

0 10k 20k 30k 40k 50k
Steps

0

2

0 10k 20k 30k 40k 50k
Steps

0

2

offline data O offline data X  O  X

Figure 10: Volatility does not predict collapse. Across tasks and stress settings, step-to-step Q-
update volatility shows weak and inconsistent correspondence with catastrophic failure.

Volatility. We define volatility as the square root of the bias-corrected exponential moving average
of squared one-step Q-updates (Kingma & Ba, 2014):

Volatilityt =

√
mt

1− βt
, mt = β mt−1 + (1− β) E(s,a)∼Bt

[(
∆Qt(s, a)

)2]
,

where ∆Qt(s, a) = Qt+1(s, a) − Qt(s, a) over minibatch Bt, with β = 0.9 in all experiments.
Intuitively, volatility measures the magnitude of per-pair (s, a) Q-value adjustments; larger values
indicate more abrupt updates. As shown in the fourth row of Figure 10, volatility does not consis-
tently track catastrophic failure across tasks, suggesting that SQOR is more predictive of collapse
than aggregate fluctuations of Q over all (s, a) pairs.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B ADDITIONAL ABLATION STUDIES ON SOAR

WSRL
Cal-QL

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
pen-binary-v0

0

SOAR
Low
Mid

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

T

SOAR
x 0.5
x 2.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

T

SOAR
x 0.5
x 2.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

r

SOAR
x 0.5
x 2.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

batch size
SOAR
256
1024

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

actor lr
SOAR
3e-5
3e-4

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

critic lr
SOAR
1e-4
1e-3

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Figure 11: SOAR ablations. Sensitivity to (a) initial offline data-ratio, (b) offline data-ratio an-
nealing interval, (c) conservative-weight (α) annealing interval, and (d) α annealing temperature.
(e) batch size, (f) actor learning rate, (g) critic learning rate. Across tasks, SOAR remains robust,
exhibiting low catastrophic failure and strong asymptotic success over a wide range of settings.

We examine how each hyperparameter influences SOAR’s behavior, with the goal of understanding
the role of each component and the method’s sensitivity. Unless stated otherwise, exact values and
ranges are listed in Appendix G. Figure 12 summarizes results on four benchmarks: antmaze-large-
diverse, kitchen-partial, kitchen-mixed, and pen-binary.

Initial offline-data ratio. We vary the initial fraction of offline samples mixed into replay before
annealing, testing starting ratios of 0.25 (low) and 0.5 (mid). SOAR is generally robust to this
choice: antmaze-large-diverse and pen-binary show negligible changes in both early stability and
final return across settings. On kitchen-partial, starting from a smaller ratio reduces the initial dip
while preserving asymptotic performance, indicating headroom for further improvements via more
aggressive early down-weighting. On kitchen-mixed, a small initial ratio hurts both early stability
and final success, although it still outperforms the strongest baseline.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Offline data-ratio annealing interval. Shorter schedules hasten the transition to fully online train-
ing and tend to speed convergence on kitchen-partial and kitchen-mixed, though variance increases
on the latter. Lengthening the interval delays the transition and can cap the final return on kitchen-
mixed, while yielding similar asymptotic performance on the other tasks. A moderate schedule
offers a favorable stability-performance trade-off.

Conservative-weight (α) annealing interval. Doubling Tα induces greater instability during train-
ing on kitchen-partial and kitchen-mixed and yields lower asymptotic performance. Conversely,
shortening Tα preserves final performance but increases variance, underscoring the importance of
choosing an appropriate interval.

α annealing temperature. Faster exponential decay improves convergence on antmaze-large-
diverse but exacerbates early collapse on kitchen-mixed. Slower decay mainly postpones the timing
of collapse on kitchen-partial and kitchen-mixed rather than reducing its magnitude, and can worsen
collapse on antmaze-large-diverse.

Batch size. Increasing batch size in antmaze raises variance during learning but, overall, both min-
ima and final plateaus change little across tested values, indicating SOAR’s gains are not contingent
on batch size tuning.

Actor learning rate. Varying the actor step size within a standard range produces only minor
differences on most tasks. Very small rates slow progress; very large rates can introduce transient
oscillations. The default strikes a good speed-stability balance, and nearby values behave similarly.

Critic learning rate. Patterns mirror the actor: very small rates slow learning (e.g., antmaze-large-
diverse and kitchen-partial), while very large rates can cause oscillations (kitchen-partial). The
default again provides a reasonable compromise.

Takeaway. While the magnitude of catastrophic failure and the ultimate success rate can shift
with hyperparameters, SOAR variants consistently matches or outperform baselines across set-
tings. Batch size and learning rates have comparatively modest effects, whereas annealing schedules
materially influence both early stability and asymptotic performance. Together with the single-
component analyses in Section 7.2, these results suggest that practitioners can tailor design choices
on the method to their safety and performance requirements while retaining SOAR’s core benefits.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C OTHER ATTEMPTS TO MITIGATE CATASTROPHIC FAILURE

batch size
256
512
1024

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
pen-binary-v0

actor lr
3e-5
1e-4
3e-4

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

critic lr
1e-4
3e-4
1e-3

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

critic dim
x 0.5
Default
x 2.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

policy dim
x 0.5
Default
x 2.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

critic
LayerNorm

x
o

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

policy
LayerNorm

x
o

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

offline phase
duration

x 0.5
Default
x 1.5

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Figure 12: Hyperparameter and architectural tweaks do not consistently mitigate catastrophic
failure. From top to bottom, the plots correspond to: batch size; actor learning rate; critic learning
rate; critic hidden dimension; actor hidden dimension; LayerNorm in the critic; LayerNorm in the
actor; and the duration of the offline pre-training phase. Across all settings and tasks, none of these
factors consistently mitigates catastrophic failure.

In Section 6.2, we examined whether tuning the UTD ratio, varying warmup length,
adjusting the Cal-QL conservative weight αCal-QL, or regularizing the critic shift via
DKL

(
softmax(Qoffline)|softmax(Qonline)

)
could mitigate catastrophic failure. None of these in-

terventions proved effective. Here, we extend this investigation to additional settings: batch size,
actor learning rate, critic learning rate, critic layer hidden dimension size, actor layer hidden di-
mension size, LayerNorm in the critic, LayerNorm in the actor, and the duration of the offline
pre-training phase. As shown in Figure 12, across four tasks none of these choices consistently re-
duces catastrophic failure, reinforcing our conclusion that such collapses are not resolved by routine
hyperparameter or architectural tweaks.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D ANTMAZE-ULTRA-DIVERSE: A HIGH-RISK STRESS TEST FOR
OFFLINE-TO-ONLINE RL

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

antmaze-ultra-diverse-v2

SOAR
offline data annealing

WSRL
PORL

Cal-QL
CQL

IQL
SAC

Figure 13: AntMaze-Ultra-Diverse results. This highlights the value of retaining a conservative
regularizer when exploration carries high risk.

AntMaze-Ultra-Diverse presents an extreme exploration regime with highly diverse start-goal pairs
and long horizons, where online rollouts readily drift off the offline support, and sparse rewards
make recovery difficult. Figure 13 summarizes the results. Purely online SAC stays near zero, and
standard offline baselines (CQL, IQL) remain low and flat. Offline-to-online methods that remove
offline inductive bias early (WSRL, PORL, and our dual annealing SOAR) also struggle to make
headway in this setting. In contrast, the variant that anneals offline data while fixing conservatism,
decaying the replay ratio λt but keeping the conservative weight α unchanged, delivers the most
stable learning and competitive final returns here.

This suggests a practical design rule: when exploration is liable to precipitate extreme failure, it can
be preferable to retain conservative regularizer during fine-tuning, e.g., anneal λt while holding (or
very slowly annealing) α, trading some exploration freedom for robustness. On easier tasks, our
main results show that dual annealing (SOAR) typically offers the best overall trade-off.

E EXTENDED RELATED WORKS

Offline RL. Online RL requires actual interaction with the environment, which can be expensive
or dangerous in domains like robotics, healthcare, and recommender systems (Singh et al., 2022;
Liu et al., 2020; Chen et al., 2024). Offline RL emerged to mitigate this issue by using a static
dataset previously collected by a behavior policy to enable sample-efficient policy learning (Pruden-
cio et al., 2023). While effective, a policy trained with offline static data faces significant problems
when it encounters unseen circumstances (Prudencio et al., 2023). Various approaches have been
proposed to address this limitation, which can be categorized into regularization (Fujimoto & Gu,
2021; Park et al., 2025; Tarasov et al., 2023; Kumar et al., 2020), uncertainty estimation (An et al.,
2021; Nikulin et al., 2023), model-based methods (Kidambi et al., 2020; Yu et al., 2020; 2021; Chit-
nis et al., 2024; Park & Lee, 2024), one-step methods (Brandfonbrener et al., 2021; Eysenbach et al.,
2022; Park et al., 2025), weighted regression (Peng et al., 2019; Wang et al., 2020) and in-sample
maximization (Garg et al., 2023; Kostrikov et al., 2022; Xu et al., 2023). Among these, we build
upon CQL (Kumar et al., 2020) as the foundation for our method, which directly addresses the over-
estimation issue by adding a penalty to the Q-function. We adopted IQL (Kostrikov et al., 2022) as
one of our baselines, which improves upon the behavior policy in the dataset by leveraging the value
function’s generalization to enhance the quality of policy, without evaluating out-of-distribution ac-
tions.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F DETAILS ON BASELINE ALGORITHMS

Soft Actor-Critic (SAC) (Haarnoja et al., 2018). SAC extends standard actor-critic methods by
incorporating entropy maximization into the RL objective. Instead of maximizing only the expected
return, SAC also maximizes the entropy of the policy to encourage exploration and prevent prema-
ture convergence to deterministic policies. The resulting objective is to maximize the expected sum
of rewards and entropies:

J(π) = Eπ

[ ∞∑
t=0

γt (r(st, at) + αH(π(·|st)))

]
,

where H(π(·|st)) = −Eat∼π[log π(at|st)] denotes the entropy of the policy at state st, and α > 0
is the temperature parameter that balances reward maximization and entropy.

Conservative Q-Learning (CQL) (Kumar et al., 2020). CQL learns a Q-function by explicitly
regularizing Q-values to mitigate overestimation issues common in offline RL (Prudencio et al.,
2023):

L(θ) = α
(
Es∼D,a∼π[Qθ(s, a)]− Es,a∼D[Qθ(s, a)]

)
︸ ︷︷ ︸

Conservative regularizer

+LTD(θ)

Here, π represents the current policy, D is the offline dataset, and α controls the intensity of the
conservative regularization. The term LTD is the temporal difference loss used in Q-learning meth-
ods, while the conservative regularization penalizes Q-values for state-action pairs not present in the
offline dataset D.

Implicit Q-learning (IQL) (Kostrikov et al., 2022). The IQL algorithm learns a state-value function
VθV : S → R and an action-value function QθQ : S ×A → R by minimizing:

LV (θV ) = E(s,a)∼D

[
ℓ2κ

(
VθV (s)−Qθ̄Q(s, a)

)]
,

LQ(θQ) = E(s,a,r,s′)∼D

[(
QθQ(s, a)− r − γVθV (s

′)
)2]

,

where the expectile loss is defined as ℓ2κ(x) = |κ − 1[x < 0]|x2 (Newey & Powell, 1987), and θ̄Q
represents the target network parameters. Unlike standard MSE loss, expectile loss asymmetrically
weights positive and negative errors, with κ > 0.5 emphasizing higher Q-values. By doing so,
IQL evaluates only actions from the dataset, which enables policy improvement without querying
out-of-distribution actions, thereby inducing implicit conservatism.

Calibrated Q-Learning (Cal-QL) (Nakamoto et al., 2023). Cal-QL adjusts CQL by calibrating
the learned Q-function relative to a reference policy to avoid initial degradation caused by overly
pessimistic Q-values during fine-tuning. The conservative regularization term in CQL is altered by
substituting Es∼D,a∼π[Qθ(s, a)] with Es∼D,a∼π[max(Qθ(s, a), V

µ(s))], where V µ(s) represents
the value function of the reference policy µ, which can be estimated via Monte-Carlo return. This
modification prevents the problem of overly small Q-values in CQL by giving a lower bound with
reference policy.

Policy-Only Reinforcement Learning Fine-Tuning (PORL) (Xiao et al., 2025). PORL focuses on
the challenge of fine-tuning online RL using only a pretrained policy, without relying on pretrained
Q-functions or offline datasets. This approach is especially beneficial when pretrained Q-functions
are either unreliable due to pessimism or unavailable, such as in imitation learning scenarios. PORL
begins by training the randomly initialized Q-function at the beginning of the online fine-tuning
phase. Training data is collected based on the online interaction of the pretrained policy using an
epsilon-greedy exploration strategy. During this initial sampling phase, the Q-function is trained
via temporal difference learning with a high UTD ratio. After this pre-sampling period, PORL
transitions to standard SAC fine-tuning, updating both the policy and the Q-function.

Warm-start RL (WSRL) (Zhou et al., 2025). WSRL addresses the distribution shift issue from
offline to online data in fine-tuning without offline data by introducing a warmup phase. This phase
utilizes a frozen pretrained policy to collect online rollouts. The data collected during warmup
bridges the distribution mismatch and helps recalibrate the offline Q-function to the online distribu-
tion, allowing the method to adapt in the online environment quickly. Once the warmup phase is
complete, WSRL proceeds with conventional online RL using SAC, employing a high UTD ratio.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G IMPLEMENTATION DETAILS

G.1 DETAILS ON ENVIRONMENTS

AntMaze. The AntMaze environment, part of the D4RL benchmark suite (Fu et al., 2020), tasks an
8-DoF ant quadruped robot with navigating through a large and complex maze to reach a designated
goal position. The agent receives a binary reward of +1 only upon successfully reaching the goal.
The observation space is 29-dimensional, including the robot’s position, orientation, and velocity,
while the action space is a continuous 8-dimensional vector, normalized to the range [−1, 1]. We
use two variants: antmaze-large-diverse-v2, which contains trajectories collected by commanding
the agent to random goals from random start positions, and antmaze-large-play-v2, which contains
trajectories directed to a specific location. Both environments share the same maze structure and
maximum episode length of 1000 steps.

FrankaKitchen. The FrankaKitchen environment contained in D4RL (Fu et al., 2020) requires con-
trolling a 9-DoF Franka Panda robotic arm to manipulate various kitchen appliances and configure
the environment into a predefined target state. Each task consists of four subtasks, and the agent
receives a reward between 0 and 4 based on the number of successfully completed subtasks. The
observation space is 60-dimensional, encompassing joint positions and object states, and the action
space is a 9-dimensional continuous vector normalized to [−1, 1]. We use two benchmark environ-
ments from D4RL: kitchen-partial-v0 and kitchen-mixed-v0. The former includes a mix of complete
and incomplete demonstrations, where task elements involve operating the microwave, kettle, light
switch, and slide cabinet. The latter contains only incomplete demonstrations. Its task components
include the microwave, kettle, bottom burner, and light switch. Both environments use a maximum
episode length of 280 steps.

Adroit. The Adroit suite (Rajeswaran et al., 2017) evaluates dexterous manipulation using a high-
DoF robotic hand. Specifically, we use two tasks from the D4RL benchmark: pen-binary-v0 and
door-binary-v0. In pen-binary-v0, a 24-DoF shadow hand must reorient a pen to match a target
pose, while in door-binary-v0, a 28-DoF hand must grasp and rotate a door handle to open it. Both
environments have sparse binary rewards: a reward of +1 is given only upon successful task comple-
tion. The observation space is 45-dimensional for the pen task and 39-dimensional for the door task,
consisting of hand joint angles and object poses. The action space is continuous, 24-dimensional
for the pen task and 28-dimensional for the door task, each normalized to [−1, 1]. The maximum
episode lengths are 100 and 200 steps respectively.

G.2 NETWORK ARCHITECTURES

The network architecture is adopted directly from WSRL (Zhou et al., 2025), where the agent fol-
lows an actor-critic framework. The actor network takes the observation and outputs the mean and
the log standard deviation of a Gaussian distribution to sample actions. The critic network takes
the concatenated observation and action vectors and feeds them into an ensemble of 10 Q-functions.
Each Q-function outputs a scalar Q-value. For stability, 2 Q-functions are randomly subsampled dur-
ing target computation, and minimum value is used. Both the actor and the critic are implemented
as multilayer perceptrons (MLPs) with Rectified Linear Unit (ReLU) activation. A learnable tem-
perature parameter is used to control the entropy regularization. The exact hidden dimensions for
each domain are provided in Table 1.

G.3 HYPERPARAMETERS

Table 1 summarizes the hyperparameters used in our experiments. Unless noted otherwise, opti-
mization and architecture settings follow WSRL (Zhou et al., 2025), with the following uniform
modifications across all baselines: (i) the batch size is increased from 256 to 512; (ii) we employ
an ensemble of ten Q-functions and compute targets as the minimum over two critics randomly
subsampled each update, following REDQ (Chen et al., 2021); and (iii) layer normalization (Ba
et al., 2016) is applied to both the policy and critic networks to mitigate uncontrolled extrapolation
effects (Ball et al., 2023). For PORL, we adopt the authors’ settings described in Xiao et al. (2025).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Antmaze Adroit Kitchen

large diverse large play ultra diverse door pen partial mixed

SOAR
λ0 0.75 0.25 0.25 0.25 0.75 0.9 0.75
Tλ 40,000 40,000 40,000 20,000 40,000 80,000 20,000
Tα 80,000 80,000 40,000 40,000 80,000 160,000 160,000
r 5.0 5.0 5.0 5.0 5.0

Optimization
Actor Learning Rate 1 × 10−4 1 × 10−4 1 × 10−4

Critic Learning Rate 3 × 10−4 3 × 10−4 3 × 10−4

Batch Size 512 512 512
UTD 1 1 1
Offline Steps 1,000,000 40,000 250,000
α (= α0) 5.0 1.0 5.0
warmup step 5,000 5,000 5,000

Architecture
Critic Network [256, 256, 256, 256] [512, 512, 512] [512, 512, 512]
Actor Network [256, 256] [512, 512] [512, 512, 512]
Activations ReLU ReLU ReLU
Q-ensemble 10 10 10

Table 1: Hyperparameters.

We perform hyperparameter tuning with a particular focus on three key components, λ0, Tλ, and
Tα. Specifically, we explore λ0 ∈ [0.25, 0.5, 0.75, 0.9], Tλ ∈ [20,000, 40,000, 80,000], and Tα ∈
[40,000, 80,000, 160,000].

G.4 ONLINE TRAINING TIME COMPARISON

Task SOAR (Ours) WSRL PORL Cal-QL CQL IQL SAC

antmaze-large-diverse-v2 2.26 ± 0.01 2.73 ± 0.01 3.35 ± 0.07 3.44 ± 0.01 2.82 ± 0.02 2.08 ± 0.02 1.53 ± 0.0
antmaze-large-play-v2 2.6 ± 0.14 3.48 ± 0.08 3.54 ± 0.06 3.26 ± 0.03 2.34 ± 0.03 2.09 ± 0.03 1.52 ± 0.0
antmaze-ultra-diverse-v2 4.82 ± 0.12 4.83 ± 0.01 4.87 ± 0.01 5.09 ± 0.01 4.01 ± 0.01 3.32 ± 0.03 2.68 ± 0.0

kitchen-partial-v0 3.14 ± 0.03 3.64 ± 0.02 3.78 ± 0.05 4.56 ± 0.03 3.52 ± 0.05 2.33 ± 0.02 1.71 ± 0.01
kitchen-mixed-v0 3.62 ± 0.05 3.97 ± 0.05 3.83 ± 0.06 4.57 ± 0.02 3.6 ± 0.04 2.37 ± 0.05 1.73 ± 0.01

door-binary-v0 1.77 ± 0.01 2.9 ± 0.01 2.93 ± 0.01 3.55 ± 0.01 2.43 ± 0.01 1.28 ± 0.02 0.78 ± 0.01
pen-binary-v0 2.26 ± 0.01 2.77 ± 0.01 2.79 ± 0.01 3.51 ± 0.01 2.29 ± 0.01 1.13 ± 0.1 0.67 ± 0.0

Average 2.88 ± 0.17 3.49 ± 0.05 3.58 ± 0.11 3.91 ± 0.12 3.04 ± 0.14 2.09 ± 0.01 1.52 ± 0.11

Table 2: Online training time. Bold indicates the fastest training time, and underline indicates the
second fastest.

Tables 3 and 4 report success rates (mean ± SE) after 400k and at 350k online fine-tuning, respec-
tively, averaged over five seeds. Success rates for all baselines stabilize by 350k steps, validating the
350k-400k window as a reliable proxy for asymptotic performance.

SOAR achieves shorter online fine-tuning time than the baselines (Table 2). This is largely due
to removing the conservative regularizer during online training, which otherwise incurs additional
computational overhead. Although WSRL and PORL also drop the conservative penalty, their de-
fault high UTD ratios increase computation per environment step, resulting in longer wall-clock
times than SOAR.

G.5 REPRODUCING BASELINES

All baseline methods were reproduced under unified settings. WSRL, Cal-QL, CQL, IQL, and SAC
were evaluated using the implementations provided in the WSRL codebase (Zhou et al., 2025).
SOAR was also implemented on the same codebase. Since there was no public implementation of
PORL, we reimplemented it following the methodology described in Xiao et al. (2025).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G.6 EXPERIMENTAL SETUP AND REPRODUCIBILITY

All experiments were conducted on a compute node equipped with 8 NVIDIA A100 GPUs (80GB
each), an AMD EPYC 7543 32-Core CPU, and 885 GB of RAM. The software environment was
based on Python 3.10.18, Pytorch 2.7.0, JAX 0.4.25 with CUDA 12.2.

G.7 PSEUDOCODE OF SOAR

Algorithm 1 SOAR: Smooth Offline-to-Online Annealing for RL (concise)

1: Inputs: offline dataset Doff , online steps Non, offline steps Noff , schedules (λ0, Tλ) and
(α0, r, Tα)

2: Initialize: critic Qθ, actor πϕ; online buffer Don ← ∅
3: Offline pre-training (CQL)
4: for i = 1 to Noff do
5: Sample batch B ∼ Doff ; update Qθ, πϕ with CQL using weight α0

6: end for
7: Online fine-tuning with annealing
8: for t = 1 to Non do
9: Collect transition (st, at, rt, st+1) with πϕ; append to Don

10: Compute schedules: λt = max{0, λ0(1− t/Tλ)}, αt =

{
α0 exp(−r t/Tα), t ≤ Tα

0, t > Tα

11: Sample mixed batch Bt ∼ λtDoff + (1− λt)Don

12: Update Qθ and πϕ with the same CQL losses as offline, but using Bt and weight αt

13: end for

H LIMITATIONS

While SOAR provides a simple and effective recipe for bridging offline pre-training and online
fine-tuning, several limitations remain.

Scope of evaluation. Our experiments focus on continuous-control benchmarks (AntMaze,
FrankaKitchen, Adroit) under a single-agent. We do not evaluate hard safety constraints, non-
stationary dynamics, or multi-agent settings; transfer to these regimes is not guaranteed.

Hand-designed schedules. The linear (data ratio) and exponential (conservative weight) schedules
require environment-level horizon parameters and temperature/interval choices. Although ablations
indicate robustness, some sensitivity remains, and selecting schedules still needs modest tuning. We
do not learn schedules adaptively or condition them on online confidence/uncertainty.

Diagnostic constraints. Our primary diagnostic, SQOR, is post-hoc and requires a converged critic
checkpoint for comparison; this limits its use as a real-time control signal. Moreover, SQOR estab-
lishes a strong correlation with collapse but not causality; alternative mechanisms could co-vary in
settings we did not test.

Statistical coverage. Unless otherwise noted, we use a limited number of seeds due to computa-
tional constraints. Although confidence intervals are reported, rare failure modes may be under-
sampled.

I LLM USAGE

We used a large language model (LLM) solely for language editing. Concretely, the LLM assisted
with grammar and style polishing, LaTeX phrasing (e.g., equation and caption wording), and im-
proving clarity and concision of author-written text. The LLM was not used to generate ideas, design
algorithms, select hyperparameters, run experiments, analyze data, create figures/tables, write code,
or produce mathematical results.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

J VISUALIZATIONS

(a) antmaze-large-diverse-v2: 8-DoF ant navigating through a maze to reach the goal.

(b) antmaze-large-play-v2: Same evaluation as diverse-v2, different training data.

(c) kitchen-partial-v0: Completing subtasks: microwave, kettle, light switch, and slide cabinet.

(d) kitchen-mixed-v0: Completing subtasks: microwave, kettle, bottom burner, and light switch.

(e) pen-binary-v0: 24-DoF shadow hand reorienting a pen to target pose.

(f) door-binary-v0: 28-DoF hand opening a door by rotating the handle.

Figure 14: Representative episodes across six tasks. Each row shows temporally ordered frames
from a trajectory, demonstrating navigation (antmaze-large-diverse-v2, antmaze-large-play-v2),
kitchen manipulation (kitchen-partial-v0, kitchen-mixed-v0), and dexterous control (pen-binary-v0,
door-binary-v0).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

K NUMERICAL RESULTS

Task SOAR (Ours) WSRL PORL Cal-QL CQL IQL SAC

antmaze-large-diverse-v2 0.96 ± 0.02 0.68 ± 0.17 0.9 ± 0.07 0.97 ± 0.01 0.92 ± 0.05 0.06 ± 0.05 0.0 ± 0.0
antmaze-large-play-v2 0.93 ± 0.02 0.95 ± 0.02 0.47 ± 0.2 0.9 ± 0.07 0.95 ± 0.03 0.01 ± 0.01 0.0 ± 0.0

kitchen-partial-v0 0.93 ± 0.04 0.93 ± 0.06 0.91 ± 0.06 0.7 ± 0.09 0.44 ± 0.12 0.4 ± 0.05 0.49 ± 0.07
kitchen-mixed-v0 0.94 ± 0.05 0.72 ± 0.11 0.88 ± 0.06 0.45 ± 0.12 0.4 ± 0.06 0.31 ± 0.09 0.3 ± 0.05

door-binary-v0 1.0 ± 0.0 0.8 ± 0.2 0.6 ± 0.24 0.19 ± 0.19 0.18 ± 0.18 0.0 ± 0.0 0.2 ± 0.2
pen-binary-v0 0.98 ± 0.02 0.97 ± 0.01 0.99 ± 0.01 0.94 ± 0.02 0.81 ± 0.09 0.33 ± 0.1 0.78 ± 0.04

Average 0.82 ± 0.06 0.72 ± 0.07 0.68 ± 0.07 0.62 ± 0.06 0.55 ± 0.07 0.16 ± 0.03 0.25 ± 0.06

Table 3: Performance at 400k online steps. Bold indicates the best performance per task, and
underline indicates the second best.

Task SOAR (Ours) WSRL PORL Cal-QL CQL IQL SAC

antmaze-large-diverse-v2 0.99 ± 0.01 0.73 ± 0.18 0.84 ± 0.07 0.95 ± 0.03 0.96 ± 0.02 0.03 ± 0.03 0.0 ± 0.0
antmaze-large-play-v2 0.9 ± 0.03 0.98 ± 0.01 0.37 ± 0.23 0.89 ± 0.07 0.95 ± 0.03 0.01 ± 0.01 0.0 ± 0.0

kitchen-partial-v0 0.97 ± 0.02 0.95 ± 0.05 0.9 ± 0.06 0.7 ± 0.09 0.44 ± 0.12 0.39 ± 0.05 0.47 ± 0.06
kitchen-mixed-v0 0.95 ± 0.02 0.7 ± 0.12 0.88 ± 0.06 0.45 ± 0.12 0.4 ± 0.06 0.3 ± 0.08 0.25 ± 0.03

door-binary-v0 0.98 ± 0.01 0.8 ± 0.2 0.6 ± 0.24 0.17 ± 0.17 0.19 ± 0.19 0.0 ± 0.0 0.2 ± 0.2
pen-binary-v0 1.0 ± 0.0 0.96 ± 0.02 0.95 ± 0.02 0.96 ± 0.01 0.72 ± 0.05 0.4 ± 0.05 0.84 ± 0.02

Average 0.84 ± 0.06 0.72 ± 0.07 0.65 ± 0.07 0.63 ± 0.06 0.54 ± 0.06 0.16 ± 0.03 0.25 ± 0.06

Table 4: Performance at 350k online steps. Bold indicates the best performance per task, and
underline indicates the second best.

Tables 3 and 4 report success rates (mean ± SE) after 400k and at 350k online fine-tuning, respec-
tively, averaged over five seeds. Success rates for all baselines stabilize by 350k steps, validating
the 350k-400k window as a reliable proxy for asymptotic performance. Offline-to-online methods
consistently outperform offline-only approaches, and SOAR achieves the highest average success
rate.

Task SOAR (Ours) WSRL PORL Cal-QL CQL IQL

antmaze-large-diverse-v2 0.34 ± 0.04 0.24 ± 0.05 0.39 ± 0.04 0.26 ± 0.04 0.26 ± 0.05 0.03 ± 0.02
antmaze-large-play-v2 0.28 ± 0.04 0.29 ± 0.02 0.37 ± 0.02 0.24 ± 0.04 0.28 ± 0.05 0.0 ± 0.0

kitchen-partial-v0 0.68 ± 0.06 0.73 ± 0.06 0.7 ± 0.04 0.68 ± 0.05 0.7 ± 0.06 0.3 ± 0.06
kitchen-mixed-v0 0.47 ± 0.06 0.47 ± 0.06 0.49 ± 0.07 0.52 ± 0.06 0.58 ± 0.03 0.4 ± 0.04

door-binary-v0 0.2 ± 0.05 0.31 ± 0.19 0.24 ± 0.03 0.21 ± 0.07 0.08 ± 0.08 0.05 ± 0.04
pen-binary-v0 0.73 ± 0.07 0.66 ± 0.05 0.74 ± 0.03 0.75 ± 0.05 0.58 ± 0.03 0.89 ± 0.04

Average 0.42 ± 0.04 0.41 ± 0.04 0.45 ± 0.04 0.4 ± 0.04 0.39 ± 0.04 0.25 ± 0.05

Table 5: Performance after the offline phase.

Table 5 reports success rates (mean ± SE) at the end of the offline pre-training phase, i.e., the start
of online fine-tuning, averaged over five seeds. Despite identical offline training procedures, end-of-
offline performance shows small variations across SOAR, WSRL, PORL, Cal-QL, and CQL. These
differences reflect evaluation stochasticity rather than algorithmic effects.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Task SOAR (Ours) WSRL PORL Cal-QL CQL IQL

antmaze-large-diverse-v2 0.15 ± 0.05 0.07 ± 0.04 0.39 ± 0.04 0.17 ± 0.07 0.21 ± 0.04 0.03 ± 0.02
antmaze-large-play-v2 0.08 ± 0.03 0.2 ± 0.06 0.37 ± 0.02 0.16 ± 0.05 0.16 ± 0.07 0.0 ± 0.0

kitchen-partial-v0 0.6 ± 0.08 0.68 ± 0.09 0.7 ± 0.04 0.68 ± 0.05 0.7 ± 0.06 0.19 ± 0.04
kitchen-mixed-v0 0.36 ± 0.1 0.42 ± 0.09 0.48 ± 0.07 0.52 ± 0.06 0.58 ± 0.03 0.35 ± 0.04

door-binary-v0 0.2 ± 0.05 0.31 ± 0.19 0.24 ± 0.03 0.21 ± 0.07 0.08 ± 0.08 0.05 ± 0.04
pen-binary-v0 0.32 ± 0.08 0.52 ± 0.04 0.66 ± 0.04 0.33 ± 0.08 0.58 ± 0.03 0.87 ± 0.03

Average 0.28 ± 0.04 0.34 ± 0.05 0.44 ± 0.03 0.31 ± 0.04 0.36 ± 0.04 0.23 ± 0.05

Table 6: Catastrophic failure (0-400K window). Bold indicates the lowest catastrophic failure,
and underline indicates the second lowest.

Task SOAR (Ours) WSRL PORL Cal-QL CQL IQL

antmaze-large-diverse-v2 0.15 ± 0.05 0.07 ± 0.04 0.39 ± 0.04 0.17 ± 0.07 0.21 ± 0.04 0.03 ± 0.02
antmaze-large-play-v2 0.08 ± 0.03 0.2 ± 0.06 0.37 ± 0.02 0.16 ± 0.05 0.16 ± 0.07 0.0 ± 0.0

kitchen-partial-v0 0.55 ± 0.09 0.68 ± 0.09 0.7 ± 0.04 0.68 ± 0.05 0.7 ± 0.06 0.18 ± 0.04
kitchen-mixed-v0 0.32 ± 0.1 0.42 ± 0.09 0.48 ± 0.07 0.52 ± 0.06 0.58 ± 0.03 0.33 ± 0.03

door-binary-v0 0.2 ± 0.05 0.31 ± 0.19 0.24 ± 0.03 0.21 ± 0.07 0.08 ± 0.08 0.05 ± 0.04
pen-binary-v0 0.32 ± 0.08 0.52 ± 0.04 0.66 ± 0.04 0.33 ± 0.08 0.58 ± 0.03 0.83 ± 0.04

Average 0.26 ± 0.03 0.34 ± 0.05 0.44 ± 0.03 0.31 ± 0.04 0.36 ± 0.04 0.22 ± 0.05

Table 7: Catastrophic failure (0-100K window). Bold indicates the lowest catastrophic failure,
and underline indicates the second lowest.

Tables 6 and 7 report catastrophic failure measured over the 0-400k and 0-100k windows, respec-
tively. All values are averaged over five seeds and reported as mean ± SE. Estimates do not differ
significantly between the two windows, indicating that failures arise primarily during the offline-to-
online transition. SOAR attains the lowest catastrophic failure on average. For clarity, we do not
highlight IQL, whose low failure largely reflects weak performance after the offline phase rather
than stable transitions.

25


	Introduction
	Related Works
	Experimental Setup
	Challenges in Bridging Offline and Online RL: Performance vs. Stability
	Role of Offline Data and Conservative Regularization in Online Fine-tuning
	Spurious Q-Optimism as a Driver of Catastrophic Failure
	Quantifying Spurious Q-Optimism
	Can Catastrophic Failure Be Mitigated by Hyperparameter Tuning?

	Annealing Bridges Offline and Online RL
	SOAR (Smooth Offline-to-Online Annealing for RL)
	Ablation: What does each annealing component contribute?

	Conclusion
	Additional Analysis on Catastrophic Failure
	Additional Ablation Studies on SOAR
	Other Attempts to Mitigate Catastrophic Failure
	AntMaze-Ultra-Diverse: A High-Risk Stress Test for Offline-to-Online RL
	Extended Related Works
	Details On Baseline Algorithms
	Implementation Details
	Details on Environments
	Network Architectures
	Hyperparameters
	Online Training Time Comparison
	Reproducing Baselines
	Experimental Setup and Reproducibility
	Pseudocode of SOAR

	Limitations
	LLM Usage
	Visualizations
	Numerical Results

