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Abstract001

Integrating Large Language Models (LLMs)002
with existing Knowledge Graph (KG)003
databases presents a promising avenue for004
enhancing LLMs’ efficacy and mitigating005
their “hallucinations”. Given that most KGs006
reside in graph databases accessible solely007
through specialized query languages (e.g.,008
Cypher), there exists a critical need to bridge009
the divide between LLMs and KG databases010
by automating the translation of natural011
language into Cypher queries (commonly012
termed the “Text2Cypher” task). Prior efforts013
tried to bolster LLMs’ proficiency in Cypher014
generation through Supervised Fine-Tuning.015
However, these explorations are hindered by016
the lack of annotated datasets of Query-Cypher017
pairs, resulting from the labor-intensive and018
domain-specific nature of annotating such019
datasets. In this study, we propose SyntheT2C,020
a methodology for constructing a synthetic021
Query-Cypher pair dataset, comprising two022
distinct pipelines: (1) LLM-based prompting023
and (2) template-filling. SyntheT2C facilitates024
the generation of extensive Query-Cypher pairs025
with values sampled from an underlying Neo4j026
graph database. Subsequently, SyntheT2C is027
applied to two medical databases, culminating028
in the creation of a synthetic dataset, MedT2C.029
Comprehensive experiments demonstrate that030
the MedT2C dataset effectively enhances031
the performance of backbone LLMs on the032
Text2Cypher task. Both the SyntheT2C033
codebase and the MedT2C dataset will be034
released soon.035

1 Introduction036

Knowledge Graphs (KGs) constitute vital037

reservoirs of information within the Retrieval-038

Augmented Generation (RAG) paradigm (Lewis039

et al., 2020) of Large Language Models (LLMs).040

Distinguished from other information sources,041

KGs boast structured and meticulously curated042

data, rendering them conducive to seamless043

Figure 1: SyntheT2C builds synthetic data with two
pipelines to SFT LLMs so that their performance on
Text2Cypher task is enhanced.

updates and rectifications. Such attributes position 044

KGs as pivotal instruments for mitigating issues 045

of knowledge cutoff and “hallucinations” within 046

LLMs. Notably, KGs have long served as a core 047

in numerous knowledge-intensive products and 048

applications (Kertkeidkachorn et al., 2023; Cui 049

et al., 2024; Xu et al., 2020). With the advent 050

of LLMs, many researchers have focused on 051

synergizing KGs with LLMs following the RAG 052

framework. The inherent fidelity and adaptability 053

of KGs make them practical assets for deployment 054

in production environments, and also catapult KGs 055

to the forefront of academic research. 056

While KGs represent invaluable repositories of 057

reference information, their efficient utilization re- 058

mains a formidable challenge. Early methodolo- 059

gies involved direct extraction of triplets from KGs, 060

subsequently integrating these text-form triplets 061

directly into the prompts of LLMs (Fatemi et al., 062

2023). However, this approach often fails to con- 063

currently preserve both semantic and structural nu- 064

ances inherent within the KG. An alternative ap- 065

proach involves querying existing graph databases 066

just like human users, promising accurate and inter- 067

pretable results. Nonetheless, the primary impedi- 068

ment lies in the LLM’s ability to formulate correct 069

and executable queries. To address this limitation, 070

numerous query generation tools or methodologies 071

(Zhang et al., 2022; Abdelaziz et al., 2021; Shen 072

1



et al., 2023) are proposed, aiming to translate hu-073

man users’ natural language queries into query lan-074

guages. This task assumes paramount importance075

for LLM development for two pivotal reasons: (1)076

it empowers LLMs to consistently produce reli-077

able queries, thereby augmenting their utilization078

of existing KG databases to address knowledge079

deficits; (2) it facilitates human interaction with080

KG databases through natural language, substan-081

tially lowering the barrier to entry for KG database082

utilization. Among the spectrum of query gen-083

eration research, the sub-task of translating natu-084

ral language into the Cypher (Francis et al., 2018)085

query language for Neo4j (Neo4j, 2012) databases086

stands out as a prominent research focus. This087

prominence is attributed to two key factors. Firstly,088

Neo4j is a widely adopted solution for construct-089

ing KG databases, positioning Cypher as an essen-090

tial tool for accessing these extensive repositories.091

Secondly, Cypher is a query language specifically092

designed for querying graph structures, offering093

significantly faster performance than other query094

languages, such as SQL, when processing graph095

data. Consequently, our work centers on this sub-096

task, commonly termed as “Text2Cypher” (T2C).097

A similar task to the Text2Cypher task is the098

“Text2SQL” task, wherein researchers endeavor099

to translate natural language sentences into SQL100

queries. Leveraging manually annotated datasets101

like SPIDER (Yu et al., 2019), numerous method-102

ologies have emerged, including SpCQL (Guo103

et al., 2022) and SQLNet (Xu et al., 2017). Con-104

versely, scant attention has been directed towards105

the Text2Cypher task. Existing approaches typi-106

cally resort to decomposing the original query into107

smaller components and translating each part sep-108

arately. For instance, R3-NL2SQL (Zhou et al.,109

2023b) partitions the query generation process into110

CRUD keywords prediction, clause selection, and111

object type identification. Despite the success of112

these methods, adapting them to a specific KG113

database demands substantial extra effort. With the114

rise of LLMs, using LLMs for Cypher query gener-115

ation appears promising. Notably, to the best of our116

knowledge, no endeavors have explored the poten-117

tial application of LLMs to the Text2Cypher task.118

Our work aims to bridge this gap in the literature.119

The Cypher writing performance of vanilla120

LLMs is not satisfactory. To improve it, we em-121

ploy SFT, which necessitates a dataset of Question-122

Query pairs. However, creating such a dataset123

is challenging as it requires both domain-specific124

knowledge of the KG’s content and expertise 125

in Cypher’s syntax. Consequently, there is cur- 126

rently no annotated dataset for the Text2Cypher 127

task. To overcome this obstacle, we introduce 128

SyntheT2C, a method designed to produce high- 129

quality synthetic Question-Cypher pairs through 130

two distinct pipelines: LLM-based prompting and 131

template-filling (as shown in Figure 1). The LLM- 132

based prompting pipeline aims to generate Cypher 133

queries with greater semantic flexibility, while the 134

template-filling pipeline focuses on producing syn- 135

tactically complex Cypher queries. The generated 136

Question-Query pairs undergo rigorous automated 137

and manual validation, before being used to fine- 138

tune backbone LLMs. The performance of Cypher 139

generation is evaluated with a manually annotated 140

evaluation dataset, complemented by a qualitative 141

assessment using GPT as a judge. Additionally, we 142

conduct a scalability test by fine-tuning the LLMs 143

with larger synthetic datasets, which demonstrates 144

that the synthetic data generated using our method 145

does not collapse into simple patterns, thereby es- 146

tablishing the robustness of our approach for larger- 147

scale applications. 148

SyntheT2C is tested with two medical databases: 149

the LHY database and the Hetionet database (de- 150

tails in Section 4.1). The generated synthetic 151

dataset, “MedT2C”, will be made public. 152

In conclusion, our main contributions are: 153

(1) We propose the SyntheT2C framework con- 154

taining two pipelines to build synthetic datasets 155

with any Neo4j database. Our method can gener- 156

ate Cypher that are both grammatically correct and 157

syntactically diverse, facilitating the construction 158

of SFT datasets. 159

(2) We test and validate the effectiveness and 160

scalability of the synthetic dataset generated with 161

SyntheT2C. The LLMs after fine-tuning show im- 162

proved Cypher writing abilities. 163

(3) We opensource a synthetic dataset MedT2C 164

of optimal size, ready to be used for SFT. 165

2 Related works 166

2.1 Knowledge Graph and graph database 167

In recent years, KGs have emerged as fundamental 168

resources for organizing, representing, and query- 169

ing vast amounts of interconnected information or 170

domain-specific knowledge. These graphs find ap- 171

plications across various domains, including but 172

not limited to, healthcare (Cui et al., 2024; Abu- 173

Salih et al., 2022), finance (Elhammadi et al., 2020; 174
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Kertkeidkachorn et al., 2023), and e-commerce (Xu175

et al., 2020). In the realm of Natural Language176

Processing and Artificial Intelligence (AI), KGs177

serve as invaluable sources of context and factual178

knowledge, enabling systems to reason, infer, and179

generate responses with enhanced accuracy and180

coherence.181

To handle the processing of graph-structured182

data, a series of graph databases were invented,183

including Neo4j (Neo4j, 2012), NebulaGraph (Wu184

et al., 2022), and Amazon Neptune (Bebee et al.,185

2018). Among them, our work focuses on the186

Neo4j database (Neo4j, 2012), a widely used graph187

database management system that excels in model-188

ing and querying highly interconnected data. Neo4j189

database employs a powerful query language called190

Cypher for expressing complex graph patterns and191

retrieving specific data subsets.192

2.2 Large Language Models193

LLMs are advanced AI models that have been194

trained on vast amounts of text data to understand195

and generate human-like language. After the recent196

breakthrough marked by the release of InstructGPT197

(Ouyang et al., 2022) by OpenAI, a series of LLMs198

are released, featuring different advantages and199

drawbacks, e.g., the series of GPT models (Brown200

et al., 2020; OpenAI, 2023) by OpenAI, Llama201

(Meta, 2024) by Meta, Qwen (Bai et al., 2023) by202

Alibaba Cloud, InternLM (Cai et al., 2024b) by203

Shanghai AI Lab, etc. LLMs can comprehend and204

generate text across a wide range of topics and205

writing styles. Recent researches highlight their206

ability to utilize external existing tools like calcula-207

tor, search engine, or databases (Patil et al., 2023;208

Nakano et al., 2022; Cai et al., 2024a; Qin et al.,209

2023). This ability is usually abstracted as “Func-210

tion calling”, and many of its implementations in-211

volve generating codes or queries with LLMs to212

interact with external tools.213

2.3 Code generation214

Code Generation is the process of automatically215

producing executable code from a higher-level rep-216

resentation or natural language. With the advent of217

LLMs, code generation has experienced a signifi-218

cant advancement. LLMs can now be trained on219

vast amounts of code and programming-related text220

materials, enabling them to understand and gener-221

ate code snippets based on given requirements (e.g.,222

Codex (Chen et al., 2021), Polycoder (Xu et al.,223

2022), and Code Llama (Rozière et al., 2024)).224

By leveraging the contextual understanding (Dong 225

et al., 2023) and language capabilities of LLMs, 226

code generation becomes more efficient, accurate, 227

and adaptable. Code generation with LLM is not 228

only useful in helping developers to write codes but 229

also in providing a powerful “language” for LLM 230

to interact with other tools: LLMs can be tuned to 231

output executable codes or queries to manipulate 232

external resources. This is the fundamental idea for 233

research in “Function Calling” and Multi-Agent 234

Systems. Current code generation methods rely on 235

two methods for evaluation: either with automatic 236

metrics calculated with an annotated evaluation 237

dataset (Papineni et al., 2002; Lin, 2004; Banerjee 238

and Lavie, 2005; Evtikhiev et al., 2023; Zhou et al., 239

2023a) or with comparison by a judge (human or 240

powerful LLM like GPT-4) (Zheng et al., 2023). 241

Both evaluation methods are used in our work. 242

3 Methodology 243

3.1 Preliminaries 244

The goal of the Text2Cypher task is to automati- 245

cally translate a query q written in natural language 246

to corresponding Cypher query c. With the pro- 247

posed pipelines P1 and P2, a synthetic dataset S is 248

built to fine-tune the backbone LLM L. The syn- 249

thetic data is generated and validated with a Neo4j 250

database B and a series of automatic validators 251

V = [V1,V2, ...,V5]. The synthetic dataset after all 252

the validations is denoted as Sv. Using Sv, L is 253

fine-tuned into Lft . The Cypher queries generated 254

by L (resp. Lft) are noted as c1 (resp. c2). 255

3.2 Synthetic dataset generation 256

Generating the synthetic dataset is not trivial be- 257

cause synthetic data usually has difficulty in bal- 258

ancing grammatical correctness, semantic correct- 259

ness, node coverage, edge coverage, and Cypher 260

complexity. As a result, we propose a method of 261

generation with two pipelines, as illustrated in Fig- 262

ure 2). The LLM-based prompting pipeline (P1), 263

emphasizes semantic variety, while the template- 264

filling pipeline (P2), focuses on syntactic complex- 265

ity. By employing these complementary pipelines, 266

we aim to produce a synthetic dataset that captures 267

the nuanced balance of linguistic, semantic, and 268

structural properties. 269

3.2.1 LLM-based prompting pipeline 270

This pipeline adopts an idea similar to Knowledge 271

Distillation: to SFT a weaker LLM, we could use 272
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Figure 2: Workflow of two pipelines inside SyntheT2C.

the Cyphers generated by stronger LLMs. While273

off-the-shelf LLMs are typically not optimized for274

Cypher query generation, as Cypher likely con-275

stitutes only a small fraction of their pre-training276

data, they have nonetheless demonstrated strong277

in-context learning capabilities (Dong et al., 2023).278

Therefore, half of S is built by few-shot prompting279

GPT-4o (OpenAI, 2023). To further simplify the280

task of generation and to ensure a higher quality281

of the generated data, we split the whole genera-282

tion task into (1) extracting information from the283

database; (2) determining the question categories;284

and (3) generating the Cyphers for each category285

with extracted information.286

The workflow for the LLM-based prompting287

method is delineated in Figure 2 (upper part, P1).288

Initially, we commence by extracting metadata289

from the KG stored in the Neo4j database B. This290

extraction includes sampling example nodes and291

edges to construct few-shot prompts, along with292

capturing the schema of the database to facilitate293

the generation of grounded Cyphers. An illustra-294

tive instance of extracted metadata is provided in295

Appendix A. Subsequently, this metadata serves as296

a foundational component in all ensuing prompts,297

ensuring the generation of executable Cyphers. Be-298

fore initiating the Cypher generation process, a299

preliminary step involves prompting the LLM to300

propose potential question categories, thereby mit-301

igating the risk of redundant outputs. The back-302

bone LLM undergoes multiple iterations to propose303

these question categories, as detailed in the prompt304

showcased in Appendix B.1. These proposed cate-305

gories are then consolidated to eliminate duplicates,306

as instructed in the prompt outlined in Appendix307

B.3. After the deduplication, GPT-4o is prompted308

to generate synthetic Question-Cypher pairs with309

the prompt outlined in Appendix B.2. In our exper-310

iment, we fix a list of 12 categories (referred to as311

categories ) to facilitate the comparison.312

3.2.2 Template-filling pipeline 313

The second pipeline of Cypher generation adopts 314

the template-filling method, a classic approach in 315

code generation known for its flexible output and 316

potentially complex syntax. We introduce this 317

pipeline as a complement to the first one, leverag- 318

ing manually crafted templates to generate Cyphers 319

with more advanced syntax, thereby enabling back- 320

bone L to solve complicated questions. 321

In this pipeline, depicted in Figure 2 (lower part, 322

P2), numerous templates are initially manually au- 323

thored. Subsequently, actual values from different 324

fields are sampled from the Neo4j database B to 325

populate these templates, resulting in the genera- 326

tion of complete executable Cypher queries. 327

One such template is illustrated in Figure 4. In 328

this example, the subschema is introduced to 329

manage cases where the entire database cannot 330

be loaded at once, necessitating the selection and 331

injection of only the relevant subgraph into the 332

prompt. The variables label_i and prop_j rep- 333

resent the randomly sampled names of nodes and 334

their attributes. These templates are initially crafted 335

taking inspiration from Cypher Generator (Onofrei, 336

2024), then enriched and verified by the authors. 337

Once these templates are established, synthetic 338

Cyphers with complex syntax can be effortlessly 339

generated. However, it is important to note that 340

crafting and validating these templates require con- 341

siderable time and effort. 342

3.3 Quality validation 343

To ensure the quality of the generated synthetic 344

Question-Cypher pairs before their application in 345

SFT, it’s imperative to conduct thorough valida- 346

tion to prevent the “garbage in, garbage out” sce- 347

nario. However, manually scrutinizing thousands 348

of Cypher queries is arduous and time-consuming. 349

In response, a suite of automatic validators has been 350

implemented to alleviate the burden of manual in- 351
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Figure 3: Illustration of the automatic validators.

def prompter(label_1, prop_1, prop_2):
subschema = get_subgraph_schema(jschema,

[label_1], 2, True)
message = {

"prompt": "Convert the following question
into a Cypher query using the provided
graph schema!",

"question": f"""Find all {prop_1} for
{label_1} that have {prop_2} after
January 1, 2020!""",

"schema": f"Graph schema: {subschema}",
"cypher": f"MATCH (n:{label_1}) WHERE

date(n.{prop_2}) > date('2020-01-01')
RETURN n.{prop_1}"

}
return message

Figure 4: Example template in Template-filling pipeline.

spection. In the end, the Cyphers that pass through352

these automated validators undergo a final round353

of meticulous manual validation by researchers.354

3.3.1 Automatic validation355

We propose five automatic validators: the Gram-356

matical Validator, Semantic Validator, Entity Val-357

idator, Schema Validator, and Coherence Validator,358

each playing a crucial role in ensuring the integrity359

of the generated synthetic data. These validators’360

fundamental concepts are illustrated in Figure 3.361

The LLM used in the validators is GPT-3.5-Turbo.362

The Grammatical Validator validates the syn-363

tax correctness of each Cypher in S by executing364

them in the deployed graph database B. If a Cypher365

is executed without encountering any “Error/Excep-366

tions”, it is deemed to have passed this validation.367

The design of Semantic Validator is inspired by368

the research in machine translation (Hoang et al.,369

2018). This validator utilizes an LLM to translate370

the generated Cypher back into a natural language371

question. It then computes the semantic similarity372

between the translated question and the original373

question. If the similarity score exceeds a prede-374

fined threshold, the Cypher passes validation. We375

also implement an alternative version of the Seman- 376

tic Validator, where the LLM assesses semantic 377

similarity directly. Both versions produce coherent 378

validation results, with the latter being adopted for 379

efficiency in subsequent experiments. The prompt 380

used in this validator is presented in Appendix C.1. 381

The Entity Validator assesses the coverage of 382

entities in the generated Cyphers. The entities in 383

the original question q are extracted via Named 384

Entity Recognition (NER) using the spaCy (Honni- 385

bal and Montani, 2017) model en_core_web_sm . 386

Entities in the generated Cypher c are parsed and 387

extracted using Regular Expressions. A successful 388

validation requires 100% coverage of q’s entities in 389

c. English entities are first transformed into lemmas 390

using spaCy for fuzzy matching. 391

Subsequently, the Schema Validator ensures the 392

correctness of relations in the generated Cyphers. 393

Relations in c are extracted via Regular Expres- 394

sions and validated against the schema of B. A 395

Cypher passes this validation only when all con- 396

tained relations are valid edges. 397

Lastly, the Coherence Validator executes the 398

Cypher against B and evaluates the coherence be- 399

tween the execution results and the original ques- 400

tion with LLM, using the prompt presented in Ap- 401

pendix C.2. 402

In the end, only Cyphers that have passed all 403

validations proceed to manual validation. 404

3.3.2 Manual validation 405

Each Cypher checked by the validators is randomly 406

assigned to two researchers, who independently 407

assess its quality. If both researchers provide a 408

unanimous judgment, their consensus is adopted. 409

In cases of divergent opinions, a third researcher is 410

brought in for further review. The final validation 411

outcome for such Cyphers is determined through a 412

majority vote among the three researchers. 413
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4 Experiments414

4.1 LHY and Hetionet Graph databases415

Throughout our experiment, we employed two416

Neo4j databases housing general medical knowl-417

edge in graph form: the LHY Medical Knowledge418

Database (referred to as “LHY”) and the Hetionet419

Medical Knowledge Database (referred to as “Het-420

ionet”). Both databases are publicly accessible,421

differing primarily in language: the data within the422

LHY database is presented in Chinese, whereas423

Hetionet is written in English.424

The LHY Database (Liu, 2018) serves as425

the backend database for a Medical Question-426

Answering system. This database comprises com-427

prehensive medical knowledge, encompassing a428

wide array of diseases, symptoms, drugs, and re-429

lated information. Its content is sourced from med-430

ical websites, meticulously cleaned, reorganized,431

and stored within a Neo4j database. There are432

about 44k entities and 300k relations in it.433

Hetionet (Himmelstein et al., 2017) is an open434

and free-to-use database of biomedical knowledge435

resource implementing “hetnet” model. Aggre-436

gating insights from 29 public databases, Het-437

ionet boasts a knowledge network spanning various438

fields, encompassing a wide array of entities, in-439

cluding genes, compounds, anatomical structures,440

diseases, symptoms, side effects, etc. There are ap-441

proximately 47k entities and 2.2 million relations442

in the Hetionet database.443

The detailed statistics of both databases are pre-444

sented in Appendix D.445

4.2 Evaluation dataset and metrics446

We utilize a dataset comprising 300 manually an-447

notated and verified samples to evaluate our experi-448

ments. This dataset includes 150 questions anno-449

tated based on the Hetionet and LHY databases,450

respectively. Take Hetionet as an example, for ev-451

ery category among the 12 categories generated in452

Section 3.2.1, we employ GPT-3.5-Turbo to gen-453

erate 10 new questions, forming 120 “in-domain”454

questions. Additionally, we introduce 3 unseen cat-455

egories and generate 10 new questions for each new456

category, totaling 30 “out-of-domain” questions.457

For each of the 300 questions, the authors write a458

ground-truth Cypher query, which is then executed459

against the two databases to get the ground-truth460

execution results.461

This annotated dataset allows us to evaluate two462

aspects of LLMs’ Cypher generating performance:463

(1) Cypher quality, which is crucial if the gen- 464

erated Cypher is integrated into larger systems; 465

(2) Execution result accuracy, to gauge the 466

quality of the output for end users. 467

4.2.1 Evaluation of Cypher quality 468

The backbone LLMs, both pre-SFT and post-SFT, 469

are tasked with generating Cyphers for the 300 470

questions in the evaluation dataset. Using GPT-4o 471

(OpenAI, 2023), we determine the superior Cypher 472

from the two provided versions. For each pair of 473

Cyphers, we conduct two evaluations by varying 474

the order of presenting the Cypher queries in the 475

prompt to mitigate order-induced bias. If evalu- 476

ations of both orders yield identical results, this 477

judgment is accepted as the final outcome; other- 478

wise, it is deemed a “Draw”. 479

4.2.2 Evaluation of execution result accuracy 480

The generated Cyphers c2 are executed on database 481

B to get execution results resgen. Then the ac- 482

curacy (acc) is calculated with the ground-truth 483

execution results resgt like this: 484

acc =
#(resgen ∩ resgt)

#(resgen)
, (1) 485

where #(.) calculates the cardinality of a set. 486

4.3 Experiment setup 487

4.3.1 Cypher LLMs 488

Extensive experiments are conducted with four 489

LLMs, including open/closed-source models. For 490

open-source models, we evaluate Llama3, Qwen2 491

and InternLM2. For closed-sources model, we test 492

GPT. The exact versions of the backbone LLMs 493

are listed in Appendix E. 494

4.3.2 Supervised Fine-Tuning 495

We utilize Low-Rank Adaptation (LoRA) to fine- 496

tune the vanilla LLMs. Specifically, the open- 497

source models are trained for 6 epochs with a lin- 498

ear scheduler, starting at a learning rate of 1e-6. 499

AdamW is used as the optimizer, and the training 500

batch size is 6. The fine-tuning of GPT is facilitated 501

by its official API. The experiments on all LLMs, 502

are conducted on Nvidia GeForce 4090 GPU. All 503

the experiments totaled about 1100 GPU hours. 504

4.4 Supervised Fine-Tuning experiments 505

The backbone LLMs are fine-tuned with the 506

MedT2C dataset, comprising 750 samples gen- 507

erated with the two pipelines and two Neo4j 508

6



Figure 5: Result of Supervised Fine-Tuning each LLMs with MedT2C. Accuracy annotations marked in white box.

databases, totaling 3000 samples. The MedT2C509

dataset contains high-quality Question-Cypher510

pairs that passed all the automatic validations as511

well as the manual validation. In Appendix F we512

report the passing rate of each validator as a guide513

for further improvement of MedT2C’s data quality.514

A list of LLMs including GPT, Llama, Qwen,515

and InternLM are fine-tuned using MedT2C. We516

evaluated the change in Cypher writing perfor-517

mance of these LLMs, and the results are shown in518

Figure 5. The results show that MedT2C helps the519

LLM to produce more Cypher queries that are on520

par with or better than the human annotated ones.521

In Figure 5, the win rates are calculated in com-522

parison with the ground-truth Cyphers. We fur-523

ther conduct an experiment to compare directly524

the c1 and c2 generated with the same LLM with525

GPT-4o, using the prompt presented in Appendix526

G. The comparison results are shown in Figure527

6. From these results, we can conclude that while528

the improvement may appear minor when com-529

paring against the ground-truth Cyphers, a visible530

enhancement in Cypher quality is evident when531

comparing to the Cyphers generated by the pre-SFT532

model. We explain this difference as follows: the533

human annotations have a far higher quality than534

the Cyphers generated by vanilla LLMs. Therefore,535

even though the LLMs are enhanced after SFT,536

their output is still inferior to the human-annotated537

Cyphers, which is why the evaluation results in538

Figure 5 seem largely unchanged.539

4.5 Scaling experiments540

In this section, we test the scalability of our pipeline541

for generating synthetic data. We rerun the data542

generation pipelines to create scaled versions that543

are 1/16, 1/4, 4, 8, and 16 times the size of the orig-544

inal MedT2C. Vanilla LLMs are then fine-tuned545

with these scaled datasets. The results are reported546

in Figure 7. These results demonstrate that, up547

to the size of the MedT2C dataset, increasing the548

size of the synthetic dataset leads to better per-549

formance, especially in terms of Cypher Quality.550

Figure 6: Impact of SFT on each LLM. The Cypher gen-
erated with pre-SFT and post-SFT LLMs are compared
directly with GPT-4o.

However, once the size exceeds that of MedT2C, 551

further increasing the dataset size results in either 552

marginal improvements or decreases. Based on this 553

experiment, we determine the optimal size for the 554

published MedT2C dataset (highlighted in red), as 555

it balances efficiency and performance. 556

Figure 7: Plots of scaling test’s results.

4.6 Ablation experiments 557

To evaluate the efficacy of each component intro- 558

duced, we conduct a series of ablation experiments. 559
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First, we test the pipelines by running SFT ex-560

periments using only the data generated by each561

pipeline individually. We then verify the effec-562

tiveness of each automatic validator by evaluating563

them in isolation, using only one validator at a time.564

Since each component is designed to be modular565

and independent, we adopt this mode of ablation,566

rather than removing the components one by one567

from the complete setting, to emphasize the incre-568

ment brought by each component separately. For569

both ablation tests, the backbone LLM is fixed as570

Llama3. The dataset size is set to be the same as571

MedT2C (3000 in total). The experiments results572

are reported in Table 1 and Table 2 respectively.573

Here the Cypher Quality is calculated with respect574

to ground-truth Cyphers.575

Settings Cypher Quality Result Acc.

Pre-SFT 38.67%(–) 27.83%(–)
LHY-LLM 41.67%(+3.00) 27.86%(+0.03)
LHY-Temp. 34.67%(-4.00) 26.54%(-1.29)
Hetionet-LLM 42.83%(+4.16) 33.09%(+5.26)
Hetionet-Temp. 36.00%(-2.67) 26.68%(-1.15)

All (MedT2C) 44.00%(+5.33) 39.65%(+11.82)

Table 1: Results of pipeline ablation test.

As presented in Table 1, when we use only576

the data generated by the template-filling pipeline577

to SFT the Llama3 model, the model’s perfor-578

mance actually declined after SFT. This can be579

attributed to the design of the template-filling580

pipeline, which emphasizes generating syntacti-581

cally complex Cypher queries. When SFT is per-582

formed using only this data, the backbone LLM583

tends to produce unnecessarily complicated Cypher584

queries (e.g., breaking one query into two and then585

merging them). While this ability to write more586

complex Cypher queries is not directly reflected587

in the evaluation metrics, as the “hard questions”588

requiring advanced syntactic knowledge constitute589

only a small portion of the evaluation dataset, such590

data can enhance the LLM’s generalization capac-591

ity when combined with data from the LLM-based592

prompting pipeline.593

Settings Cypher Quality Result Acc.

Pre-SFT 38.67%(–) 27.83%(–)
No validator 38.34%(-0.33) 27.96%(+0.13)
✓Grammar V. 38.34%(-0.33) 28.95%(+1.12)
✓Semantic V. 43.67%(+5.00) 31.65%(+3.82)
✓Entity V. 40.00%(+1.33) 28.03%(+0.20)
✓Schema V. 42.00%(+3.33) 26.11%(-1.72)
✓Coherence V. 41.33%(+2.66) 32.05%(+4.22)

All (MedT2C) 44.00%(+5.33) 39.65%(+11.82)

Table 2: Results of validator ablation test.

As shown in Table 2, each individual validator 594

contributes some improvement, either in terms of 595

Cypher quality or the accuracy of the execution re- 596

sults. Notably, the combination of all five validators 597

yields the most significant increase in performance. 598

This can be attributed to the validators’ collective 599

ability to mitigate the majority of the bugs in the 600

SFT dataset, thereby enhancing the overall quality 601

of the generated Cypher queries. 602

5 Limitations 603

The primary limitation of our work is the challenge 604

in writing the templates. While the templates are 605

designed to be independent from the base Neo4j 606

databases, some adaptation work is still necessary 607

when applying them to new Neo4j databases. Addi- 608

tionally, writing new templates is time-consuming, 609

making the expansion of the current template li- 610

brary difficult. Furthermore, a significant number 611

of the generated Cypher queries are directly filtered 612

out during the construction of MedT2C, resulting 613

in a waste of resources. Developing methods to 614

quickly fix Cyphers that do not satisfy all the vali- 615

dation criteria, instead of simply regenerating more 616

Cyphers, could help reduce the carbon footprint of 617

SyntheT2C. 618

6 Potential risks 619

Even though SyntheT2C is designed to automati- 620

cally generate synthetic datasets, its usage requires 621

close monitoring and manual validation to prevent 622

the inadvertent inclusion of private or sensitive in- 623

formation. Additionally, the post-SFT LLM should 624

be used with caution. Despite improvements in 625

their Cypher generation performance, there re- 626

mains a slight risk of producing embedded Cyphers 627

that could lead to issues such as Out-of-Memory. 628

7 Conclusion 629

We present SyntheT2C, a comprehensive frame- 630

work to generate synthetic data for SFT various 631

LLMs on the Text2Cypher task. Our approach 632

encompasses dataset construction, data validation, 633

and SFT evaluation, providing a reference frame- 634

work for future research in the Cypher-related field. 635

Additionally, our findings confirm the effectiveness 636

of synthetic data, suggesting that similar techniques 637

can address problems where annotation is difficult 638

or insufficient. Finally, we will also open-source 639

the MedT2C dataset, aiming to contribute to the 640

technical advancements in relevant topics. 641
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A Example of extracted KG information924

Here we present the information (metadata) ex-925

tracted from the KG database “Hetionet” in Figure926

8. We stored the metadata of the KG, including the927

node properties, the relationship properties, and the928

valid relationships. This information is integrated929

in the following prompts to ensure that the LLM930

output is correct Cyphers. In other prompts, this931

metadata is referred to as schema .932

B Prompts for LLM-based prompting933

pipeline934

In this appendix, we present all the prompts we935

used in the LLM-based prompting pipeline.936

B.1 Prompt to propose categories of questions937

In Figure 9 we show the prompt used to propose938

candidate categories of questions. We decided to939

first generate categories of questions instead of gen-940

erating directly the questions because this practice941

helps reduce duplicated questions.942

B.2 Prompt to generate questions for each943

category944

This prompt presented in Figure 11 is used to gener-945

ate questions in natural language for each proposed946

category . This prompt includes few-shot exam-947

ples to help ensure the output Cypher follows the948

format requirements.949

B.3 Prompt to merge categories of questions950

The prompt presented in Figure 10 is used to951

merge the previously generated categories. The952

merged and de-duplicated list of categories is then953

stored and will be referred to as category in later954

prompts.955

C Prompts used in automatic validators956

C.1 Prompt of Semantic Validator957

Here we present the prompt used in the Semantic958

Validator in Figure 12. The schema mentioned in959

this prompt is the metadata presented in Appendix960

8. The example represents the few-shot examples961

written by the authors, here we show the English962

example for the Hetionet database in Figure 13.963

Lastly, the json_object in the prompt contains964

the question and the Cypher query to be evaluated.965

C.2 Prompt of Coherence Validator966

In this appendix, we present the prompt used in967

the Coherence Validator in Figure 14. Similar to968

other prompts, we provided few-shot examples in 969

this prompt. The question and results in the 970

prompt are the original question and execution re- 971

sults used as the input for this validation. 972

D Important statistics of the LHY and the 973

Hetionet databases 974

Here we present the important statistics of the LHY 975

database in Table 3 and Table 4, including the ex- 976

amples of nodes and entities inside this database. 977

The examples in both tables are translated from Chi- 978

nese to English. Similarly, the important statistics 979

of the Hetionet database with examples of nodes 980

and entities are grouped in Table 5 and Table 4. 981

E Exact versions of the backbone LLMs 982

The exact versions of the LLMs used in our experi- 983

ments are listed in Table 7. Except GPT-3.5-Turbo, 984

the backbone LLMs are deployed locally using the 985

versions available on HuggingFace. 986

F Passing rate of MedT2C for each 987

automatic validator 988

The passing rate of MedT2C dataset for each au- 989

tomatic validator is reported in Table 8. The LLM 990

used in the Semantic Validator and the Coherence 991

Validator is GPT-3.5-Turbo. These two validators 992

are not run on the LLM-based prompting pipeline 993

because this pipeline uses GPT-4o. Given that GPT- 994

4o is more powerful than GPT-3.5-Turbo, it is not 995

accurate to evaluate its output with GPT-3.5-Turbo, 996

nor with GPT-4o itself. Besides, noted that the pass- 997

ing rate of Coherence Validator is especially low 998

compared to other passing rate. This is because for 999

Coherence Validator specifically, the samples that 1000

failed any one of the previous validators is judged 1001

as False directly to save the calling of GPT API. 1002

Therefore the passing rate of Coherence Validator 1003

reported here is lower than the actual one, but it 1004

does not affect the “All passed” ratio. 1005

G Prompts used for Cypher quality 1006

evaluation 1007

We use GPT-4o to judge the quality of two versions 1008

of Cypher queries corresponding to the same set of 1009

questions written in natural language. The prompt 1010

used for this part is shown in Figure 15. We pro- 1011

vide different aspects of evaluation and ask GPT-4o 1012

to give detailed reasons when evaluating, because 1013

these techniques bring more accurate evaluation 1014

results in practice. 1015
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Node properties are the following:
Disease {easy_get: STRING, cure_lasttime: STRING, cured_prob: STRING, name: STRING, desc:

STRING, prevent: STRING, cure_way: LIST, cause: STRING, cure_department: LIST},Drug
{name: STRING},Food {name: STRING},Check {name: STRING},Department {name:
STRING},Producer {name: STRING},Symptom {name: STRING}

Relationship properties are the following:
recommand_eat {name: STRING}, no_eat {name: STRING}, do_eat {name: STRING}, belongs_to {name:

STRING}, common_drug {name: STRING}, drugs_of {name: STRING}, recommand_drug {name:
STRING}, need_check {name: STRING}, has_symptom {name: STRING}, acompany_with {name:
STRING}

The relationships are the following:
(:Disease)-[:belongs_to]->(:Department), (:Disease)-[:common_drug]->(:Drug),

(:Disease)-[:recommand_drug]->(:Drug), (:Disease)-[:need_check]->(:Check),
(:Disease)-[:has_symptom]->(:Symptom), (:Disease)-[:acompany_with]->(:Disease),
(:Disease)-[:recommand_eat]->(:Food), (:Disease)-[:no_eat]->(:Food),
(:Disease)-[:do_eat]->(:Food), (:Department)-[:belongs_to]->(:Department),
(:Producer)-[:drugs_of]->(:Drug)

Figure 8: The metadata extracted from the Hetionet database.

You are an experienced and useful Python and Neo4j/Cypher developer.

I have a knowledge graph for which I would like to generate interesting questions that span
12 categories (or types) about the graph. They should cover single-node questions, two
or three more nodes, relationships, and paths. Please suggest 12 categories together
with their short descriptions. Here is the graph schema:

{schema}

Figure 9: The prompt used to generate categories of questions.

You are an experienced doctor and you have a knowledge graph for which you would like to
generate interesting questions of 12 categories.

Here are some candidate categories:

{categories_list}.

You should merge similar categories and remove the duplicates. Finally, give me a short
description of each category.

Figure 10: The prompt used to merge proposed categories.
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You are an experienced Cypher developer and English-speaking doctor and a helpful assistant
designed to output JSON

Generate {k} questions and their corresponding Cypher statements about the Neo4j graph
database with the following schema:

{schema}

The questions should cover {category} and should be phrased in a natural conversational
manner. Make the questions diverse and interesting. Make sure to use the latest Cypher
version and that all the queries are working Cypher queries for the provided graph. You
may add values for the node attributes as needed. Do not add any comments, do not label
or number the questions.

Here are some examples of the Question-Cypher pairs to be generated:

"question": "What are the diseases that commonly accompany 'Depression'?",
"cypher": "MATCH (d1:Disease {{name:'Depression'}}) -[:acompany_with]-> (d2:Disease) RETURN

d2.name"

"question": "Can you list diseases that commonly accompany 'Cancer'?",
"cypher": "MATCH (d1:Disease {{name:'Cancer'}}) -[:acompany_with]-> (d2:Disease) RETURN

d2.name",

Now it's your turn to generate the question and Cypher pairs:

Figure 11: The prompt used to generate questions.

Ent. Type # Ent. Examples

Check 3,353 Bronchography
Department 54 Department of Plastic and Reconstructive Surgery
Disease 8,807 Thrombosed Vasculitis
Drug 3,828 Jingwanhong Hemorrhoid Cream
Food 4,870 Tomato and Vegetable Beef Ball Soup
Producer 17,201 Tongyi Pharmaceutical Penicillin V Potassium Tablets
Symptom 5,998 Hypertrophy of breast tissue

Total 44,111 /

Table 3: Entities in LHY Database.

Rel. Type # Rel. Examples

belongs_to 8,844 <Gynaecology, belongs_to, Obstetrics and Gynaecology>
common _drug 14,649 <Yang Qiang, common_drug, Phentolamine mesylate dispersible

tablets>
do_eat 22,238 <Thoracic spine fracture, do_eat, Blackfish>
drugs_of 17,315 <Penicillin V Potassium Tablets, drugs_of, Tongyi Pharmaceuticals

Penicillin V potassium tablets>
need _check 39,422 < Unilateral emphysema, need_check, Bronchography>
no_eat 22,247 <Lip disease, no_eat, Almonds>
recommend_drug 59,467 <Mixed hemorrhoids, recommend_drug, Jingwanhong Hemorrhoid

Cream>
recommend_eat 40,221 <Synovial effusion, recommend_eat, Beef Ball Soup with Tomato and

Vegetable Punch>
has_ symptom 5,998 <Early Breast Cancer, has_symptom, Hypertrophy of breast tissue>
accompany _with 12,029 <Valvular insufficiency of the traffic veins of the lower extremities,

accompany_with, Thromboembolic vasculitis>

Total 294,149 /

Table 4: Relations in LHY Database.
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Ent. Type # Ent. Examples

Anatomy 402 Digestive System
Biological_process 11,381 Protein Sialylation
Cellular_component 1,391 Meiotic Spindle
Compound 1,552 Mannitol
Disease 137 Hypertension
Gene 20,945 STRIP2
Molecular_function 2,884 Vitamin Transporter Activity
Pathway 1,822 Glycolysis
Pharmacologic_class 345 Decreased Blood Pressure
Side_effect 5,734 Subileus
Symptom 438 Ageusia

Total 47,031 /

Table 5: Entities in Hetionet Database.

Rel. Type # Rel. Examples

Anatomy–downregulates–Gene 102,240 <Bronchus, downregulates, GRIA2>
Anatomy–expresses–Gene 526,407 <Myocardium, expresses, EFHD1>
Anatomy–upregulates–Gene 97,848 <Adipose tissue, upregulates, PARM1>
Compound–binds–Gene 11,571 <Sildenafil, binds, CYP3A4>
Compound–causes–Side_Effect 138,944 <Ciprofloxacin, causes, Visual Disturbance>
Compound–downregulates–Gene 21,102 <Tacrolimus, downregulates, UBE2C>
Compound–palliates–Disease 390 <Fluvoxamine, palliates, Panic Disorder>
Compound–resembles–Compound 6,486 <Clotrimazole, resembles, Bifonazole>
Compound–treats–Disease 755 <Reserpine, treats, Hypertension>
Compound–upregulates–Gene 18,756 <Estriol, upregulates, KLHL9>
Disease–associates–Gene 12,623 <Parkinson’s Disease, associates, HTR7>
Disease–downregulates–Gene 7,623 <Schizophrenia, downregulates, MLST8>
Disease–localizes–Anatomy 3,602 <Migraine, localizes, Brain>
Disease–presents–Symptom 3,357 <Lung Cancer, presents, Constipation>
Disease–resembles–Disease 543 <Bone Cancer, resembles, Head and Neck Cancer>
Disease–upregulates–Gene 7,731 <Malaria, upregulates, JAK2>
Gene–covaries–Gene 61,690 <IMP3, covaries, OR8U8>
Gene–interacts–Gene 147,164 <TRIM27, interacts, MED21>
Gene–participates–Biological_Process 559,504 <ABCA1, participates, Lipid Homeostasis>
Gene–participates–Cellular_Component 73,566 <KLHL14, participates, Neuronal Cell Body>
Gene–participates–Molecular_Function 97,222 <TOP2B, participates, ATPase Activity>
Gene–participates–Pathway 84,372 <GGT5, participates, Metabolism>
Gene-regulates-Gene 265,672 <BCCIP, regulates, HLTF>
Pharmacologic_Class–includes–Compound 1,029 <Allergens, includes, Benzocaine>

Total 2,250,197 /

Table 6: Relations in Hetionet Database.

LLM name LLM version LLM site

GPT gpt-3.5-turbo-16k https://platform.openai.com/docs/models/gpt-3.5-turbo
Llama3 Meta-Llama-3-8B https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

InternLM2 internlm2-7B https://huggingface.co/internlm/internlm2-base-7b
Qwen2 Qwen2-7B https://huggingface.co/Qwen/Qwen2-7B

Table 7: Versions of the backbone LLMs

Database Pipeline Grammatical
Validator

Semantic
Validator

Entity
Validator

Schema
Validator

Coherence
Validator All passed

LHY LLM-based prompting 99.69% N/A 99.62% 82.77% N/A 83.87%
LHY Template-filling 99.87% 92.34% 100% 99.87% 28.59% 27.21%

Hetionet LLM-based prompting 96.08% N/A 99.08% 61.69% N/A 64.79%
Hetionet Template-filling 100% 91.81% 99.52% 100% 38.15% 36.66%

Table 8: MedT2C’s passing rates of each automatic validator.
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You are an experienced Cypher developer, English Master, and a helpful assistant that helps
me to verify whether the cypher is coherent with the question!

You will be given a JSON object containing a question and a cypher query. You should first
take a look at the schema provided below. The schema is the graph database on which the
cypher queries will be run.

The schema:

{schema}

You must organize your answer step by step and in the end, you should make your judgment.

Here are three areas that you should pay attention to:
1. whether the output of cypher is coherent with the question, which means that the output of

cypher must contain the information that the question asks.
2. If the question points out a piece of key information, you should check whether this key

information is pointed out in the cypher. For example, if the question provides a piece
of exact information such as the exact name of the disease, this information can not be
inconsistent in the cypher. If there is no exact key information, you can skip this area.

3. whether this cypher answers the question provided in the JSON object. You should simulate
the cypher step by step according to the schema provided. Then you should judge whether
this cypher is in line with the question.

You should make your judgment according to these three areas. If there are no problems in
these three areas in the cypher, you must answer with 'True'. Otherwise, you should
answer with 'False'.

Here are some example JSON objects:

{example}

Now it's your turn to answer! Here is the JSON object you should evaluate:

{json_object}

Now evaluate carefully the JSON object and provide your answer step by step.

Figure 12: The prompt used in Semantic validator.
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<|Example 1|>
{

"question": "Which diseases belong to the 'Psychiatry' department?",
"cypher": "MATCH (d:Disease)-[:belongs_to]->(dept:Department) WHERE dept.name =

'Neurology' RETURN d.name"
},
<|Answer 1|>
The cypher is not in line with the question because the question is to find the diseases in

the 'Psychiatry' department but the department name in the cypher is 'Neurology'
department.

Since the key information is inconsistent, I would mark this JSON object as False.

<|Example 2|>
{

"question": "Which foods should be avoided for the disease 'Brain tumor'?",
"cypher": "MATCH (d1:Disease {name:'Brain tumor'})-[:no_eat]->(d2:Food) RETURN d2.name"

}
<|Answer 2|>
Firstly, the output of cypher contains the key information 'the food' asked by the question.
Secondly, the key information 'Brain tumor' provided in the question is contained in the

cypher.
Finally, the logic of cypher is exactly similar to the question.
So, I think this JSON object is True.

<|Example 3|>
{

"question": "What pathways do the genes 'BRCA1' and 'BRCA2' participate in?",
"cypher": "MATCH (g:Gene)-[:PARTICIPATES_GpPW]->(:Pathway) WHERE g.name IN ['BRCA1',

'BRCA2'] RETURN g.name"
}
<|Answer 3|>
There are two errors.
Firstly, as the question asks for pathways but the output of cypher is the name of the gene,

the output of the cypher is inconsistent with the question.
Secondly, the question is to find the pathway that both the genes 'BRCA1' and 'BRCA2'

participate in. But the cypher matches the pathways that 'BRCA1' or 'BRCA2' participates
in. The logic 'AND' and 'OR' are totally different.

Therefore, I think this JSON object is False.

Figure 13: The English few-shot examples used in the Semantic Validator.
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You are an experienced medical assistant who has mastered English and medical knowledge.

You will be given a question and the responses given by the doctor. The doctor is very
professional, he gives direct responses. But he sometimes misunderstands the problem.
Your task is to check if the results are coherent with the question by analyzing the
category.

For example, if the question asks for food and the answer is food, in this case, it is
relevant because the category is the same. Even if the foods don't seem to be directly
related, you can not deny them because the doctor is professional.

But if the question asks for food, the doctor gives the response on sports. You should point
out this error because the category is different.

As a medical assistant, you just need to pay attention to whether the category of the answer
corresponds to the category that the question asks. You don't need to think about the
reasonableness of the answer.

Answer with 'True' if the category is the same. Otherwise, answer with 'False'.
You need to carefully explain your answer.

Here are some examples of questions and results:

<Example 1>
Question: Find out the diseases associated with the 'Oncology' department.
Responses by the doctor: Breast cancer, Pancreatic cancer, Colon cancer
Your reply: Breast cancer, pancreatic cancer, and colon cancer belong to the Oncology

department. And the question asks for diseases. So I think it is relevant, and my answer
is True.

<Example 2>
Question: Which foods should be avoided for the disease 'Coeliac disease'?
Responses by the doctor: Swimming, Running, Biking, Walking
Your reply: The responses are sports. But this question asks for food. So I think it is not

relevant, my answer is False.

Now it's your turn to verify if the responses are relevant to the question.
Remember! You just need to pay attention to whether the answer corresponds to the question.

You don't need to think about the reasonableness of the answer.

Question:{question}
Responses by the doctor: {results}
Your reply:

Figure 14: The prompt used in Coherence Validator.
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You are an expert in medical field and Cypher query language. You are asked to evaluate the
quality of the Cypher queries generated by 2 models for the same question. You will be
first given the question written in natural language. Then you will be given the Cypher
queries generated by 2 models. Your task is to compare the quality of these two Cyphers
and select the better one. You should consider the following aspects when selecting the
better Cypher:
1. Syntactical correctness: whether the Cypher query is syntactically correct;
2. Semantic correctness: whether the Cypher query can correctly answer the question;
3. Readability: whether the Cypher query is easy to read and understand;
4. Efficiency: whether the Cypher query is efficient in terms of time and space

complexity;
5. Conciseness: whether the Cypher query is concise and clear;
6. Completeness: whether the Cypher query can cover all the necessary information in the

database.
You should select the better Cypher query based on these aspects. Output your selected

Cypher as well as your reasons.

Here is the question:
{

"question": "{{ question }}"
}

Here are the outputs of the models:
[

{
"number": "1",
"cypher": "{{ cypher_1 }}"

},
{

"number": "2",
"cypher": "{{ cypher_2 }}"

}
]
Your output should be in the following format, DO NOT output anything other than this JSON

object:
{
"better_cypher": "1",
"reason": "reasons why 1 is selected"
}

Now select the better Cypher and give your reasons:

Figure 15: The prompt used in Cypher quality evaluation.
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