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Abstract
Generating samples from a high dimensional prob-
ability distribution is a fundamental task with
wide-ranging applications in the area of scien-
tific computing, statistics and machine learning.
This article revisits the popular Langevin Monte
Carlo (LMC) sampling algorithms and provides
a non-asymptotic error analysis in W2-distance
in a non-convex setting. In particular, we prove
an error bound O(

√
dh), which guarantees a mix-

ing time Õ(
√
dϵ−1) to achieve the accuracy toler-

ance ϵ, under certain log-smooth conditions and
the assumption that the target distribution satis-
fies a log-Sobolev inequality, as opposed to the
strongly log-concave condition used in (Li et al.,
2019; 2022). This bound matches the best one
in the strongly log-concave case and improves
upon the best-known convergence rates in non-
convex settings. To prove it, we establish a new
framework of uniform-in-time convergence for
discretizations of SDEs. Distinct from (Li et al.,
2019; 2022), we start from the finite-time mean-
square fundamental convergence theorem, which
combined with uniform-in-time moment bounds
of LMC and the exponential ergodicity of SDEs in
the non-convex setting gives the desired uniform-
in-time convergence. Our framework also applies
to the case when the gradient of the potential U
is non-globally Lipschitz with superlinear growth,
for which modified LMC samplers are proposed
and analyzed, with a non-asymptotic error bound
in W2-distance obtained. Numerical experiments
corroborate the theoretical analysis.
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1. Introduction
Sampling from a complex, high dimensional target probabil-
ity measure π(dx) ∝ e−U(x)dx, where U(·) : Rd → R is
a potential function, finds wide-ranging applications in the
area of scientific computing, statistics and machine learn-
ing (Durmus & Moulines, 2019; Song & Ermon, 2019;
Wibisono, 2018; Liang & Su, 2019; Kakade, 2003; Neal,
1992; Welling & Teh, 2011). The Langevin stochastic differ-
ential equation (SDE) associated with the target probability
measure π is defined by:

dXt = −∇U(Xt) dt+
√
2 dWt, X0 = x0, t > 0, (1)

where W· :=
(
W 1

· ,W
2
· , · · · ,W d

·
)T

: [0,∞) × Ω → Rd

is d-dimensional Brownian motion defined on the filtered
probability space (Ω,F , {Ft}t≥0,P), satisfying the usual
conditions. The initial data x0 : Ω → Rd is assumed to
be F0-measurable. Under mild conditions, the Langevin
SDE admits π as its unique invariant distribution (see, e.g.,
(Pavliotis, 2014)). However, sampling from the exact dy-
namics (1) directly is usually not accessible and the numeri-
cal discretization becomes a practical option. The popular
Langevin sampler is based on the Euler–Maruyama (EM)
discretization of (1), given by

Ȳn+1 = Ȳn −∇U(Ȳn)h+
√
2hζn+1, Ȳ0 = x0, (2)

where h > 0 is the uniform timestep and ζk :=
(ζ1k , ζ

2
k , · · · , ζdk)T , k ∈ N, are i.i.d standard d-dimensional

Gaussian vectors. By combining gradient information with
noise, this algorithm, termed as Langevin Monte Carlo
(LMC), allows faster convergence and more efficient ex-
ploration of complex, high-dimensional distributions com-
pared to the naive Markov Chain Monte Carlo (MCMC).
The capability to generate high quality samples and improve
model training makes it popular in many applications such
as generative models.

Related literature. The study of LMC sampling algorithms
has attracted considerable attention over recent years. A
central problem is to determine the number of iteration steps
(termed as mixing time) guaranteeing that the distribution
of the Markov chain is a good approximation of the target
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measure π. To obtain the mixing time, the non-asymptotic
sampling error analysis is critical and has been extensively
studied in the literature (Cheng & Bartlett, 2018; Dalalyan,
2017a; Durmus et al., 2019; Dalalyan, 2017b; Dalalyan &
Karagulyan, 2019; Durmus & Moulines, 2019; Li et al.,
2019; 2022; Sabanis & Zhang, 2019; Xu et al., 2018), par-
ticularly under a strongly log-concave condition (m > 0):

⟨x−y,∇U (x)−∇U (y)⟩ ≥ m|x−y|2, ∀x, y ∈ Rd. (3)

Under this condition as well as the gradient Lipschitzness,
the seminal work of Dalalyan (Dalalyan, 2017b) explicitly
showed non-asymptotic convergence of order O(

√
dh) to

Langevin diffusion with warm start, implying that the LMC
achieves ϵ error, in total variation distance, in Õ( d

ϵ2 ) steps.
The authors of (Durmus & Moulines, 2017) improved and
extended the results of (Dalalyan, 2017b). In W2-distance,
Dalalyan (Dalalyan, 2017b;a), Durmus et al (Durmus et al.,
2019), Cheng and Bartlett (Cheng & Bartlett, 2018) ob-
tained similar non-asymptotic error bounds. By additionally
imposing the Hessian Lipschitz condition on U , Durmus
and Moulines (Durmus & Moulines, 2019) provided im-
proved non-asymptotic error bound O(dh) in W2-distance
for LMC, which guarantees a mixing time Õ(dϵ ). Moti-
vated by a recent work (Chewi et al., 2021) that shows
better dimension dependence for a Metropolis-Adjusted im-
provement of LMC, Li et al (Li et al., 2022) obtained an
error bound O(

√
dh) in W2-distance, under the strongly

log-concave condition (3) and additional smoothness condi-
tions on U . This leads to Õ(

√
d
ϵ ) mixing time bound, which

turns out to be optimal (in terms of order) for LMC in both
dimension d and accuracy tolerance ϵ.

Nevertheless, the strongly log-concave condition is seldom
satisfied in practice. An interesting and natural question
thus arises:

(Q). Can the error bound O(
√
dh) in W2-distance still hold

true for LMC without the strongly log-concave condition?

Before answering this question, we highlight that the dy-
namics of the Langevin SDE (1) in non-convex settings
is crucial but non-trivial (see, e.g., (Eberle, 2016; Luo &
Wang, 2016; Wang, 2020) and references therein). Fol-
lowing the idea of the reflection couplings, Eberle (Eberle,
2016) showed contraction in W1-distance for Langevin SDE
(1) with the potential U being strongly convex in the long
distance. When the unique invariant probability measure sat-
isfies the log-Sobolev inequality (LSI), the author of (Wang,
2020) provided W2-convergence to the equilibrium of the
Langevin SDE (1).

Recently, there has been some progress in the non-
asymptotic error analysis for (modified) LMC, without the
aforementioned strongly log-concave condition, see, e.g.,
(Cheng et al., 2018; Chewi et al., 2024; Mou et al., 2022;
Mousavi-Hosseini et al., 2023; Pang et al., 2025; Li et al.,

2025; Pagès & Panloup, 2023; Majka et al., 2020; Neufeld
et al., 2025; Vempala & Wibisono, 2019; Lytras & Sabanis,
2025; Lytras & Mertikopoulos, 2024; Li & Wang, 2025).
On the condition that the potential is strongly-convex out-
side a ball but possibly nonconvex inside this ball, Cheng
et al (Cheng et al., 2018) established upper bound Õ(dϵ−2)
on the number of steps (mixing time) required for LMC (2)
to achieve the accuracy tolerance ϵ in W1-distance. Under
convexity at infinity condition, Majka et al. (Majka et al.,
2020) showed error bounds O(d1/4h1/4) and O(d1/2h1/2)
in W2 and W1-distance, respectively, which guarantees
mixing times Õ(dϵ−4) and Õ(dϵ−2) to achieve the accu-
racy tolerance ϵ. Under certain log-smooth conditions and
the assumption that the target distribution satisfies a log-
Sobolev inequality, Mou et al (Mou et al., 2022) obtained
an improved Kullback-Leibler divergence bound, implying
mixing times of Õ(dϵ−1) in total variation distance and
W2-distance. For some non-convex conditions, Pages and
Panloup (Pagès & Panloup, 2023) also proved some error
bounds for LMC, but does not explicitly specify the dimen-
sion dependence. When the drift coefficient is non-globally
Lipschitz continuous, (Li et al., 2025; Pang et al., 2025;
Neufeld et al., 2025) examined non-asymptotic error analy-
sis of (modified) LMC sampling algorithms under convexity
at infinity condition.

Our contributions. In this work, we aim to answer the
aforementioned question (Q) to the positive and show an
error bound

√
dh in W2-distance for LMC (2), under certain

log-smooth conditions and the assumption that the target
distribution satisfies a log-Sobolev inequality (see Theorem
2.10), as opposed to the strongly log-concave condition used
in (Li et al., 2019; 2022). This bound guarantees a mixing
time Õ(

√
dϵ−1), which matches the best one in the strongly

log-concave case and improves upon the best-known conver-
gence rates in non-convex settings. To achieve it, we estab-
lish a new, non-convex theoretical framework of uniform-in-
time convergence for discretizations of general SDEs (see
Theorem 3.4). Distinct from (Li et al., 2019; 2022), we start
from the finite-time mean-square fundamental convergence
theorem, which combined with uniform-in-time moment
bounds of LMC and the exponential ergodicity of SDEs in
the non-convex setting gives the desired uniform-in-time
convergence. Our framework also applies to the case when
the gradient of the potential U is non-globally Lipschitz with
superlinear growth, for which modified LMC samplers are
proposed and analyzed, with a non-asymptotic error bound
in W2-distance obtained (see subsection 2.3). The main
contribution of this work can be summarized as follows:

• Based on the finite-time convergence theorem and
the exponential ergodicity of SDEs, we establish a
new, non-convex theoretical framework of uniform-in-
time convergence (in W2-distance) for discretizations
of general SDEs, without requiring the strongly log-
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concave condition. The uniform-in-time convergence
rate is explicitly expressed in terms of the contraction
rate of SDEs and local convergence rates in finite-time
of the numerical scheme.

• As one application of the new framework, we prove an
error bound O(

√
dh) in W2-distance for LMC, guaran-

teeing a mixing time bound Õ(
√
dϵ−1) to achieve the

accuracy tolerance ϵ, under certain log-smooth condi-
tions and the assumption that the target distribution sat-
isfies a log-Sobolev inequality. This bound matches the
best one in the strongly log-concave case and improves
upon the best-known convergence rates in non-convex
settings.

• As another application of the framework, we also con-
sider the case when the gradient of the potential U is
non-globally Lipschitz with superlinear growth. For
this case, modified LMC samplers are proposed and
analyzed, with a non-asymptotic error bound in W2-
distance explicitly revealed.

The structure of this paper is as follows. Section 2
presents main results for LMC sampling algorithms, with
an overview of proof also given. In Section 3, a new non-
convex framework of uniform-in-time convergence theorem
is established, based on which the main results are derived.
Several numerical examples are reported in Section 4 and
some concluding remarks are given in the last section.

2. Main Results
This section presents notation, assumptions and main results
for Langevin Monte Carlo (LMC) associated to gradient
Lipschitz potential and modified Langevin Monte-Carlo
(mLMC) associated to gradient super-linearly growing po-
tential. Also, an overview of proof is given.

Notation Throughout this paper, we use N to denote the
set of all positive integers and let N0 := N ∪ {0}. For all
n ∈ N, let [n] := {1, 2, · · · , n} and [n]0 := {0, 1, · · · , n}.
For convention, we set 00 = 1. The symbols ∧ and ∨ mean
“minimum” and “maximum”, respectively. We write Õ(·)
to mean that O(·) logO(1)(·). We also use the notation ⟨·, ·⟩
and | · | to denote the inner product and Euclidean norm
of vectors in Rd, respectively. Let ∥ · ∥ and ∥ · ∥F denote
the operator and trace norm of matrices, respectively. For
a function f : Rd → R, we write ∂if to denote the i-th
partial derivative of f . The gradient ∇f is the vector of
partial derivatives (∂1f, · · · , ∂df) and the Hessian ∇2f is
the matrix (∂2

ijf)i,j∈[d]. The Laplacian of f is denoted by
∆f := tr∇2f =

∑d
i=1 ∂

2
iif .

Let B(Rd) be the Borel σ-field of Rd and P(Rd) be the
space of all probability distributions on (Rd,B(Rd)). For

two probability measures ν1, ν2 ∈ P(Rd) we define a
coupling (or transference plan) ϱ between ν1 and ν2 as
a probability measure on (Rd × Rd,B(Rd × Rd)) such
that ϱ(A × Rd) = ν1(A) and ϱ(Rd × A) = ν2(A) for all
A ∈ B(Rd). We then denote by Γ(ν1, ν2) the set of all
such couplings and define the Lp-Wasserstein distance (Wp-
distance in short) between a pair of probability measures ν1
and ν2 as

Wp(ν1, ν2) := inf
ϱ∈Γ(ν1,ν2)

(∫
Rd×Rd

|x− y|p dγ(x, y)
)1/p

for p ≥ 1. Given a filtered probability space
(Ω,F , {Ft}t≥0,P), we use E to mean the expectation.
In addition, denote by Cb(Rd) (resp. Bb(Rd)) the Ba-
nach space of all uniformly continuous differentiable and
bounded mappings (resp. Borel bounded mappings). For
l ∈ N, let Cl

b(Rd) be the subspace of Cb(Rd) consisting
of all l-times continuously differentiable functions with
bounded partial derivatives. For any ϕ ∈ Cb(Rd) and
ν ∈ P(Rd), we denote ν(ϕ) :=

∫
Rd ϕ(x)ν(dx).

2.1. Exponential Ergodicity of the Langevin SDE

In this subsection, we first prove the uniform-in-time mo-
ment bounds under the dissipativity condition and then pro-
vide the exponential convergence in W2-distance under one-
sided Lipschitz condition and the log-Sobolev inequality.

Assumption 2.1 (Dissipativity condition). There exist two
positive constants µ and µ′, independent of d, such that

⟨x,∇U (x)⟩ ≥ µ|x|2 − µ′d, ∀x ∈ Rd. (4)

We highlight that all constants used here (i.e., µ, µ′) and
throughout this section do not depend on the dimensions d.
Instead of a strong convex condition, we put a one-sided
Lipschitz condition on −∇U .

Assumption 2.2 (One-sided Lipschitz condition). There
exists a dimension-independent constant L > 0 such that
for all x, y ∈ Rd,

⟨x− y,∇U (x)−∇U (y)⟩ ≥ −L|x− y|2. (5)

Assumption 2.3 (Log-Sobolev inequality). Let {pt}t≥0 be
the semigroups associated to Langevin SDE (1) admitting a
a unique invariant distribution π. Assume that the invariant
distribution satisfies the log-Sobolev inequality, namely,
there exists a constant ρ, independent of d, such that, for
any ϕ ∈ C1

b (Rd),

π(ϕ2 log ϕ2) ≤ ρπ(|∇ϕ|2), π(ϕ2) = 1. (6)

We mention that, beyond log-concavity, the log-Sobolev
inequality (LSI) is a widely used assumption for the target
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distribution of interest in the field of Langevin sampling
(Vempala & Wibisono, 2019; Lytras & Sabanis, 2025; Mou
et al., 2022; Lytras & Mertikopoulos, 2024; Chewi et al.,
2024). As indicated by Appendix A in supplementary ma-
terial to (Mou et al., 2022), strongly convex outside a ball
implies LSI. As a consequence, two typical examples satis-
fying LSI are the Gaussian mixture and double-well poten-
tial (see Section 4). For more details on LSI, one can also
consult (Ledoux, 2006).
Lemma 2.4 (Uniform-in-time moment estimate for
Langevin SDE). Let Assumption 2.1 hold and let {Xt}t≥0

be the solution of the Langevin SDE (1). Then there exists a
constant c ∈ (0, 2µ), independent of d, t, such that it holds
for all p ∈ [1,+∞),

E
[
|Xt|2p

]
≤ e−cptE

[
|x0|2p

]
+ 2(2p−1+µ′)p

cp

(
2p−2

(2µ−c)p

)p−1
dp.

(7)

The proof of this lemma can be found in Appendix A. Let
{pt}t≥0 be the Markov semigroup associated to the solution
{Xt}t≥0 of SDE (1). Then for any ν ∈ P(Rd), νpt denotes
the distribution law of Xt starting from X0 = x0 ∼ ν, i.e.,
νpt := L(Xt), t ≥ 0. Next we present a proposition on
exponential ergodicity in W2-distance of the Langevin SDE
(1) under LSI.
Proposition 2.5 (Exponential ergodicity in W2-distance).
Let Assumptions 2.2 and 2.3 hold. Then for any t ≥ 0 and
initial distribution ν = L(x0), there exist two constants
K, η > 0, independent of d, t, such that the semigroup pt
associated to SDE (1) and its invariant distribution π satisfy

W2(νpt, π) ≤ Ke−ηtW2(ν, π). (8)

Such an assertion follows from Theorem 2.1 (2) and The-
orem 2.6 (2) in (Wang, 2020), where the parameter depen-
dence was not explicitly provided. Noting that the Langevin
SDE (1) is driven by additive noise (non-degenerate) and
owing to the one-sided Lipschitz condition (5) and LSI (6),
one can follow basic lines in (Wang, 2020) to identify two
constants K := ( 2ρL

1−e−2L )
1/2e

4
ρ ∨ e2L+ 2

ρ , η := − 2
ρ , only

depending on L, ρ, but independent of d, t.

2.2. Main Results for Langevin Monte Carlo

Now we turn to the LMC and report its non-asymptotic error
bound in W2-distance without log-concavity.
Assumption 2.6 (Gradient Lipschitz condition). There ex-
ists a dimension-independent constant L1 > 0 such that

|∇U (x)−∇U (y) | ≤ L1|x− y|, ∀x, y ∈ Rd. (9)

Owing to (9), one can apply the triangle inequality to show
that for all x ∈ Rd,

|∇U (x) | ≤ L′
1d

1/2 + L1|x|, (10)

with L′
1d

1/2 := |∇U(0)|. Moreover, using (9) and the
Cauchy-Schwarz inequality ensures that Assumption 2.2
holds with L = L1.

Assumption 2.7. There exists a positive constant σ1, inde-
pendent of d, such that

E
[
|x0|2

]
≤ σ1d. (11)

In addition, we need a linear growth condition of the 3rd-
order derivative of U , which has been also used in (Li
et al., 2022) in a strongly convex setting. As verified in
Appendix G, a Gaussian mixture meets such a condition
and the double-well potential meets a similar condition in
Assumption 2.14. More examples can be found in (Li et al.,
2022).

Assumption 2.8 (Linear growth condition of the 3rd-order
derivative). There exist two positive constants L′

0 and L0

such that for all x, y ∈ Rd,

|∇(∆U (x))| ≤ L′
0d

1/2 + L0|x|. (12)

As remarked by (Li et al., 2022), Assumption 2.8 is not
necessarily stronger than Hessian Lipschitzness. By As-
sumption 2.6, we have

|∇2U(x)y| ≤ L1|y|, ∀x, y ∈ Rd. (13)

Lemma 2.9 (Uniform-in-time moment estimate for LMC).
Let Assumptions 2.1, 2.6 hold. If the uniform timestep satis-
fies h ≤ µ

4L2
1
∧ 1

µ ∧ 1, then the LMC (2) satisfies

sup
n∈N0

E[|Ȳn|2] ≤ e−µtnE[|x0|2] + 4+4L′2
1 +2µ′

µ d. (14)

Its proof is put in Appendix A. The first main result of this
paper is as follows.

Theorem 2.10 (Main result for LMC). Let {p̄n}n∈N0 be
the semigroups associated to LMC (2) and let Assumptions
2.1, 2.3, 2.6–2.8 hold. If the uniform timestep satisfies
h ≤ 1

2L ∧ µ
4L2

1
∧ 1

µ ∧ 1, then for any n ∈ N0 and initial
distribution ν = L(x0), it holds

W2(νp̄n, π) ≤ C̄1

√
dh+ C̄2

√
de−λnh, (15)

where λ := η
logK+1+η/(2L) and

C̄1 :=C(µ, µ′, η, c, σ1, η, L0, L
′
0, L1, L

′
1,K),

C̄2 :=C(µ, µ′, c, σ1, L
′
1),

(16)

are explicitly given by (148).

Proposition 2.11. Let assumptions of Theorem 2.10 hold.
To achieve a given accuracy tolerance ϵ > 0 under W2-
distance, a required number of iterations of the LMC (2) is
of order Õ

(√
d
ϵ

)
.

4



Non-asymptotic Error Bounds in W2-Distance for LMC beyond Log-Concavity

Table 1. Comparison of mixing times in W2-distance.

M-T S-C A-A

PAPERSA Õ
(
dϵ−2

)
YES G-L

PAPERSB Õ
(
dϵ−1

)
YES G-L, H-L

PAPERC Õ
(
d1/2ϵ−1

)
YES G-L, 3-RD-L-G

PAPERD Õ
(
dϵ−4

)
NO G-L

PAPERE Õ
(
dϵ−1

)
NO G-L, H-L

THIS WORK Õ
(
d1/2ϵ−1

)
NO G-L, 3-RD-L-G

A (CHENG & BARTLETT, 2018; DALALYAN, 2017A;
DURMUS ET AL., 2019).

B (DALALYAN, 2017B; DALALYAN & KARAGULYAN,
2019; DURMUS & MOULINES, 2019).

C (LI ET AL., 2022).
D (MAJKA ET AL., 2020).
E (MOU ET AL., 2022).

M-T: MIXING TIME. S-C: STRONG CONVEX. A-A:
ADDITIONAL ASSUMPTION. G-L: GRADIENT LIPS-
CHITZ. H-L: HESSIAN LIPSCHITZ. 3-RD-L-G: LIN-
EAR GROWTH OF THE 3-RD DERIVATIVE.

See Appendix E for proofs of Theorem 2.10 and Proposi-
tion 2.11. In Table 1, we compare the number of iterations
of LMC algorithm (2) required to achieve ϵ error in W2-
distance in the literature. Clearly, our error bounds matche
the best ones in the strongly log-concave case and improve
upon the best-known convergence rates in non-convex set-
tings.

2.3. Main Results for Modified Langevin Monte Carlo

Next we consider the case when the gradient of the potential
U is non-globally Lipschitz with superlinear growth.
Assumption 2.12 (Gradient polynomial growth condition).
There exists a positive constant L1, independent of d, such
that for all x, y ∈ Rd, γ > 0,

|∇U (x)−∇U (y) | ≤ L1(1 + |x|γ + |y|γ)|x− y|. (17)

Thanks to (17), the triangle inequality and the Young in-
equality, we infer

|∇U (x) | ≤ L′
1d

1/2 + 2L1|x|γ+1, ∀x ∈ Rd, (18)

where L′
1d

1/2 := |∇U (0) |+ γL1. Similar to (13), we get

|∇2U(x)y| ≤ L1(1 + |x|γ)|y|. (19)

Assumption 2.13. There exists some positive constant
σ2(p), independent of d, such that

E
[
|x0|2p

]
≤ σ2(p)d

p, p ∈ [1, 11γ+10
2 ], (20)

where γ comes from Assumption 2.12.
Assumption 2.14 (Polynomial growth condition of the
3rd-order derivative). There exist two positive constants
L′
0 and L0, independent of d, such that

|∇(∆U (x))| ≤ L′
0d

(γ+1)/2 + L0d
γ1/2|x|γ2 (21)

holds for all x, y ∈ Rd, where γ1 ≥ 0, γ2 ≥ 1 obeying
γ1 + γ2 = γ + 1.

For this case, we consider a kind of modified Langevin
Monte Carlo, also termed as projected Langevin Monte
Carlo (pLMC), introduced by (Pang et al., 2025) and given
by, Y̌0 = x0,

Y̌n+1 = T h(Y̌n)−∇U(T h(Y̌n))h+
√
2hζn+1, (22)

where ζk := (ζ1k , ζ
2
k , · · · , ζdk)T are i.i.d standard d-

dimensional Gaussian vectors, T h : Rd → Rd is a pro-
jection operator, defined by, for a dimension-independent
parameter ϑ ≥ 1 and any x ∈ Rd,

T h(x) :=

min
{
1, ϑd

1
2(γ+1)h− 1

2(γ+1) |x|−1
}
x, x ̸= 0,

0, x = 0,
(23)

with γ being given in Assumption 2.12.

Lemma 2.15 (Uniform-in-time moment estimate for
pLMC). Let Assumptions 2.1, 2.12, hold. For the uni-
form timestep satisfying h ≤ 1

2µ ∧ 2µ
µ+2(L′

1+2L1)2
∧ 1, the

pLMC (22) has uniform-in-time moment bounds, for any
p ∈ [0,∞) ∩ N,

sup
n∈N0

E[|Y̌n|2p] ≤ e−
µ
2 tnE[|x0|2p] + C1̌d

p, (24)

where tn := nh, C1̌ := C(µ, µ′, γ, ϑ,L1,L′
1, p).

Its proof can be found in Lemma 3.4 of (Pang et al., 2025).

Theorem 2.16 (Main result for pLMC). Let {p̌n}n∈N0
be

the semigroups associated to pLMC (22) and Assumptions
2.1–2.3, 2.12–2.14 hold. If the uniform timestep satisfies
h ≤ 1

2L ∧ 1
µ ∧ 2µ

µ+2(L′
1+2L1)2

∧ 1, then for any n ∈ N0 and
initial distribution ν = L(x0), it holds

W2(νp̌n, π) ≤ Č1d
(11γ+2)/4h+ Č2d

1/2e−λnh, (25)

where λ := η
logK+1+η/(2L) and

Č1 :=C(µ, µ′, η, c, γ, σ2, ϑ, L,L0,L′
0,L1,L′

1,K),

Č2 :=C(µ, µ′, c, γ, σ2, ϑ,L1,L′
1).

(26)

See Appendix F for the proof of this theorem. This theorem
also help us to obtain the mixing time, whose proof is similar
to Proposition 2.11 and thus omitted here.

Proposition 2.17. Let assumptions of Theorem 2.16 hold.
To achieve a given accuracy tolerance ϵ > 0 under W2-
distance, a required number of iterations of the pLMC (22)
is of order Õ

(
d(11γ+2)/4

ϵ

)
.
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2.4. Overview of Proof

In this subsection we present an overview of the above non-
asymptotic error bounds. For an approximation {Ỹn}n∈N0

to the SDE {Xt}t≥0, the goal of long-time error analysis
is to bound W2(νp̃n, π), where π ∈ P(Rd) is the invariant
distribution of {pt}t≥0 and {p̃n}n∈N0

is the transition semi-
groups associated to {Ỹn}n∈N0

. By the triangle inequality,
we have

W2(νp̃n, π) ≤W2(νp̃n−n1
p̃n1

, νp̃n−n1
ptn1

)

+W2(νp̃n−n1
ptn1

, π), n ≥ n1.
(27)

Following the triangle inequality, we give an overview of
five steps that comprise the proof of Theorems 2.10, 2.16.

Step 1. As proved in Lemma 3.1, the solutions of SDEs
have uniform-in-time moment estimates with the help of
dissipativity conditions. In addition, we require the numeri-
cal approximations to be uniform-in-time moment bounded
(cf. Condition (A2)). See Subsection 3.2 for details.

Step 2. We establish the finite-time mean-square fundamen-
tal convergence theorem for general SDEs (see Theorem
3.3), which is used to deal with the first term on the right-
hand side of (27):

W2(νp̃n−n1
p̃n1

, νp̃n−n1
ptn1

) ≤ C(tn1
)hp2− 1

2 , (28)

where we explicitly show the dependence of the error con-
stant C(tn1) on tn1 (cf. (48)). See Subsection 3.3 for more
details.

Step 3. To estimate the second term on the right-hand side
of (27), we rely on the exponential ergodicity of the SDE
(see Condition (A5)) to obtain:

W2(νp̃n−n1ptn1
, π) ≤ Ke−ηtn1W2(νp̃n−n1 , π). (29)

See Subsection 3.4 for details.

Step 4. Collecting (28) and (29) together and choosing
tn1 = χ0 such that Ke−ηχ0 = 1

e , one can derive from the
uniform-in-time bounded moments that

W2(νp̃n, π) ≤ C(χ0)h
p2− 1

2 + 1
eW2(νp̃n−n1

, π). (30)

By iteration and using Lemma D.1, one can deduce

W2(νp̃n, π) ≤ K̂1h
p2− 1

2 + K̂2e
−λ0nh. (31)

See Subsection 3.5 for details.

Step 5. We verify all conditions required by the non-convex
theoretical framework of uniform-in-time convergence the-
orem in Section 3 and calculate all constants to obtain the
expected non-asymptotic convergence rate of the underlying
LMC (2) and pLMC (22) for Langevin SDE. See Appendix
E and F for details.

3. A Non-Convex Theoretical Framework of
Uniform-in-Time Convergence Theorem

The aim of the present section is to construct a non-convex
theoretical framework of uniform-in-time convergence theo-
rem for general SDEs, which will help us to easily analyze
the non-asympiotic error bounds of schemes in Section 2.
To this end, we set up a general framework by introducing
general SDEs and their numerical approximation as follows.

3.1. SDEs and Their Numerical Approximations

We consider the following Itô SDEs as follows:

dXt = f (Xt) dt+
m∑

k=1

gk (Xt) dW k
t , X0 = x′

0, (32)

where t ≥ 0, f : Rd → Rd is a drift function, g =
(g1, g2, · · · , gm) : Rd → Rd×m is a diffusion function
and {Wt = (W 1

t ,W
2
t , · · · ,Wm

t )}t≥0 is a m-dimensional
Wiener process. Let Xt := X(s, x; t) = Xs,x(t), 0 ≤ s ≤
t, denote the solution to (32) at t, starting from the initial
value x at s, given by

Xs,x(t) = x+

∫ t

s

f(Xr) dr+
m∑

k=1

∫ t

s

gk(Xr) dW k
r . (33)

To approximate SDE (32), we introduce the one-step ap-
proximation Y (t, x; t+h) for the solution X(t, x; t+h) of
SDE (32) in the form of, for all x ∈ Rd

Y (t, x; t+ h) = x+Φ(t, x, h; ξt) , (34)

where h is uniform timestep and ξt is a random vector
defined on (Ω,F ,P) with moments of a sufficiently high
order and Φ is a function from [0,+∞)×Rd × (0,+∞)×
Rm to Rd. Using the one-step approximation (34), we
recurrently construct numerical approximations {Yn}n∈N0

on the uniform mesh grid {tn = nh}n∈N0
, given by

Y0 = x′
0, Yn+1 = Yn +Φ(tn, Yn, h; ξn) , (35)

where ξn is independent of Y0, Y1, . . . , Yn, ξ0, ξ1, . . . , ξn−1

for all n ≥ 1.

3.2. Uniform-in-Time Bounded Moments

Under the following dissipative condition, the general SDE
(32) have uniform-in-time bounded moments.

Condition (A1) There exist some constants p∗ ∈ [1,∞),
µ̂∗, µ∗ ∈ (0,∞) such that drift and diffusion coefficients of
the SDE (32) satisfy, for all x ∈ Rd,

⟨x, f(x)⟩+ 2p∗−1
2 ∥g(x)∥2F ≤ µ̂∗ − µ∗|x|2. (36)

Moreover, the initial value obeys E
[
|x′

0|2p
∗]

< ∞.
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We highlight that constants used here (i.e., µ̂∗, µ∗) and
throughout this section might depend on the dimensions
d,m. When all established results in this section are applied
to the Langevin SDE and its numerical approximation, the
dependence will be explicitly given. Thanks to this con-
dition, one can easily derive the uniform-in-time bounded
moments for SDEs (32) whose proof is put in Appendix B.

Lemma 3.1. Let Condition (A1) hold and {Xt}t≥0 denote
the solution of SDE (32). Then for any p ∈ [1, p∗], it holds

sup
t≥0

E
[
|Xt|2p

]
≤ C∗

0E
[
|x′

0|2p
]
+ Ĉ∗

0 (p), (37)

where c∗ ∈ (0, 2µ∗), C∗
0 ≥ 1 and

Ĉ∗
0 (p) :=

2
c∗p

(
2p−2

(2µ∗−c∗)p

)p−1
µ̂∗p. (38)

Moreover, we need the following assumption on bounded
moments of numerical solutions.

Condition (A2) There exist some positive constants h0,
C∗

1 ≥ 1 and Ĉ∗
1 (p) such that the numerical solution (35)

has uniform-in-time moments, i.e., for any p ≥ 1, h ≤ h0,

sup
n∈N0

E
[
|Yn|2p

]
≤ C∗

1E
[
|x′

0|2p
]
+ Ĉ∗

1 (p). (39)

3.3. The Finite-Time Mean-Square Fundamental
Convergence Theorem for SDEs

This section revisits the finite-time mean-square fundamen-
tal convergence theorem. Following the idea of the strong
convergence theorem originally proposed by Milstein (Mil-
stein, 1988), we aim to reformulate a general mean-square
convergence theorem for one-step approximations of SDEs
(32). First, we assume the monotonicity and polynomial
growth conditions as follows.

Condition (A3) There exists a constant L∗ > 0 such that
drift and diffusion coefficients of SDEs (32) satisfy, ∀x, y ∈
Rd,

⟨x−y, f(x)−f(y)⟩+ 1
2∥g(x)−g(y)∥2F ≤ L∗|x−y|2. (40)

Condition (A4) There exists a positive constant L∗
f such that

the drift coefficients satisfy, for all x, y ∈ Rd, r0 ∈ [0,∞),

|f(x)− f(y)| ≤ L∗
f

(
1 + |x|r0 + |y|r0

)
|x− y|. (41)

Condition (A4) immediately implies that

|f(x)| ≤ L̂∗
f + 2L∗

f |x|r0+1, ∀x ∈ Rd (42)

where L̂∗
f = |f(0)|+ r0L

∗
f . Based on these two conditions,

one can easily obtain the next lemma, whose proof is put in
Appendix B.

Lemma 3.2. Let Conditions (A1), (A3), (A4) hold and let
Xt,x(t + θ), Xt,y(t + θ) be two solutions of SDEs (32)
starting from x, y. Let the uniform timestep h > 0 satisfy
2L∗h ≤ 1. Then for any t ≥ 0, θ > 0, the following
representations

St,x,y(t+ θ) :=Xt,x(t+ θ)−Xt,y(t+ θ),

Zt,x,y(t+ θ) :=St,x,y(t+ θ)− (x− y),
(43)

satisfy

E
[
|St,x,y(t+ h)|2

]
≤ (1 + 4L∗h)|x− y|2, (44)

E
[
|Zt,x,y(t+ h)|2

]
≤
(
6L∗ + 6L∗

f (Ĉ
∗
r0 + C∗

0 |x|2r0

+ C∗
0 |y|2r0)1/2

)
|x− y|2h,

(45)
where Ĉ∗

r0 is given by (79).

Now, we derive the following finite-time strong convergence
theorem.

Theorem 3.3. Let Conditions (A1)–(A4) hold and let the
uniform timestep h > 0 satisfy h ≤ 1

2L∗ ∧ h0 ∧ 1. For
any fixed n1 ∈ N, we let T := n1h. Let {Xt}t∈[0,T ] and
{Yn}n∈[n1] denote solutions of SDEs (32) and numerical
approximations (35), respectively. Suppose that the one-
step approximation (34) has local weak and strong error of
order p1 and p2, respectively, with p2 ≥ 1

2 , p1 ≥ p2+
1
2 , i.e.,

there exist some positive constants K̂∗
1 ,K

∗
1 , K̂

∗
2 ,K

∗
2 > 0

and r ≥ 1 such that for all 0 ≤ t ≤ T − h, x ∈ Rd,∣∣∣E[X(t, x; t+ h)− Y (t, x; t+ h)
]∣∣∣

≤
(
K̂∗

1 +K∗
1 |x|2r

)1/2

hp1 ,(
E
[
|X(t, x; t+ h)− Y (t, x; t+ h)|2

])1/2

≤
(
K̂∗

2 +K∗
2 |x|2r

)1/2

hp2 .

(46)

Then

sup
n∈[n1]

(
E
[
|X(0, x′

0; tn)− Y (0, x′
0; tn)|2

])1/2

≤C∗(T )
(
K̂∗ +K∗E

[
|x′

0|2r+r0
])1/2

hp2−1/2,

(47)

where
C∗(T ) := e

1
2 (1+10L∗+6L∗

f )T , (48)

and K̂∗ and K∗ are explicitly given by (103).

This theorem is proved in Appendix C. Similar results were
obtained by (Tretyakov & Zhang, 2013), where the param-
eter (e.g., T ) dependence in the error constants was not
explicitly shown. We mention that both finite-time conver-
gence theorems follow the original idea of (Milstein, 1988).
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3.4. Exponential Ergodicity in W2-Distance

In the present subsection, we assume that the general
SDEs (32) have exponential ergodicity. Let {Pt}t≥0 be the
Markov semigroup associated to the solutions {Xt}t≥0 of
SDE (32), which is defined by, for all x ∈ Rd and 0 ≤ s ≤ t

Ptϕ(x) := E
[
ϕ(Xs,x(t))

]
, ϕ ∈ Bb(Rd). (49)

We put some conditions on exponential ergodicity in W2-
distance of SDEs.

Condition (A5) Assume the semigroup {Pt}t≥0 associated
to SDE (32) has a unique invariant distribution Π. There
exists two positive constants K∗ and η∗ such that, for all
t ≥ 0,

W2(ν
′Pt,Π) ≤ K∗e−η∗tW2(ν

′,Π), (50)

where ν′ := L(x′
0) is the initial distribution.

In (Wang, 2020), some sufficient conditions are provided
on coefficients of SDEs such that the underlying SDEs have
exponential ergodicity in W2-distance. In particular, the
Langevin SDE (1) has such an exponential ergodicity prop-
erty in our non-convex setting.

3.5. The Uniform-in-Time Convergence Theorem

Under the above conditions, we are able to formulate the
uniform-in-time convergence theorem as follows.

Theorem 3.4. Let conditions of Theorem 3.3 and Condition
(A5) hold. Let {P̃n}n∈N0 be the semigroup associated to
the numerical scheme (35). Then for any n ∈ N0 and any
initial distribution ν′ = L(x′

0), it holds

W2(ν
′P̃n,Π) ≤ K̂∗

1h
p2− 1

2 + K̂∗
2e

−λ∗nh, (51)

where λ∗ := η∗

logK∗+1+η∗/(2L∗) and the constants K̂∗
1, K̂∗

2

are given by (122).

The proof is postponed to Appendix D.

4. Numerical Experiments
In this section, numerical results are performed to verify
the above theoretical finding. To this end, we consider two
target measures specified by the following two potentials:

a). Gaussian Mixture,

U1(x) =
1
2 |x− a|2 − log

(
1+ e−2⟨x,a⟩), x ∈ Rd, (52)

for a given a ∈ Rd.

b). Double-well potential,

U2(x) =
α
4 |x|

4 − β
2 |x|

2, x ∈ Rd. (53)
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We can directly show that the Gaussian mixture satisfies
Assumption 2.1 with µ = 1

2 , µ′d = 2|a|2, Assumption 2.8

with L′
0 = 0, L0 = 8|a|4

3 , Assumption 2.6 with L1 = 1 +
4|a|2 and the double-well potential with α = β = 1 satisfies
the Assumption 2.1 with µ = 1, µ′d = 1, Assumption
2.2 with L = 4

√
2 + 19/2, Assumption 2.12 with γ = 2

and L1 = 1, Assumption 2.14 with L′
0 = 0, L0 = 4,

γ1 = γ2 = 1. For these two cases, strongly convex outside
a ball is satisfied and thus the log-Sobolev inequality is
satisfied. Assumptions 2.1, 2.2, 2.6, 2.12 have been already
verified in Proposition 3.1 of (Neufeld et al., 2025) and
Example 2.5 in (Pang et al., 2025). In Appendix G, we give
a brief proof of Assumption 2.8 for Gaussian mixture and
Assumption 2.14 for the double-well potential.

In what follows we set x0 = 0, a ∈ Rd with |a| = 2 and
α = 1, β = 16, where all components of the a are equal.
We emphasize that the potential U1 of the Gaussian mixture
is non-convex in our setting (see Example 1 of (Dalalyan,
2017b) for a convex setting, i.e., |a| < 1).

To study the probability distributions, we fix the dimen-
sion d = 100, T = 6 and simulate 300 independent
Markov chains using LMC algorithm for each step size
h = {0.001, 0.005, 0.01, 0.05, 0.1}. In Figure 1(a) and
1(b), we present the density curves of the first components
for Gaussian mixture and double-well potential, respec-
tively.

Moving on to the convergence analysis, we run the LMC
algorithm (2) and pLMC algorithm (22) for the Langevin
SDE by different stepsizes h till T = 6. Here numerical
approximations are performed using five different stepsizes
h ∈ {2−5, 2−6, 2−7, 2−8, 2−9}. The exact solution is iden-
tified as the numerical one using a fine stepsize href = 2−13

and the expectations are approximated by computing aver-
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ages over 3000 samples. From Figures 1(c), 1(d), it is
observed that the convergence rate is of order 1.

5. Conclusion and Future Work
In the present article, we provide an error bound O(

√
dh) in

W2-distance for the classical LMC without log-concavity.
For the case when the gradient of the potential U is non-
globally Lipschitz with superlinear growth, modified LMC
samplers are introduced and analyzed, with a W2 error
bound obtained. These results are derived essentially based
on a newly developed non-convex theoretical framework of
uniform-in-time convergence for discretizations of general
SDEs. This framework can be also applied to other metrics
and higher order LMC sampling algorithms (Sabanis &
Zhang, 2019; Li et al., 2019), which is our ongoing work.
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A. Proofs of Lemmas in Section 2
Proof of Lemma 2.4. Under Assumption 2.1, one can easily check that, for any p∗ ≥ 1, Condition (A1) is fulfilled with

µ̂∗ = µ′d+ (2p∗ − 1)d, µ∗ = µ. (54)

Then Lemma 2.4 is a direct consequence of Lemma 3.1.

where K = ( 2ρL
1−e−2L )

1/2e
2
ρ ∨ e2L+ 2

ρ and η = − 2
ρ .

Proof of Lemma 2.9. Taking square on both sides of the LMC (2), one can use Assumption (2.1), (10) and the Cauchy-
Schwarz inequality to derive that, for h ≤ µ

4L2
1
∧ 1,

|Ȳn+1|2 =|Ȳn|2 + h2|∇U(Ȳn)|2 + 2h|ζn+1|2 − 2h⟨Ȳn,∇U(Ȳn)⟩+ 2
√
2h⟨Ȳn, ζn+1⟩ − 2

√
2hh⟨∇U(Ȳn), ζn+1⟩

≤|Ȳn|2 + 2h2|∇U(Ȳn)|2 + 4h|ζn+1|2 − 2h⟨Ȳn,∇U(Ȳn)⟩+ 2
√
2h⟨Ȳn, ζn+1⟩

≤|Ȳn|2 + 4L2
1h

2|Ȳn|2 + 4h|ζn+1|2 − 2µh|Ȳn|2 + 2
√
2h⟨Ȳn, ζn+1⟩+ (4L′2

1 + 2µ′)dh

≤(1− µh)|Ȳn|2 + 4h|ζn+1|2 + 2
√
2h⟨Ȳn, ζn+1⟩+ (4L′2

1 + 2µ′)dh.

(55)

Taking expectations on both sides of (55) we deduce

E
[
|Ȳn+1|2

]
≤(1− µh)E

[
|Ȳn|2

]
+ 4hE

[
|ζn+1|2

]
+ (4L′2

1 + 2µ′)dh

≤(1− µh)E
[
|Ȳn|2

]
+ (4 + 4L′2

1 + 2µ′)dh.
(56)

By iteration and by the assumption h ≤ 1
µ , one can use the inequality 1− x ≤ e−x, 0 ≤ x ≤ 1 to arrive at

E
[
|Ȳn+1|2

]
≤(1− µh)n+1E

[
|x0|2

]
+ (4 + 4L′2

1 + 2µ′)dh

n∑
i=0

(1− µh)i

≤e−µtn+1E[|x0|2] + 4+4L′2
1 +2µ′

µ d.

(57)

The proof is now completed.

B. Proofs of Lemmas in Section 3

Proof of Lemma 3.1. For every integer n ≥ 1, we first define a stopping time as follows:

τn := inf
{
s ≥ 0 : |Xs| ≥ n

}
. (58)

By using the Itô formula and the Cauchy-Schwarz inequality, we can derive that, for any t ≥ 0, ε1 > 0 and c∗ ∈ (0, 2µ∗),

ec
∗p(t∧τn)

(
ε1 + |Xt∧τn |2

)p
=
(
ε1 + |x′

0|2
)p

+ c∗p

∫ t∧τn

0

ec
∗ps

(
ε1 + |Xs|2

)p
ds+ 2p

∫ t∧τn

0

ec
∗ps

(
ε1 + |Xs|2

)p−1〈
Xs, f(Xs)

〉
ds

+ p

∫ t∧τn

0

ec
∗ps

(
ε1 + |Xs|2

)p−1∥∥g(Xs)
∥∥2
F

ds+ 2p(p− 1)

∫ t∧τn

0

ec
∗ps

(
ε1 + |Xs|2

)p−2
m∑

k=1

〈
Xs, g

k(Xs)
〉2

ds

+ 2p

∫ t∧τn

0

ec
∗ps

(
ε1 + |Xs|2

)p−1
m∑

k=1

〈
Xs, g

k(Xs)
〉

dW k
s

≤
(
ε1 + |x′

0|2
)p

+ c∗p

∫ t∧τn

0

ec
∗ps

(
ε1 + |Xs|2

)p
ds+ 2p

∫ t∧τn

0

ec
∗ps

(
ε1 + |Xs|2

)p−1
m∑

k=1

〈
Xs, g

k(Xs)
〉

dW k
s

+ p

∫ t∧τn

0

ec
∗ps

(
ε1 + |Xs|2

)p−1
(
2
〈
Xs, f(Xs)

〉
+ (2p− 1)

∥∥g(Xs)
∥∥2
F

)
ds.

(59)
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Taking expectations on both sides and letting ε1 → 0 yield

E
[
ec

∗p(t∧τn)|Xt∧τn |2p
]
≤E

[
|x′

0|2p
]
+ c∗pE

[ ∫ t∧τn

0

ec
∗ps

∣∣Xs

∣∣2pds
]
+ pE

[ ∫ t∧τn

0

ec
∗ps

∣∣Xs

∣∣2p−2

×
(
2
〈
Xs, f(Xs)

〉
+ (2p− 1)

∥∥g(Xs)
∥∥2
F

)
ds
]
,

(60)

where the property of the Itô integral was used that

E
[ ∫ t∧τn

0

ec
∗ps

∣∣Xs

∣∣2p−2
m∑

k=1

〈
Xs, g

k(Xs)
〉

dW k
s

]
= 0. (61)

Taking (36) into account, one can easily derive from (60) that

E
[
ec

∗p(t∧τn)|Xt∧τn |2p
]
≤E

[
|x′

0|2p
]
+ pE

[ ∫ t∧τn

0

(c∗ − 2µ∗)ec
∗ps

∣∣Xs

∣∣2pds
]
+ 2pE

[ ∫ t∧τn

0

µ̂∗ec
∗ps

∣∣Xs

∣∣2p−2
ds
]
.

(62)
It follows from the Young inequality that, for any ε2 > 0

µ̂∗∣∣Xs

∣∣2p−2 ≤ ε2
∣∣Xs

∣∣2p + 1
p

(
p−1
ε2p

)p−1
µ̂∗p. (63)

Setting ε2 := 2µ∗−c∗

2 , one can further insert (63) into (62) to obtain

E
[
ec

∗p(t∧τn)|Xt∧τn |2p
]
≤ E

[
|x′

0|2p
]
+ 2

c∗p

(
2p−2

(2µ∗−c∗)p

)p−1
µ̂∗p E

[
ec

∗p(t∧τn)
]
. (64)

Thanks to the Fatou lemma, we then let n → ∞ to attain

E
[∣∣Xt

∣∣2p] ≤ e−c∗ptE
[
|x′

0|2p
]
+ 2

c∗p

(
2p−2

(2µ∗−c∗)p

)p−1
µ̂∗p. (65)

Observing C∗
0 ≥ 1 ≥ e−c∗pt, one can easily obtain the desired assertion.

Proof of Lemma 3.2. We first prove (44). By using the Itô formula and the condition (40), we obtain for any h > 0,

E
[
|St,x,y(t+ h)|2

]
=E

[
|x− y|2

]
+ 2

∫ t+h

t

E
[
⟨Xt,x(s)−Xt,y(s), f (Xt,x(s))− f (Xt,y(s))⟩

]
ds

+

∫ t+h

t

E
[
∥g (Xt,x(s))− g (Xt,y(s))∥2F )

]
ds

≤E
[
|x− y|2

]
+ 2L∗

∫ t+h

t

E
[
|St,x,y(s)|2

]
ds.

(66)

The Gronwall inequality helps us to show

E
[
|St,x,y(t+ h)|2

]
≤ e2L

∗h|x− y|2. (67)

We notice that for any 0 < h ≤ 1
2L∗ ,

e2L
∗h =

∞∑
i=0

(2L∗h)i

i! = 1 + 2L∗h

∞∑
i=1

(2L∗h)i−1

i! ≤ 1 + 2L∗(e− 1)h ≤ 1 + 4L∗h. (68)

Inserting this into (67) yields (44). Regarding E[|Zt,x,y(t+ h)|2], by applying the Itô formula, we have

E
[
|Zt,x,y(t+ h)|2

]
=2

∫ t+h

t

E
[
⟨Zt,x,y(s), f (Xt,x(s))− f (Xt,y(s))⟩

]
ds

+

∫ t+h

t

E
[
∥g (Xt,x(s))− g (Xt,y(s)) ∥2F

]
ds.

(69)
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Bearing this in mind and noting
Zt,x,y(s) = Xt,x(t+ h)−Xt,y(s)− (x− y), (70)

one can further use the Cauchy-Schwarz inequality and (40) to derive

E
[
|Zt,x,y(t+ h)|2

]
=

∫ t+h

t

E
[
2
〈
Xt,x(s)−Xt,y(s), f (Xt,x(s))− f (Xt,y(s))

〉
+

∥∥g (Xt,x(s))− g (Xt,y(s))
∥∥2
F

]
ds

− 2

∫ t+h

t

E
[〈
x− y, f (Xt,x(s))− f (Xt,y(s))

〉]
ds

≤ 2L∗
∫ t+h

t

E
[
|Xt,x(s)−Xt,y(s)|2

]
ds︸ ︷︷ ︸

=:I1

+2|x− y|
∫ t+h

t

E
[
|f (Xt,x(s))− f (Xt,y(s)) |

]
ds︸ ︷︷ ︸

=:I2

.

(71)

In what follows, we handle the two terms in (71) separately. We first emply (67) as well as h ≤ 1
2L∗ to show

E
[
|Xt,x(s)−Xt,y(s)|2

]
≤ e2L

∗h|x− y|2 ≤ e|x− y|2 ≤ 3|x− y|2, (72)

which directly implies
I1 ≤ 6L∗|x− y|2h. (73)

Before coming to the estimate of I2, one can derive from (41) and the Hölder inequality that

E
[
|f (Xt,x(s))− f (Xt,y(s)) |

]
≤L∗

fE
[(
1 + |Xt,x(s)|r0 + |Xt,y(s)|r0

)∣∣Xt,x(s)−Xt,y(s)
∣∣]

≤L∗
f

(
E
[(
1 + |Xt,x(s)|r0 + |Xt,y(s)|r0

)2])1/2(
E
[
|Xt,x(s)−Xt,y(s)|2

])1/2

≤3L∗
f

(
1 + E

[
|Xt,x(s)|2r0

]
+ E

[
|Xt,y(s)|2r0

])1/2

|x− y|,

(74)

where we used (72) in the last step. By noting

E
[
|Xt,x(s)|2r0

]
= E

[
|Xt,y(s)|2r0

]
= 1, r0 = 0, (75)

and
E
[
|Xt,x(s)|2r0

]
≤

(
E
[
|Xt,x(s)|2

])r0
, E

[
|Xt,y(s)|2r0

]
≤

(
E
[
|Xt,y(s)|2

])r0
, r0 ∈ (0, 1), (76)

one derives from Lemma 3.1 and (a+ b)q ≤ aq + bq, a, b ≥ 0, q ∈ (0, 1) that

E
[
|Xt,x(s)|2r0

]
≤


1, r0 = 0,

C∗
0 |x|2r0 + (Ĉ∗

0 (1))
r0 , r0 ∈ (0, 1),

C∗
0 |x|2r0 + Ĉ∗

0 (r0), r0 ∈ [1,∞),

E
[
|Xt,y(s)|2r0

]
≤


1, r0 = 0,

C∗
0 |y|2r0 + (Ĉ∗

0 (1))
r0 , r0 ∈ (0, 1),

C∗
0 |y|2r0 + Ĉ∗

0 (r0), r0 ∈ [1,∞).
(77)

Inserting this into (74), one can easily see

E
[
|f (Xt,x(s))− f (Xt,y(s)) |

]
≤ 3L∗

f

(
Ĉ∗

r0 + C∗
0 |x|2r0 + C∗

0 |y|2r0
)1/2|x− y|, (78)

where

Ĉ∗
r0 :=


1, r0 = 0,

3 ∨ 3(Ĉ∗
0 (1))

r0 , r0 ∈ (0, 1),

3 ∨ 3(Ĉ∗
0 (r0)), r0 ∈ [1,∞).

(79)

This suffices to ensure
I2 ≤ 6L∗

f

(
Ĉ∗

r0 + C∗
0 |x|2r0 + C∗

0 |y|2r0
)1/2|x− y|2h. (80)

Plugging (73) and (80) into (71) shows

E
[
|Zt,x,y(t+ h)|2

]
≤

(
6L∗ + 6L∗

f

(
Ĉ∗

r0 + C∗
0 |x|2r0 + C∗

0 |y|2r0
)1/2)|x− y|2h, (81)

as required.
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C. Proof of Theorem 3.3

Proof of Theorem 3.3. By (33), we have

X0,x′
0
(tk+1)− Y0,x′

0
(tk+1) = Xtk,X(tk) (tk+1)− Ytk,Yk

(tk+1)

=
(
Xtk,X(tk) (tk+1)−Xtk,Yk

(tk+1)
)
+ (Xtk,Yk

(tk+1)− Ytk,Yk
(tk+1)) .

(82)

The first difference on the right-hand side of (82) is caused by different initial data. The second difference is the one-step
approximation error. Taking square and expectation on both sides gives

E
[ ∣∣X0,x′

0
(tk+1)− Y0,x′

0
(tk+1)

∣∣2 ]
=E

[
E
[∣∣Xtk,X(tk) (tk+1)−Xtk,Yk

(tk+1)
∣∣2∣∣∣Ftk

]]
︸ ︷︷ ︸

=:J1

+E
[
E
[∣∣Xtk,Yk

(tk+1)− Ytk,Yk
(tk+1)

∣∣2∣∣∣Ftk

]]
︸ ︷︷ ︸

=:J2

+ 2E
[
E
[ (

Xtk,X(tk) (tk+1)−Xtk,Yk
(tk+1)

)T (
Xtk,Yk

(tk+1)− Ytk,Yk
(tk+1)

)∣∣∣Ftk

]]
︸ ︷︷ ︸

=:J3

.

(83)

In the following we cope with the above three items separately. By the conditional version of (44), we first get

J1 ≤
(
1 + 4L∗h

)
E
[
|X (tk)− Yk|2

]
. (84)

In light of the conditional version of the second inequality in (46) and Condition (A2), one can easily treat J2 as follows

J2 ≤
(
K̂∗

2 +K∗
2E

[
|Yk|2r

])
h2p2

≤
(
K̂∗

2 +K∗
2

(
Ĉ∗

1 (r) + C∗
1E

[
|x′

0|2r
]))

h2p2

=
(
K̂∗

2 +K∗
2 Ĉ

∗
1 (r) +K∗

2C
∗
1E

[
|x′

0|2r
])

h2p2 .

(85)

In order to estimate J3 in (83), we first note that

Xtk,X(tk) (tk+1)−Xtk,Yk
(tk+1) = X (tk)− Yk + Ztk,X(tk),Yk

(tk+1). (86)

As a consequence,

J3 ≤ 2
∣∣∣E[E[(X (tk)− Yk

)T (
Xtk,Yk

(tk+1)− Ytk,Yk
(tk+1)

)∣∣∣Ftk

]]∣∣∣︸ ︷︷ ︸
=:J31

+ 2
∣∣∣E[E[Ztk,X(tk),Yk

(tk+1)
T
(
Xtk,Yk

(tk+1)− Ytk,Yk
(tk+1)

)∣∣∣Ftk

]]∣∣∣︸ ︷︷ ︸
=:J32

.
(87)

Since X(tk) − Yk is Ftk -measurable, the conditional version of the first inequality in (46), together with the Hölder
inequality and Condition (A2), leads to

J31 =2
∣∣∣E[(X (tk)− Yk

)TE[(Xtk,Yk
(tk+1)− Ytk,Yk

(tk+1)
)∣∣∣Ftk

]]∣∣∣
≤2

(
E
[∣∣X (tk)− Yk

∣∣2])1/2(
E
[∣∣∣E[(Xtk,Yk

(tk+1)− Ytk,Yk
(tk+1)

)∣∣∣Ftk

]∣∣∣2])1/2

≤2
(
E
[∣∣X (tk)− Yk

∣∣2])1/2(
K̂∗

1 +K∗
1E

[
|Yk|2r

])1/2

hp1

≤2
(
E
[∣∣X (tk)− Yk

∣∣2])1/2(
K̂∗

1 +K∗
1

(
Ĉ∗

1 (r) + C∗
1E

[
|x′

0|2r
]))1/2

hp1

≤E
[∣∣X (tk)− Yk

∣∣2]h+
(
K̂∗

1 +K∗
1 Ĉ

∗
1 (r) +K∗

1C
∗
1E

[
|x′

0|2r
])

h2p1−1.

(88)
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To handle J32, we employ the Hölder inequality to get

J32 ≤ 2E
[(

E
[∣∣Ztk,X(tk),Yk

(tk+1)
∣∣2∣∣∣Ftk

])1/2(
E
[∣∣Xtk,Yk

(tk+1)− Ytk,Yk
(tk+1)

∣∣2∣∣∣Ftk

])1/2
]
. (89)

Here we utilize the conditional version of (45) to show that

(
E
[∣∣Ztk,X(tk),Yk

(tk+1)
∣∣2∣∣∣Ftk

])1/2

≤
(
6L∗ + 6L∗

f

(
Ĉ∗

r0 + C∗
0 |X(tk)|2r0 + C∗

0 |Yk|2r0
)1/2)1/2

|X(tk)− Yk|h1/2. (90)

With this at hand, using the inequality
√
a+ b+ c ≤

√
a+

√
b+

√
c, a, b, c ≥ 0 and the conditional version of the second

inequality in (46), one can derive from (89) that

J32 ≤2E
[(

6L∗ + 6L∗
f

(
Ĉ∗

r0 + C∗
0 |X(tk)|2r0 + C∗

0 |Yk|2r0
)1/2)1/2∣∣X(tk)− Yk

∣∣(K̂∗
2 +K∗

2 |Yk|2r
)1/2

]
hp2+1/2

≤2E
[(
6L∗)1/2∣∣X(tk)− Yk

∣∣(K̂∗
2 +K∗

2 |Yk|2r
)1/2

+
(
6L∗

f

)1/2(
(Ĉ∗

r0)
1/2 + C∗

0 |X(tk)|r0 + C∗
0 |Yk|r0

)1/2∣∣X(tk)− Yk

∣∣(K̂∗
2 +K∗

2 |Yk|2r
)1/2

]
hp2+1/2

≤
(
6L∗ + 6L∗

f

)
E
[∣∣X(tk)− Yk

∣∣2]h+ E
[
K̂∗

2 +K∗
2 |Yk|2r

]
h2p2

+ E
[(

(Ĉ∗
r0)

1/2 + C∗
0 |X(tk)|r0 + C∗

0 |Yk|r0
)(

K̂∗
2 +K∗

2 |Yk|2r
)]

h2p2 .

(91)

By Condition (A2), one can deduce

E
[
K̂∗

2 +K∗
2 |Yk|2r

]
≤

(
K̂∗

2 +K∗
2 Ĉ

∗
1 (r) +K∗

2C
∗
1E

[
|x′

0|2r
])

. (92)

With regard to the third term in (91), by using the Young inequality, we obtain that, for any r1 ≥ 1,

E
[(

(Ĉ∗
r0)

1/2 + C∗
0 |X(tk)|r0 + C∗

0 |Yk|r0
)(

K̂∗
2 +K∗

2 |Yk|2r
)]

=(Ĉ∗
r0)

1/2K̂∗
2 + E

[
C∗

0 K̂
∗
2 |X(tk)|r0 + C∗

0 K̂
∗
2 |Yk|r0 +K∗

2 (Ĉ
∗
r0)

1/2|Yk|2r +K∗
2C

∗
0 |X(tk)|r0 |Yk|2r +K∗

2C
∗
0 |Yk|2r+r0

]
≤(Ĉ∗

r0)
1/2K̂∗

2 + 2r
2r+r0

C∗
0d

−r1
(
dr1K̂∗

2

) 2r+r0
2r + r0

2r+r0
C∗

0d
−r1E

[
|X(tk)|2r+r0

]
+ 2r

2r+r0
C∗

0d
−r1

(
dr1K̂∗

2

) 2r+r0
2r

+ r0
2r+r0

C∗
0d

−r1E
[
|Yk|2r+r0

]
+ r0

2r+r0
K∗

2 (Ĉ
∗
r0)

2r+r0
2r0 + 2r

2r+r0
K∗

2E
[
|Yk|2r+r0

]
+ r0

2r+r0
K∗

2C
∗
0E

[
|X(tk)|2r+r0

]
+ 2r

2r+r0
K∗

2C
∗
0E

[
|Yk|2r+r0

]
+K∗

2C
∗
0E

[
|Yk|2r+r0

]
=(Ĉ∗

r0)
1/2K̂∗

2 + 4r
2r+r0

C∗
0d

−r1
(
dr1K̂∗

2

) 2r+r0
2r + r0

2r+r0
K∗

2 (Ĉ
∗
r0)

2r+r0
2r0 + r0

2r+r0
C∗

0

(
d−r1 +K∗

2

)
E
[
|X(tk)|2r+r0

]
+
(

r0
2r+r0

C∗
0d

−r1 + 2r
2r+r0

K∗
2 + 2r

2r+r0
K∗

2C
∗
0 +K∗

2C
∗
0

)
E
[
|Yk|2r+r0

]
.

(93)
By virtue of Lemma 3.1, one can obtain that

E
[
|X(tk)|2r+r0

]
≤ C∗

0E
[
|x′

0|2r+r0
]
+ Ĉ∗

0 (2r + r0). (94)

In the same way, Condition (A2) implies

E
[
|Yk|2r+r0

]
≤ C∗

1E
[
|x′

0|2r+r0
]
+ Ĉ∗

1 (2r + r0). (95)
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Plugging these two estimates into (93) gives

E
[(

(Ĉ∗
r0)

1/2 + C∗
0 |X(tk)|r0 + C∗

0 |Yk|r0
)(

K̂∗
2 +K∗

2 |Yk|2r
)]

≤(Ĉ∗
r0)

1/2K̂∗
2 + 4r

2r+r0
C∗

0d
−r1

(
dr1K̂∗

2

) 2r+r0
2r + r0

2r+r0
K∗

2 (Ĉ
∗
r0)

2r+r0
2r0 + r0

2r+r0
C∗

0

(
d−r1 +K∗

2

)(
C∗

0E
[
|x′

0|2r+r0
]

+ Ĉ∗
0 (2r + r0)

)
+
(

r0
2r+r0

C∗
0d

−r1 + 2r
2r+r0

K∗
2 + 2r

2r+r0
K∗

2C
∗
0 +K∗

2C
∗
0

)(
C∗

1E
[
|x′

0|2r+r0
]
+ Ĉ∗

1 (2r + r0)
)

=(Ĉ∗
r0)

1/2K̂∗
2 + 4r

2r+r0
C∗

0d
−r1

(
dr1K̂∗

2

) 2r+r0
2r + r0

2r+r0
K∗

2 (Ĉ
∗
r0)

2r+r0
2r0 + r0

2r+r0
C∗

0

(
d−r1 +K∗

2

)
Ĉ∗

0 (2r + r0)

+
(

r0
2r+r0

C∗
0d

−r1 + 2r
2r+r0

K∗
2 + 2r

2r+r0
K∗

2C
∗
0 +K∗

2C
∗
0

)
Ĉ∗

1 (2r + r0) +
(

r0
2r+r0

(C∗
0 )

2d−r1 + r0
2r+r0

K∗
2 (C

∗
0 )

2

+ r0
2r+r0

C∗
0C

∗
1d

−r1 + 2r
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K∗
2C

∗
1 + 2r

2r+r0
K∗

2C
∗
0C

∗
1 +K∗

2C
∗
0C

∗
1

)
E
[
|x′

0|2r+r0
]
.

(96)

Inserting this and (92) into (91) directly implies

J32 ≤
(
6L∗ + 6L∗

f

)
E
[∣∣X (tk)− Yk

∣∣2]h+
(
K̂∗

2 +K∗
2 Ĉ

∗
1 (r) +K∗

2C
∗
1E

[
|x′

0|2r
])

h2p2 +
(
(Ĉ∗

r0)
1/2K̂∗

2

+ 4r
2r+r0
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(
dr1K̂∗
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∗
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(
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∗
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∗
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∗
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∗
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2r+r0
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∗
0C

∗
1 +K∗

2C
∗
0C

∗
1

)
E
[
|x′

0|2r+r0
])

h2p2 .

(97)

Putting estimates of J31 and J32 together, we derive from (87) that

J3 ≤
(
1 + 6L∗ + 6L∗

f

)
E
[
|X (tk)− Yk|2

]
h+

(
K̂∗

1 + K̂∗
2 +K∗

1 Ĉ
∗
1 (r) +K∗

2 Ĉ
∗
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(
K∗

1 +K∗
2
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C∗

1E
[
|x′
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+
(
(Ĉ∗

r0)
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(
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0
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Ĉ∗

0 (2r + r0)
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(
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K∗

2C
∗
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2C
∗
0

)
Ĉ∗

1 (2r + r0) +
(

r0
2r+r0

(C∗
0 )

2d−r1

+ r0
2r+r0

K∗
2 (C

∗
0 )

2 + r0
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∗
1d
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∗
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∗
0C

∗
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∗
0C

∗
1

)
E
[
|x′

0|2r+r0
])

h2p2 .

(98)
Collecting estimates of J1, J2 and J3 together and noting p1 ≥ p2 + 1/2, we immediately derive from (83) that

E
[
|X (tk+1)− Yk+1|2

]
≤
(
1 +

(
1 + 10L∗ + 6L∗

f

)
h
)
E
[
|X (tk)− Yk|2

]
+

(
K̂∗

1 + 2K̂∗
2 +K∗

1 Ĉ
∗
1 (r) + 2K∗

2 Ĉ
∗
1 (r)

+
(
K∗

1 + 2K∗
2

)
C∗

1E
[
|x′

0|2r
])

h2p2 +
(
(Ĉ∗

r0)
1/2K̂∗

2 + 4r
2r+r0

C∗
0d

−r1
(
dr1K̂∗

2

) 2r+r0
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+ r0
2r+r0

K∗
2 (Ĉ

∗
r0)

2r+r0
2r0 + r0

2r+r0
C∗

0

(
d−r1 +K∗

2

)
Ĉ∗

0 (2r + r0) +
(

r0
2r+r0

C∗
0d
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K∗
2

+ 2r
2r+r0

K∗
2C

∗
0 +K∗

2C
∗
0

)
Ĉ∗

1 (2r + r0) +
(

r0
2r+r0

(C∗
0 )

2d−r1 + r0
2r+r0

K∗
2 (C

∗
0 )

2

+ r0
2r+r0

C∗
0C

∗
1d

−r1 + 2r
2r+r0

K∗
2C

∗
1 + 2r

2r+r0
K∗

2C
∗
0C

∗
1 +K∗

2C
∗
0C

∗
1

)
E
[
|x′

0|2r+r0
])

h2p2 .

(99)
Again, using the Hölder inequality and the Young inequality yields

E
[
|x′

0|2r
]
≤

(
E
[
|x′

0|2r+r0
]) 2r

2r+r0 ≤ r0
2r+r0

+ 2r
2r+r0

E
[
|x′

0|2r+r0
]
, r0 ≥ 0. (100)

Keeping this in mind and by setting

e2k := E[|X (tk)− Yk|2], κ∗ := 1 + 10L∗ + 6L∗
f , (101)

we thus get

e2k+1 ≤
(
1 + κ∗h

)
e2k +

(
K̂∗ +K∗E

[
|x0|2r+r0

])
h2p2 , (102)
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where for any r1 ≥ 1,

K̂∗ :=K̂∗
1 + 2K̂∗

2 +K∗
1 Ĉ

∗
1 (r) + 2K∗

2 Ĉ
∗
1 (r) +

r0
2r+r0

(
K∗

1 + 2K∗
2

)
C∗

1 + (Ĉ∗
r0)

1/2K̂∗
2

+ 4r
2r+r0
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0d

−r1
(
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2
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2 (Ĉ
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r0)
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2r0 + r0

2r+r0
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0

(
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2

)
Ĉ∗

0 (2r + r0)

+
(
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0d
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2r+r0
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2 + 2r

2r+r0
K∗

2C
∗
0 +K∗

2C
∗
0

)
Ĉ∗

1 (2r + r0),

K∗ := 2r
2r+r0

(
K∗

1 + 2K∗
2

)
C∗

1 + r0
2r+r0

(C∗
0 )

2d−r1 + r0
2r+r0

K∗
2 (C

∗
0 )

2 + r0
2r+r0

C∗
0C

∗
1d

−r1

+ 2r
2r+r0

K∗
2C

∗
1 + 2r

2r+r0
K∗

2C
∗
0C

∗
1 +K∗

2C
∗
0C

∗
1 .

(103)

Noting e0 = 0 and by iteration one can obtain the desired assertion.

D. Proof of Theorem 3.4
Before proving Theorem 3.4, we quote a lemma from (Ye & Zhou, 2024).

Lemma D.1. Given n1 ∈ N, ε3 > 0, and q ∈ (0, 1). If a non-negative sequence {an}n∈N0 satisfies

an ≤ ε3 + qan−n1
, (104)

for n1 ≤ n ∈ N, then

an ≤ ε3
1−q + c0q

n
n1

−1, ∀n ∈ N0, (105)

where c0 = maxi∈[n1−1]0{ai}.

The proof of this lemma can be found in Lemma 3.18 of (Ye & Zhou, 2024).

Proof of Theorem 3.4. By using the triangle inequality, we obtain that, for any given n ≥ n1,

W2

(
ν′P̃n,Π

)
≤ W2

(
ν′P̃n−n1

P̃n1
, ν′P̃n−n1

Ptn1

)
+W2

(
ν′P̃n−n1

Ptn1
,Π

)
. (106)

With regard to W2(ν
′P̃n−n1Ptn1

,Π), by using Condition (A5), we derive

W2

(
ν′P̃n−n1

Ptn1
,Π

)
≤ K∗e−η∗n1hW2

(
ν′P̃n−n1

,Π
)
, ∀n ≥ n1. (107)

For a given stepsize h > 0, we choose

n1 :=
⌈
logK∗+1

η∗h

⌉
≥ logK∗+1

η∗h , (108)

such that
K∗e−η∗n1h ≤ 1

e . (109)

As a result,
W2

(
ν′P̃n−n1

Ptn1
,Π

)
≤ 1

eW2

(
ν′P̃n−n1

,Π
)
, ∀n ≥ n1. (110)

Next we treat the first term in (106). Noting that

ν′P̃n−n1
P̃n1

= L
(
Y (0, Yn−n1

; tn1
)
)
, ν′P̃n−n1

Ptn1
= L

(
X(0, Yn−n1

; tn1
)
)
, (111)

recalling the definition of W2-distance and employing Theorem 3.3 as well as Condition (A2) lead us to, for any n ≥ n1,

W2
2

(
ν′P̃n−n1

P̃n1
, ν′P̃n−n1

Ptn1

)
≤E

[∣∣X(0, Yn−n1
; tn1

)− Y (0, Yn−n1
; tn1

)
∣∣2]

≤(C∗(tn1
))2

(
K̂∗ +K∗E

[
|Yn−n1

|2r+r0
])

h2p2−1

≤(C∗(tn1
))2

(
K̂∗ +K∗(Ĉ∗

1 (r +
r0
2 ) + C∗

1E
[
|x′

0|2r+r0
]))

h2p2−1

=(C∗(tn1
))2

(
K̂∗ +K∗Ĉ∗

1 (r +
r0
2 ) +K∗C∗

1E
[
|x′

0|2r+r0
])

h2p2−1,

(112)
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which directly implies, for any n ≥ n1,

W2

(
ν′P̃n−n1 P̃n1 , ν

′P̃n−n1Ptn1

)
≤C∗(tn1)

(
K̂∗ +K∗Ĉ∗

1 (r +
r0
2 ) +K∗C∗

1E
[
|x′

0|2r+r0
])1/2

hp2−1/2. (113)

As h ≤ 1
2L∗ , one can derive that

tn1
= n1h ≤

(
logK∗+1

η∗h + 1
)
h ≤ logK∗+1

η∗ + 1
2L∗ =: χ∗. (114)

Recalling (48), one can easily see that C∗(tn1
) ≤ C∗(χ∗), and therefore, for any n ≥ n1,

W2

(
ν′P̃n−n1

P̃n1
, ν′P̃n−n1

Ptn1

)
≤C∗(χ∗)

(
K̂∗ +K∗Ĉ∗

1 (r +
r0
2 ) +K∗C∗

1E
[
|x′

0|2r+r0
])1/2

hp2−1/2. (115)

Putting (110) and (115) together, we derive from (106) that, for any n ≥ n1,

W2

(
ν′P̃n,Π

)
≤C∗(χ∗)

(
K̂∗ +K∗Ĉ∗

1 (r +
r0
2 ) +K∗C∗

1E
[
|x′

0|2r+r0
])1/2
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eW2

(
ν′P̃n−n1 ,Π

)
. (116)

Utilizing Lemma D.1 acquires, for any n ∈ N0,

W2

(
ν′P̃n,Π

)
≤ 2C∗(χ∗)

(
K̂∗ +K∗Ĉ∗

1 (r +
r0
2 ) +K∗C∗

1E
[
|x′

0|2r+r0
])1/2

hp2−1/2 + e1−
n
n1 sup

k∈[n1−1]0

W2

(
ν′P̃k,Π

)
.

(117)
Recalling the definition of W2-distance and using Lemma 3.1 and Condition (A2) lead to

sup
k∈[n1−1]0

W2

(
ν′P̃k,Π

)
≤

(
2 sup
k∈N0

E
[
|Yk|2

]
+ 2

∫
Rd

|x|2Π(dx)
)1/2

≤
(
2
(
Ĉ∗

0 (1) + Ĉ∗
1 (1)

)
+ 2

(
C∗

0 + C∗
1

)
E
[
|x′

0|2
])1/2

.

(118)
According to (108), one can easily see that

n
n1

≥ n
logK∗+1

η∗h +1
≥ η∗nh

logK∗+1+
η∗

2L∗

=: λ∗nh, (119)

implying
e−

n
n1 ≤ e−λ∗nh. (120)

Plugging this and (118) into (117) yields

W2

(
ν′P̃n,Π

)
≤ K̂∗

1h
p2−1/2 + K̂∗

2e
−λ∗nh, ∀n ≥ 0, (121)

where

K̂∗
1 :=2C∗(χ∗)

(
K̂∗ +K∗Ĉ∗

1 (r +
r0
2 ) +K∗C∗

1E
[
|x′

0|2r+r0
])1/2

,

K̂∗
2 :=e

(
2
(
Ĉ∗

0 (1) + Ĉ∗
1 (1)

)
+ 2

(
C∗

0 + C∗
1

)
E
[
|x′

0|2
])1/2

.

(122)

We thus get the desired assertion.

E. Proofs of Main Results for LMC
In this section, we list auxiliary lemmas which will be used to prove our main results. We now carry out the error analysis of
LMC (2). The one-step LMC approximation Ȳ is defined by

Ȳ (t, x; t+ h) := x−∇U(x)h+
√
2(Wt+h −Wt). (123)

Equipped with Assumptions 2.6, 2.8, one can prove one-step strong and weak errors as follows.
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Lemma E.1 (One-step errors analysis of LMC). Let Assumptions 2.1, 2.6, 2.8 hold and let X(t, h; t+h) denote the solution
to the Langevin SDE (1) at t+ h, starting from the initial value x at t. Then the one-step LMC (123) has local weak and
strong errors of order 2 and 1.5, respectively, i.e., for any t ≥ 0, 0 < h < 1 and x ∈ Rd,∣∣E[X(t, x; t+ h)− Ȳ (t, x; t+ h)

]∣∣ ≤(
K̂1̄ +K1̄|x|2

)1/2
h2,(

E
[∣∣X(t, x; t+ h)− Ȳ (t, x; t+ h)

∣∣2])1/2

≤
(
K̂2̄ +K2̄|x|2

)1/2
h

3
2 ,

(124)

where

K̂1̄ :=4
(
2+2µ′

c L2
0 + L′2

0 + 2+2µ′

c L4
1 + L2

1L
′2
1

)
d, K1̄ := 4(L2

0 + L4
1), (125)

K̂2̄ :=4
(
2+2µ′

c L4
1 + 2L2

1L
′2
1 + L2

1

)
d, K2̄ := 4L4

1. (126)

Proof. We first notice that

X(t, x; t+ h)− Ȳ (t, x; t+ h) = −
∫ t+h

t

(
∇U(X(t, x; s))−∇U(x)

)
ds, (127)

where the Itô formula gives

∇U(X(t, x; s)) =∇U(x)−
∫ s

t

(
∇2U(X(t, x; r))∇U(X(t, x; r)) +∇(∆(U(X(t, x; r))))

)
dr

+
√
2

∫ s

t

∇2U(X(t, x; r)) dWr.

(128)

Then taking expectation leads to∣∣E[X(t, x; t+ h)− Ȳ (t, x; t+ h)
]∣∣ =∣∣∣E[ ∫ t+h

t

∫ s

t

(
∇2U(X(t, x; r))∇U(X(t, x; r)) +∇(∆(U(X(t, x; r))))

)
drds

]∣∣∣
≤
∫ t+h

t

∫ s

t

E
[
|∇2U(X(t, x; r))∇U(X(t, x; r)) +∇(∆(U(X(t, x; r))))|

]
drds.

(129)
Thanks to (10), (13), Assumption 2.8 and Lemma 2.4, we arrive at∣∣E[X(t, x; t+ h)− Ȳ (t, x; t+ h)

]∣∣
≤
∫ t+h

t

∫ s

t

(
2E

[∣∣∇2U(X(t, x; r))∇U(X(t, x; r))
∣∣2 + ∣∣∇(∆(U(X(t, x; r))))

∣∣2])1/2

drds

≤
∫ t+h

t

∫ s

t

(
2E

[
2L2

1L
′2
1 d+ 2L4

1

∣∣X(t, x; r)
∣∣2 + 2L′2

0 d+ 2L2
0

∣∣X(t, x; r)
∣∣2])1/2

drds

≤
∫ t+h

t

∫ s

t

(
4(L2

0 + L4
1)E

[∣∣X(t, x; r)
∣∣2]+ 4(L′2

0 + L2
1L

′2
1 )d

)1/2

drds

≤
(
4(L2

0 + L4
1)(

2+2µ′

c d+ |x|2) + 4(L2
1L

′2
1 + L′2

0 )d
)1/2

h2

=
(
4
(
2+2µ′

c L2
0 + L′2

0 + 2+2µ′

c L4
1 + L2

1L
′2
1

)
d+ 4(L2

0 + L4
1)|x|2

)1/2

h2.

(130)

The first assertion of (124) is thus validated. Recalling (127), one can use the Hölder inequality, the Lipschitz condition (9)
to derive

E
[∣∣X(t, x; t+ h)− Ȳ (t, x; t+ h)

∣∣2] ≤h

∫ t+h

t

E
[∣∣∇U(X(t, x; s))−∇U(x)

∣∣2] ds

≤L2
1h

∫ t+h

t

E
[∣∣X(t, x; s)− x

∣∣2] ds,

(131)

where

X(t, x; s)− x =

∫ s

t

−∇U(Xt,x(r)) dr +
∫ s

t

√
2 dWr. (132)
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As a result, using (10) yields, for any s ∈ [t, t+ h],

E
[
|X(t, x; s)− x|2

]
≤2

(
E
[∣∣∣∣ ∫ s

t

−∇U(Xt,x(r)) dr
∣∣∣∣2]+ E

[∣∣∣∣ ∫ s

t

√
2 dWr

∣∣∣∣2])
≤2h

∫ s

t

E
[
|∇U(Xt,x(r))|2

]
dr + 4dh

≤4L2
1h

∫ s

t

E
[
|Xt,x(r)|2

]
dr + 4L

′2
1 dh+ 4dh

≤
(
4( 2+2µ′

c L2
1 + L

′2
1 + 1)d+ 4L2

1|x|2
)
h.

(133)

Keeping this in mind, we derive from (131) that

E
[∣∣X(t, x; t+ h)− Ȳ (t, x; t+ h)

∣∣2] ≤ (
4
(
2+2µ′

c L4
1 + 2L2

1L
′2
1 + L2

1

)
d+ 4L4

1|x|2
)
h3, (134)

as required.

Armed with Lemma E.1 and by verifying all Conditions (A1)–(A4) for the Langevin dynamics (1), one can derive the
following error bound of LMC in finite time from Theorem 3.3.

Lemma E.2 (Error analysis of LMC in finite time). Let Assumptions 2.1, 2.6, 2.8 hold and let {Xt}t≥0 denote the solution
of the Langevin SDE (1). If the timestep satisfies h ≤ 1

2L ∧ µ
4L2

1
∧ 1

µ ∧ 1, then for a fixed n1 ∈ N and denoting T := n1h,
the LMC (2) has global mean-square error of order one in finite time, i.e.,

sup
n∈[n1]

(
E
[∣∣Xtn − Ȳn

∣∣2])1/2

≤ C̄(T )
(
K̂L +KLE[|x0|2]

)1/2
h, (135)

where C̄(T ) and K̂L, KL are given by (143) and (144), respectively.

Proof. To apply Theorem 3.3, we have to verify all conditions imposed there. By Assumption 2.1, Condition (A1) holds
true with

µ̂∗ = µ′d+ (2p∗ − 1)d, µ∗ = µ (136)

for any p∗ ≥ 1. Recalling Lemma 2.9, one can easily see that Condition (A2) is fulfilled with

h0 = µ
4L2

1
∧ 1

µ ∧ 1, C∗
1 := 1 ≥ e−µtn , Ĉ∗

1 (1) =
4+4L′2

1 +2µ′

µ d. (137)

By Assumption 2.2, Condition (A3) holds true with
L∗ = L. (138)

Similarly, Assumption 2.6 implies that Condition (A4) is satisfied with

r0 = 0, L∗
f = 1

3L1. (139)

Moreover, by Lemma 2.4, we obtain that Lemma 3.1 holds true with

C∗
0 := 1 ≥ e−cpt Ĉ∗

0 (p) =
2(2p−1+µ′)p

cp

(
2p−2

(2µ−c)p

)p−1
dp. (140)

In light of Lemma E.1, one can verify that (46) in Theorem 3.3 holds true with

r = 1, r1 = 0, K̂∗
1 = K̂1̄, K∗

1 = K1̄, p1 = 2, K̂∗
2 = K̂2̄, K∗

2 = K̂2̄, p2 = 3
2 . (141)

All in all, one can derive from Theorem 3.3 that(
E
[∣∣Xtn − Ȳn

∣∣2])1/2

≤ e
1
2 (1+10L+2L1)T

((
K̂1̄ + 5K̂2̄

)
+

(4+4L′2
1 +2µ′)d
µ

(
K1̄ + 5K2̄

)
+

(
K1̄ + 5K2̄

)
E[|x0|2]

)1/2

h.

(142)
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As a consequence, the desired assertion (135) is validated by setting

C̄(T ) := e
1
2 (1+10L+2L1)T , (143)

and

K̂L :=
(
K̂1̄ + 5K̂2̄

)
+

(4+4L′2
1 +2µ′)d
µ

(
K1̄ + 5K2̄

)
=
(
4
(
2+2µ′

c L2
0 + L′2

0 + 2+2µ′

c L4
1 + L2

1L
′2
1

)
+ 20

(
2+2µ′

c L4
1 + 2L2

1L
′2
1 + L2

1

)
+

(4+4L′2
1 +2µ′)d
µ

(
4L2

0 + 24L4
1

))
d,

KL :=
(
K1̄ + 5K2̄

)
=

(
4L2

0 + 24L4
1

)
.

(144)

Next we aim to prove the main result of the LMC, by using Theorem 3.4.

Proof of Theorem 2.10. Except for Condition (A5), all conditions in Theorem 3.4 have been verified previously. In view of
Proposition 2.5, Condition (A5) holds true with

K∗ = K, η∗ = η. (145)

By means of Theorem 3.4, we have

W2(νp̄n, π) ≤ K̂1̄h+ K̂2̄e
−λnh, ∀n ∈ N0, (146)

where

λ := η
logK+1+η/(2L) , K̂1̄ := 2C̄(χ)

(
K̂L +

4+4L′2
1 +2µ′

µ KLd+KLE[|x0|2]
)1/2

,

χ := logK+1
η + 1

2L , K̂2̄ := 2e
((

1+µ′

c +
2+2L′2

1 +µ′

µ

)
d+ E[|x0|2]

)1/2

.

(147)

In view of Assumption 2.7 and (143), (144), one can obtain the desired assertion (15), by setting

C̄1 :=2e
1
2 (1+10L+2L1)(

log K+1
η + 1

2L1
)
(
4
(
2+2µ′

c L2
0 + L′2

0 + 2+2µ′

c L4
1 + L2

1L
′2
1

)
+ 20

(
2+2µ′

c L4
1 + 2L2

1L
′2
1 + L2

1

)
+

4+4L′2
1 +2µ′

µ

(
8L2

0 + 48L4
1

)
+
(
4L2

0 + 24L4
1

)
σ1

)1/2

,

C̄2 :=2e
(

1+µ′

c +
2+2L′2

1 +µ′

µ + σ1

)1/2

.

(148)

We thus complete this proof.

Proof of Proposition 2.11. Given an error tolerance ϵ > 0, by means of Theorem 2.10, one can choose k to be large enough
and h to be small enough such that

C̄1

√
de−λkh ≤ ϵ

2 , C̄2

√
dh ≤ ϵ

2 , (149)

ensuing
W2

(
νp̄k, π

)
≤ ϵ. (150)

Solving the first term of inequality (149) shows

k ≥ 1
λh log

(
2C̄1

√
d

ϵ

)
, (151)

and second part of inequality (149) shows
1
h ≥ 2C̄2

√
d

ϵ . (152)

Inserting this into (151) yields
k ≥ 1

λ · 2C̄2

√
d

ϵ · log
(

2C̄1

√
d

ϵ

)
= Õ

(√
d
ϵ

)
, (153)

as claimed.
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F. Proofs of Main Results for Modified LMC
The organization of this section is similar to the previous section. Clearly, The one-step pLMC scheme is given by

Y̌ (t, x; t+ h) := T h(x)−∇U(T h(x))h+
√
2(Wt+h −Wt). (154)

In the following we prove some useful properties of the pLMC algorithm (22).
Lemma F.1. Let Assumption 2.12 hold and let T h be defined as (23). Then, for all x ∈ Rd, the following estimates hold
true

|T h(x)| ≤ min
{
|x|, ϑd

1
2(γ+1)h− 1

2(γ+1)

}
, |∇U(T h(x))| ≤ (L′

1 + 2L1)ϑ
γ+1d1/2h−1/2. (155)

The proof is straightforward, which can also be found in Lemma 3.3 (Pang et al., 2025).
Lemma F.2. Let γ > 0 be given in Assumption 2.12 and let T h be defined as (23). Then, for all x ∈ Rd, we have

|x− T h(x)| ≤ 2ϑ−4γ−4d−2h2|x|4γ+5. (156)

The proof of this lemma can be found in Lemma 5.2 of (Pang et al., 2025).

Thanks to Assumptions 2.12 and 2.14, we can prove one-step strong and weak errors as follows.
Lemma F.3 (One-step errors analysis of pLMC). Let Assumptions 2.1, 2.12, 2.14 hold and let X(t, h; t+ h) denote the
solution to the Langevin SDE (1) at t+ h, starting from the initial value x at t. Then the one-step pLMC (154) has local
weak and local strong errors of order 2 and 1.5, respectively, i.e., for any t ≥ 0, 0 < h < 1 and x ∈ Rd,∣∣E[X(t, x; t+ h)− Y̌ (t, x; t+ h)

]∣∣ ≤(
K̂1̌ +K1̌|x|10γ+10

)1/2
h2,(

E
[∣∣X(t, x; t+ h)− Y̌ (t, x; t+ h)

∣∣2])1/2

≤
(
K̂2̌ +K2̌|x|10γ+10

)1/2
h

3
2 ,

(157)

where K̂1̌ := Cd5γ+1 , K1̌ := Cd−4, K̂2̌ := Cd5γ+1, K2̌ := Cd−4 with the uniform constant C :=
C(µ, µ′, c, γ, ϑ,L0,L′

0,L1,L′
1) not depending on d.

Proof. Noticing that

X(t, x; t+ h)− Y̌ (t, x; t+ h) = x− T h(x)−
∫ t+h

t

(
∇U(X(t, x; s))−∇U(T h(x))

)
ds, (158)

one can use the Itô formula to derive

X(t, x; t+ h)− Y̌ (t, x; t+ h) =−
∫ t+h

t

∫ s

t

(
∇2U(X(t, x; r))∇U(X(t, x; r)) +∇(∆(U(X(t, x; r))))

)
drds

+
√
2

∫ t+h

t

∫ s

t

∇2U(X(t, x; r)) dWrds+
(
x− T h(x)

)
−

(
∇U(x)−∇U(T h(x))

)
h.

(159)
Taking expectation on both sides and using the Hölder inequality, Lemmas F.1, F.2, Assumption 2.12 yield∣∣E[X(t, x; t+ h)− Y̌ (t, x; t+ h)

]∣∣
≤
∣∣∣∣E[ ∫ t+h

t

∫ s

t

∇2U(X(t, x; r))∇U(X(t, x; r)) +∇(∆(U(X(t, x; r)))) drds
]∣∣∣∣

+
∣∣x− T h(x)

∣∣+ ∣∣∇U(x)−∇U(T h(x))
∣∣h

≤
∫ t+h

t

∫ s

t

E
[∣∣∇2U(X(t, x; r))∇U(X(t, x; r))

∣∣] drds+
∫ t+h

t

∫ s

t

E
[∣∣∇(∆(U(X(t, x; r))))

∣∣] drds

+ 2ϑ−4γ−4d−2|x|4γ+5h2 + L1

(
1 + |x|γ + |T h(x)|γ

)∣∣∣x− T h(x)
∣∣∣h

≤
∫ t+h

t

∫ s

t

(
E
[∣∣∇2U(X(t, x; r))∇U(X(t, x; r))

∣∣2])1/2

drds+
∫ t+h

t

∫ s

t

(
E
[∣∣∇(∆(U(X(t, x; r))))

∣∣2])1/2

drds

+ 2ϑ−4γ−4d−2|x|4γ+5h2 + 2L1

(
1 + |x|γ + ϑγd

γ
2(γ+1)h− γ

2(γ+1)

)
ϑ−4γ−4d−2|x|4γ+5h3.

(160)
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By using (18), (19), Lemma 2.4 and the Young inequality, we have

E
[∣∣∇2U(X(t, x; r))∇U(X(t, x; r))

∣∣2] ≤L2
1E

[(
1 + |X(t, x; r)|2γ

)∣∣∇U(X(t, x; r))
∣∣2]

≤2L2
1E

[(
1 + |X(t, x; r)|2γ

)(
L′2
1 d+ 4L2

1|X(t, x; r)|2γ+2
)]

≤C
(
d2γ+1 + E

[
|X(t, x; r)|4γ+2

])
≤C

(
d2γ+1 + |x|4γ+2

)
,

(161)

where C := C(µ, µ′, c, γ,L1,L′
1). Similarly, one can utilize Assumption 2.14 to attain

E
[∣∣∇(∆(U(X(t, x; r))))

∣∣2] ≤ 2
(
L′2
0 d

γ+1 + L2
0d

γ1E
[
|X(t, x; r)|2γ2

])
≤ C

(
dγ+1 + |x|2γ+1

)
, (162)

where C := C(µ, µ′, c, γ,L0,L0). Thanks to the fact d
γ

2(γ+1) ≤ d
γ
2 and the Young inequality

dγ/2|x|4γ+5 ≤ γ
5γ+5d

(5γ+5)/2 + 4γ+5
5γ+5 |x|

5γ+5, (163)

one can deduce

2ϑ−4γ−4d−2|x|4γ+5h2 + 2L1

(
1 + |x|γ + ϑγd

γ
2(γ+1)h− γ

2(γ+1)

)
ϑ−4γ−4d−2|x|4γ+5h3

≤C
(
d−2|x|4γ+5 + d−2|x|5γ+5 + d−2d

γ
2(γ+1) |x|4γ+5

)
h2

≤C
(
d5γ+1 + d−4|x|10γ+10

)1/2
h2,

(164)

where C := C(γ, ϑ,L1,L′
1). Putting these estimates together, we derive from (160) that∣∣E[X(t, x; t+ h)− Y̌ (t, x; t+ h)

]∣∣ ≤ C
(
d5γ+1 + d−4|x|10γ+10

)1/2
h2, (165)

where C := C(µ, µ′, c, γ, ϑ,L0,L′
0,L1,L′

1). The first assertion of (157) is thus comfirmed. Next, taking square and then
expectation on both sides of (158), one can use Assumption 2.12, the Hölder inequality and Lemma F.2 to obtain

E
[∣∣X(t, x; t+ h)− Y̌ (t, x; t+ h)

∣∣2]
≤2

∣∣x− T h(x)
∣∣2 + 2E

[∣∣∣∣ ∫ t+h

t

(
∇U(X(t, x; s))−∇U(T h(x))

)
ds
∣∣∣∣2]

≤4ϑ−8γ−8d−4|x|8γ+10h4 + 4h

∫ t+h

t

E
[∣∣∣∇U(x)−∇U(T h(x))

∣∣∣2]+ E
[∣∣∣∇U(X(t, x; s))−∇U(x)

∣∣∣2] ds

≤4ϑ−8γ−8d−4|x|8γ+10h4 + 16L2
1

(
1 + |x|2γ + ϑ2γd

γ
γ+1h− γ

γ+1
)
ϑ−8γ−8d−4|x|8γ+10h4

+ 4L1h

∫ t+h

t

E
[∣∣∣(1 + |x|γ + |X(t, x; s)|γ

)
|X(t, x; s)− x|

∣∣∣2] ds.

(166)

Using the Young inequality yields

4ϑ−8γ−8d−4|x|8γ+10h4 + 16L2
1

(
1 + |x|2γ + ϑ2γd

γ
γ+1h− γ

γ+1
)
ϑ−8γ−8d−4|x|8γ+10h4

≤C
(
d−4|x|8γ+10 + d−4|x|10γ+10 + d−4d

γ
γ+1 |x|8γ+10

)
h3

≤C
(
d5γ+1 + d−4|x|10γ+10

)
h3,

(167)

where C := C(γ, ϑ,L1,L′
1). Now, we estimate the third term in (166). It follows from Lemma 2.4, (18) that, for q ≥ 1,

E
[
|X(t, x; s)− x|2q

]
≤22q−1

(
E
[∣∣∣∣ ∫ s

t

−∇U(Xt,x(r)) dr
∣∣∣∣2q]+ E

[∣∣∣∣ ∫ s

t

√
2 dWr

∣∣∣∣2q])
≤22q−1h2q−1

∫ s

t

E
[
|∇U(Xt,x(r))|2q

]
dr + 23q−1(2q − 1)!!dqhq

≤C
(
dq + |x|2q(γ+1)

)
hq,

(168)
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where C := C(µ, µ′, c,L1,L′
1, q). Bearing this in mind and using the Hölder inequality and Lemma 2.4 give∫ t+h

t

E
[∣∣∣(1 + |x|γ + |X(t, x; s)|γ

)
|X(t, x; s)− x|

∣∣∣2]ds

≤
∫ t+h

t

(
E
[(
1 + |x|γ + |X(t, x; s)|γ

) 4γ+2
γ

]) γ
2γ+1

(
E
[∣∣X(t, x; s)− x

∣∣ 4γ+2
γ+1

]) γ+1
2γ+1

ds

≤C
(
d2γ+1 + |x|4γ+2

)1/2
h2,

(169)

where C := C(µ, µ′, c, γ,L1,L′
1). Collecting (167), (169) together, one can derive from (166) that

E
[∣∣X(t, x; t+ h)− Y̌ (t, x; t+ h)

∣∣2] ≤ C
(
d5γ+1 + d−4|x|10γ+10

)
h3, (170)

where C := C(µ, µ′, c, γ, ϑ,L0,L′
0,L1,L′

1). Now the second assertion in (157) is proved.

Equipped with Lemma F.3, one can follow a similar line to Lemma E.2 to prove the error analysis of pLMC in finite time.

Lemma F.4 (Error analysis of pLMC in finite time). Let Assumptions 2.1, 2.2, 2.12, 2.14 hold and let {Xt}t≥0 denote the
solution of the Langevin SDE (1). If the timestep satisfies h ≤ 1

2L ∧ 1
2µ ∧ 2µ

µ+2(L′
1+2L1)2

∧ 1, then for a fixed n1 ∈ N and
denoting T := n1h, the pLMC (22) has global mean-square error of order one, i.e.,

sup
n∈[n1]

(
E
[∣∣Xtn − Y̌n

∣∣2])1/2

≤ Č(T )
(
K̂p +KpE[|x0|11γ+10]

)1/2
h, (171)

where Č(T ), K̂p and Kp are given by (178).

Proof. Owing to Assumption 2.1, Condition (A1) holds true with

µ̂∗ = µ′d+ (2p∗ − 1)d, µ∗ = µ (172)

for any p∗ ≥ 1. In view of Lemma 2.15, Condition (A2) is fulfilled with

h0 = 1
2µ ∧ 2µ

µ+2(L′
1+2L1)2

∧ 1, C∗
1 = 1 ≥ e−

µ
2 t, Ĉ∗

1 (p) = C1̌d
p. (173)

By Assumptions 2.2 and 2.12, Conditions (A3) and (A4) hold true with

L∗ = L, r0 = γ, L∗
f = L1. (174)

Additionally, taking Lemma 2.4 into account, Lemma 3.1 holds true with

C∗
0 := 1 ≥ e−cpt Ĉ∗

0 (p) =
2(2p−1+µ′)p

cp

(
2p−2

(2µ−c)p

)p−1
dp. (175)

In light of Lemma F.4, one can verify that (46) in Theorem 3.3 holds with

r = 5γ + 5, r1 = 4, K̂∗
1 = K̂1̌, K∗

1 = K1̌, p1 = 2, K̂∗
2 = K̂2̌, K∗

2 = K2̌, p2 = 3
2 . (176)

With these arguments at hand, one can apply Theorem 3.3 to acquire(
E
[∣∣Xtn − Y̌n

∣∣2])1/2

≤ e
1
2 (1+10L+6L1)T

(
Čd11γ/2+1 + Čd−4E[|x0|11γ+10]

)1/2

h, (177)

where Č := C(µ, µ′, c, γ, ϑ, L,L0,L′
0,L1,L′

1). Evidently, the desired assertion follows, with

Č(T ) := e
1
2 (1+10L+6L1)T , K̂p := Čd11γ/2+1, Kp := Čd−4. (178)
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Proof of Theorem 2.16. Using the same technique as the proof of Theorem 2.10, we can obtain the non-asymptotic error
bound of pLMC (22). First, by Proposition 2.5, Condition (A5) holds true with

K∗ = K, η∗ = η. (179)

Using Theorem 3.4 shows
W2(νp̌n, π) ≤ K̂1̌h+ K̂2̌e

−λnh, ∀n ∈ N0, (180)

where

λ := η
logK+1+η/(2L) , K̂1̌ := 2Č(χ)

(
K̂p + C1̌Kpd

(11γ+10)/2 +KpE[|x0|11γ+10]
)1/2

,

χ := logK+1
η + 1

2L , K̂2̌ := e
(
2
(
2+2µ′

c + C1̌

)
d+ 4E[|x0|2]

)1/2

.

(181)

In view of Assumption 2.13, one can obtain the desired assertion (25) with

Č1 := Ce
1
2 (1+10L+6L1)(

log K+1
η + 1

2L1
), Č2 := e

(
2 2+2µ′

c + 2C1̌ + 4σ2(1)
)1/2

, (182)

where C := C(µ, µ′, c, γ, ϑ, σ2, L,L0,L′
0,L1,L′

1). Thus, the proof is completed.

G. Proof of Auxiliary Results for Gaussian Mixture and Double-well Potential
We now verify Assumption 2.8 for the Gaussian mixture. For all x ∈ Rd, the gradient of U1 is given by

∇U1(x) = x− a+ 2a
1+e2⟨x,a⟩ , (183)

and the Hessian matrix is given by
∇2U1(x) = Id − 4e2⟨x,a⟩

(1+e2⟨x,a⟩)2
aaT . (184)

By the definition of the Laplacian operator, we have

∆U1(x) = tr
(
∇2U1(x)

)
=

d∑
i=1

(
1− 4a2

i e
2⟨x,a⟩

(1+e2⟨x,a⟩)2

)
= d− 4|a|2e2⟨x,a⟩

(1+e2⟨x,a⟩)2
. (185)

Then

∇(∆U1(x)) =
8|a|2

(
e4⟨x,a⟩−e2⟨x,a⟩

)
(1+e2⟨x,a⟩)3

a =
8|a|2e4⟨x,a⟩

(
1−e−2⟨x,a⟩

)
1+3e2⟨x,a⟩+3e4⟨x,a⟩+3e6⟨x,a⟩ a =

8|a|2
(
1−e−2⟨x,a⟩

)
e−4⟨x,a⟩+3e−2⟨x,a⟩+3+3e2⟨x,a⟩ a. (186)

By the inequality 1− e−x ≤ x and ex > 0, for x ∈ R, we have, by taking |a| = 2,

|∇(∆U1(x))| ≤ 8|a|3|⟨x,a⟩|
3 ≤ 8|a|4

3 |x| = 128
3 |x|, (187)

as required.

In what follows, we check Assumption 2.14 for the double-well potential. One immediately obtains

∇U2(x) = |x|2x− x, ∇2U2(x) = (|x|2 − 1)Id + xxT , ∆U2(x) = tr
(
∇2U2(x)

)
= (d+ 1)|x|2 + d, (188)

which further implies
∇
(
∆U2(x)

)
= (2d+ 1)x. (189)

Thus, we have ∣∣∇(
∆U2(x)

)∣∣ ≤ 4d|x|, (190)

validating Assumption 2.14.
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