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Abstract

Directors and cinematographers often recreate iconic
scenes by replicating the underlying camera language to
evoke shared aesthetic and narrative meaning. In this work,
we refer to this as the task of Cinematic-Guided Camera
Language Transfer, where the goal is to reproduce the cin-
ematic camera language of a reference video clip in a new
3D scene. The pioneer work, Jaws [62], tackles this prob-
lem by adapting generic computer vision methods but fails
to model the essential principles of cinematography, often
leading to inaccurate framing, motion mismatches, and loss
of expressive intent. To overcome these limitations, we sys-
tematically define the objectives of camera language trans-
fer, grounding them in professional cinematography litera-
ture. Specifically, we conduct an in-depth review of cine-
matography literature to identify eight key cinematic fea-
tures and encode them into five novel camera language
losses. These losses not only guide optimization of camera
parameters for effective transfer, but also serve as quantita-
tive metrics for evaluating cinematographic fidelity. Exten-
sive experiments demonstrate the superiority of our method.

1. Introduction
Throughout film history, directors and cinematographers
have frequently paid visual homage to iconic scenes by
recreating the key camera language such as signature cam-
era trajectories, compositions, and framings to evoke shared
aesthetic or narrative meaning (e.g., the dolly zoom from
Vertigo [19] or the suspenseful tracking shots in Jaws [55]).
With the rise of virtual production tools, it has become com-
mon to replicate such cinematic effects in simulated 3D en-
vironments (e.g., NeRF [45], 3DGS [26], Unity [58]) before
principal photography [2, 8], and to train robots [12, 42, 49].
In this work, we refer to this as the task of Cinematic-
Guided Camera Language Transfer: given a reference
video clip and a new 3D scene, the objective is to reproduce
the cinematic camera language of the reference clip within
the new scene, such that the re-rendered video conveys a
consistent cinematic visual style.

Jaws [62], a pioneering effort in this direction, address
this task by formulating it as a camera parameters (both
extrinsics and intrinsics) optimization problem. Specifi-
cally, they define camera language losses (i.e., the objec-
tive function) as an on-screen loss(full-body pose match-
ing) and an inter-frame loss(optical-flow matching). While
promising, their approach largely relies on a naive adap-
tation of existing computer vision techniques, rather than
adhering to principles of cinematic camera language. As a
result, Jaws [62] easily breaks down, leaving a critical gap
in capturing the expressive cinematographic intent. For ex-
ample, naive human pose matching using all skeleton joints
is highly sensitive to pose variation, causing mismatched
shot size and framing; likewise, global optical flow ignores
motion parallax, conflating near and far motions and weak-
ening supervision on camera-induced depth-dependent dy-
namics. Moreover, Jaws overlooks key cinematic features,
such as filmic space and camera angle, thereby limiting its
ability to reproduce authentic cinematic visual styles.

In this work, we address the above-mentioned limita-
tions by systematically defining the objectives of cinematic-
guided camera language transfer, explicitly grounding them
in professional cinematography literature [9, 44] that prior
approaches have overlooked. Specifically, we first review
the cinematography literature [9, 44] and identify 8 key cin-
ematic features for camera language, including (i) shot size
(how much of the frame the subject occupies); (ii) fram-
ing (the subject’s screen position); (iii) camera angle (rela-
tive orientation to subjects); (iv) camera movement (frame-
to-frame motion cues); (v) lens choice (perceived depth
and spatial compression); (vi) camera position (camera-to-
subject location); (vii) zooming (cynamically focal) and
(viii) focus (the effect of depth of field). Then, we care-
fully examine them and capture these 8 features using 5
novel camera language losses, including (i) shot size loss;
(ii) framing loss; (iii) filmic space loss; (iv) camera move-
ment loss; (v) camera angle loss; using computer vision
techniques. Similar to Jaws [62], we formulate the task as
optimizing camera parameters under our novel camera lan-
guage losses, which enables more effective and consistent
camera language transfer. Notably, our losses can also be
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Figure 1. Our camera language transfer framework using five camera-language losses: shot size (yellow chain), framing (blue dot), camera
angle, filmic space (green:character; blue:background), and camera movement (depth-layered optical flow).

used as quantitative metrics to evaluate how well the cam-
era language of generated shots matches that of the refer-
ence video. Our experiments demonstrate that the proposed
method generates videos of effective and consistent camera
language, better preserving both the narrative intent and the
cinematic visual characteristics of the reference video clips.
Our main contributions include:
• We are the first to systematically define the objectives of

cinematic-guided camera language transfer in 3D scenes,
which are explicitly grounded in professional cinematog-
raphy literature [9, 44].

• To achieve it, we first conduct an in-depth review of pro-
fessional cinematography literature and identify 8 key
cinematic features for camera language, including (i) shot
size; (ii) framing; (iii) camera angle; (iv) camera move-
ment; (v) lens choice; (vi) camera position; (vii) zooming
and (viii) focus.

• We then carefully analyze the 8 features and encode them
with 5 novel camera language losses: (i) shot size loss,
(ii) framing loss, (iii) filmic space loss, (iv) camera move-
ment loss, and (v) camera angle loss, and implement them
using computer vision techniques. Notably, our losses
can also be used as cinematic metrics for the task.

• Experimental results show that our method outperforms
state-of-the-art approaches, generating videos with more
effective and consistent camera language that better pre-
serve both the narrative intent and the cinematic visual
characteristics of reference clips.

2. Related Work

2.1. 3D Scene Representation

Scene representation has long been central in computer
vision and graphics, with traditional methods relying on
explicit forms such as meshes [40], voxels [39], point
clouds [30], and light fields [1]. However, they often re-
quired dense sampling, manual reconstruction, or heavy
computational resources, limiting their accessibility. The

advent of neural scene representations, NeRF [5, 32, 45, 46]
offers photorealistic rendering and greatly lowers the bar-
rier for high-quality 3D scene construction, albeit at sig-
nificant computational cost. More recently, 3D Gaussian
Splatting (3DGS) [26] offers NeRF-level realism with far
more efficient training and rendering, establishing a critical
foundation for creative tasks such as cinematic camera con-
trol and 3D style transfer. Motivated by these advantages,
we adopt 3DGS as the input 3D scenes in our Cinematic-
Guided Camera Language Transfer framework.

2.2. Cinematic Feature

Cinematic features have been studied for decades. Early
methods [6, 51, 52, 59] focus on shot size classification and
analysis, which is determined by how much of the screen
a subject fills. Camera motion is another key feature. For
camera motion classification, CAMHID [17] takes motion
vector as camera motion descriptors, while Derue et al. [13]
leverage optical flow, and MUL-MOVE-Net [10] extends
this to optical-flow histograms. For camera movement anal-
ysis, CameraBench [35] proposes annotations and a taxon-
omy of motion primitives. SGNet [50] and LWSRNet [33]
use view scale and camera movement for shot classification.
MovieNet [22] annotates view scale and camera movement
to support broader film-understanding tasks. Lu et al. [41]
incorporate composition with shot size and movement for
analyzing film shot attributes. CineScale2 [53] extends cin-
ematic analysis to camera angles, proposing a CNN-based
framework for automatic angle recognition. Recent bench-
marks incorporate filmic attributes with language models.
CineTechBench [63], FilMaster [21], and ShotBench [37]
annotate multiple cinematic dimensions but focus on evalu-
ating the video generation performance of vision-language
models, which is not suitable for cinematic-guided cam-
era language transfer task. We define cinematic features
rooted in film grammar for cinematic-guided camera lan-
guage transfer task: shot size, framing, camera angle, cam-
era movement, lens choice, camera position, zooming and



focus, which encompassing the cinematic visual feature
from classical film theory.

2.3. Camera Control in Virtual Cinematography

Camera Control has been long studied in computer graphics
and virtual cinematography [11]. A naive example-based
solution is to reconstruct the camera path from a film clip
(typically via SfM) and replay it in a new scene [14, 29].
However, differences in subject distance and scene scale of-
ten cause composition drift and scale mismatch, degrading
shot size and parallax. A second strategy treat camera con-
trol as a sequence prediction problem: Huang et al. [20]
incorporate the video contents and previous camera move-
ments to predict the future camera movements, while Jiang
et al. [23, 24] train example-driven LSTM controllers us-
ing a cinematic feature space (camera angle, distance, com-
position, character configuration, motion). Although these
methods produce smooth trajectories, they did not model
full cinematic visual language. A third strategy formu-
lates camera control as a constraint-satisfaction or optimiza-
tion problem by incorporating predefined metrics. Text-
conditioned generation [25, 38] allow users to specify shots
via natural language. Others adopt visual metrics to guide
the optimization. For example, Galvane et al. [15] formu-
late camera parameters as a search or optimization problem
to maximize view quality metrics. GAIT [65] adopted rein-
forcement learning to auto-generate camera trajectories in
3D indoor environments by maximizing a learned aesthetic
scoring function. Jaws [62] optimize camera parameters
using optical flow and pose. However, these optimization
methods do not capture the full cinematic visual feature.

3. Preliminaries
Problem Formulation. Cinematic-Guided Camera Lan-
guage Transfer enables intuitive replication of a reference
video clip’s camera language onto novel 3D scenes. Follow-
ing [62], we formulate it as an inverse rendering-style opti-
mization problem. Specifically, given a 3D scene S and a
reference video clip Vref = {F i

ref}Ni=1 comprisingN frames,
we aim to synthesize a novel video clip VS = {F i

S}Ni=1 by
transferring the camera language of Vref onto S and render-
ing it accordingly:

VS = Render(C, S)
= Render(CLTrans(Vref, S), S)

(1)

where Render(·, ·) represents the native rendering methods
associated with the input 3D scene (e.g., NeRF, 3DGS); and
C = CLTrans(Vref, S) = {Ii

S , E i
S}Ni=1 denotes the frame-

wise intrinsic and extrinsic camera parameters, whose opti-
mum Ĉ is obtained via solving an optimization problem:

Ĉ = argmin
C

LCL (VS ,Vref) , (2)

where LCL is a loss function capturing the camera language
of the given video clips.

Camera Parameters. Following [62], we define the cam-
era parameters C comprising intrinsics and extrinsics as:
• Intrinsic parameters I = γ, where γ is a focal length

scaling factor. This simplified version has been widely
adopted in prior works [47, 54] due to its favorable opti-
mization properties.

• Extrinsic parameters E = (t,θ) defining the camera pose,
where t = (tx, ty, tz), θ = (θroll, θpitch, θyaw) denotes the
camera translation and rotation in SE(3), respectively.

4. Method

As with most optimization problems, our solution (Eq. 2)
is characterized by three key components: (i) loss function,
(ii) initialization strategy, and (iii) optimization procedure.

In this work, we first draw inspiration from professional
cinematography literature [9, 44] to identify key cinematic
features for camera language transfer, and show that the for-
mulation in [62] is suboptimal in this regard (Sec. 4.1). We
then introduce a novel loss design, grounded in these cin-
ematic features, that comprehensively captures the camera
language of the given video clips (Sec. 4.2). Finally, build-
ing on this loss, we present the corresponding optimization
procedure and initialization strategy (Sec. 4.3).

4.1. Key Cinematic Features for Camera Language

As shown in Eqs. 1,2, our goal is to estimate camera param-
eters that reproduce the look and feel of the reference clip’s
cinematography, even when the underlying scene content
differs. This task is challenging because it demands match-
ing high-level cinematic visual features conveyed through
camera language, rather than merely replicating the raw
camera trajectories and settings of the reference video [7].
Therefore, the key lies in identifying the key cinematic fea-
tures that fundamentally shape how visual storytelling is ex-
pressed through camera work. Drawing from professional
cinematography literature [9, 44], we identify the following
key cinematic features for camera language:
• Shot Size: Determines the proportion of the subject (typ-

ically a character) within the frame, influencing narrative
intimacy and visual emphasis.

• Framing: Defines spatial composition of subjects within
the image plane, shaping visual balance and directing au-
dience attention.

• Camera Angle: Encodes camera-to-subject orientation,
modulating power dynamics and viewer alignment.

• Camera Movement: Reflects temporal camera displace-
ment, producing perceived motion and rhythm.

• Lens Choice: Models perceived depth and spatial com-
pression, ultimately, the construction of filmic space [7].



• *Camera Position: Camera-to-subject location, affect-
ing shot size, framing, camera angle, and movement.

• *Zooming: Dynamically modifies shot size without cam-
era translation.

• Focus: Closely tied to depth of field, determines which
parts of the scene appear sharp or blurred, guiding atten-
tion and suggesting emotional or narrative focus.

where * shows that the feature is closely related to other
features. Please see Supplementary Sec. 8 for details.
Remark on [62]. Although the pioneering work [62] yields
promising results, it approaches the problem from a purely
computer vision perspective. Specifically, it implements
LCL (Eq. 2) as a matching of pose and optical flow between
the rendered video and the reference input. However, this
approach overlooks alignment with the key cinematic fea-
tures identified above. For instance, direct pose matching
often introduces errors in shot size, as the poses of the main
character in the 3D scene and the reference video typically
differ. We refer the audience to Sec. 6.3 and the supplemen-
tary material for results and analysis.

4.2. Camera Language Losses

In this section, we formalize the eight key cinematic fea-
tures (Sec. 4.1) into five loss functions as follows. Note
that as mentioned in Sec. 4.1, (i) Camera position influences
shot size, framing, camera angle, and movement. Its effects
are thus implicitly captured by these components and not
modeled separately. (ii) Zooming is functionally encom-
passed within our shot size formulation and is not treated
as an independent factor as well. (iii) Focus is not modeled
due to representation limitations (i.e., depth-of-field) in the
3DGS framework and is left for future work. Please see the
supplementary materials for more details.

4.2.1 Shot Size Loss

As defined in [28], shot sizes are typically categorized based
on the relative positions of five key human joints, including
(i) head top, (ii) chest, (iii) waist, (iv) knees, and (v) feet.
Please see Supplementary Sec. 11.2 for more details. Ac-
cordingly, we propose a novel shot size loss as:

Lshotsize = ∥dref − dS∥ (3)

where dref and dS are the normalized maximum hori-
zontal/vertical distances among the visible key joints in
the corresponding reference and rendered frames F i

ref ∈
RHref×Wref×3 and F i

S ∈ RHS×WS×3, respectively; and the
choice between horizontal and vertical distances is deter-
mined by whichever is greater in F i

ref. Formally, let J vis
ref ⊆

J = {jheadtop, jchest, . . . , jfeet} denote the visible set of the
five key joints in F i

ref, we have:

dref = max
ji,jk∈J vis

ref

(
∥xji − xjk∥

Wref
,
∥yji − yjk∥

Href
) (4)

and

dS =
∥xja − xjb∥

WS
or

∥yjc − yjd∥
HS

(5)

where the choices of (x, ja, jb) or (y, jc, jd) depend on the
results of Eq. 4 for consistency.
Comparison with Previous Works. Previous works esti-
mate shot size either from the normalized area of the sub-
ject [22, 50, 51, 61, 66] or from the full-body pose of the
main character [62]. However, both approaches are subop-
timal: the former is highly sensitive to pose variations and
subject shapes that are irrelevant to shot size, while the latter
enforces overly strict alignment of the entire pose, includ-
ing joints (e.g., arms) that have little bearing on shot size.
In contrast, our shot size loss adheres closely to the def-
inition in cinematography literature and is robust to pose,
viewpoint, and body-shape variations unrelated to shot size,
thereby ensuring faithful transfer of camera language.

4.2.2 Framing Loss

Framing refers to the spatial arrangement and composition
of significant visual elements in a film frame [28] (please
see Supplementary Sec. 11.4 for details). Notably, fram-
ing is often co-determined with shot size as determining a
subject’s spatial placement also involves determining how
much space they occupy in a frame. Thus, our framing loss
focuses on capturing the spatial placement of a subject, as
its size is already captured in Eq. 3. However, given the in-
evitable differences in content between the reference video
and the input 3D scene, perfectly matching all spatial ele-
ments through camera adjustment is infeasible. Fortunately,
among these elements, human characters are most often the
primary narrative focus and serve as the dominant composi-
tional anchors in the frame. Guided by this cinematic prin-
ciple, we follow previous works [20, 23, 62] and focus on
character placement as the key visual anchor for framing
alignment. Accordingly, we represent character placement
using centroids of visible key joints, which serve as a com-
pact descriptor of the character’s overall spatial location in
the frame, and have:

Lframing =

√(
x̄ref − x̄S

)2
+

(
ȳref − ȳS

)2
(6)

where x̄ref and ȳref are the centroid coordinates of the set
of visible joints J vis

ref in frame F i
ref (Sec. 4.2.1) that:

(x̄ref , ȳref) =
1

|J vis
ref |

∑
ji∈J vis

ref

(xji , yji ) (7)

And x̄S and ȳS are calculated in a similar way with the same
set of joints in the rendered frame F i

S .
Comparison with Previous Works. Interestingly, [62]
achieves framing implicitly through a full-pose matching



loss, which inherits similar shortcomings to those in shot
size estimation (e.g., sensitivity to framing-irrelevant joints
such as the arms). In contrast, our method explicitly models
the cinematographic intent of subject placement while re-
maining robust to variations in pose, orientation, and artic-
ulation, thereby providing a stable framing transfer across
heterogeneous scenes.

4.2.3 Filmic Space Loss

Filmic space is the spatial structure perceived within a film
frame [28], which can be characterized by the depth, prox-
imity, size, and proportions of objects and places within the
image (please see Supplementary Sec. 11.5 for more de-
tails). To encode these properties in a manner consistent
with human perception and robust to the monocular scale
ambiguity inherent in films, we adopt perceptual depth,
rather than absolute depth, as the basis to capture the filmic
space feature of an input frame.

Following classical mise-en-scène conventions [7], we
segment each frame into three coarse depth layers by thresh-
olding the perceptual depth value of each pixel: (i) fore-
ground (F), (ii) character (C), and (iii) background (B).
This tripartite scheme reflects both classical film language
and cognitively natural: observers coarsely “chunk” depth
into near/mid/far zones, supporting stable perception of spa-
tial layout and narrative salience.We then propose our filmic
space loss using the log-form of relative depth ratios be-
tween the three depths layers as:

Lspace = ∥ log drefbc − log dSbc∥+ ∥ log dreffc − log dSfc∥ (8)

where dbc and dfc are the relative depth ratios between (B,
C) and (F , C), respectively, that:

dbc =
dB
dC
, dfc =

dF
dC

(9)

where dB, dC , and dF are the representative depths of the
three depth layers, respectively, that:

dK = argmax
d(p)

Pr[d(p) | p ∈ K], K ∈ {F , C, B}, (10)

where Pr[·] is the probability estimated by applying kernel
density estimation (KDE) on depth values d(p) of pixel p at
depth layer K ∈ {F , C, B}.
Discussion. Our loss features two novel designs:
• Representative Depth Value. Because direct per-pixel

depth matching between reference and rendered frames
becomes invalid under scene content differences, we in-
stead represent each layer by the mode of its depth dis-
tribution as a stable depth estimate. This choice (i) sup-
presses noise and small occlusions more effectively than
means or medians in multi-modal cases, (ii) captures the

“prevailing distance” of the layer, and (iii) produces a
compact, semantically grounded descriptor aligned with
the (foreground, character, background) schema.

• Relative Depth Ratio. To obtain a scale-robust perceptual
descriptor, we compute two relative depth ratios dbc and
dfc. These ratios encode perceived depth separation and
offer three advantages: (i) invariance to global monoc-
ular depth scaling, (ii) direct correspondence to percep-
tual separation (“how far the character sits from fore-
ground/background”), and (iii) a clear mapping to cine-
matic intent (“deep” vs. “flat” staging).

To the best of our knowledge, we are the first to introduce
a loss function for modeling filmic space. Consequently, no
direct comparison with prior approaches is available.

4.2.4 Camera Movement Loss

Camera movement refers to the changing position or orien-
tation of the camera over time, resulting in perceived rela-
tive motion of scene elements within the frame [28] (please
see Supplementary Sec. 11.7 for details). Recognizing that
camera movement is largely conveyed through scene mo-
tion parallax [18, 60], where nearer objects exhibit greater
displacement than distant ones, we propose a novel camera
movement loss based on a novel depth-layered optical flow
decomposition strategy:

Lcam-move =
1

3

∑
K∈{F, C,B}

LK
opti-flow. (11)

where F , C, and B are the three depth layers obtained in
Sec. 4.2.3; the optical flow loss LK

opti-flow of depth layer K is:

LK
opti-flow = ∥OK

ref −OK
S ∥2, (12)

where OK
ref and OK

S represent the optical flows of the ref-
erence and rendered videos at depth layer K, respectively,
measured using the endpoint error (EPE) distance [4].
Comparison with Previous Works. Our camera move-
ment loss offers two distinct advantages over the global op-
tical flow matching loss in [62]:
• First, it accounts for motion parallax by decomposing op-

tical flow matching across depth layers. This was ne-
glected in [62], which matches only global optical flow
between the reference and rendered videos. As a result,
when the depth structures of the reference and rendered
frames are not perfectly aligned—as is typical in prac-
tice—foreground motion is averaged with background
parallax, especially near depth discontinuities.

• Second, it balances the contribution of foreground, char-
acter, and background, thereby avoiding biased optical
flow matching. Specifically, since endpoint error (EPE)
is implicitly weighted by pixel count, the global optical
flow matching in [62] is dominated by large background



regions and thus obscures character dynamics, especially
when the foreground and the background differ greatly in
depth and motion patterns (e.g., dolly zoom or bullet-time
effects).

4.2.5 Camera Angle Loss

Camera angle refers to the placement of the camera relative
to the subject [28] ((please see Supplementary Sec. 11.10).
Thus, we tie it to the relative orientation between the cam-
era and the subject. For each frame, we infer three angles
a = (ψ, θ, ϕ) (yaw, pitch, roll). We minimize the differ-
ence of this angle between reference and rendered frames
to preserve consistent camera angle. We convert degrees to
radians and take the component-wise absolute error:

∆a =
∣∣ rad(aS) − rad(aref)

∣∣. (13)

Our per-frame camera-angle loss sums the per-axis errors:

Langle = |∆ψ| + |∆θ| + |∆ϕ|. (14)

4.2.6 Overall Loss Function

In summary, we have the overall loss function LCL as:

LCL = λ1Lshotsize + λ2Lframing+

λ3Lspace + λ4Lcam−move + λ5Langle

(15)

where we set λ1 . . . , λ5 are weighting coefficients, empiri-
cally determined to balance the scale of different loss terms.

4.3. Optimization and Initialization

Optimization Procedure. Notice, shot size is jointly de-
termined by both the intrinsic and extrinsic camera pa-
rameters. For a given shot size, the desired framing can
be achieved either by adjusting the intrinsic parameters
(e.g., focal length) or by modifying the extrinsic parame-
ters (e.g., moving the camera closer to or farther from the
subject). In our experiments, we observe that the corre-
sponding feature space exhibits lots of local minima. When
employing gradient-based optimizers such as the Adam op-
timizer [27], the optimization process easily falls into lo-
cal minima. To address this, we adopt the gradient-free
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [16], which is run for up to 100 iterations, with early
stopping if the total loss does not decrease over 20 con-
secutive steps. The search ranges of parameters were set
as follows: the translation vector vi ∈ [−5.0, 5.0]3, the
rotation axis wi ∈ [−1.0, 1.0]3, and the rotation angle
θi ∈ [−π

2 ,
π
2 ]. The focal length scaling factor γi is op-

timized within [0.0, 5.0]. Notably, this gradient-free ap-
proach allows us to incorporate non-differentiable opera-
tions—such as the selection of valid key joints based on

confidence thresholds—without affecting the overall opti-
mization process. Moreover, the framework transfers easily
to other 3D scene representations(NeRFs[5, 32, 45, 46], 3D
point-cloud[30], and Unity[58]). By contrast, Jaws[62] re-
lies on a differentiable NeRF and assumes dense multi-view
as input. As a result, under the sparse-view reconstructions
common in practice, it often fails (see Fig.3).

Initialization Strategy. Following JAWS [62], we adopt
the same initialization strategy to make a fair comparison.
The initial view is selected by the user from the input im-
ages used to train the 3D scene representation.

5. Implementation Details
We represent the input 3D scene S using 3DGS [26] due
to its high quality and efficiency. To extract their cinematic
features, we leverage several state-of-the-art models. See
Supplementary Sec. 9 for more details.

6. Experiments
6.1. Experimental Setup

Datasets. Our dataset comprises 3D scenes S and reference
videos Vref:
• Our dataset includes both outdoor (selected from

DL3DV [36], ENeRF-Outdoor [34]) and indoor scenes
(DyNeRF [32], Mobile-Stage [48, 67]). All the selected
scenes have at least one human or character-like subject.

• Our reference videos are selected from the Camer-
aBench [35] and CondensedMovies [3] datasets, each a
single-shot clip with one character. To cover diverse and
representative cinematic motion styles, we include canon-
ical shot types defined in classical film theory [7, 43], in-
cluding both basic and classic complex shots.
– The basic shots include: (i) Push in (camera moves for-

ward), (ii) Pull out (camera moves backward), (iii) Pan
(camera moves horizontally), (iv) Tilt (camera moves
vertically), (v) Orbit (camera circles around a subject),
(vi) Zoom (lens-based magnification), and (vii) Crash
Zoom (a rapid zoom in or out).

– The classic complex shots include: (i) Dolly Zoom (si-
multaneous zoom and dolly movement that alters back-
ground perspective while maintaining subject scale),
and (ii) Dutch Angle (camera is tilted to create a sense
of unease or disorientation).

Metrics. Based on our Camera-Language loss, we identify
cinematic visual metrics for quantitative experiment from a
professional cinematography perspective. Specifically, our
Shot Size Loss can be used to evaluate the main charac-
ter’s screen occupancy relative to the reference. Framing
loss evaluates the on-screen position of the main charac-
ter. Filmic space loss evaluates the perceived depth struc-
ture and further enforces focal-length consistency. Cam-



t1

t2

t3

t4

t5

Initial View

Jaws Ours Reference

Initial View

Jaws Ours Reference

Figure 2. Qualitative results of the dolly zoom (left) and rotating (right) example.Our results show that our cinematic visual feature
consistent with the reference frame.
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Figure 3. Qualitative results of the crash zoom (left) and Boom (right) example. Our results show that our cinematic visual feature
(specifically, shot size, framing, camera movement) consistent with the reference frame.

era movement loss evaluates temporal differences in cam-
era motion. Camera angle loss evaluates the relative cam-
era–subject orientation.

6.2. Quantitative results

We use our cinematic feature metric to evaluate the results
of Jaws[62] and our model by computing the mean dif-
ference of each frame at each rendered video clip. Our
method achieves consistently lower errors as shown in Ta-
ble.1.(Note: Frames with severe rendering failures in JAWS

are excluded from the evaluation.)

6.3. Qualitative results

We test our method on both basic (Fig.3) and classic com-
plex shots dolly zoom(Fig.2 left). Baseline method gener-
ally fail when background and character move differently.
Specifically, baseline method failed to handle the shot size.
In contrast, our method accurately clones visual feature
from the reference video: the tree in the background be-
come smaller, while the character become bigger.
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Figure 4. Ablation study for camera angle, filmic space, framing, and shot size losses.Initial View
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Figure 5. Ablation study for camera movement loss.

Table 1. Quantitative comparison of cinematic feature metrics.
Lower values indicate better alignment with the reference. Our
method outperforms JAWS on all reported metrics.

Metric JAWS [62] Ours

Shot Size 0.093017 0.080433
Framing 0.447699 0.380040
Filmic Space 2.905601 0.475843
Camera Movement 30.288347 1.952139
Camera Angle 2.905543 2.603337

6.4. User Study

We conducted a user study with 11 participants, recruited
from the computer science department as unpaid volunteers
with no formal training in cinematography. The study eval-
uated (1) the fidelity of visual style to the reference video,
(2) smoothness, and (3) naturalness of the generated video
covering both basic shots and classic complex shots. For
each sample, participants viewed two anonymized videos,
one from the baseline Jaws[62] and one from our method,
presented in random order alongside the reference. They
were asked to select the preferred video for each criterion.

As shown in Table 2, across all three criteria, our method
is consistently preferred over the baseline Jaws. In particu-
lar, for visual style fidelity, our method is preferred in all tri-
als, indicating a strong alignment with the reference videos.

Table 2. User preference evaluation between our method and
Jaws[62]. Each percentage represents the ratio of pairwise com-
parisons in which ours was preferred by participants over Jaws.

Visual Style Smoothness Naturalness

Ours (%) 100.00 84.85 81.82
Jaws[62] (%) 0.00 15.15 18.18

Substantial improvements are also observed in smoothness
(84.85%) and naturalness(81.82%).

6.5. Ablation study

Fig. 4 and Fig. 5 present our ablation results. Removing the
framing or shot size loss leads to inaccurate subject place-
ment or scale, while removing the filmic space loss pro-
duces overly deep perspective inconsistent with the refer-
ence. Excluding the camera movement loss causes temporal
instability, and removing the camera angle loss yields mis-
aligned subject orientation. Our full model contributes to
best preserving the intended cinematic expression. Please
see Sec. 10 in the supplementary materials for more details.

7. Conclusion

We address the task of Cinematic-Guided Camera Lan-
guage Transfer, aiming to reproduce the cinematic camera
language of a reference video in a new 3D scene. While
prior work approached this challenge with generic computer
vision techniques, it overlooked core cinematographic prin-
ciples, resulting in inaccurate framing, motion mismatches,
and loss of expressive intent. To address this gap, we sys-
tematically grounded the task in professional cinematogra-
phy literature, identifying eight fundamental cinematic fea-
tures and encoding them into five novel camera language
losses, which not only enable more effective and consis-
tent transfer of camera language, but also provide quantita-
tive metrics for evaluating cinematographic fidelity. Exten-
sive experiments show that our method substantially outper-
forms existing approaches, better preserving both narrative
intent and cinematic visual style of reference clips.
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