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ABSTRACT

Uniform manifold approximation and projection (UMAP) is among the most
popular neighbor embedding methods. The method relies on attractive and repulsive
forces among high-dimensional data points to obtain a low-dimensional embedding.
In this paper, we analyze the forces to reveal their effects on cluster formations and
visualization and compare UMAP to its contemporaries. Repulsion emphasizes
differences, controlling cluster boundaries and inter-cluster distance. Attraction
is more subtle, as attractive tension between points can manifest simultaneously
as attraction and repulsion in the lower-dimensional mapping. This explains the
need for learning rate annealing and motivates the different treatments between
attractive and repulsive terms. Moreover, by modifying attraction, we improve the
consistency of cluster formation under random initialization. Overall, our analysis
makes UMAP and similar embedding methods more interpretable, more robust,
and more accurate.

1 INTRODUCTION

The current era is characterized by a deluge of high-dimensional data. Dimensionality reduction (DR)
techniques have emerged as tools for exploratory analysis of such data by visualizing the underlying
structure. The most popular methods, t-distributed stochastic neighbor embedding (Maaten & Hinton,
2008) and uniform manifold approximation and projection (UMAP) (McInnes et al., 2018) are
grounded in the attraction-repulsion dynamics that bring similar data points closer while pushing
dissimilar ones apart. As unsupervised algorithms, these do not rely on labeled data; instead, they iden-
tify and preserve the intrinsic structure of high-dimensional data by leveraging local (attractive) and
global (repulsive) relationships (forces). This makes these algorithms particularly well-suited for tasks
such as clustering (Becht et al., 2019), exploratory data analysis (Fleischer & Islam, 2020), anomaly
detection in semiconductor manufacturing (Fan et al., 2021), visual search (González-Márquez et al.,
2024), time series analysis (Altin & Cakir, 2024), studying representation convergence (Huh et al.,
2024), and outlier image detection (Islam & Fleischer, 2024), where visualizing hidden patterns in
unlabeled data is critical and meaningful. By learning the embeddings in a data-driven, label-free
manner, DR exemplifies the power of unsupervised methods to distill complex data into easily
interpretable forms.

Building upon the attraction-repulsion principle, newer methods have emerged (Amid & Warmuth,
2019; Agrawal et al., 2021; Wang et al., 2021; Narayan et al., 2021; Yang et al., 2022; Wang et al.,
2025; Kury et al., 2025), each designed to emphasize specific aspects of the data. Despite their
relevance in diverse applications, these methods often rely on heuristic practices that may fail to
give meaningful interpretations. Moreover, DR introduces distortions that are unavoidable (Chari
& Pachter, 2023). Thus, it is imperative to have a deeper understanding of the algorithms so that
practitioners can provide better interpretations of the embeddings, avoid spurious structures, and
optimize performance. In practice, these algorithms achieve compact clusters using a variety of
techniques, including specific initialization, learning rate schedule, and kernel function tuning.
However, the underlying dynamics of the attractive and repulsive forces, responsible for cluster
formation, have not been thoroughly investigated. Furthermore, the essential tunable parameters are
concealed within abstract functional forms, making it harder to explain the algorithms.
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In this paper, we decompose the forces into their constituent parts and extract the functional shapes
of attraction and repulsion. We find that the necessity of learning rate annealing, the challenge of
providing consistent output under random initialization, and the origin of cluster formation rely on
attraction. Repulsive forces primarily govern inter-cluster distances. Our specific contributions are:

1. We formulate attraction and repulsion shapes from the attractive and repulsive forces,
establish the conditions for contraction and expansion of distance, and provide a fresh
perspective for these algorithms (Section 4).

2. We show that the attraction shape of UMAP causes the counterintuitive concept of both
contraction and expansion of distance. Comparing attraction shapes of different algorithms,
we discuss how attraction influences the learning rate annealing scheme (Section 5).

3. We modify the attraction shape to improve the consistency of embedding under random
initialization. This indicates the encoding of a unique structure (Section 5.1).

4. Analyzing repulsion shapes, we provide a deeper understanding of cluster formation and
regulating inter-cluster distance (Section 5.2).

5. We compare attraction and repulsion shapes of UMAP, Parametric UMAP, and NEG-t-SNE,
unveil the similarities and distinctions among them, and characterize the stability of the
algorithms (Section 6).

We center the main text on UMAP, now a de facto standard in many fields, and bring in other
algorithms where relevant. For further details on different algorithms, see the appendix.

2 RELATED WORKS

The origin of modern iterative graph-based neighbor embedding algorithms can be traced to stochastic
neighbor embedding (SNE) (Hinton & Roweis, 2002) and its extension using the t-distribution
(t-SNE) (Maaten & Hinton, 2008). Both methods use a dense graph in which each point in a
dataset has a pairwise relation with all the others, regardless of whether they are similar to each
other or not. Moreover, the weights of the graphs are normalized to give a notion of probability
distribution. Other concurrent methods, including locally linear embedding (Roweis & Saul, 2000)
and Laplacian Eigenmaps (LE) (Belkin & Niyogi, 2002), used a k-nearest neighbor (k-NN) graph of
pairwise interaction. Known as spectral methods, these algorithms rely on Eigenvalue decomposition.
Subsequent work by Tang et al. (Tang et al., 2016) incorporated the k-NN graph in the iterative
approach and removed normalization in the lower dimension. This approach was further extended
by McInnes et al. (2018) in UMAP, where the normalization step was removed altogether (both in
high and low dimension) and the embedding was obtained using pairwise interactions alone. The
optimization steps use an explicit attractive force to preserve the local neighborhood and a repulsive
force to keep dissimilar points apart. Building on these foundations, methods such as PaCMAP (Wang
et al., 2021) and NEG-t-SNE (Damrich et al., 2023) have been proposed. For a recent survey of
methods, see de Bodt et al. (2025).

There has been considerable progress in understanding and explaining the relationship among these
algorithms. An early analysis of SNE found that if the data is well-clustered in the original space,
then they are well-clustered in the embedding space (Shaham & Steinerberger, 2017). A similar
analysis for t-SNE by Linderman & Steinerberger (2019) showed that the number of clusters in the
embedding space is a lower bound on the number of clusters in the original space. This was followed
up in further characterization (Arora et al., 2018; Cai & Ma, 2022; Linderman & Steinerberger,
2022). Since t-SNE and UMAP originate from the same underlying framework (but with drastically
different visualizations), a major undertaking in the literature has been to find the connection between
them (Böhm et al., 2022; Damrich et al., 2023; Draganov et al., 2023). Böhm et al. (2022) theorized
that methods like Laplacian Eigenmap, ForceAtlas2 (Jacomy et al., 2014), UMAP, and t-SNE are
all samples from the same underlying spectrum. Indeed, LE and t-SNE’s are connected by the
early exaggeration phase (Cai & Ma, 2022). The connection between UMAP and t-SNE can be
related through contrastive estimation (Damrich et al., 2023). Around the same time, Hu et al.
(2023) independently discovered the relation of contrastive learning and SNE. Recent approaches
offer a probabilistic perspective (Ravuri et al., 2023; Ravuri & Lawrence, 2024), employ kernel
techniques (Draganov & Dohn, 2023), and utilize information geometry (Kolpakov & Rocke, 2024)
to explain dimensionality reduction.
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3 UNIFORM MANIFOLD APPROXIMATION AND PROJECTION

UMAP constructs a high-dimensional graph of the dataset X = {xi ∈ Rn|i = 1, . . . , N} by using a
pairwise relation: pi,j = fh(d(xi, xj)), typically, ∈ [0, 1] (for details, see Appendix H).

The graph of the low-dimensional representation Y = {yi ∈ Rd|i = 1, . . . , N} is given by a
differentiable function

qij =
1

1 + a(||yi − yj ||22)b
, (1)

where the parameters a and b determine the density of the mapping and are chosen by fitting qij to

Ψ(dij) =

{
1 if ||yi − yj ||2 < md

exp(−(dij −md)) otherwise
, (2)

where md regulates the distance between the two nearest low-dimensional points.
UMAP aims to minimize the following cross-entropy loss function:

L =
∑
i,j

(−pij log (qij)− (1− pij) log (1− qij)). (3)

The first term provides an attractive force and the second term provides a repulsive force. Instead
of optimizing every point in each iteration, UMAP takes the negative sampling approach (Mikolov
et al., 2013; Tang et al., 2016). For each edge with pij > 0, named a positive edge, several edges are
sampled randomly, named negative edges. The attractive force is applied on the positive edge:

yt+1
i = yti + λ∇yt

i
log(qij), (4)

yt+1
j = ytj + λ∇yt

j
log(qij), (5)

and the repulsive force is applied on the negative edges:
yt+1
i = yti + λ∇yt

i
log(1− qij), (6)

where λ(> 0) is the learning rate and t is the step number. Note that yj is not updated for negative
edges. For a detailed analysis of UMAP’s loss, see Damrich & Hamprecht (2021).

4 ATTRACTION AND REPULSION SHAPES

The action of the updates (4-6) can be simplified by decomposing the gradients ∇yt
i
log(qij)

(∇yt
i
log(1 − qij)) into a scalar coefficient dependent on the distance ||yi − yj ||2 acting on the

vector (yi − yj). We call this scalar coefficient the attraction (repulsion) shape. While we use UMAP
as a specific example, this formalism applies to any method that relies on attraction and repulsion.

By writing ∇yt
i
log(qij) = fa(ζ

t)(yti − ytj), where ζ = ||yi − yj ||2, we can update the equations of
a positive edge as

yt+1
i = yti + λfa(ζ

t)(yti − ytj), (7)

yt+1
j = ytj − λfa(ζ

t)(yti − ytj). (8)
Here, fa : R≥0 → R≤0 is the attraction shape, and we use the fact that for Euclidean metric,
∇yt

i
log(qij) = −∇yt

j
log(qij). Similarly, we reformulate the update equation of a negative edge as

yt+1
i = yti + λfr(ζ

t)(yti − ytj), (9)

yt+1
j = ytj , (10)

where fr : R≥0 → R≥0 is the repulsion shape.

Such decomposition has appeared previously, e.g., in (McInnes et al., 2018; Agrawal et al., 2021;
Draganov & Dohn, 2023), but their formulations and utilization vary. The original UMAP pa-
per (McInnes et al., 2018) used it as a computational trick for fast processing, while Draganov
& Dohn (2023) used it for comparing different algorithms from the kernel perspective. In both
cases, the primary focus was computing the derivative. Here, we treat the decompositions as in-
dependent functions that can take various forms. A similar approach was used earlier by Agrawal
et al. (2021), but they expressed the decomposition in terms of a scalar coefficient and a unit vector
((yi − yj)/||yi − yj ||2) to emphasize the magnitude of the forces. The discussion below shows that
our shape decomposition is more illuminating than the magnitude alone.

3
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(a)

(b)

(f)

(h) (i)

(g)

(d)

(c)

Coincide Flip

(e)

Figure 1: Attraction and repulsion shapes in UMAP. (a) Effect of different values of fa (top) and fr
(bottom) on a pair. (b) Attraction shape of UMAP. (c) Effective attraction shape (λfa) for various
learning rates λ. (d) Minimum distance for contraction (ζ−1) as λ decreases. (e) Repulsion shape of
UMAP. (f) Attraction and (g) repulsion shapes of various embedding methods. (h) Trustworthiness
and (i) Silhouette Score of various methods as the constant learning rate is varied for attraction (λa)
and repulsion (λr) independently. Default UMAP parameters: a = 1.58 and b = 0.89.

4.1 CONDITIONS FOR ATTRACTION AND REPULSION

In this section, we establish the conditions of attraction and repulsion from the update equations
(7)-(10). The following proposition characterizes the contraction of distance between the pair yti and
ytj of a positive edge:

Proposition 4.1. The update Eqs. (7) and (8) provide a contraction of distance (||yt+1
i − yt+1

j || <
||yti − ytj ||) if −1 < λfa < 0.

Here, λfa works as the effective attraction shape. In most cases, however, fa alone is enough to
draw meaningful conclusions about the embeddings. For a negative edge, the following proposition
characterizes the expansion of the distance between the pair yti and ytj :

Proposition 4.2. The update Eqs. (9) and (10) provide an expansion of distance (||yt+1
i − yt+1

j || >
||yti − ytj ||) if fr > 0.

Note that the inclusion of a symmetric term −λfr(ζ)(y
t
i−ytj) in Eq. (10) does not alter the conclusion

presented in this proposition. Additionally, these conditions give a per-iteration certificate for guar-
anteed contraction/expansion, and one should not confuse them with the learning rate tuning/decay
mechanism, as we can design the shapes in such a way that the contraction and expansion do not rely
on learning rate decay.

Figure 1 (a) shows the effect of different values of fa < 0 and fr > 0 on two points. The latter shape
is straightforward, as any positive value increases the distance. The former is much more subtle, as
fa encodes both attractive and repulsive dynamics. For fa ∈ (−1.0, 0), the distance decreases, with
a sign flip at the value fa = −0.5 of maximum attraction (coincident points). Any value lower than
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−1.0 causes the distance to increase. Although these forces act locally, they collectively shape the
global structure.

5 ANALYSIS OF UMAP IN TERMS OF ATTRACTION AND REPULSION SHAPE

Using the gradient decomposition and the distance form (1), the attraction and repulsion shapes are
given by

fU
a (ζ) = −2abζ2(b−1)

1 + aζ2b
(11)

and

fU
r (ζ) =

2b

ζ2b(1 + aζ2b)
, (12)

respectively. This section focuses on the default shapes of UMAP, controlled primarily by the
parameters a and b, and discusses the insights learned by perturbing them. The discussion below is
generally valid for b ≤ 1, where the attraction shape is strictly increasing and thus invertible (For
derivation, see Appendix A).

Figure 1 (b) shows the default attraction shape of UMAP (a = 1.58, b = 0.89). It becomes unbounded
(approaches ∞) as ζ → 0. As predicted by Proposition 4.1, the transition from contraction to
expansion occurs when λfU

a crosses −1 as ζ approaches 0. Since the attraction shape is invertible,
we can identify the distance at this transition, ζ−1 = (λfU

a )−1(−1), as the minimum distance for
contraction due to attractive updates. Effectively, ζ > ζ−1 causes contraction, and 0 < ζ < ζ−1

causes expansion, contradicting the intuition that attractive updates consistently bring points closer
together.

If ζ−1 is high, neighboring points oscillate between contraction and expansion, and the clusters
appear fuzzy. For the sharpest boundaries, then, the goal of optimization can be recast as one of
achieving the limit ζ−1 → 0. As a result, UMAP’s learning rate schedule requires annealing to
zero (Figs. 1 (c,d)). On the other hand, the repulsion shape (Eq. 12) is always positive and satisfies
Proposition 4.2. fU

r approaches 0 as ζ → ∞ and approaches ∞ as ζ → 0 (Fig. 1 (e)).

Attraction shapes for different algorithms show that only UMAP and t-SNE deal with the issue of
having fa < −1 (and consequently ζ1 > 0 at λ = 1, Fig. 1(f)). t-SNE solves it by weighting the
updates with corresponding pij values, while UMAP relies on learning rate annealing. Methods like
Neg-t-SNE and PaCMAP have fa naturally within [−1, 0] (and thus, satisfies Proposition 4.1 for
λ ∈ [0, 1] with ζ−1 = 0). Furthermore, PaCMAP’s weighted fa (< 0.5 always) even prevents any
flips during attraction. On the other hand, the repulsion shapes for different algorithms show that
only UMAP deals with large values for small distances (Fig. 1(g); the shape is unbounded, but during
optimization, the values are often clipped). For additional details of these and related methods, see
Appendix G.

We show the effect of these attraction/repulsion choices for MNIST embedding by applying separate
constant learning for attraction (λa) and repulsion (λr), and varying their values (Figs. 1(h,i)). For
UMAP, the lower value of λa (< 0.5 and consequently ζ−1 ≃ 0) is preferred for better embedding
(trustworthiness (T) (Venna & Kaski, 2001), a measure of structure preservation, in Fig. 1(h)) and
clustering (silhouette scores (SIL) (Rousseeuw, 1987), a measure of cluster separation, in Fig. 1(i)),
whereas the whole range of λr (∈ [0, 1]) could be used. For NEG-t-SNE and PaCMAP, for which
ζ−1 = 0, the whole range of parameters is effective. This confirms that UMAP relies on making ζ−1

close to 0 for satisfactory embedding and clustering, which it achieves in practice by learning rate
annealing, whereas ζ−1 = 0 is the default in newer algorithms. For additional discussions, results,
and illustrations of these methods on different datasets, see Section 6 and Appendices B, G, and I.

5.1 IMPROVING UMAP’S CONSISTENCY UNDER RANDOM INITIALIZATION

The consistency of UMAP embeddings depends on proper initialization (Kobak & Linderman, 2021;
Wang et al., 2021). Typically, principal component analysis (PCA) of the data or spectral decom-
position of the high-dimensional graph initializes the embedding, producing consistent mappings
despite various sources of stochasticity. If randomly initialized, clusters often fail to form or form

5
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(Random init.) (Random init.)(PCA init.) (Random init.)

(a) (b) (c) (d)

Attraction Shapes (Random init.) (Random init.) (Random init.)

(e) (f) (g) (h)

Figure 2: Effect of random initialization on different attraction shapes for the MNIST dataset.
(a) Mapping using PCA. (b-d) Four mappings with the lowest Procrustes distance (pd) from the
embedding in (a) for (b) UMAP, (c) modified, and (d) composite attraction shapes. (e) Default UMAP
and modified attraction shapes. (f-h) Procrustes matrices from 100 runs of (f) UMAP (0.78± 0.13),
(g) modified (0.49 ± 0.21), and (h) composite attraction (0.50 ± 0.20) shapes. The diagonal (i, i)
entries of the Procrustes matrix are sorted by Procrustes distance (pd) from (a), and the off-diagonal,
(i, j), entries correspond to pd between ith and jth mapping. The matrices and (mean pd±std) values
show that UMAP’s embeddings are not self-similar, while the modified and composite attraction
shapes encourage scale-invariant structure.

in a random orientation each time the algorithm executes. If the initial distance between two points
(nearest neighbors in high dimension) is large, the attractive forces become too low to bring them
closer. Known as near-sightedness (Wang et al., 2021), this phenomenon is evident in the attraction
shape, where |fU

a | diminishes towards zero as the distance increases (i.e., limζ→∞ |fU
a (ζ)|ζ = 0).

One can induce “far-sightedness” in the mapping by increasing attraction for large distances, facili-
tating faraway neighbors to come closer. To test this hypothesis, we modify the attraction shape of
UMAP to increase the attractive force:

fM
a = fU

a − βζ, (13)

where β is a parameter that regulates the strength of the added term (we used β = 0.2, Fig. 2 (e)).
This addition in the attraction shape translates to adding a regularizer in the attractive term of the loss
function (i.e., LM = L+

∑
i,j β/3 ||yi − yj ||32). In addition to attracting pairs at faraway distances,

this technique enables intermixing of points that help convergence under random initialization (akin
to early exaggeration in t-SNE). In (13), we chose the simplest linear correction; other functions,
such as log ζ or ζp (p ∈ R≥0), may also be suitable.

We also consider a composite attraction shape:

fC
a =

{
fM
a , epoch ≤ 100

fU
a , otherwise

. (14)

The composite shape attempts to remove any distortions introduced by fM
a by reverting to the original

UMAP. Below, we discuss the effects these modified and composite attraction shapes have on DR
from random initialization.

We first created a PCA-initialized embedding of the MNIST dataset Figure 2 (a). Then, we produced
embeddings using random initialization (Gaussian) for each shape and repeated the experiment 100
times. To quantify the results, we use Procrustes analysis (Gower, 1975) that aligns two point clouds
under scaling, translation, rotation, and reflection (for details, see Appendix D.1). Here, we align the
randomly initialized embeddings to that of the PCA-initialized one and characterize their separation
using the Procrustes distance (pd). Figure 2 (b) shows four embeddings with the lowest pd. While
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(i) (j) (k) (l)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Control of inter-cluster distances on the MNIST dataset. (a) Computing a, b by varying
the low-dimensional distance md restricts exploration. (b-d) UMAP output by setting md to 0.1,
0.01, and 0.0001, respectively, shows little improvement in compactness of clusters. (e) Repulsion
shapes for different parameters. (f-h) Increasing repulsion by explicitly varying b results in more
compact clusters and forms new ones that were absent otherwise. (i) Attraction shapes by varying
parameters. (j-l) Increasing repulsion by adding a small positive value (ε) to the repulsion shape
increases inter-cluster distance.

the cluster shapes are consistent, their placements are not. Outputs from the modified and composite
attraction shapes (Figs. 2 (c) and (d), respectively) show improved consistency of cluster placements.

To quantify the placements further, we consider the Procrustes matrix: the diagonal of the matrix
is sorted by pd from the PCA-initialized mapping, and the off-diagonal values are pd between two
randomly initialized mappings (for details, see Appendix D.1). This quantification is analogous to the
similarity matrix (Foote, 1999). The embeddings due to the default UMAP attraction shape are not
similar to each other (Fig. 2 (f)), but the modified (Fig. 2 (g)) and composite (Fig. 2 (h)) shapes show
strong similarity to each other. This indicates that UMAP encodes a unique structure, regardless of
the initialization. However, attaining that structure in the low dimension may fall short due to small
attraction at longer distances.

5.2 CLUSTER FORMATION AND COMPACTNESS

The primary controllable parameter influencing cluster formation in UMAP is the minimum distance
parameter md (through Eq. 2). However, varying md restricts the exploration of different values of
a and b (Fig. 3 (a)). Thus, reducing md often results in embeddings that do not provide additional
benefit (Figs. 3 (b-d)). The key factor is the limited influence of varying md on the repulsion shape
(Fig. 3 (e)). Alternatively, we can explicitly vary the values of a and b. Decreasing a increases
repulsion, but it decreases attraction at a faster rate (causing a worse case of near-sightedness). On
the other hand, decreasing b gives a better control (Figs. 3 (e,i)). Figures 3 (f-h) show increasing inter-
cluster distance and breaking up of previous clusters by varying b to 0.6, 0.5, and 0.4, respectively.
This breaking up occurs due to the increasingly heavy-tailed nature of the kernel as b decreases
(heavy-tailed kernels result in smaller and distinct clusters (Van der Maaten & Hinton, 2008; Kobak
et al., 2019); see Kobak et al. (2019) for how varying b in UMAP modulates the tail). Although this
approach separates all ten MNIST labels into distinct clusters, the relative contributions of attraction
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(a) (b)

Figure 4: Embedding of the MNIST dataset with (a) default attraction shape but repulsion shape
with b = 0.4 and (b) default repulsion shape but attraction shape with b = 0.4. The former shows
the same clusters of default UMAP with increased compactness. The latter develops new structures
within clusters and forms new clusters.

and repulsion are hard to disentangle; changing b amplifies repulsion more than changing md, but it
also reshapes the attraction profile.

To quantify the effect of repulsion independently, we can keep attraction fixed and vary the other. To
achieve this, we modify the repulsion shape by adding a small positive value (ε):

fM
r = fU

r + ε, (15)

while keeping the values of a and b constant, which effectively adds a regularizer in the repulsive
term of the loss function (i.e, LM = L −

∑
i,j ε/2 ||yi − yj ||22). Using this, we can obtain stronger

repulsion than previously (Fig. 3(e)). Figs. 3 (j-l) show that as ε increases, the inter-cluster distances
also increase. However, the clustering properties show similarity to those obtained by varying md,
and we get a loose separation of all the labels as ϵ increases. Overall, the parameter ε keeps the
attraction shape unaffected, and varying md effectively traces similar attraction shapes (Fig. 3 (i)),
suggesting cluster formation is governed predominantly by attraction.

To resolve the mystery of cluster formation, we change either the attraction shape or the repulsion
shape individually while leaving the other at the default by simply setting b to 0.4 (Fig. 4). The
default attraction is unable to show new structures or clusters in the embedding, but the increased
repulsion (b = 0.4) gives smaller clusters than the original UMAP (Fig. 4 (a)). On the other hand,
when the attraction increases by setting b = 0.4 with the default repulsion, the embedding shows
additional structures within each cluster (Fig. 4 (b)). Some of the older clusters even separate into
smaller ones. This shows that attraction causes cluster formation, while repulsion makes the clusters
more compact (depending on the repulsion shape, it does this either by making smaller clusters or
increasing inter-cluster distance). We show in appendix G.3 that LocalMAP embeddings also exploit
this interplay of attraction and repulsion to separate the clusters.

6 COMPARISON TO NEG-t-SNE

Setting a and b to 1 is common for various dimensionality reduction algorithms. This particular
setting makes the gradients in many algorithms stable (or bounded) and, in turn, makes optimization
easier. Recently, Damrich et al. (2023) explored this for UMAP and proposed Neg-t-SNE as a
solution, which, in addition to having a stable gradient, provides a more compact clustering even for
a constant learning rate of 1. On the other hand, Parametric UMAP (Sainburg et al., 2021) initially
used the UMAP loss formulation, but later it1 adopted a numerically stable modified cross-entropy
loss function (Shi et al., 2023) with a logsigmoid kernel. Analysis of both reveals that the approaches
arrive at the same formulation from different starting points, which leads to the following observation:
Proposition 6.1. Neg-t-SNE is Parametric UMAP with a = 1 and b = 1.

With a = 1 and b = 1, the attraction and repulsion shapes of UMAP are given by fU
a = −2/(1 + ζ2)

and fU
r = 2/(ζ2(1 + ζ2)), respectively. The attraction shape becomes bounded within [−2, 0], with

1https://github.com/lmcinnes/umap/pull/856, merged on April 26, 2022
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fU
a (0) = −2 (Fig. 1 (f)), while the repulsion shape remains essentially unchanged (i.e., unbounded

as ζ → 0, Fig. 1 (g)). Since fU
a < −1 as ζ → 0, according to Proposition 4.1 and the discussion

provided in Section 5, this unity case still requires learning rate annealing.

Damrich et al. (2023) compared UMAP’s negative sampling loss function from the perspective
of contrastive embedding (CE) and concluded that the effective kernel of UMAP is 1/ζ2. Under
the CE framework, the authors introduced NEG-t-SNE by changing the kernel to 1/(1 + ζ2).
Reverting to UMAP formalism, this results in the low-dimensional affinity function qNij = 1/(2+ ζ2).
Consequently, the attraction and repulsion shapes are fN

a = −2/(2 + ζ2), and fN
r = 2/((1 +

ζ2)(2 + ζ2)), respectively (Figs. 1 (f,g)). The attraction shape is bounded within [−1, 0] and satisfies
Proposition 4.1. Any λ ∈ [0, 1] would cause contraction and avoid oscillation of expansion and
contraction. Thus, NEG-t-SNE is less sensitive to learning rate annealing, and the clusters appear
less fuzzy even for constant λ = 1.0. Moreover, the repulsion shape of NEG-t-SNE is also bounded
within [0, 1] and does not approach infinity as ζ → 0, which causes fewer points to leave the clusters
when sampled randomly. While Damrich et al. (2023) used only the bounded repulsive forces of
NEG-t-SNE and unbounded ones of UMAP to explain this disparity, our analysis, in Fig. 1, shows
that the attraction shape is equally responsible for stability and compactness of the clusters. For
additional discussion on NEG-t-SNE with illustration, see Appendix F. Together with the discussion
in Fig. 4, this suggests that attraction and repulsion shapes from different methods can be mixed, for
instance, using the attraction shape of UMAP with the repulsion shape of NEG-t-SNE. We show a
few examples by experimenting on UMAP, NEG-t-SNE, and PaCMAP in Appendix J.

7 DISCUSSION AND CONCLUSION

In this work, we studied the relationship of attractive and repulsive forces to cluster formation.
While it is known that attractive forces bring similar points closer together and repulsive forces push
dissimilar points further away, the exact mechanisms of such forces have not been well studied. Here,
we demystified much of the dynamics underlying cluster formation. While we focused on UMAP
and NEG-t-SNE in the main text, the results are general to dimensionality reduction (some other
algorithms are discussed in the Appendix G).

We treated the attraction and repulsion coefficients as functional mappings and analyzed them in the
context of their respective shapes. Characterizing these shapes (Propositions 4.1 and 4.2) revealed
a counterintuitive result: the attractive forces of UMAP gave repulsion (expansion of distance) for
shorter distances (Fig. 1 (b)), i.e., instead of bringing neighboring points closer together, it pushes
them away. We conclude that UMAP’s learning rate schedule alleviates this phenomenon.

We also studied the initialization of the low-dimensional embedding. Similar points starting further
apart experience low attraction and never contract well enough. Our formalism provides a way
to influence attraction at larger distances by adding additional terms to the attraction shape. This
modification resulted in outputs that are more consistent under random initialization. This gives us
confidence that UMAP encodes a unique structure, with numerical tricks merely helping to achieve it
faster.

Analyzing the repulsion shape revealed that higher repulsion causes a larger inter-cluster distance. To
this end, we added a small positive value to the shape, giving a higher repulsion that is not achievable
by traditional means of varying the minimum distance parameter md.

Finally, we explored the relation between NEG-t-SNE and UMAP. For the particular case of a = 1
and b = 1, the primary difference is that NEG-t-SNE in its default form provides bounded attraction
(∈ [−1, 0]) and repulsion (∈ [0, 1]) shapes. Thus, both propositions are satisfied regardless of the
learning rate. As a result, the method shows less sensitivity to a fixed learning rate (∈ [0, 1]). Varying
a and b in NEG-t-SNE introduces the same numerical challenges as UMAP. We also showed that
NEG-t-SNE and Parametric UMAP are equivalent.

These insights into attraction–repulsion dynamics offer new tools for optimizing dimensionality
reduction algorithms. Beyond this, the close connection between dimensionality reduction and
contrastive learning (Damrich & Hamprecht, 2021; Hu et al., 2023) suggests that our approach can
also enhance representation learning. Taken together, our work aims to make embeddings and their
interpretations more principled, consistent, and reliable, and guide future research.
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SOFTWARE AND DATA

All the data used in this paper are publicly available. The MNIST dataset is
available at https://yann.lecun.com/exdb/mnist/. Fashion-MNIST is available at
https://github.com/zalandoresearch/fashion-mnist. Single-cell transcriptomes data is available at
https://github.com/biolab/tsne-embedding. Additional details are provided in the Implementation
Details section in Appendix K. Representative codes for reproducing the results are attached as
supplementary material for review.

LLM USAGE DISCLOSURE

The first author drafted the manuscript and used LLM tools (Grammarly and ChatGPT) for stylistic
and grammatical refinement in select sections. All authors subsequently edited and approved the final
text. No AI tools were used for code generation, data analysis, or research assistance.
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APPENDIX

In Appendix A, we provide necessary derivations regarding attraction and repulsion shapes of UMAP.
In Appendix B we explore using a constant learning rate following our discussion in the main text.
Then, in Appendix C, we discuss the implications of improved attraction and repulsion on large
language model embeddings. We formally define Procrustes distance and matrix in Appendix D.1.
We explore additional datasets for the random initialization experiment in Appendix E. We extend
the discussion of NEG-t-SNE and UMAP in Appendix F. After that, in Appendix G, we explore
alternate dimensionality reduction methods. Then, for completion, we discuss the construction of the
high-dimensional graph in these methods in Appendix H. In Appendix I, we show the detailed result
of varying λa and λr (from Fig. 1) for UMAP, NEG-t-SNE, and PaCMAP on different datasets. We
show the effect of mixing and matching the shapes from different algorithms in Appendix J. Finally,
we provide implementation details in Appendix K.
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A PROOFS AND DERIVATIONS

A.1 PROOF OF PROPOSITION 4.1

Proof. We subtract Eq. (7) from Eq. (8) and take a norm:

||yt+1
i − yt+1

j || = |1 + 2λfa|||yti − ytj ||. (16)

This distance contracts as long as |1 + 2λfa| < 1, i.e., provided

−1 < λfa < 0, (17)

A.2 PROOF OF PROPOSITION 4.2

Proof. We subtract Eq. (9) from Eq. (10) and take a norm:

||yt+1
i − yt+1

j || = |1 + λfr|||yti − ytj ||. (18)

This distance increases when |1 + λfr| > 1, i.e.,

λfr < −2 or fr > 0. (19)

From the definition of fr, the latter suffices.

A.3 ATTRACTION SHAPE:

We use a general form of the low-dimensional affinity function, i.e., qij = (γ + a||yi − yj ||2b1 )−1,
to derive the attraction shape. It reduces to UMAP for γ = 1 and to NEG-t-SNE for γ = 2. The
attractive force is given by

∇yi
log qij = −∇yi

log (γ + a(||yi − yj ||22)b)

= − 1

γ + a(||yi − yj ||22)b
∇yi

(γ + a(||yi − yj ||22)b)

= − 1

γ + a(||yi − yj ||22)b
ab(||yi − yj ||22)b−1∇yi ||yi − yj ||22

= −2ab(||yi − yj ||22)b−1

γ + a(||yi − yj ||22)b
(yi − yj). (20)

Defining ζ = ||yi − yj ||2, the first term gives the attraction shape as:

fa(ζ) = −2abζ2(b−1)

γ + aζ2b
(21)

A.4 CONDITION FOR STRICTLY INCREASING fU
a :

Its behavior with distance can be characterized by computing the derivative of fU
a :

dfU
a (ζ)

dζ
= −2abζ2b−3

γ + aζ2b

(
(b− 1)− abζ2b

γ + aζ2b

)
. (22)

This leads to a strictly increasing condition (df
U
a

dζ > 0),

g(ζ, b, a) < 0, (23)

where g(ζ, b, a) = b− 1− abζ2b

γ+aζ2b . This inequality is valid as long as 0 < b ≤ 1 (using the derivative
and asymptotes of g). Figure 5 shows values of g for different b and a. As b increases above 1, the
inequality (23) no longer holds.
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(a) (b)

Figure 5: Values of g(ζ, b, a) for (a) a fixed at 1.576 and (b) b fixed at 0.89.

(a) (b)

(d)(c)

Near optimal operating point

Constant Learning Rate, 1.0 Constant Learning Rate, 0.01

Constant Learning Rate, 0.1

Figure 6: Effect of constant learning rate in embeddings. (a) When the learning rate is too high
(λ = 1.0), the embeddings are diffuse (because of the high value of ζ−1). (b) When the learning rate
is too low (λ = 0.01), clusters don’t form (the strengths of attraction and repulsion are too low). (c)
ζ−1 decreases nonlinearly as the learning rate decreases. The goal of the algorithm is to reduce ζ−1

while keeping effective levels of attraction and repulsion. (d) Distinct and compact clusters form at a
constant, near-optimal learning rate λ = 0.1.

A.5 REPULSION SHAPE:

The repulsive force, using the general form of the low-dimensional affinity, is given by

∇yi
log (1− qij) = ∇yi

log

[
1− 1

γ + a(||yi − yj ||22)b

]
=

γ + a(||yi − yj ||22)b

(γ − 1) + a(||yi − yj ||22)b
∇yi

[
1− 1

γ + a(||yi − yj ||22)b

]
=

1

γ − 1 + a(||yi − yj ||22)b
ab(||yi − yj ||22)b−1

γ + a(||yi − yj ||22)b
∇yi

||yi − yj ||22

=
2ab(||yi − yj ||22)b−1

(γ − 1 + a(||yi − yj ||22)b)(γ + a(||yi − yj ||22)b)
(yi − yj). (24)
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The first term gives the repulsion shape as:

fr(ζ = ||yi − yj ||2) =
2abζ2(b−1)

(γ − 1 + aζ2b)(γ + aζ2b)
. (25)

Generally, fr > 0.

A.6 LOSS FUNCTIONS DUE TO MODIFIED ATTRACTION AND REPULSION SHAPE:

The cost function of the attractive term with the modification in Eq. (13) is given by

−
∫
(fU

a (||yi − yj ||2)− β||yi − yj ||2)(yi − yj)dyi = − log(qij) +
β

3
||yi − yj ||32, (26)

whereas the repulsive term due to Eq. (15) is given by

−
∫
(fU

r (||yi − yj ||2) + ϵ)(yi − yj)dyi = − log(1− qij)−
ϵ

2
||yi − yj ||22. (27)

In both cases, the additional term acts as a regularizer, simply using norms. However, when we
directly add this term to attraction and repulsion shapes, we can easily explain what each term is
doing. For the attractive term, it is increasing far-sightedness, whereas for the repulsive term, it adds
a constant repulsive coefficient.

B MORE ON UMAP’S LEARNING RATE

As we discussed in Sections 5 and 6 of the main text, it is believed that UMAP requires learning
rate annealing (Fig 6). To explain this, in Section 5, we defined the concept of minimum distance
for contraction (ζ−1) and established that reducing this value through learning rate annealing results
in compact clusters. Later, in Section 6, we compared attraction shapes of UMAP (for a = 1.0 and
b = 1.0) and Neg-t-SNE and explained that Neg-t-SNE can withstand a constant learning rate of
1.0 better than UMAP because it’s attraction shape resides within [−1, 0] while UMAP’s is within
[−2, 0]. Following the same logic, we showed that UMAP can withstand a constant learning of 0.5
by making its attraction shape stay within [−1, 0] (Figs. 11(f,h)).

However, the embeddings are still better if the learning rate anneals (for a wide range of parameters
of a and b). This is because the goal of the algorithm is to eventually reduce ζ−1 to zero and it occurs
when the learning rate reduces close to zero. Otherwise, the embedding becomes diffused (Fig 6(a)).
On the other hand, if the learning rate is too low, to begin with, the strength of attraction and repulsion
is too low, and thus no clear clusters can form (Fig 6(b)). By analyzing ζ−1 vs λ curve (Fig 6(c)), we
see that a near optimal point is λ = 0.1 where the value of ζ−1 is low with considerable attraction
and repulsion strength. Setting the constant learning rate to 0.1, we obtain compact clusters with
clear boundaries (Fig 6(d)).

C LARGE LANGUAGE MODEL EMBEDDING

Increased attraction and repulsion often produce better embeddings. To show this, we randomly
selected 300,000 samples of features using PubMedBERT (Gu et al., 2021) with known labels
from the PubMed dataset (González-Márquez et al., 2024). The default UMAP provides a crowded
structure where labels (colors) overlap (Fig. 7(a)). Without labels, one might be perplexed about
the embeddings, as explicit clusters are absent. However, by adjusting b to 0.6 (as discussed in
Section 5.2), we increase repulsion and simultaneously facilitate cluster formation through improved
attraction. The mapping is explorable even without explicit labeling (Fig. 7(b)). The improvement
of the embedding can be quantified by the k-NN accuracy (k = 10). On a hold-out data of 10, 000
points, k-NN accuracy has increased from 49.2% to 55.48% by reducing b to 0.6.

D METRICS

D.1 PROCRUSTES DISTANCE AND PROCRUSTES MATRIX

The Procrustes distance (Gower, 1975) measures similarity between two point clouds {x} and {y}
under linear transformations, viz. translation, scaling, and rotation. Operationally, we hold the former
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(a) (b)

Figure 7: Visualization of 300K abstracts from the PubMed dataset. (a) Default UMAP (a =
1.576, b = 0.89) shows labels overlapping each other in the mapping, but (b) UMAP with improved
repulsion and attraction (a = 1.576, b = 0.60) shows better cluster formation and non-overlapping
labels. Both mappings are labeled for easier understanding.

Sorted Diagonal Unsorted Diagonal Sorted Diagonal Unsorted Diagonal

(a) (b) (c) (d)

Figure 8: Effect of sorting the diagonal of Procrustes matrix on its visualization. (a) Procrustes
matrix reproduced from 2(f) for the default UMAP attraction shape. The diagonal of the matrix is
sorted by pd of a sample embedding with PCA initialization. (b) The same data as in (a), but the
diagonal is unsorted (or randomly sorted). (c) Procrustes matrix reproduced from 2(g) for modified
attraction shape, where the diagonal of the matrix is sorted by pd of a sample embedding with PCA
initialization. (d) The same data as in (c), but the diagonal is unsorted.

fixed and vary the latter until the two sets are in maximum alignment. Let {y′} be the transformation
of {y} that achieves this objective. Then the Procrustes distance is given by

pd({x}, {y}) =
√∑

k

(xk − y′k). (28)

The Procrustes distance is a linear measure that has proven useful in a variety of settings (McInnes
et al., 2018; Islam & Fleischer, 2022; Kotlov et al., 2024).

Here, we use the Procrustes distance to measure the consistency of embedding under random
initialization. Let {x}p be a reference embedding (using PCA initialization in our experiments), and
Xr = {{x}i|i = 1, 2, 3, . . . , N} be a set of N embeddings obtained from random initialization. The
similarity of the embeddings can be quantified by taking a mean and standard deviation of the strictly
lower triangular values of the matrix P (reported as mean±std in Figs. 2, 9, and 10), with

mean =
2

N(N − 1)

∑
i,j(i>j)

Pi,j , and std =

√√√√ ∑
i,j(i>j)

2(Pi,j − mean)2

N(N − 1)
(29)
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The indexes of Xr can be sorted such that pd({x}i, {x}p) ≤ pd({x}i+1, {x}p), so that the diagonal
values of the Procrustes matrix are given by

Pi,i = pd({x}i, {x}p) (30)

and the off-diagonal values are given by

Pi,j = pd({x}i, {x}j). (31)

Numerically, the sorting of the diagonal adds little value. Visually, however, the ordering reveals
the underlying self-similarity of the embeddings. For example, in Fig. 8(a), the sorted diagonal
shows that similar embeddings clump in the upper left region of the matrix. When we use a modified
attraction shape, the number of points that are similar to each other increases (as shown by the larger
blue region in Fig. 8(c)), indicating the presence of a metastable point in the embedding algorithm.
On the other hand, when the diagonal is unsorted, this region disappears, and any sense of similar
embeddings is lost (Fig. 8(b,d)).

D.2 TRUSTWORTHINESS

The trustworthiness metric (Venna & Kaski, 2001) quantifies how well local neighborhoods are
preserved after dimensionality reduction:

T = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
yj∈KNN(yi,k)

max(0, r(i, j)− k) (32)

where KNN(yi, k) is the k-NN graph in the embedding space and r(i, j) is the rank of xj in the
high-dimensional k-NN graph. In practice, k is often set to 5, assessing preservation of each point’s
five nearest neighbors. For computational efficiency, when we report trustworthiness, we randomly
sampled 10,000 indices. When comparing different embeddings, we used the same indices.

D.3 SILHOUETTE SCORE

While the silhouette score (Rousseeuw, 1987) aims to assess clustering algorithms, we use it to
evaluate label separation in the embeddings, i.e, how well the ground truth labels have been clustered.
The idea is that the embedding algorithms naturally produce clusters and should separate the labels
as much as possible. For a point yi in a point cloud {y}, let ai be the mean distance from yi to other
points in its own label, and let bi be the minimal mean distance from yi to points in any other label.
The pointwise silhouette is thus given by

si =
bi − ai

max {ai, bi}
(33)

This value lies within [−1, 1]. A value close to 1 means that yi fits within its own label cluster, near 0
suggests a boundary point, and close to −1 indicates failed label separation. The overall silhouette
score is

SIL =
1

N

∑
si. (34)

We computed the silhouette score for the whole embedding (no random sampling) using Euclidean
distances.

E EFFECT OF RANDOM INITIALIZATION IN ADDITIONAL DATASETS

In the main text (Section 5.1), we showed results only on the MNIST dataset. Here we perform
the same experiment on the Fashion-MNIST (FMNIST) (Xiao et al., 2017) and single-cell tran-
scriptomes (Macosko et al., 2015) data (Fig. 9 and 10, respectively). The main conclusion remains
unchanged: modified and composite attraction shapes, such as those that increase attraction at large
distances, significantly improve the consistency of reconstruction.
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(Random init.) (Random init.)(PCA init.) (Random init.)

(a) (b) (c) (d)

Attraction Shapes (Random init.) (Random init.) (Random init.)

(e) (f) (g) (h)

Figure 9: Effect of random UMAP initialization on different attraction shapes on FMNIST data. (a)
Mapping using PCA as a standard. (b-d) Four mappings with the lowest Procrustes distance (pd)
from the embedding in (a) for (b) default, (c) modified, and (d) composite attraction shapes. (e)
Default UMAP and modified attraction shapes. (f-h) Procrustes matrix obtained from 100 runs of (f)
default (0.72± 0.15), (g) modified (0.38± 0.19), and (h) composite (0.43± 0.18) attraction shapes.

(Random init.) (Random init.)(PCA init.) (Random init.)

(a) (b) (c) (d)

Attraction Shapes (Random init.) (Random init.) (Random init.)

(e) (f) (g) (h)

Figure 10: Effect of random UMAP initialization on different attraction shapes on single-cell
transcriptomes data. (a) Mapping using PCA as a standard. (b-d) Four mappings with the lowest
Procrustes distance (pd) from the embedding in (a) for (b) default, (c) modified, and (d) composite
attraction shapes. (e) Default UMAP and modified attraction shapes. (f-h) Procrustes matrix obtained
from 100 runs of (f) default (0.91±0.06), (g) modified (0.61±0.13), and (h) composite (0.64±0.15)
attraction shapes.
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F MORE ON NEG-t-SNE

F.1 COMPARISON TO UMAP

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: Sensitivity of UMAP and NEG-t-SNE to learning rate on the MNIST dataset. (a)
Attraction and (b) repulsion shapes for UMAP (a = 1, b = 1) and NEG-t-SNE. (c,d) UMAP is very
sensitive to the learning rate λ, as fU

a < −1 as the separation distance ζ decreases. Thus, without
annealing, the clusters become fuzzy. (e,f) NEG-t-SNE is less sensitive to λ as fN

a ∈ [−1, 0] always,
and the clusters are thus less fuzzy even when not annealed. (g,h) Confining fU

a to [−1, 0] by setting
λ = 0.5 shows less sensitivity to λ.

Figure 11 shows the shapes of UMAP and NEG-t-SNE, along with various MNIST embeddings.
When the learning rate is annealed, both UMAP and NEG-t-SNE show similar output (Figs. 11(c,e)).
However, when the learning rate is a constant value of 1, the UMAP shows a fuzzy structure, while
NEG-t-SNE shows a structure with much cleaner boundaries (Fig. 11(d,f)). The discussion in
Section 6 suggests that constraining fU

a within [−1, 0] can potentially result in less fuzzy clusters for
fixed λ. We have seen this previously in Fig. 1(h,i) as well, where UMAP provided better embedding
and clustering when the learning rate for attraction (a) was ≲ 0.5. A straightforward way to achieve
this is to initialize λ to 0.5, which satisfies Proposition 4.1 for all ζ . The resulting embeddings, shown
in Figs. 11 (g) and (h), confirm that clusters are similar to those of NEG-t-SNE’s, and for a constant
λ = 0.5, the clusters are less fuzzy than before as predicted with sharper boundaries (Fig. 11(d,h)).
There are still a few points outside the clusters due to the characteristics of UMAP’s repulsion shape,
which NEG-t-SNE solves.

Next, we can introduce the parameters a and b into NEG-t-SNE (essentially the formulation of
Parametric UMAP; see Proposition 6.1). The affinity function becomes qNij = 1/(2 + aζ2b), and the

attraction and repulsion shapes become fN
a = − 2abζ2(b−1)

2+aζ2b , and fN
r = 2abζ2(b−1)

(1+aζ2b)(2+aζ2b)
, respectively.

For 0 < b < 1, both shapes become unbounded as ζ → 0. Thus, NEG-t-SNE will face similar
numerical challenges to UMAP if a and b vary, and corresponding limitations carry over. One notable
distinction is that, compared to UMAP, the attraction shape attains a lower minimum distance (ζ−1)
for the attraction. While this may enhance cluster formation, it approaches zero faster (increased
near-sightedness as distance increases), potentially diminishing its effectiveness for attraction over
longer distances.

F.2 COMPARISON TO PARAMETRIC UMAP

Parametric UMAP was initially trained with the original UMAP objective (Sainburg et al., 2021), but
later work adopted a numerically stable, log-sigmoid–based modified cross-entropy loss (Shi et al.,
2023). This modification makes Parametric UMAP and Neg-t-SNE Damrich et al. (2023) equivalent
(Proposition 6.1). We show the equivalence below.
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PROOF OF PROPOSITION 6.1

Proof. The kernel function under this modification becomes

qPij = − log (1 + a||yi − yj ||2b2 ). (35)

The attractive term is

−logsigmoid(qPij) = − log

(
1

1 + exp(−qPij)

)
(36)

= − log

(
1

2 + a||yi − yj ||2b2

)
(37)

= − log(qNij ). (38)

And the repulsive term is

logsidmoid(qPij)− qPij = log

(
1

2 + a||yi − yj ||2b2

)
+ log

(
1 + a||yi − yj ||2b2

)
(39)

= log

(
1 + a||yi − yj ||2b2
2 + a||yi − yj ||2b2

)
(40)

= log

(
1− 1

2 + a||yi − yj ||2b2

)
(41)

= log(1− qNij ). (42)

Both these are NEG-t-SNE with explicit parameters a and b (while in Neg-t-SNE these are set to
1).

G ALTERNATE DIMENSIONALITY REDUCTION ALGORITHMS

The alternative algorithms we consider use the same kernel function as UMAP (with a = 1 and b = 1
in their low-dimensional weight):

qij =
1

1 + ||yi − yj ||22
. (43)

In this section, we first discuss the TriMap (Amid & Warmuth, 2019) algorithm. Even though, this
algorithm relies on triplets (and not pairwise interactions), this works as a primer for analyzing
attraction and repulsion that are a bit more involved than UMAP. This discussion is followed by
Pairwise Controlled Manifold Approximation (PaCMAP) (Wang et al., 2021) and it’s extension
Pairwise Controlled Manifold Approximation with Local Adjusted Graph (LocalMAP) (Wang et al.,
2025) that modify TriMAP’s loss function that works for pairwise interactions. We then tackle
t-SNE (Van der Maaten & Hinton, 2008). Then, we provide a short note on SNE (Hinton &
Roweis, 2002) that uses an alternate kernel function and finally end the section by briefly discussing
multidimensional scaling (Borg & Groenen, 2007).

G.1 TRIMAP

TriMap (Amid & Warmuth, 2019) optimizes low-dimensional using a triplet loss

LT =
∑

(i,j,k)

wijk
1

1 +
qij
qik

, (44)

where wijk is the weight of the triplet (yi, yj , yk), yj is in the k-nearest neighbor set of yi in the high
dimension, and yk is a far-away point. When minimized, we expect that yi and yj attract each other,
while yi and yk repel each other. The update equations are

yt+1
i = yti + λfT

a (ζt1, ζ
t
2)(y

t
i − ytj) + λfT

r (ζ1, ζ2)(y
t
i − ytk), (45)

yt+1
j = ytj − λfT

a (ζt1, ζ
t
2)(y

t
i − ytj), (46)

yt+1
k = ytk − λf t

r(ζ
t
1, ζ

t
2)(y

t
i − ytk), (47)
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(a) (b)

Figure 12: (a) Attraction shapes of TriMap for different ζ2 and (b) repulsion shapes of TriMap for
different ζ1.

(a) (b) (c)

(d) (e) (f)

Figure 13: Attraction and repulsion behavior in TriMap. (a) hT
a vs ζ1 for different ζ2. Any values

below the dotted line indicate attraction. Like UMAP, TriMAP shows attraction and repulsion for
nearest neighbors (yi, yj). (b,c) Unlike UMAP, the minimum distance for contraction (ζ(−1)

1 ) varies
due to dependence on (b) ζ2 and (c) λ; the function cos θ regulates the range of these values. (d-f)
Repulsion in TriMap by varying (d) ζ1, (e) cos θ, and (e) λ. Values above (below) the dotted line
indicate repulsion (attraction). While the repulsion force of UMAP shows only repulsion, that of
TriMap can provide both attraction and repulsion. Unless otherwise labeled, ζ1 = 1.0, ζ2 = 0.5,
cos θ = 1.0, and λ = 1.0.
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where ζ1 = ||yi − yj ||2 is the distance between nearest neighbors, ζ2 = ||yi − yk||2 is the distance
from the faraway point, and fT

a and fT
r are attraction and repulsion shapes of TriMap, respectively.

Unlike UMAP, the attractive and repulsive components are non-separable and the shapes depend on
two distance measures (making them 2D). The functional form of the attraction shape is

fT
a (ζ1, ζ2) = − 2(1 + ζ22 )

(2 + ζ21 + ζ22 )
2
, (48)

and the repulsion shape is

fT
r (ζ1, ζ2) =

2(1 + ζ21 )

(2 + ζ21 + ζ22 )
2
. (49)

The attraction and repulsion shapes (Fig. 12) of TriMap shows similar trends of that of UMAP.
However, the minium value of repulsion shape is −0.5; thus, unlike UMAP there is no position
flipping in TriMAP due to attraction alone. However, since Eqs. (45-47) are not decoupled between
attractive and repulsive terms, Propositions 4.1 and 4.2 do not apply. Focusing on attraction first, we
show
Proposition G.1. Update equations (45)-(47) provide a contraction if

hT
a (ζ1, ζ2, θ, λ) < 1, (50)

where hT
a (ζ1, ζ2, θ, λ) = (1 + 2λfT

a )2 + 2(1 + 2λfT
a )λf t

r
ζ2
ζ1

cos θ + (λfT
r )2

ζ2
2

ζ2
1

and θ is the angle

between the vectors (yi − yj) and (yi − yk), i.e., cosθ =
(yt

i−yt
j)

T (yt
i−yt

k)

||yt
i−yt

j ||2||yt
i−yt

k||2
.

Proof. We require

||yt+1
i − yt+1

j ||22 < ||yti − ytj ||22. (51)

From Eq. (45) and (46): yt+1
i − yt+1

j = (1 + 2λfT
a )(yti − ytj) + λfT

r (yti − ytk). Putting this value in
Eq. (51), we obtain the desired inequality.

Inequality (50) depends on ζ1, ζ2, cos θ and λ. In particular, the value of ζ1 = ||yi − yj ||2, where we
want a contraction, is coupled with additional variables. Figure 13(a) shows the attraction behavior
for various values of ζ2, while cos θ = 1 and λ = 1. The values below the dotted line indicate
attraction (and thus contraction of distance ζ1), whereas the values above indicate repulsion (and
therefore expansion of distance ζ1). The value where the dotted line and hT

a meet gives the minimum
distance for contraction (ζ(−1)

1 ) [analogous to ζ−1 of UMAP], which we define as

ζ
(−1)
1 (ζ2, θ, λ) = argmin

ζ1
|hT

a (ζ1, ζ2, θ, λ)− 1|, (52)

s.t. ζ1 ≥ 0. (53)

ζ
(−1)
1 has a finite value and is > 0 for most cases (Fig. 13(b,c)). As a result, TriMap can show

behavior similar to UMAP and thus require learning rate annealing or a similar approach (in the
TriMap implementation, the authors use the delta-bar-delta (Jacobs, 1988) method under appropriate
initialization).
Proposition G.2. Update equations (45)-(47) provide expansion if

hT
r (ζ1, ζ2, θ, λ) > 1, (54)

where hT
r (ζ1, ζ2, θ, λ) = (1 + 2λfT

r )2 + 2λfT
a (1 + λfT

r ) ζ1ζ2 cos θ + (λfT
a )2

ζ2
1

ζ2
2

.

Proof. We require

||yt+1
i − yt+1

k ||22 > ||yjt− ytk||22. (55)

From Eq. (45) and (47): yt+1
j − yt+1

k = (1 + 2λfT
r )(yti − ytk) + λfT

a (yti − ytj). Putting this value in
Eq. (55) we obtain inequality (54).
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(a) (b) (c)

Figure 14: Attraction and repulsion shapes of PaCMAP. (a,b) Attraction shapes for (a) nearest-
neighbor and (b) mid-near points (note that the values are on the order of 10−4). (c) Repulsion shape
for farther pairs. λ = 1 for all figures.

(a) ( ) (c)

(d) (e) (f)

Figure 15: PaCMAP behavior for different conditions. (a) PaCMAP of MNIST data with PCA
initialization. (b,c) Four samples that best match with (a) by (b) original PaCMAP and (c) PaCMAP
with modified attraction shape, fM

a (ζ) = fP
a (ζ)−0.001ζ , when randomly initialized. (d) PaCMAP of

MNIST with a modified repulsion shape fM
r = fP

r +0.00005. (e,f) Procrustes matrix for (e) original
PaCMAP (0.51± 0.22) and (f) PaCMAP with modified attraction shape (0.43± 0.22). Similar to
UMAP, increased attraction at farther distances show improved consistency, while increased repulsion
shows smaller clusters and larger inter-cluster distances.

Inequality (54) also depends on the set ζ1, ζ2, cos θ and λ. Here, we are interested in the expansion
of ζ2 = ||yi − yk||2. Figures 13(d-f) show the repulsion behavior by varying the other quantities.
Any values above the dotted line indicate repulsion (and thus expansion of distance), while the values
below indicate attraction. The striking difference compared to UMAP is that repulsion in TriMap
can cause contraction instead of expansion. Since this anomaly occurs for small distances, it can be
avoided by an appropriate initialization and choice of triplets.

G.2 PAIRWISE CONTROLLED MANIFOLD APPROXIMATION (PACMAP)

PaCMAP (Wang et al., 2021) optimizes low-dimensional embedding at different scales. The loss
function is

LP = wNB

∑
(i,j)∈NN

1

1 + 10qij
+ wMN

∑
(i,k)∈MN

1

1 + 10000qik
+ wFP

∑
(i,l)∈FP

1

1 + 1
qil

, (56)
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where wNB , wMN , and wFP are weights of the nearest neighbor (NN) pairs, mid-near (MN) pairs,
and further pairs (FP), respectively (details in Appendix H). The first two terms provide attraction,
whereas the last term provides repulsion. A closer look at the loss function reveals that the function is
a modified form of TriMap’s triplet loss. For the attractive terms, it replaces TriMap’s affinity for
distant points with constant terms (1/10 for nearest neighbors, 1/10000 for mid-near pairs, and 1
for farther points). This loss function is thus separable into three terms and decouples the update
equations. The update equations of the nearest neighbor term are

yt+1
i = yti + λfP

a (ζt1)(y
t
i − ytj), (57)

yy+1
j = ytj − λfP

a (ζt1)(y
t
i − ytj), (58)

of the mid-near pairs are

yt+1
i = yti + λfP

m(ζt2)(y
t
i − ytk), (59)

yy+1
k = ytk − λfP

m(ζt2)(y
t
i − ytk), (60)

and of the farthest pairs are

yt+1
i = yti + λfP

r (ζt3)(y
t
i − ytl ), (61)

yt+1
l = ytl − λfP

r (ζt3)(y
t
i − ytl ), (62)

where ζ1 = ||yi − yj ||2, ζ2 = ||yi − yk||2, ζ3 = ||yi − yl||2 are distances, fP
a and fP

m are attraction
shapes for nearest neighbors and mid-near pairs, respectively, and fP

r is the repulsion shape for the
farthest pairs. Correspondingly, the functional forms of the shapes are

fP
a (ζ) = − 20

(11 + ζ2)2
, (63)

fP
m(ζ) = − 20000

(10001 + ζ2)2
, (64)

fP
r (ζ) =

2

(2 + ζ2)2
. (65)

fP
a and fP

m follow Proposition 4.1, and fr follows Proposition 4.2 (Fig. 14). The attraction is quite
low compared to UMAP, but it is good enough for a wide range of learning rates (modulated by the
Adam algorithm (Kingma & Ba, 2015)); with wNB = 3 the maximum attraction is always below 0.5
preventing any flips during attractin update. Typically, PaCMAP initializes the embedding within
a small sphere in the low dimension (e.g., in (Wang et al., 2021), the initialization is often on the
order of 10−3) and relies on repulsion to separate the individual clusters. Overall, it mostly recovers
UMAP’s clustering properties (especially for MNIST) with improved ordering. The consistency
under random initialization is better than UMAP (Fig. 15(b,e)) which can be improved further using
a modified attraction (Fig. 15(c,f)). Increasing repulsion by adding a small value to the repulsion
shape increases compactness of the embedding (by increasing inter-cluster distance).

G.3 PAIRWISE CONTROLLED MANIFOLD APPROXIMATION WITH LOCAL ADJUSTED GRAPH
(LOCALMAP)

LocalMAP (Wang et al., 2025) is an iteration of the PaCMAP algorithm. One of the defining features
of LocalMAP is the separation of all 10 clusters of the MNIST data (Fig. 16(a)), with behavior
similar to the ones in Figs. 3(g,h,j,k) and Figs. 4(a,b). Here, we explore the interplay of attractive and
repulsive forces on the compactness and connectedness of clusters.

LocalMAP performs PaCMAP and then does additional optimization on the attraction to decouple
some clusters. To this end, it minimizes the following loss function

LL =
∑

(i,j)∈NN

K
1√
qij

+ C
√
qij

+
∑

(i,l)∈FP

1

1 + 1
qil

. (66)

The first term amalgamates the attractive and repulsive nature of the triplet loss function that works
on the same pair. In one regime, this function causes attraction, while in the other, it causes repulsion.
The second term is identical to the ones in PaCMAP; the only difference is that the algorithm
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(a) (b) (c) (d)

Figure 16: Behavior of LocalMAP on MNIST data. (a) Default embedding. (b) Attraction-repulsion
shape of nearest neighbors. A value below (above) the dotted line indicates attraction (repulsion).
Transition from attraction to repulsion occurs as ζ increases and crosses

√
C − 1. Following imple-

mentation of LocalMAP, we used C = 10. (c) When K is large (= 20), repulsion dominates and
clusters become compact. (d) When K is small (= 7), attraction dominates and clusters break up.

resamples further pairs every few iterations. Thus, we analyze only the first term involving nearest
neighbors. The update equations are

yt+1
i = yti + λfL

ar(ζ
t
1)(y

t
i − ytj), (67)

yy+1
j = ytj − λfL

ar(ζ
t
1)(y

t
i − ytj), (68)

where fL
ar is the attraction-repulsion shape given by

fL
ar(ζ) = − K(C − 1− ζ2)

2
√
1 + ζ2(1 + C + ζ2)2

. (69)

The update provides contraction as long as ζ2 < C − 1 and −1 < λfL
ar < 0 (from Proposition 4.1).

When ζ2 > C − 1, far > 0, and by Proposition 4.2 the update equations provide expansion. The
values of K and C determine whether attraction or repulsion dominates the dynamics. In LocalMAP
implementation, both C and K are set to 10 (Fig. 16(b), and the strength of attraction is higher than
PaCMAP (Fig. 14(a)). As a result, when ζ > 3, the nearest neighbors face repulsion, causing pairs
bridging two clusters to separate. The value of K, working as a scaling parameter for the forces,
regulates this separation.

Using Proposition 4.1, λfL
ar(0) ≥ − 1

2 gives the maximum values of K, and the maximum attraction
possible by fL

ar, without flipping the placements of the pairs. (We would want to avoid flipping
the pairs at the LocalMAP optimization to preserve the ordering from PaCMAP; otherwise, it may
inhibit cluster separation.) This simplifies (69) to K ≤ λ(1+C)2

C−1 , which for C = 10 and λ = 1

gives K ≲ 13.44. Moreover, at a higher value of K ≳ 13.44, the repulsive forces dominate, and
the clusters become more compact, but objective of LocalMAP fails ( the bridge between clusters
persists in Fig. 16(c) for K = 20). On the other hand, as K decreases, attractive forces dominate
(because repulsive forces are too low), and the embedding shows the breaking up of existing clusters
(Fig. 16(d) for K = 7, which mimics the one in Fig. 4(b)).

G.4 t-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (t-SNE)

t-SNE (Van der Maaten & Hinton, 2008) optimizes pairwise distances. The loss function is

L = −
∑
i,j

wi,j log

(
qi,j∑
k ̸=l qk,l

)
, (70)

where wi,j is the weight of the pair. The original implementation of t-SNE considers all the pairs
(not just nearest neighbors). This loss function decomposes into attraction and repulsion forces by

L =
∑
i,j

−wi,j log (qi,j) + wi,j log

∑
k ̸=l

qk,l

 . (71)

As previously, the first term provides the attractive forces and the second term provides the repulsive
forces. While the attractive term is identical to that of UMAP (with a = 1 and b = 1) and is easy to
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compute, the repulsive term is coupled among every pair and thus, is very costly. Using the same
principles we applied for UMAP, we can write the update equations of t-SNE. Since the original
t-SNE didn’t rely on the nearest neighbor graph, the weight wi,j , computed for all the pairs, is
important in the update equations. The attractive update equations are

yt+1
i = yti + λwi,jf

t−SNE
a (ζti,j)(y

t
i − ytj), (72)

yt+1
j = yti − λwi,jf

t−SNE
a (ζti,j)(y

t
i − ytj), (73)

where f t−SNE
a is the attraction shape of t-SNE and ζi,j = ||yi − yj ||2. The update equation for the

repulsive parts are

yt+1
i = yti + λ

wi,j

Z

∑
k

f t−SNE
r (ζti,k)(y

t
i − ytk), (74)

yt+1
j = ytj − λ

wi,j

Z

∑
l

f t−SNE
r (ζtl,j)(y

t
l − ytj),∀j, j ̸= i, (75)

where f t−SNE
r is the repulsion shape of t-SNE and Z =

∑
k ̸=l qk,l. The functional forms of these

shapes are

f t−SNE
a (ζ) = − 2

1 + ζ2
, and (76)

f t−SNE
r (ζ) =

2

(1 + ζ2)2
. (77)

From the attractive update Eqs. (72)-(73), f t−SNE
a follows Proposition 4.1 (with 0 <

λwi,jf
t−SNE
a < −1) and gives the minimum distance for contraction, ζ−1). The repulsive up-

date is coupled with all the pairs and thus does not have a simple relation to the repulsion shape.
Rather, enabled by our experience from TriMap’s analysis, we can derive the following:

Proposition G.3. The update Eqs. (74)-(75) provide an expansion if

ht−SNE
r (ζi,j , v, θ, λ, wi,j) > 1, (78)

where
ht−SNE
r (ζi,j , v, θ, λ, wi,j) = (1+2λ

wi,j

Z f t−SNE
r (ζi,j))

2+
||v||22
ζ2
i,j

+2λ
wi,j

Z f t−SNE
r (ζi,j)

||v||2
ζi,j

cos θ,

v = λ
wi,j

Z

(∑
k,k ̸=j f

t−SNE
r (ζi,k)(yi − yk) +

∑
l,l ̸=i f

t−SNE
r (ζl,j)(yl − yj)

)
,

and θ is the angle between (yi − yj) and v.

Proof. We require,

||yt+1
i − yt+1

j ||22 > ||yti − ytj ||22. (79)

From Eqs. (74) and (75), yi − yj = (1 + 2λ
wi,j

Z f t−SNE
r (ζi,j))(yi − yj) + v. Putting this value in

Eq. (79), we obtain the desired inequality.

Since t-SNE’s condition for repulsion (Eq. 78) resembles that of TriMap, the repulsion behavior will
be the same. Thus, t-SNE’s repulsive forces can give both attraction and repulsion.

Since, t-SNE’s forces are scaled (by wi,j for attraction and wi,j

Z for repulsion), the attractive and
repulsive forces are typically lower than that of UMAP. As a result, the algorithm generally uses large
values for learning rate (e.g., ≈ 103 in the Open-t-SNE package (Poličar et al., 2024)). Moreover,
most t-SNE implementations require an ‘early exaggeration’ step where the attractive forces are
multiplied by a constant value for the first few iterations. This causes points that are supposed to be
closer but currently placed far apart to approach each other (inducing far-sightedness). On the other
hand, if some points are very close (ζi,j ≈ ζ−1) but require separation, this early exaggeration trick
achieves that as well. Thus, ‘early exaggeration’ plays a vital role in finding a consistent embedding
in t-SNE and is an indispensable feature of the algorithm; especially when initialized randomly. (This
trick, when applied throughout the optimization, makes t-SNE embeddings look closer to UMAP
embeddings (Böhm et al., 2022).)
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(a) (b)

Figure 17: (a) Attraction-repulsion characteristic of MDS using far. (b) Comparison of attraction-
repulsion characteristic of MDS and the method in (Zheng et al., 2018) for d = 1.0.

G.5 STOCHASTIC NEIGHBOR EMBEDDING (SNE)

SNE (Hinton & Roweis, 2002) is one of the oldest algorithms in this class. This follows the same
formula of t-SNE (Eq. 71), but with qi,j = exp(−||yi − yj ||22). This results in the attraction shape

fSNE
a (ζ) = −2, (80)

that follows Proposition 4.1 (with 0 < λwi,jf
SNE
a < −1) and the repulsion shape

fSNE
r (ζ) = 2 exp(−ζ2), (81)

that follows proposition G.3 (by replacing the t-SNE symbols with SNE counterparts). The attraction
shape is ill-posed and thus mainly relies on the values of learning rate (λ) and the weights (wi,j) for
contraction resulting in clusters overlapping each other even for small number of samples (called
crowding problem (Van der Maaten & Hinton, 2008)), which t-SNE and the subsequent algorithms
improve by moving away from the Gaussian kernel to a heavy-tailed one, i.e., Eq. (43).

G.6 MULTIDIMENSIONAL SCALING (MDS)

Multidimensional scaling (MDS) (Borg & Groenen, 2007) typically does not use gradient methods,
as they often fail to converge to good mappings; instead, it employs stress majorization. Nevertheless,
few works discuss gradient methods (Kruskal, 1964; Zheng et al., 2018). We offer a brief treatment
for this below. Particularly, Zheng et al. (2018) formulates a successful gradient descent-based MDS
algorithm for graph drawing. We start with the cost function (we can ignore the weight wi,j without
loss of generality to their approach, and for discussion, we can lump it into the learning rate):

LMDS =
∑

i,j,i<j

(||yi − yj || − dij)
2. (82)

The loss has a singleton term for each pair and does not have explicit attractive and repulsive terms.
The term itself will provide both attraction and repulsion. Fortunately, the loss is separable into
individual (i, j) components, allowing us to analyze a single pair. The derivative is given by

∂

∂yi
(||yi − yj || − dij)

2 = 2
||yi − yj || − dij

||yi − yj ||
(yi − yj). (83)

Thus, the attraction-repulsion shape of MDS becomes

fMDS
ar (ζ) = −2

ζ − d

ζ
, (84)

where ζ = ||yi − yj ||2. Here, the shape is attractive when ζ > d. In this range, the shape is bounded
within [−2, 0] (Fig. 17(a)). However, this is not suitable for convergence as values only within [−1, 0]
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contract, while the others expand. To make things worse, values lower than −2 cause the points to
flip and expand. To work around this, Zheng et al. (2018) uses an ad-hoc formulation inspired by the
force-directed graphs, given by

fG
ar(ζ) = −1

2

ζ − d

ζ
, (85)

which works for an effective learning rate λ ≤ 1. fG
ar is bounded within [−0.5, 0] and thus, λ ≤ 1

works. On the other hand, for ζ < d, fMDS
ar (> 0) shows repulsive behavior. Overall, this attraction-

repulsion interaction works best when the initialization is already close to a desired output. If
one keeps optimizing for a pair, it will oscillate around the distance (ζ = d) where fG

ar = 0 (and
consequently, we can have a notion of distance similar to ζ−1 of UMAP). No choice of learning rate
reduces this distance to zero (in fact, this achieves the objective of MDS). Thus, the clusters are often
fuzzy compared to methods like UMAP and PaCMAP (for relevant illustrations, see Lambert et al.
(2022), de Bodt et al. (2025), and Kury et al. (2025)). Note that Lambert et al. (2022) converts the
MDS loss function to a quartet stress (loss involving four samples) and a relative distance (distance
divided by the sum of six distances in the quartet), enabling global regularization and reduced
computation than the majorization approach.

H CONSTRUCTION OF THE HIGH-DIMENSIONAL GRAPH

Stochastic Neighbor Embedding (SNE) Hinton & Roweis (2002) underpins modern dimensionality
reduction algorithms. It constructs a high-dimensional graph of the dataset X = {xi ∈ Rn|i =
1, . . . , N} by the following system of equations:

wij =
pj|i + pi|j

2N
, (86)

wj|i =
exp(−||xi − xj ||22/2σ2

i )∑
t ̸=v exp(−||xt − xv||22/2σ2

t )
, (87)

where σ2
i is chosen to match a user-defined value perplexity, P , defined as

P = 2Hi (88)

Hi =
∑
j ̸=i

wj|i log2 wj|i. (89)

On the other hand, UMAP constructs its high-dimensional graph by the following system of equations
relying on the k-nearest neighbor (k-NN) algorithm:

pi|j =

{
exp

(
−d(xi,xj)−ρi

σi

)
if xj ∈ KNN(xi, k)

0 otherwise
, (90)

ρi = min
xj∈KNN(xi,k)

d(xi, xj), (91)

where KNN(xi, k) is the set of k-nearest neighbors of the point xi and σi is a scaling parameter such
that

∑
j pi|j = log2(k). The graph is then symmetrized by a t-conorm:

pi,j = pi|j + pj|i − pi|jpj|i. (92)

PaCMAP uses just the k-NN graph for the affinities (all equal to 1) with a self-tuning distance
measure (Zelnik-Manor & Perona, 2004),

d2i,j =
||xi − xj ||2

σiσj
, (93)

where σi is the average distance between xi and its Euclidean nearest fourth to sixth neighbors. The
purpose of this is the same as the corresponding σi parameters in Eq. (87) and (90), despite all three
being defined differently.

Regardless of these choices, the optimization, and by our analysis, the attraction and repulsion shapes
are the primary drivers of the low-dimensional embedding.
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I DETAILED RESULTS FOR VARYING λa AND λb

In this section, we provide detailed results for the experiments in Fig. 1((h,i). We obtained these results,
by changing the attraction and repulsion shapes of UMAP to that of the other methods. Figure 18
reproduces the results given in the main text. Figures 19-22 show the individual embeddings for each
of the choices of λa and λr for each methods along with their initialization, a reference embedding
when learning rate, λ, is annealed, and when either the λa or λr set to 0. For PaCMAP, which
uses the concept of mid-near pairs, we show additional reference of mid-near pairs included as well.
Figures 23- 27 and Figures. 28- 32 provide results on FMNIST and single-cell transcriptomes dataset,
respectively.

MNIST Dataset

(a) (b)

Figure 18: (a) Trustworthiness and (b) Silhouette score of different methods for the MNIST dataset.
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(a) (b)

(c)

(d)

(e)

Figure 19: Varying λa and λr for the MNIST dataset using UMAP’s attraction and repulsion shapes.
(a) Initialization for the embeddings. (b) Baseline when λ is annealed from 1. (c) The embeddings
when λa and λr vary (without any annealing). (d) When λr is set to 0 (no repulsion), the attractive
force alone cannot produce any cluster. (e) Similarly, when λa is set to 0 (no attraction), the repulsive
force alone cannot produce any clusters.
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(a) (b)

(c)

(d)

(e)

Figure 20: Varying λa and λr for the MNIST dataset using UMAP’s attraction and repulsion shapes
(by setting a = 1 and b = 1). (a) Initialization for the embeddings. (b) Baseline when λ is annealed
from 1. (c) The embeddings when λa and λr vary (without any annealing). (d) When λr is set to 0
(no repulsion), the attractive force alone cannot produce any cluster. (e) Similarly, when λa is set to 0
(no attraction), the repulsive force alone cannot produce any clusters.
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(a) (b)

(c)

(d)

(e)

Figure 21: Varying λa and λr for the MNIST dataset using NEG-t-SNE’s attraction and repulsion
shapes. (a) Initialization for the embeddings. (b) Baseline when λ is annealed from 1. (c) The
embeddings when λa and λr vary (without any annealing). (d) When λr is set to 0 (no repulsion),
the attractive force alone cannot produce any cluster. (e) Similarly, when λa is set to 0 (no attraction),
the repulsive force alone cannot produce any clusters.
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(a) (b)

(c)

(d)

(e)

Figure 22: Varying λa and λr for the MNIST dataset using PaCMAP’s attraction and repulsion
shapes. (a) Initialization for the embeddings. (b) Left: Baseline when λ is annealed from 1 (mid-near
points are excluded to observe the interaction of attraction-repulsion alone), right: when mid-near
points are considered. (c) The embeddings when λa and λr vary (without any annealing). (d) When
λr is set to 0 (no repulsion), the attractive force alone cannot produce any cluster. (e) Similarly, when
λa is set to 0 (no attraction), the repulsive force alone cannot produce any clusters.
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FMNIST Dataset

(a) (b)

Figure 23: (a) Trustworthiness and (b) Silhouette score of different methods for the FMNIST dataset.
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Figure 24: Varying λa and λr for the FMNIST dataset using UMAP’s attraction and repulsion shapes.
(a) Initialization for the embeddings. (b) Baseline when λ is annealed from 1. (c) The embeddings
when λa and λr vary (without any annealing). (d) When λr is set to 0 (no repulsion), the attractive
force alone cannot produce any cluster. (e) Similarly, when λa is set to 0 (no attraction), the repulsive
force alone cannot produce any clusters.
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Figure 25: Varying λa and λr for the FMNIST dataset using UMAP’s attraction and repulsion shapes
(by setting a = 1 and b = 1). (a) Initialization for the embeddings. (b) Baseline when λ is annealed
from 1. (c) The embeddings when λa and λr vary (without any annealing). (d) When λr is set to 0
(no repulsion), the attractive force alone cannot produce any cluster. (e) Similarly, when λa is set to 0
(no attraction), the repulsive force alone cannot produce any clusters.
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Figure 26: Varying λa and λr for the FMNIST dataset using NEG-t-SNE’s attraction and repulsion
shapes. (a) Initialization for the embeddings. (b) Baseline when λ is annealed from 1. (c) The
embeddings when λa and λr vary (without any annealing). (d) When λr is set to 0 (no repulsion),
the attractive force alone cannot produce any cluster. (e) Similarly, when λa is set to 0 (no attraction),
the repulsive force alone cannot produce any clusters.
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Figure 27: Varying λa and λr for the FMNIST dataset using PaCMAP’s attraction and repulsion
shapes. (a) Initialization for the embeddings. (b) Left: Baseline when λ is annealed from 1 (mid-near
points are excluded to observe the interaction of attraction-repulsion alone), right: when mid-near
points are considered. (c) The embeddings when λa and λr vary (without any annealing). (d) When
λr is set to 0 (no repulsion), the attractive force alone cannot produce any cluster. (e) Similarly, when
λa is set to 0 (no attraction), the repulsive force alone cannot produce any clusters.
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Transcriptomes Dataset

(a) (b)

Figure 28: (a) Trustworthiness and (b) Silhouette score of different methods for the Single-cell
transcriptomes dataset.
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Figure 29: Varying λa and λr for the single-cell transcriptomes dataset using UMAP’s attraction
and repulsion shapes. (a) Initialization for the embeddings. (b) Baseline when λ is annealed from
1. (c) The embeddings when λa and λr vary (without any annealing). (d) When λr is set to 0 (no
repulsion), the attractive force alone cannot produce any cluster. (e) Similarly, when λa is set to 0 (no
attraction), the repulsive force alone cannot produce any clusters.
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Figure 30: Varying λa and λr for the single-cell transcriptomes dataset using UMAP’s attraction and
repulsion shapes (by setting a = 1 and b = 1). (a) Initialization for the embeddings. (b) Baseline
when λ is annealed from 1. (c) The embeddings when λa and λr vary (without any annealing). (d)
When λr is set to 0 (no repulsion), attractive force alone cannot produce any cluster. (e) Similarly,
when λa is set to 0 (no attraction), repulsive force alone cannot produce any clusters.
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Figure 31: Varying λa and λr for the single-cell transcriptomes dataset using NEG-t-SNE’s attraction
and repulsion shapes. (a) Initialization for the embeddings. (b) Baseline when λ is annealed from
1. (c) The embeddings when λa and λr vary (without any annealing). (d) When λr is set to 0 (no
repulsion), the attractive force alone cannot produce distinct clusters. (e) Similarly, when λa is set to
0 (no attraction), the repulsive force alone cannot produce any clusters.
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Figure 32: Varying λa and λr for the single-cell transcriptomes dataset using PaCMAP’s attraction
and repulsion shapes. (a) Initialization for the embeddings. (b) Left: Baseline when λ is annealed
from 1 (mid-near points are excluded to observe the interaction of attraction-repulsion alone), right:
when mid-near points are considered. (c) The embeddings when λa and λr vary (without any
annealing). (d) When λr is set to 0 (no repulsion), the attractive force alone cannot produce any
cluster. (e) Similarly, when λa is set to 0 (no attraction), the repulsive force alone cannot produce any
clusters.
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J MIX AND MATCH APPROACH

(a)

(d) (e) (f)

(b) (c)

Figure 33: Embedding of MNIST by mixing and matching attraction and repulsion shapes with a
constant learning rate (λ = 1). We used attraction shapes that follow Proposition 4.1 and repulsion
shapes that are finite. Top row: UMAP, NEG-t-SNE, and PaCMAP’s attraction shapes with NEG-t-
SNE’s repulsion shape. Bottom row: UMAP, NEG-t-SNE, and PaCMAP’s attraction shapes with
PaCMAP’s repulsion shape.

(a) (b)

(c) (d)

Figure 34: Embedding of MNIST by mixing and matching attraction and repulsion shapes with a
constant learning rate (λ = 1). We kept the attraction shape confined to [−0.5, 0] to prevent any flips
during the attractive update. Top row: UMAP and NEG-t-SNE’s attraction shapes with NEG-t-SNE’s
repulsion shape. Bottom row: UMAP and NEG-t-SNE’s attraction shapes with PaCMAP’s repulsion
shape.

In our analysis, we considered the attraction and the repulsion shapes to be independent of each
other. It thus suggests that we can combine attraction and repulsion shapes derived from different loss
functions and principles. Figure 33 shows a few such examples. For this, we restricted the attraction
shapes to [−1, 0] (to work with Proposition 4.1) so that they become less sensitive to learning rates.
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We considered finite repulsion shapes, hence mitigating the effect of large repulsive forces for smaller
distances. We held the learning rate constant (λ = 1) and used the same optimization (of UMAP)
for all of them, so that any changes arise from the shapes rather than learning-rate scheduling or
optimization scheme. Overall, UMAP’s attraction shape (by fa = 0.5fU

a ) makes better clusters
(higher silhouette score), while PaCMAP’s attraction shape provides better local structure (higher
trustworthiness). The latter is primarily due to PaCMAP’s attraction shape being within [−0.5, 0],
which prevents any flips during the updates. By confining UMAP and NEG-t-SNE ’s attraction shape
within [−0.5, 0] (by fa = 0.25fU

a and fa = 0.5fN
a , respectively), we can improve the local structure

at the expense of clustering performance (Fig. 34).

K IMPLEMENTATION DETAILS

For analysis, we implemented our own UMAP algorithm. We used numba (Lam et al., 2015)
to compute an exact nearest neighbor graph (instead of an approximate one) with k = 15 and
scikit-learn’s (Pedregosa et al., 2011) implementation of the PCA algorithm for PCA initial-
ization. We used this to produce and quantify the embeddings in Figs. 1, 2, 3, 4, 6, 8, 9, and 10. We
also used the same implementation when we changed the attraction and the repulsion shapes to those
of the alternative methods (Figs. 18- 34, unless otherwise stated). The trustworthiness and silhouette
scores were computed using the corresponding function from the scikit-learn package.

The mappings shown in Figs. 2, 3, 9, 10, and 15 are rotated to a reference embedding ((a) for
each respective Figures). To achieve this, we performed Procrustes alignment of the embeddings
by normalizing them (zero mean and unit norm) and then using SciPy’s (Virtanen et al., 2020)
orthogonal_procrustes method to extract rotation and scaling parameters.

To compare with Neg-t-SNE in Fig. 11, we used the original implementation of the con-
trastive embedding framework for both the UMAP and the Neg-t-SNE algorithms (available at
https://github.com/berenslab/contrastive-ne).

PaCMAP and LocalMAP embeddings in Figs. 15, 16, 22 (b) (right), 27 (b) (right),
and 32 (b) (right) were obtained using the official PaCMAP package (available at
https://github.com/YingfanWang/PaCMAP).

The codes for displaying the embeddings of the PubMed dataset in Fig. 7 are adapted from
https://github.com/berenslab/pubmed-landscape.
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