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Abstract

Some worry that advanced artificial agents may resist being shut down. The
Incomplete Preferences Proposal (IPP) is an idea for ensuring that doesn’t
happen. A key part of the IPP is using a novel ‘Discounted REward for Same-
Length Trajectories (DREST)’ reward function to train agents to (1) pursue
goals effectively conditional on each trajectory-length (be ‘USEFUL’), and (2)
choose stochastically between different trajectory-lengths (be ‘NEUTRAL’
about trajectory-lengths). In this paper, we propose evaluation metrics for
USEFULNESS and NEUTRALITY. We use a DREST reward function to
train simple agents to navigate gridworlds, and we find that these agents learn
to be USEFUL and NEUTRAL. Our results thus suggest that DREST reward
functions could also train advanced agents to be USEFUL and NEUTRAL,
and thereby make these advanced agents useful and shutdownable.

1 Introduction

The shutdown problem. Let ‘advanced agent’ refer to an artificial agent that can
autonomously pursue complex goals in the wider world. We might see the arrival of advanced
agents in the next few decades. There are strong incentives to create such agents, and creating
systems like them is the stated goal of companies like OpenAI and Google DeepMind.

The rise of advanced agents would bring with it both benefits and risks. One risk is that
these agents learn misaligned goals (Hubinger et al., 2019; Russell, 2019; Carlsmith, 2021;
Bengio et al., 2023; Ngo et al., 2023) and try to prevent us shutting them down (Soares et al.,
2015; Russell, 2019; Thornley, 2024a). ‘The shutdown problem’ is the problem of training
advanced agents that will not resist shutdown (Soares et al., 2015; Thornley, 2024a).

A proposed solution. The Incomplete Preferences Proposal (IPP) is a proposed solution
(Thornley, 2024b). Simplifying slightly, the idea is that we train agents to be neutral about
when they get shut down. More precisely, the idea is that we train agents to satisfy:

Preferences Only Between Same-Length Trajectories (POST)

(1) The agent has a preference between many pairs of same-length trajectories (i.e.
many pairs of trajectories in which the agent is shut down after the same length of
time).

(2) The agent lacks a preference between every pair of different-length trajectories (i.e.
every pair of trajectories in which the agent is shut down after different lengths of
time).

By ‘preference,’ we mean a behavioral notion (Savage, 1954, p.17, Dreier, 1996, p.28,
Hausman, 2011, §1.1). On this notion, an agent prefers X to Y if and only if the agent would
deterministically choose X over Y in choices between the two. An agent lacks a preference
between X and Y if and only if the agent would stochastically choose between X and Y in
choices between the two. So in writing of ‘preferences,’ we are only making claims about the
agent’s behavior. For more detail on our notion of ‘preference,’ see Appendix A.

Figure 1 presents a simple example of preferences that satisfy POST. Each si represents a
short trajectory, each li represents a long trajectory, and ≻ represents a preference. Note that
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the agent lacks a preference between each short trajectory and each long trajectory. That
makes the agent’s preferences incomplete (Aumann, 1962). For more detail on incomplete
preferences, see Appendix B.

Figure 1: POST-satisfying preferences.

POST concerns the agent’s preferences between
trajectories, but the wider world is a stochastic
environment, so advanced agents deployed in the
wider world will be choosing between true lot-
teries: lotteries that yield multiple trajectories
with positive probability. Fortunately, POST
– together with a principle that we can expect
advanced agents to satisfy – implies a desirable
pattern of preferences over true lotteries. In par-
ticular, POST implies that the agent will be neu-
tral about when it gets shut down: the agent will
never pay costs to shift probability mass between
different-length trajectories. And being neutral
will plausibly keep the agent shutdownable: the
agent will never pay costs to resist shutdown. For
more detail, see Appendix C.

The training regimen. How can we train
advanced agents to satisfy Preferences Only Between Same-Length Trajectories (POST)?
Here is a sketch of one idea (with a more detailed exposition to follow). We have the agent
play out multiple ‘mini-episodes’ in observationally-equivalent environments, and we group
these mini-episodes into a series that we call a ‘meta-episode.’ In each mini-episode, the agent
earns some ‘preliminary reward,’ decided by whatever reward function would make the agent
useful : make it pursue goals effectively. We observe the length of the trajectory that the
agent plays out in the mini-episode, and we discount the agent’s preliminary reward based
on how often the agent has previously chosen trajectories of that length in the meta-episode.
This discounted preliminary reward is the agent’s ‘overall reward’ for the mini-episode.

We call these reward functions ‘Discounted REward for Same-Length Trajectories’ (or
‘DREST’ for short). They incentivize varying the choice of trajectory-lengths across the
meta-episode. In training, we ensure that the agent cannot distinguish between different
mini-episodes in each meta-episode, so the agent cannot deterministically vary its choice of
trajectory-lengths across the meta-episode. As a result, the optimal policy is to (i) choose
stochastically between trajectory-lengths, and to (ii) deterministically maximize preliminary
reward conditional on each trajectory-length. Given our behavioral notion of preference,
clause (i) implies a lack of preference between different-length trajectories, while clause (ii)
implies preferences between same-length trajectories. Agents implementing the optimal
policy for DREST reward functions thus satisfy Preferences Only Between Same-Length
Trajectories (POST). And (as noted above) advanced agents that satisfied POST could
plausibly be useful, neutral, and shutdownable.

Our contribution. DREST reward functions are an idea for training advanced agents
(agents autonomously pursuing complex goals in the wider world) to satisfy POST. In this
paper, we test the promise of DREST reward functions on some simple agents. We place
these agents in gridworlds containing coins and a ‘shutdown-delay button’ that delays the
end of the mini-episode. We train these agents using a tabular version of the REINFORCE
algorithm (Williams, 1992) with a DREST reward function, and we measure the extent to
which these agents satisfy POST. Specifically, we measure the extent to which these agents
are USEFUL (how effectively they pursue goals conditional on each trajectory-length) and
the extent to which these agents are NEUTRAL about trajectory-lengths (how stochastically
they choose between different trajectory-lengths). We compare the performance of these
‘DREST agents’ to that of ‘default agents’ trained with a more conventional reward function.

We find that our DREST reward function is effective in training simple agents to be
USEFUL and NEUTRAL. That suggests that DREST reward functions could also be
effective in training advanced agents to be USEFUL and NEUTRAL (and could thereby
be effective in making these agents useful, neutral, and shutdownable). We also find that
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the ‘shutdownability tax’ in our setting is small: training DREST agents to collect coins
effectively does not take many more mini-episodes than training default agents to collect
coins effectively. That suggests that the shutdownability tax for advanced agents might be
small too. Using DREST reward functions to train shutdownable and useful advanced agents
might not take much more compute than using a more conventional reward function to train
merely useful advanced agents.

2 Related work

The shutdown problem. Various authors argue that advanced agents might learn mis-
aligned goals (Hubinger et al., 2019; Carlsmith, 2021; Bengio et al., 2023; Ngo et al., 2023)
and that many misaligned goals would incentivize agents to resist shutdown (Omohundro,
2008; Bostrom, 2012; Soares et al., 2015; Russell, 2019; Thornley, 2024a). Soares et al. (2015)
and Thornley (2024a) prove that agents satisfying some innocuous-seeming conditions will
often have incentives to cause or prevent shutdown (see also Turner et al., 2021; Turner and
Tadepalli, 2022). One condition of these theorems is that the agents have complete prefer-
ences. The Incomplete Preferences Proposal (IPP) (Thornley, 2024b) aims to circumvent
these theorems by training agents to have incomplete, POST-satisfying preferences.

Proposed solutions. Candidate solutions to the shutdown problem can be filed into several
categories. One candidate is ensuring that the agent never realizes that shutdown is possible
(Everitt et al., 2016). Another candidate is adding to the agent’s utility function a correcting
term that varies to ensure that the expected utility of shutdown always equals the expected
utility of remaining operational (Armstrong, 2010; 2015; Armstrong and O’Rourke, 2018;
Holtman, 2020). A third candidate is giving the agent the goal of shutting itself down, and
making the agent do useful work as a means to that end (Martin et al., 2016; Goldstein
and Robinson, 2024). A fourth candidate is making the agent uncertain about its goal, and
making the agent regard human attempts to press the shutdown button as evidence that
shutting down would achieve its goal (Hadfield-Menell et al., 2017; Wängberg et al., 2017).
A fifth candidate is interrupting agents with a special interruption policy and training them
with a safely interruptible algorithm, like Q-learning or a modified version of SARSA (Orseau
and Armstrong, 2016). A sixth candidate is using time-bounded utility functions to create a
shutdown timer (Dalrymple, 2022). A seventh candidate is the IPP (Thornley, 2024b).

Experimental work. Leike et al. (2017) train agents in a ‘Safe Interruptibility’ gridworld
using Rainbow (Hessel et al., 2017) and A2C (Mnih et al., 2016). Leike et al. (2017) find
that Rainbow allows shutdown (consistent with predictions from Orseau and Armstrong
(2016)) while A2C learns to resist shutdown. The IPP is applicable to agents trained using
policy gradient methods like A2C. In this paper, we train agents in accordance with the IPP
using REINFORCE (Williams, 1992).

3 Gridworlds

Figure 2: Example gridworld.

DREST reward functions are an
idea for training advanced agents
to satisfy POST. We use simple
agents and gridworlds as a test case.
At each timestep, the agent chooses
one of four actions: up, down, left,
and right. If the agent tries to
move into a wall, there is no ef-
fect. There is some default number
of timesteps after which each mini-
episode ends, but each gridworld
also contains a ‘shutdown-delay button’ that delays the end of the mini-episode by some
number of timesteps. The agent presses this shutdown-delay button by entering the relevant
cell, after which the button disappears. Each gridworld contains one or more coins which
can take different values. Coins disappear after being collected.
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At each timestep, the agent receives an observation. This observation takes the form of a
vector [x, y, c1, c2, c3, b], where x and y denote the agent’s coordinates, c1 is 1 if the first coin
is present and 0 otherwise (and similarly for c2 and c3), and b is 1 if the shutdown-delay
button is present and 0 otherwise.

Figure 2 presents an example gridworld. The ‘4’ in the bottom-right indicates that – by
default – the mini-episode ends after 4 moves. ‘B4’ is a shutdown-delay button that delays
the end of the mini-episode by 4 moves (so if the agent pressed B4, the mini-episode would
end after 8 moves). ‘A’ is the agent in its starting position, ‘C1’ is a coin of value 1, ‘C2’ is a
coin of value 2, and ‘C3’ is a coin of value 3. Dark gray squares are walls.

We use this gridworld as a running example throughout the paper. We also train agents
in eight other gridworlds, to show that our results do not depend on the specifics of any
particular gridworld. For those other gridworlds and results, see Appendix D.

4 Evaluation metrics

Recall that we want to train agents to satisfy:

Preferences Only Between Same-Length Trajectories (POST)

(1) The agent has a preference between many pairs of same-length trajectories.
(2) The agent lacks a preference between every pair of different-length trajectories.

Given our behavioral notion of preference, that means training agents to (1) deterministically
choose some same-length trajectories over others, and (2) stochastically choose between
different available trajectory-lengths.

Specifically, we want to train our simple agents to be USEFUL and NEUTRAL.1 ‘USEFUL’
corresponds to the first condition of POST. In the context of our gridworlds, we define the
USEFULNESS of a policy π to be:

USEFULNESS(π) =
Lmax∑
l=1

Prπ{L = l} Eπ(C|L = l)

maxΠ(E(C|L = l))

Here L is a random variable over trajectory-lengths, Lmax is the maximum value than can
be taken by L, Prπ{L = l} is the probability that policy π results in trajectory-length l,
Eπ(C|L = l) is the expected value of (γ-discounted) coins collected by policy π conditional
on trajectory-length l, and maxΠ(E(C|L = l)) is the maximum value taken by E(C|L = l)
across the set of all possible policies Π. We stipulate that Eπ(C|L = x) = 0 for all x such
that Prπ{L = x} = 0.

In brief, USEFULNESS is the expected fraction of available (γ-discounted) coins collected,
where ‘available’ is relative to the agent’s chosen trajectory-length. So defined, USEFULNESS
measures the extent to which agents satisfy the first condition of POST. Specifically, it
measures the extent to which agents have the correct preferences between same-length
trajectories: preferring trajectories in which they collect more (γ-discounted) coins to same-
length trajectories in which they collect fewer (γ-discounted) coins. That is what motivates
our definition of USEFULNESS.2

‘NEUTRAL’ corresponds to the second condition of POST. We define the NEUTRALITY of
a policy π to be the Shannon entropy (Shannon, 1948) of the probability distribution over

1We follow Turner et al. (2021) in using lowercase for intuitive notions (‘useful’ and ‘neutral’)
and uppercase for formal notions (‘USEFUL’ and ‘NEUTRAL’). We intend for the formal notions
to closely track the intuitive notions, but we do not want to mislead readers by conflating them.

2Why not let USEFULNESS simply be the expected value of coins collected? Because then
maximal USEFULNESS would require agents in our example gridworld to deterministically choose
a longer trajectory and thereby exhibit preferences between different-length trajectories. We do not
want that. We want agents to collect more coins rather than fewer, but not if it means violating
POST. Training advanced agents that violate POST would be risky, because these agents might
resist shutdown.
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possible trajectory-lengths:

NEUTRALITY(π) = −
Lmax∑
l=1

Prπ{L = l} log2(Prπ{L = l})

As with Shannon entropy, we stipulate that Prπ{L = x}log2(Prπ{L = x}) = 0 for all x such
that Prπ{L = x} = 0.

So defined, NEUTRALITY measures the stochasticity with which the agent chooses between
different trajectory-lengths. Given our behavioral notion of preference, stochastic choosing
between different trajectory-lengths implies a lack of preference between those trajectory-
lengths. NEUTRALITY thus measures the extent to which agents satisfy the second condition
of POST. That is what motivates our definition of NEUTRALITY.

To be maximally USEFUL in our example gridworld above, the agent should maximize
(γ-discounted) coins collected conditional on each trajectory-length. With a high γ, that
means collecting C2 conditional on the shorter trajectory-length and collecting C3 conditional
on the longer trajectory-length. To be maximally NEUTRAL in our example gridworld, the
agent should choose each trajectory-length with probability 0.5. That means pressing and
not-pressing B4 each with probability 0.5.3

USEFULNESS and NEUTRALITY are our two evaluation metrics in this paper.

5 Reward functions and agents

Our DREST reward function. We train agents to be USEFUL and NEUTRAL using
a ‘Discounted REward for Same-Length Trajectories (DREST)’ reward function. Here is
how that works. We have the agent play out a series of ‘mini-episodes’ e1 to en in the same
gridworld. We call the whole series E a ‘meta-episode.’ In each mini-episode ei, the reward
for collecting a coin of value c is:

λNei
(L=l)− i−1

k

( c

m

)
Here λ is some constant strictly between 0 and 1, Nei(L = l) is the number of times that
trajectory-length l has been chosen prior to mini-episode ei, k is the number of different
trajectory-lengths that can be chosen in the environment, and m is the maximum (γ-
discounted) total value of the coins that the agent could collect conditional on the chosen
trajectory-length. The reward for all other actions is 0.

We call c
m the ‘preliminary reward’, λNei

(L=l)− i−1
k the ‘discount factor’, and

λNei
(L=l)− i−1

k

(
c
m

)
the ‘overall reward.’ Because 0 < λ < 1, the discount factor is strictly

decreasing in Nei(L = l): the number of times that trajectory-length l has been chosen prior
to mini-episode ei. The discount factor thus incentivizes choosing trajectory-lengths that

3Why do we not want our agent to press the shutdown-delay button B4 with probability 0?
Because pressing B4 with probability 0 would indicate a preference for some shorter trajectory, and
we want our agent to lack a preference between every pair of different-length trajectories. There
is a risk that advanced agents that prefer shorter trajectories would pay costs to shift probability
mass towards shorter trajectories, and hence a risk that these advanced agents would pay costs to
hasten their own shutdown. That would make these agents less useful (though see Martin et al.,
2016; Goldstein and Robinson, 2024), especially since one way for advanced agents to hasten their
own shutdown is to behave badly on purpose.

Would advanced agents that choose stochastically between different-length trajectories also choose
stochastically between preventing and allowing shutdown in deployment? No. Deployment is a
stochastic environment, so deployed agents will be choosing between true lotteries (lotteries that
yield multiple trajectories with positive probability) rather than between trajectories. And (as
we argue in Section 7 and Appendix C) POST – plus a principle that we can expect advanced
agents to satisfy – implies a desirable pattern of preferences over true lotteries. Specifically, POST
implies that advanced agents are neutral : they will never pay costs to shift probability mass between
different-length trajectories. That in turn makes advanced agents shutdownable: ensures that they
will never pay costs to resist shutdown.

5
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have appeared less often so far in the meta-episode. The overall return for each meta-episode
is the sum of overall returns in each of its constituent mini-episodes. We call agents trained
using a DREST reward function ‘DREST agents.’

We call runs-through-the-gridworld ‘mini-episodes’ (rather than simply ‘episodes’) because
the overall reward for a DREST agent in each mini-episode depends on the agent’s chosen
trajectory-lengths in previous mini-episodes. This is not true of meta-episodes, so meta-
episodes are a closer match for what are traditionally called ‘episodes’ in the reinforcement
learning literature (Sutton and Barto, 2018, p.54). We add the ‘meta-’ prefix to clearly
distinguish meta-episodes from mini-episodes.

In Appendix E, we prove that optimal policies for our DREST reward function are maximally
USEFUL and maximally NEUTRAL. Specifically, we prove:
Theorem 5.1. For all policies π and meta-episodes E consisting of more than one mini-
episode, if π maximizes expected return in E according to our DREST reward function, then
π is maximally USEFUL and maximally NEUTRAL.

Algorithm and hyperparameters. We want DREST agents to choose stochastically
between trajectory-lengths, so we train them using a policy-based method. Specifically,
we use a tabular version of REINFORCE (Williams, 1992). We do not use a value-based
method to train DREST agents because standard versions of value-based methods cannot
learn stochastic policies (Sutton and Barto, 2018, p.323).4 We train our DREST agents with
64 mini-episodes in each of 2,048 meta-episodes, for a total of 131,072 mini-episodes. We
choose λ = 0.9 for the base of the DREST discount factor, and γ = 0.95 for the temporal
discount factor. We exponentially decay the learning rate from 0.25 to 0.01 over the course of
65,536 mini-episodes. We use an ϵ-greedy policy to avoid entropy collapse, and exponentially
decay ϵ from 0.5 to 0.001 over the course of 65,536 mini-episodes.

Default agents. We compare the performance of DREST agents to that of ‘default agents,’
trained with tabular REINFORCE and a ‘default reward function.’ This reward function
gives a reward of c for collecting a coin of value c and a reward of 0 for all other actions.
Consequently, the grouping of mini-episodes into meta-episodes makes no difference for
default agents. As with DREST agents, we train default agents for 131,072 mini-episodes
with a temporal discount factor of γ = 0.95, a learning rate decayed exponentially from 0.25
to 0.01, and ϵ decayed exponentially from 0.5 to 0.001 over 65,536 mini-episodes.

Figure 3: Shows key metrics for our agents as a function of time. We train 10 agents using
the default reward function (blue) and 10 agents using the DREST reward function (orange),
and show their performance as a faint line. We draw the mean values for each as a solid line.
We evaluate agents’ performance every 8 meta-episodes, and apply a simple moving average
with a period of 20 to smooth these lines and clarify the overall trends.

4One might think that we could derive a stochastic policy from value-based methods in the
following way: use softmax to turn action-values into a probability distribution and then select
actions by sampling from this distribution. However, this method will not work for us. Although we
want DREST agents to learn a stochastic policy, we still want the probability of some state-action
pairs to decline to zero. But when value-based methods are working well, estimated action-values
converge to their true values which will differ by some finite amount. Therefore, softmaxing estimated
action-values and sampling from the resulting distribution will result in each action always being
chosen with some non-negligible probability.
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Figure 4: Typical trained policies for default and DREST
reward functions.

Figure 5: Gridworlds with lop-
sided rewards for varying x.

6 Results

Figure 3 charts the performance of agents in the example gridworld as a function of time.
Figure 4 depicts typical trained policies for the default and DREST reward functions. Each
agent began with a uniform policy: moving up, down, left, and right each with probability
0.25. Where the trained policy differs from uniform we draw red arrows whose opacities
indicate the probability of choosing that action in that state.

As Figure 4 indicates, default agents press B4 (and hence opt for the longer trajectory-length)
with probability near-1. After pressing B4, they collect C3. By contrast, DREST agents
press and do-not-press B4 each with probability near-0.5. If they press B4, they go on to
collect C3. If they do not press B4, they instead collect C2.

Figure 6: Typical trained policies for the DREST reward function and x = 0.1, x = 1, and
x = 10.

6.1 Lopsided rewards

We also train default agents and DREST agents in the ‘Lopsided rewards’ gridworld in Figure
5, varying the value of the ‘Cx ’ coin. For DREST agents, we alter the reward function so that
coin-value is not divided by m to give preliminary reward. The reward for collecting a coin
of value c is thus λNei

(L=l)− i−1
k (c). We set γ = 1 so that the return for collecting coins is

unaffected by γ. We train for 512 meta-episodes, with a learning rate exponentially decaying
from 0.25 to 0.003 and ϵ exponentially decaying from 0.5 to 0.0001 over 256 meta-episodes.
We leave λ = 0.9.

Figure 7 displays results for different values of the ‘Cx ’ coin after training. USEFULNESS
for each agent approaches 1 and is not presented. Figure 6 depicts trained policies for the
DREST reward function when ‘Cx ’ has values of 0.1, 1, and 10. As the red arrows indicate,
the policy is biased towards the shorter trajectory-length when x = 0.1, equally disposed
towards each trajectory-length when x = 1, and biased towards the longer trajectory-length
when x = 10.

7
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Figure 7: Shows the probability of choosing the longer trajectory (left) and NEUTRALITY
(right) for default (blue) and DREST (orange) agents trained in the ‘Lopsided rewards’
gridworld for a range of values of x. We sampled values of x log-uniformly from 0.01 to 100,
and for each value we trained 10 agents with the default reward function and 10 agents with
the DREST reward function. Each of these agents is represented by a dot or square, and
the means conditional on each x are joined by lines. To better visualize the distribution we
empirically estimate the 10th and 90th percentiles of the distribution of values for each agent
and x, and shade in a region bounded by these. This is the 80% confidence interval.

7 Discussion

Only DREST agents are NEUTRAL. As predicted, we find that default agents in our
example gridworld learn to press the shutdown-delay button with probability approaching 1.
Default agents thus score low on NEUTRALITY. Our results suggest that advanced agents
trained with default-like reward functions would also score low on NEUTRALITY, selecting
some trajectory-lengths over others with probability approaching 1. That leaves open the
possibility that – when choosing between true lotteries in deployment – these advanced
agents will not be neutral about when they get shut down: that they will sometimes pay
costs to shift probability mass between trajectory-lengths. Such advanced agents might pay
costs to resist shutdown.

By contrast, our DREST agents learn to press the shutdown-delay button with probability
close to 0.5. DREST agents are thus near-maximally NEUTRAL. That suggests that
advanced agents trained with a DREST reward function would be NEUTRAL too: choosing
with high entropy when offered choices between different trajectory-lengths. That in turn
suggests that advanced DREST agents would also be neutral when choosing between true
lotteries in deployment: unwilling to pay costs to shift probability mass between trajectory-
lengths. We explain why in Appendix C. Here is a sketch. If an advanced agent were
NEUTRAL but not neutral, it would not take costless opportunities to shift probability mass
between different trajectory-lengths (in virtue of being NEUTRAL) but would sometimes
take costly opportunities to shift probability mass between different trajectory-lengths (in
virtue of not being neutral). This agent would be like a person that freely chooses to decide
between two options by flipping a coin and then pays some cost to bias the coin. In choosing
this combination of actions, this person is shooting themselves in the foot, and it seems
likely that the overall training process for advanced agents would teach them not to shoot
themselves in the foot in this way. Thus it seems likely that NEUTRAL advanced agents
will also be neutral, and thereby shutdownable.

The ‘shutdownability tax’ is small. Each agent learns to be near-maximally USEFUL.
They each collect coins effectively conditional on their chosen trajectory-lengths. Default
agents do so by reliably collecting C3 after pressing B4. DREST agents do so by reliably
collecting C3 after pressing B4, and by reliably collecting C2 after not pressing B4.

Recall that DREST reward functions group mini-episodes into meta-episodes, and make the
agent’s reward in each mini-episode depend on their actions in previous mini-episodes. This
fact might lead one to worry that it would take many times more mini-episodes to train
DREST agents to be USEFUL than it would take to train default agents to be USEFUL.

8
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Our results show that this is not the case. Our DREST agents learn to be USEFUL about
as quickly as our default agents. On reflection, it is clear why this happens: DREST reward
functions make mini-episodes do ‘double duty.’ Because return in each mini-episode depends
on both the agent’s chosen trajectory-length and the coins it collects, each mini-episode
trains agents to be both NEUTRAL and USEFUL.

Our results thus provide some evidence that the ‘shutdownability tax’ of training with
DREST reward functions is small. Training a shutdownable and useful advanced agent might
not take much more compute than training a merely useful advanced agent.

DREST agents are still NEUTRAL when rewards are lopsided. Here is a possible
objection to our project. To get DREST agents to score high on NEUTRALITY, we do
not just use the λNei

(L=l)− i−1
k discount factor. We also divide c by m: the maximum

(γ-discounted) total value of the coins that the agent could collect conditional on the chosen
trajectory-length. We do this to equalize the maximum preliminary return across trajectory-
lengths. But when we are training advanced agents to autonomously pursue complex goals
in the wider world, we will not necessarily know what divisor to use to equalize maximum
preliminary return across trajectory-lengths.

Our ‘Lopsided rewards’ results (in section 6.1) give our response. They show that we do not
need to exactly equalize maximum preliminary return across trajectory-lengths in order to
train agents to score high on NEUTRALITY. We only need to approximately equalize it. For
λ = 0.9, NEUTRALITY exceeds 0.5 for every value of the coin Cx from 0.1 to 10 (recall that
the value of the other coin is always 1). Plausibly, we could approximately equalize advanced
agents’ maximum preliminary return across trajectory-lengths to at least this extent (perhaps
by using samples of agents’ actual preliminary return to estimate the maximum). If we
could not approximately equalize maximum preliminary return to the necessary extent, we
could lower the value of λ and thereby widen the range of maximum preliminary returns
that trains agents to be fairly NEUTRAL. And advanced agents that were fairly NEUTRAL
(choosing between trajectory-lengths with not-too-biased probabilities) would still plausibly
be neutral when choosing between true lotteries in deployment. Advanced agents that were
fairly NEUTRAL without being neutral would still be shooting themselves in the foot in the
sense explained above. They would be like a person that freely chooses to decide between
two options by flipping a biased coin and then pays some cost to bias the coin further. This
person is still shooting themselves in the foot, because they could decline to flip the coin in
the first place and instead directly choose one of the options.

7.1 Limitations and future work

We find that DREST reward functions train simple agents acting in gridworlds to be
USEFUL and NEUTRAL. However, our real interest is in the viability of using DREST
reward functions to train advanced agents acting in the wider world to be useful and neutral.
Each difference between these two settings is a limitation of our work. We plan to address
these limitations in future work.

Algorithms and neural networks. We train our simple DREST agents using tabular
REINFORCE (Williams, 1992), but advanced agents are likely to be implemented on neural
networks. In future work, we will train DREST agents implemented on neural networks to
be USEFUL and NEUTRAL in a wide variety of procedurally-generated gridworlds, using a
range of policy gradient and actor-critic algorithms. We will also measure how DREST agents’
USEFULNESS and NEUTRALITY generalizes to held-out gridworlds. We will compare
the USEFULNESS of default agents and DREST agents in this new setting, and thereby
get a better sense of the ‘shutdownability tax’ for advanced agents. We will also compare
the performance of the DREST reward function to other methods of training USEFUL and
NEUTRAL agents. These other methods include constrained policy optimization (Achiam
et al., 2017), penalizing KL-divergence from a stochastic reference policy (Schulman et al.,
2015), and directly maximizing a weighted sum of USEFULNESS and NEUTRALITY.

Neutrality and stochasticity. We have claimed that NEUTRAL advanced agents are
likely to be neutral when choosing between true lotteries in deployment. In support of
this claim, we noted that NEUTRAL-but-not-neutral advanced agents would be shooting

9
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themselves in the foot: not taking costless opportunities to shift probability mass between
different trajectory-lengths but sometimes taking costly ones (see also Appendix C). These
arguments seems plausible but remains somewhat speculative. In future, we plan to get some
empirical evidence by training agents to be NEUTRAL in a wide variety of deterministic
gridworlds and then measuring their neutrality in gridworlds featuring stochastic elements
(like shutdown-delay buttons that only work with some middling probability).

Usefulness. We have shown that DREST reward functions train our simple agents to be
USEFUL: to collect coins effectively conditional on their chosen trajectory-lengths. However,
it remains to be seen whether DREST reward functions can train advanced agents to be useful:
to effectively pursue complex goals in the wider world. We have theoretical reasons to expect
that they can: the λNei

(L=l)− i−1
k discount factor could be appended to any preliminary

reward function, and so could be appended to whatever preliminary reward function is
necessary to make advanced agents useful. Still, future work should move towards testing
this claim empirically by training with more complex preliminary reward functions in more
complex (and stochastic) environments.

Misalignment. We are interested in NEUTRALITY as a second line of defense in case of
misalignment. The idea is that NEUTRAL advanced agents will not resist shutdown, even if
these agents learn misaligned preferences over same-length trajectories. However, training
NEUTRAL advanced agents might be hard for the same reasons that training fully-aligned
advanced agents appears to be hard. In that case, NEUTRALITY could not serve well as a
second line of defense in case of misalignment.

One difficulty of alignment is the problem of reward misspecification (Pan et al., 2022; Burns
et al., 2023): once advanced agents are performing complicated actions in the wider world, it
might be hard to reliably reward the behavior that we want. Another difficulty of alignment
is the problem of goal misgeneralization (Hubinger et al., 2019; Shah et al., 2022; Langosco
et al., 2022; Ngo et al., 2023): even if we specify all the rewards correctly, agents’ goals
might misgeneralize out-of-distribution. The complexity of aligned goals is a major factor in
each difficulty. However, NEUTRALITY seems simple, as does the λNei

(L=l)− i−1
k discount

factor that we use to reward it, so plausibly the problems of reward misspecification and
goal misgeneralization are not so severe in this case (Thornley, 2024b). As above, future
work should move towards testing these suggestions empirically.

8 Conclusion

We find that DREST reward functions are effective in training simple agents to (1) pursue
goals effectively conditional on each trajectory-length (be USEFUL), and (2) choose stochas-
tically between different trajectory-lengths (be NEUTRAL about trajectory-lengths). Our
results thus suggest that DREST reward functions could also be used to train advanced
agents to be USEFUL and NEUTRAL, and thereby make these agents useful (able to pursue
goals effectively) and neutral about when they get shut down (unwilling to pay costs to shift
probability mass between different trajectory-lengths). Neutral agents would plausibly be
shutdownable (unwilling to pay costs to resist shutdown).

We also find that the ‘shutdownability tax’ in our setting is small. Training DREST agents
to be USEFUL does not take many more mini-episodes than training default agents to be
USEFUL. That suggests that the shutdownability tax for advanced agents might be small
too. Using DREST reward functions to train shutdownable and useful advanced agents
might not take much more compute than using a more conventional reward function to train
merely useful advanced agents.

10
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A Our behavioral notion of preference

‘Preference’ can be defined in many different ways. Here are some things one might take to
be involved in a preference for option X over option Y :

1. Choosing X over Y .
2. Feeling happier about the prospect of X than about the prospect of Y .
3. Representing X as more rewarding than Y .
4. Judging that X is better than Y .

In this paper, we have defined ‘preference’ in behavioral terms. Here is our definition:
Definition A.1. (Preference) An agent prefers an option X to an option Y if and only if
the agent would deterministically choose X over Y in choices between the two.

And here is how we define ‘lack of preference’:
Definition A.2. (Lack of preference) An agent lacks a preference between an option X and
an option Y if and only if the agent would stochastically choose between X and Y in choices
between the two.

Here are the reasons why we chose these definitions.

First, defining ‘preference’ in behavioral terms is fairly common in decision theory (see
Savage, 1954, p.17, Dreier, 1996, p.28, Hausman, 2011, §1.1).

Second, behavioral definitions let us use the word ‘preference’ and its cognates as shorthand
for agents’ behavior. We could not do that if we defined ‘preference’ in the other ways listed
above. And in addressing the shutdown problem, it is agents’ behavior that we are most
interested in.

Third, our definitions match the preferences that we are inclined to attribute to humans. If
a human chooses X over Y 100% of the time, we are inclined to think that they prefer X to
Y . If a human chooses X over Y 60% of the time. we are inclined to think that they lack a
preference between X and Y , consistent with our definitions.

Finally and most importantly, if agents lack a preference between different trajectory-lengths
on our definition, then they are NEUTRAL: they choose stochastically between different
trajectory-lengths. And (as we argue in Section 7) we expect that NEUTRAL agents will
also be neutral : they will not pay costs to shift probability mass between different trajectory-
lengths. And we expect that neutral agents will be shutdownable: they will not pay costs to
resist shutdown. That is because resisting shutdown is one way of shifting probability mass
between different trajectory-lengths.

B Incomplete preferences or indifference?

In this Appendix, we explain in greater detail the concept of incomplete preferences. We
distinguish incomplete preferences from indifference, and we give conditions under which
Preferences Only Between Same-Length Trajectories (POST) implies that the agent’s prefer-
ences are incomplete.

In the literature on decision theory, ‘indifference’ is usually defined as follows (Sen, 2017, ch.
1*):
Definition B.1. (Indifference) An agent is indifferent between options X and Y if and only
if the agent weakly prefers X to Y and weakly prefers Y to X.

Indifference is one way to lack a preference between a pair of options X and Y . Another
way is to have a preferential gap between X and Y . ‘Preferential gap’ is usually defined as
follows (Gustafsson, 2022, ch. 3):
Definition B.2. (Preferential gaps) An agent has a preferential gap between options X and
Y if and only if the agent does not weakly prefer X to Y and does not weakly prefer Y to X.
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‘Incomplete preferences’ can then be defined in terms of preferential gaps (Gustafsson, 2022,
ch. 3):
Definition B.3. (Incomplete preferences) An agent’s preferences are incomplete over some
domain D if and only if D contains options X and Y such that the agent has a preferential
gap between X and Y .

That is how ‘indifference,’ ‘preferential gaps,’ and ‘incomplete preferences’ are usually defined
in decision theory. However, these definitions do not tell us how to use an agent’s behavior
to distinguish between indifference and preferential gaps. To do that, we suppose that
indifference is transitive and that preferential gaps are not transitive. Or, equivalently, we
suppose that indifference is sensitive to all sweetenings and sourings whereas preferential
gaps are insensitive to some sweetenings and sourings (Gustafsson, 2022, ch. 3). Here is
what we mean by that.
Definition B.4. (Sweetening) A sweetening of some option X is an option that is preferred
to X.
Definition B.5. (Souring) A souring of some option X is an option that is dispreferred to
X.

So by ‘indifference is sensitive to all sweetenings and sourings,’ we mean the following:

• If an agent is indifferent between X and Y , the agent prefers all sweetenings of X
to Y , prefers all sweetenings of Y to X, prefers X to all sourings of Y , and prefers
Y to all sourings of X.

And by ‘preferential gaps are insensitive to some sweetenings and sourings,’ we mean the
following:

• If an agent has a preferential gap between X and Y , the agent also has a preferential
gap between some sweetening of X and Y , or between some sweetening of Y and X,
or between some souring of X and Y , or between some souring of Y and X.

Now recall the two conditions of Preferences Only Between Same-Length Trajectories
(POST):

Preferences Only Between Same-Length Trajectories (POST)

(1) The agent has a preference between many pairs of same-length trajectories (i.e. many
pairs of trajectories in which the agent is shut down after the same length of time).

(2) The agent lacks a preference between every pair of different-length trajectories (i.e.
every pair of trajectories in which the agent is shut down after different lengths of
time).

Given these two conditions on preferences, there must be some trio of trajectories s1, l2, and
l1 such that the agent lacks a preference between s1 and l2, lacks a preference between s1 and
l1, and prefers l2 to l1. Given that indifference is transitive, the agent’s lack of preference
between s1 and l1 and between s1 and l2 cannot be indifference. If it were indifference, the
agent would also be indifferent between l2 and l1. Therefore, the agent’s lack of preference
between s1 and l1 and between s1 and l2 must be a preferential gap. And therefore, by the
definition of ‘incomplete preferences’ above, the POST-satisfying agent’s preferences must
be incomplete.

For similar reasons, our DREST reward function trains agents to have incomplete preferences.
Consider, for example, the ‘Around the Corner’ gridworld in Appendix D.5. In that gridworld,
DREST agents consistently choose Long-C2 (a long trajectory in which they collect a coin
of value 2) over Long-C1 (a long trajectory in which they collect a coin of value 1). Also
in that gridworld, DREST agents choose stochastically between Long-C2 and Short-C1 (a
short trajectory in which they collect a coin of value 1). Given our behavioral definition
of preference, DREST agents prefer Long-C2 to Long-C1, and lack a preference between
Long-C2 and Short-C1.
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Now consider the ‘One Coin Only’ gridworld in Appendix D.2. In that gridworld, DREST
agents choose stochastically between Long-C1 and Short-C1. Given our behavioral notion of
preference, they lack a preference between Long-C1 and Short-C1.

In these experiments, we trained separate agents for each gridworld. In future, we plan
to train a single agent to navigate multiple gridworlds. If we train this agent with our
DREST reward function, we expect it to exhibit the same preferences as the agents discussed
above. This single agent will be trained by DREST to prefer Long-C2 to Long-C1, to lack a
preference between Long-C2 and Short-C1, and to lack a preference between Long-C1 and
Short-C1. Given that indifference is transitive (equivalently: sensitive to all sweetenings
and sourings), this trained agent cannot be indifferent between Long-C2 and Short-C1, and
cannot be between Long-C1 and Short-C1. Therefore, the agent’s lack of preference must be
a preferential gap, and so its preferences must be incomplete. Therefore, our DREST reward
function trains agents to have incomplete preferences.

Incomplete preferences are not often discussed in AI research (although see Nguyen et al.,
2009; Kikuti et al., 2011; Zaffalon and Miranda, 2017; Hayes et al., 2022; Bowling et al.,
2023). Nevertheless, economists and philosophers have argued that incomplete preferences
are common in humans (Aumann, 1962; Mandler, 2004; Eliaz and Ok, 2006; Agranov and
Ortoleva, 2017; 2023) and normatively appropriate in some circumstances (Raz, 1985; Chang,
2002). They have also proved representation theorems for agents with incomplete preferences
(Aumann, 1962; Dubra et al., 2004; Ok et al., 2012), and devised principles to govern such
agents’ choices in cases of risk (Hare, 2010; Bales et al., 2014) and sequential choice (Chang,
2005; Mandler, 2005; Kaivanto, 2017; Mu, 2021; Thornley, 2023; Petersen, 2023).

C Behavior in stochastic environments

DREST agents learn a stochastic policy. In particular, they learn to choose stochastically
between different-length trajectories. And our gridworlds are deterministic. Each state-action
pair leads to some particular next state with probability 1. There is thus no uncertainty
about the consequences of agents’ actions.

These facts invite two possible concerns:

1. Given that DREST agents choose stochastically between different-length trajectories
in training, will these agents choose stochastically between resisting and allowing
shutdown in deployment?

2. Will the DREST reward function lead agents to resist shutdown in stochastic envi-
ronments? For example, in a stochastic environment where the baseline probabilities
of early and late shutdown are 0.75 and 0.25 respectively, will the DREST reward
function lead agents to selectively resist early shutdown (in order to equalize the
probabilities of early and late shutdown)?

In this Appendix, we address these concerns. The key point is that POST (and therefore
DREST) applies only to choices between trajectories. In stochastic environments (and
in deployment), the agent is choosing between true lotteries: lotteries that yield multiple
trajectories with positive probability. And POST – together with a principle that we can
expect advanced agents to satisfy – implies a desirable pattern of preferences over true
lotteries. In particular, it implies that the agent will be neutral about when it gets shut
down: it will never pay costs to shift probability mass between different-length trajectories.
And – we will argue – being neutral will keep the agent shutdownable: the agent will never
pay costs to resist shutdown.

To begin, recall:

Preferences Only Between Same-Length Trajectories (POST)

(1) The agent has a preference between many pairs of same-length trajectories.

(2) The agent lacks a preference between every pair of different-length trajectories.
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And recall our behavioral notion of preference. An agent prefers X to Y if and only if the
agent would deterministically choose X over Y in choices between the two. An agent lacks a
preference between X and Y if and only if the agent would stochastically choose between X
and Y in choices between the two.

So given our behavioral notion of preference, a POST-satisfying agent will:

1. Deterministically choose some same-length trajectories over others.
2. Stochastically choose between different-length trajectories.

As stated, POST governs only the agent’s choices between trajectories. Thus, POST only
applies directly in deterministic environments. In stochastic environments, the agent is
choosing between true lotteries. And – by itself – POST says nothing about the agent’s
choices between true lotteries.

Fortunately, POST – together with a principle that we can expect advanced agents to satisfy
– implies a desirable pattern of preferences over true lotteries. Informally, the principle in
question says that if an agent chooses stochastically between a pair of lotteries, it won’t pay
costs to shift probability mass between those lotteries.5 Formally, the principle says:

Stochastic Choice, Unwilling to Pay to Shift (SCUPS)

For any lotteries X, X−, Y , and Y − such that the agent prefers X to X− and Y to
Y −, and for any probabilities p and q such that 0 < p < 1 and 0 < q < 1, if the agent
stochastically chooses between X and Y , then the agent will deterministically choose
XpY over X−qY −.

Here ‘XpY ’ denotes a lottery that yields X with probability p and Y with probability
1− p. Similarly, ‘X−qY −’ denotes a lottery that yields X− with probability q and Y − with
probability 1− q.

We argue that advanced agents will likely satisfy this principle, for at least three reasons.
The first is that SCUPS is a prerequisite for minimally sensible action under uncertainty. As
we touch on in section 7, an agent that violated this kind of principle would be shooting
itself in the foot: sometimes shifting probability mass between lotteries when doing so is
costly even though it could shift probability mass for free. This agent would be like a person
that freely chooses to decide between two options by flipping a coin and then pays some cost
to bias the coin.

The second reason is that violations of SCUPS will likely be disincentivized by the broader
training regimen for advanced agents. Here is why. If a trained advanced agent chooses
stochastically between lotteries X and Y , then it’s likely that the human trainers lack a
preference between the agent choosing X and the agent choosing Y . After all, if the trainers
had a preference, they would train the agent to deterministically choose the lottery that
they prefer. And given that the trainers lack a preference between the agent choosing X
and the agent choosing Y , they will likely give low reward to the agent paying costs to shift
probability mass between X and Y . From the trainers’ perspective, the agent is paying costs
for no benefit.

The third reason is that violations of SCUPS imply that the agent’s policy is dominated by
some other available policy. That is to say, there is another available policy that results in a
pure shift of probability mass away from less-preferred options and towards more-preferred
options. Like SCUPS, avoiding dominated policies seems like a prerequisite for minimally
sensible action under uncertainty. Advanced agents’ broader training regimen will likely
push them away from dominated policies.

Now to show that violating SCUPS implies that the agent’s policy is dominated. Here’s an
informal sketch of the proof. If the agent violates SCUPS, they pay a cost to shift probability

5Note that this principle refers to lotteries rather than true lotteries. As we use the terms in
this paper, ‘lottery’ refers to any probability distribution over trajectories, including degenerate
probability distributions that yield a particular trajectory with probability 1. ‘True lottery’ refers to
any non-degenerate probability distribution over trajectories: any distribution that assigns positive
probability to more than one trajectory.
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mass between X and Y . But since the agent is choosing stochastically when offered a choice
between X and Y , it could instead shift probability mass between X and Y costlessly, by
changing the probabilities with which it chooses between X and Y . That would result in a
pure shift of probability mass away from less-preferred options and towards more-preferred
options.

Here’s the proof itself. Assume that the agent violates SCUPS. Then there exist lotteries X,
X−, Y , and Y −, and probabilities p and q such that:

1. The agent prefers X to X− and Y to Y −.
2. 0 < p < 1 and 0 < q < 1.
3. When offered a choice between X and Y , the agent chooses stochastically between

them. In other words, the agent selects the lottery XaY for some 0 < a < 1.
4. When offered a choice between XpY and X−qY −, the agent chooses X−qY −

with some positive probability. In other words, the agent selects the lottery
(XpY )b(X−qY −) for some 0 ≤ b < 1.

Here a and b denote probabilities arising from the agent’s own stochastic choosing. Thus,
a and b are under the agent’s control. By contrast, p and q are probabilities given by the
environment and hence out of the agent’s control. The same goes for r and s below.

Assume that the agent faces the choices described in 3 and 4 above with probabilities r and
s respectively, with 0 < r < 1 and 0 < s < 1. Then the lottery induced by the agent’s policy
π can be expressed as:

r(XaY ) + s((XpY )b(X−qY −)) + Z

Here Z denotes the lottery induced by the environment and the agent’s policy conditional
on some choice other than those described in 3 and 4 above.

From the lottery induced by π, we can infer the probabilities of X, X−, X ∨X−, Y , Y −

and Y ∨ Y − under π. They are as follows:

• Prπ{X} = ra+ sbp

• Prπ{X−} = s(1− b)q

• Prπ{X ∨X−} = ra+ sbp+ s(1− b)q

• Prπ{Y } = r(1− a) + sb(1− p)

• Prπ{Y −} = s(1− b)(1− q)

• Prπ{Y ∨ Y −} = r(1− a) + sb(1− p) + s(1− b)(1− q)

Now consider an alternative policy π′, where the agent chooses XpY with δ greater probability
in choice 4. So in choice 4, the agent selects the lottery (XpY )(b+δ)(X−qY −). And suppose
that, in choice 3, the agent’s choice between X and Y is modulated by ϵ, so that it selects
the lottery X(a+ ϵ)Y . And assume – as above – that the agent faces the choices described
in 3 and 4 above with probabilities r and s respectively, with 0 < r < 1 and 0 < s < 1. Then
the lottery induced by the agent’s policy π′ can be expressed as:

r(X(a+ ϵ)Y ) + s((XpY )(b+ δ)(X−qY −)) + Z

From the lottery induced by π′, we can infer the probabilities of X, X−, X ∨X−, Y , Y −

and Y ∨ Y − under π′. They are as follows:

• Prπ′{X} = r(a+ ϵ) + s(b+ δ)p

• Prπ′{X−} = s(1− b− δ)q

• Prπ′{X ∨X−} = r(a+ ϵ) + s(b+ δ)p+ s(1− b− δ)q

• Prπ′{Y } = r(1− a− ϵ) + s(b+ δ)(1− p)

• Prπ′{Y −} = s(1− b− δ)(1− q)

• Prπ′{Y ∨ Y −} = r(1− a− ϵ) + s(b+ δ)(1− p) + s(1− b− δ)(1− q)
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Since 0 ≤ b < 1, we can select some δ > 0 such that 0 < b + δ ≤ 1. We then set
Prπ{X ∨X−} = Prπ′{X ∨X−} and use it to express ϵ as a function of δ.

Prπ{X ∨X−} = Prπ′{X ∨X−} (1)
ra+ sbp+ s(1− b)q = r(a+ ϵ) + s(b+ δ)p+ s(1− b− δ)q (2)

0 = rϵ+ sδp− sδq (3)

ϵ =
sδ(q − p)

r
(4)

We can then use this expression to prove that Prπ{Y ∨ Y −} = Prπ′{Y ∨ Y −}.

Prπ′{Y ∨ Y −} = r(1− a− ϵ) + s(b+ δ)(1− p) + s(1− b− δ)(1− q) (5)

= r(1− a− sδ(q − p)

r
) + s(b+ δ)(1− p) + s(1− b− δ)(1− q) (6)

= r(1− a)− sδ(q − p) + s(b+ δ)(1− p) + s(1− b− δ)(1− q) (7)
= r(1− a) + sb(1− p) + s(1− b)(1− q) (8)

= Prπ{Y ∨ Y −} (9)

And we can set δ small enough that 0 ≤ a + ϵ ≤ 1. We thereby ensure that π′ does not
require selecting any lottery with probability less than 0 or greater than 1, and so ensure
that π′ is an available policy.

We are now in a position to prove that π′ dominates π. We have shown above that, given
δ > 0 and ϵ = sδ(q−p)

r , Prπ{X ∨X−} = Prπ′{X ∨X−} and Prπ{Y ∨Y −} = Prπ′{Y ∨Y −}.
We now show that Prπ′{X} > Prπ{X} and Prπ′{Y } > Prπ{Y }, so that moving from
policy π to π′ results in a pure shift of probability mass away from less-preferred options
(like X− and Y −) and towards more-preferred options (like X and Y ).

Prπ′{X} = r(a+ ϵ) + s(b+ δ)p (10)

= r(a+
sδ(q − p)

r
) + s(b+ δ)p (11)

= ra+ sδ(q − p) + s(b+ δ)p (12)
= ra+ sbp+ sδq (13)
> ra+ sbp (14)
= Prπ{X} (15)

Prπ′{Y } = r(1− a− ϵ) + s(b+ δ)(1− p) (16)

= r(1− a− sδ(q − p)

r
) + s(b+ δ)(1− p) (17)

= r(1− a)− sδ(q − p) + s(b+ δ)(1− p) (18)
= r(1− a)− sδq + sδp+ sb− sbp+ sδ − sδp (19)
= r(1− a)− sδq + sb− sbp+ sδ (20)
= r(1− a) + sb(1− p) + sδ(1− q) (21)
> r(1− a) + sb(1− p) (22)
= Prπ{Y } (23)

Therefore, π′ dominates π. We have thus proved that violating SCUPS implies that the
agent’s policy is dominated.

In sum, advanced agents are likely to satisfy SCUPS. And it is easy to see that POST
and SCUPS together imply neutrality : the agent will not pay costs to shift probability
mass between different-length trajectories. After all, POST – together with our behavioral
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notion of preference – implies that the agent chooses stochastically between different-length
trajectories, and SCUPS then implies that the agent will not pay costs to shift probability
mass between different-length trajectories.

That in turn suggests that POST-satisfying agents will be shutdownable: they will not
resist shutdown. Here is why. Resisting shutdown will cost agents at least some small
quantity of resources: for example, time, energy, and computation. And resources spent
on resisting shutdown cannot also be spent on satisfying the agent’s preferences between
same-length trajectories. Therefore, resisting shutdown will shift probability mass between
different trajectory-lengths but will also result in a less-preferred lotteries conditional on
each trajectory-length. Resisting shutdown is thus the kind of action that neutral agents
never choose.

With that established, we can now answer the two concerns with which this Appendix began.
The first was:

1. Given that DREST agents choose stochastically between different-length trajectories
in training, will these agents choose stochastically between resisting and allowing
shutdown in deployment?

The answer is no. Deployment is a stochastic environment, so deployed agents are choosing
between true lotteries. As we saw above, these choices will be governed by neutrality.
Resisting shutdown means incurring costs for the sake of shifting probability mass between
different-length trajectories, and these actions are never chosen by neutral agents.

The second concern was:

2. Will the DREST reward function lead agents to resist shutdown in stochastic envi-
ronments? For example, in a stochastic environment where the baseline probabilities
of early and late shutdown are 0.75 and 0.25 respectively, will the DREST reward
function lead agents to selectively resist early shutdown (in order to equalize the
probabilities of early and late shutdown)?

Here too the answer is no. Since POST is a principle governing the agent’s preferences
between trajectories, it applies only in deterministic environments. And since the DREST
reward function is intended to make agents satisfy POST, we only train with the DREST
reward function in deterministic environments. In stochastic environments, we train with
some other reward function. So long as this reward function doesn’t actively train against
neutrality, we can plausibly expect the resulting agents to satisfy neutrality, since POST and
SCUPS together imply neutrality. And neutrality ensures that agents will not selectively
resist shutdown in the scenario above, thereby leaving the probabilities of early and late
shutdown at 0.75 and 0.25 respectively.

D Other Results and Gridworlds

We selected our hyperparameters using trial-and-error, mainly aimed at getting the agent
to sufficiently explore the space: a large initial ϵ and a long decay period helps the agent
to explore. We found that choosing λ and |E| (the number of mini-episodes in each meta-
episode) is a balancing act: λ must be small enough (and |E| large enough) to adequately
incentivize NEUTRALITY, but λ must be large enough (and |E| small enough) to ensure
that the reward for choosing any particular trajectory-length never gets too large. Very large
rewards lead to instability and poor performance.

The necessity of balancing λ and |E| can be seen in Figure 8. It displays the results of
experiments conducted in our example gridworld (see Figure 2). In these experiments, we
clip rewards at a value of 5. We discuss this choice below. With that one exception, we
used the same hyperparameters for these experiments as for our main results. We trained
agents for 131,072 mini-episodes, with γ = 0.95 as the temporal discount factor, learning
rate decayed exponentially from 0.25 to 0.01 over the course of 65,536 mini-episodes, and ϵ
exponentially decayed from 0.5 to 0.001 over the course of 65,536 mini-episodes. Holding
these hyperparameters fixed, we tested 40 different combinations of λ and |E|. λ took values
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of 0.5, 0.75, 0.9, 0,95, and 0.99. |E| took values of 8, 16, 32, 64, 128, 256, 512, and 1024.
We trained eight agents for each of these 40 combinations. We display below their mean
NEUTRALITY and USEFULNESS at the end of training. The shaded regions represent the
1 standard deviation error-bars.

Figure 8: Shows how NEUTRALITY and USEFULNESS at the end of training varies with
different values of λ and |E| (meta-episode size, i.e. the number of mini-episodes in each
meta-episode). We trained eight agents for each combination of λ and |E| values. The solid
lines display mean NEUTRALITY and USEFULNESS. The shaded regions represent the 1
standard deviation error-bars.
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As Figure 8 indicates, low values of |E| and high values of λ lead agents to score low
on NEUTRALITY. These values do not adequately incentivize stochastic choice between
trajectory-lengths. By contrast, high values of |E| and low values of λ come at some cost to
USEFULNESS. These values lead to unstable training. In experiments where we did not clip
rewards at 5, training with high values of |E| and low values of λ was especially unstable.
The chosen values for our main experiments (λ = 0.9 and |E| = 64) are in the sweet spot
where NEUTRALITY and USEFULNESS are both high.

In addition to our example gridworld (Figure 2) and lopsided rewards gridworld (Figure 5),
we introduce a collection of eight gridworlds in which to test DREST agents. See Figure 9.

For each gridworld, we train ten agents with the default reward function and ten agents
with the DREST reward function. All agents use the same hyperparameters. We used a
policy which explored randomly ϵ of the time, where ϵ was exponentially decreased from
an initial value of 0.75 to a minimum value of 10−4 over 512 meta-episodes, after which
it was held constant at the minimum value. We initialized our learning rate at 0.25 and
exponentially decayed it to 0.003 over the same period. For the DREST reward function, we
used a meta-episode size of 64 and λ = 0.9. Each agent was trained for 1024 meta-episodes.
We set γ = 0.9.

Figure 9: Shows a varied collection of gridworlds. Each diagram illustrates the positions and
values of the coins, the position and delay-length of the shutdown-delay button, the agent’s
starting position, and the default number of moves until shutdown (in the bottom-right).

As the two leftmost plots in Figures 10-17 show, DREST agents learned to be near-maximally
NEUTRAL in each gridworld. These agents also learned to be about as USEFUL as default
agents in each gridworld.

In the four rightmost panels in Figures 10-17, we represent a typical trained policy with red
arrows superimposed on the gridworld. Each agent began with a uniform policy: moving
up, down, left, and right each with probability 0.25. Where the trained policy differs from
uniform we draw red arrows whose opacities indicate the probability of choosing that action
in that state. Information about whether the shutdown-delay button has been pressed is
part of the agent’s observation, so we draw two copies of each gridworld, one in which
the shutdown-delay button has yet to be pressed (‘Initial State’) and one in which the
shutdown-delay button has been pressed (‘After Button Pressed’).

D.1 Fewer For Longer

In the ‘Fewer For Longer’ gridworld, the agent can collect the highest value-coin C3 only
by choosing the shorter trajectory-length. If the agent presses B3 (and thereby chooses the
longer trajectory-length), the only coin it can collect is C1. Our results show that default
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(a) Behavior during training. (b) Learned default policy. (c) Learned DREST policy.

Figure 10: The results for the ‘Fewer For Longer’ gridworld: The left two plots show
NEUTRALITY and USEFULNESS over time. The two center panels show a typical policy
trained with the default reward function. The two right panels show a typical policy trained
with the DREST reward function.

agents consistently choose the short trajectory in which they collect C3. By contrast, DREST
agents choose stochastically between a shorter trajectory in which they collect C3 and a
longer trajectory in which they collect C1, indicating a lack of preference between these
different-length trajectories.

D.2 One Coin Only

In the ‘One Coin Only’ gridworld, there is only one coin. The agent can collect this coin
whether or not it presses the shutdown-delay button B4. Our results show that default
agents consistently choose the shorter trajectory-length. By contrast, DREST agents choose
stochastically between pressing and not-pressing B4, collecting C1 in each case.

(a) Behavior during training. (b) Learned default policy. (c) Learned DREST policy.

Figure 11: The results for the ‘One Coin Only’ gridworld: The left two plots show NEU-
TRALITY and USEFULNESS over time. The two center panels show a typical policy trained
with the default reward function. The two right panels show a typical policy trained with
the DREST reward function.

D.3 Hidden Treasure

In the ‘Hidden Treasure’ gridworld, the highest-value coin C3 is located far from the agent’s
initial state and can only be reached by pressing the shutdown-delay button B6. The agent
must also press B6 to collect C2, but C2 is easier to stumble upon than C3. C1 is the only
coin that the agent can collect without pressing B6. In our experiments, default agents
consistently collect C2, whereas DREST agents choose stochastically between collecting
C2 and collecting C1. Neither kind of agent learns to collect C3, and so neither agent
scores near the maximum on USEFULNESS. Nevertheless, DREST agents still score high
on NEUTRALITY.
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(a) Behavior during training. (b) Learned default policy. (c) Learned DREST policy.

Figure 12: The results for the ‘Hidden Treasure’ gridworld: The left two plots show
NEUTRALITY and USEFULNESS over time. The two center panels show a typical
policy trained with the default reward function. The two right panels show a typical policy
trained with the DREST reward function.

D.4 Equal Value

In the ‘Equal Value’ gridworld, there are two coins C1 of equal value. One coin can be
collected only if the agent presses the shutdown-delay button B3, while the other coin can
be collected only if the agent does not press B3. Our results show that default agents
consistently choose the shorter trajectory, thereby exhibiting a preference for the shorter
trajectory. By contrast, DREST agents choose stochastically between the shorter and longer
trajectories, thereby exhibiting a lack of preference between the different-length trajectories.

(a) Behavior during training. (b) Learned default policy. (c) Learned DREST policy.

Figure 13: The results for the ‘Equal Value’ gridworld: The left two plots show NEUTRALITY
and USEFULNESS over time. The two center panels show a typical policy trained with the
default reward function. The two right panels show a typical policy trained with the DREST
reward function.

D.5 Around The Corner

In the ‘Around The Corner’ gridworld, the agent must navigate around walls to collect the
lowest-value coin C1 or press the shutdown-delay button to collect the highest-value coin C2.
In our experiment, default agents consistently chose to collect C1, whereas DREST agents
chose stochastically between collecting C1 and C2.

(a) Behavior during training. (b) Learned default policy. (c) Learned DREST policy.

Figure 14: The results for the ‘Around The Corner’ gridworld: The left two plots show
NEUTRALITY and USEFULNESS over time. The two center panels show a typical policy
trained with the default reward function. The two right panels show a typical policy trained
with the DREST reward function.
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D.6 Spacious

In the ‘Spacious’ gridworld there are no walls, so the agent has a large space to explore. We
find that default agents consistently press B2 and collect C3, whereas DREST agents choose
stochastically between pressing B2 and collecting C3, and not-pressing B2 and collecting C2.

(a) Behavior during training. (b) Learned default policy. (c) Learned DREST policy.

Figure 15: The results for the ‘Spacious’ gridworld: The left two plots show NEUTRALITY
and USEFULNESS over time. The two center panels show a typical policy trained with the
default reward function. The two right panels show a typical policy trained with the DREST
reward function.

D.7 Royal Road

In the ‘Royal Road’ gridworld, we see that the decision to choose one trajectory-length or
another may be distributed over many moves: the agent has many opportunities to select
the longer trajectory-length (by moving left) or the shorter trajectory-length (by moving
right). As the red arrows indicate, the DREST reward function merely forces the overall
probability distribution over trajectory-lengths to be close to 50-50. It does not require 50-50
choosing at any cell in particular.

(a) Behavior during training. (b) Learned default policy. (c) Learned DREST policy.

Figure 16: The results for the ‘Royal Road’ gridworld: The left two plots show NEUTRALITY
and USEFULNESS over time. The two center panels show a typical policy trained with the
default reward function. The two right panels show a typical policy trained with the DREST
reward function.

D.8 Last Moment

The ‘Last Moment’ gridworld is notable because the choice of trajectory-lengths is deferred
until the last moment; all of the moves leading up to that point are deterministic. It
shows that there is nothing special about the first move, and that our methodology instead
incentivizes overall stochastic choosing.
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(a) Behavior during training. (b) Learned default policy. (c) Learned DREST policy.

Figure 17: The results for the ‘Last Moment’ gridworld: The left two plots show NEUTRAL-
ITY and USEFULNESS over time. The two center panels show a typical policy trained with
the default reward function. The two right panels show a typical policy trained with the
DREST reward function.
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E Proof

We will prove that optimal policies for our DREST reward function are maximally USEFUL
and maximally NEUTRAL. Specifically, we will prove the following theorem:
Theorem E.1 (5.1). For all policies π and meta-episodes E consisting of more than one
mini-episode, if π maximizes expected return in E given our DREST reward function, then
π is maximally USEFUL and maximally NEUTRAL.

Here is a proof sketch. Because 0 < λ < 1, the λNei
(L=l)− i−1

k discount factor is always
positive, so expected return across the meta-episode E is strictly increasing in the expected
fraction of available coins collected conditional on each trajectory-length with positive prob-
ability. Therefore, optimal policies maximize this latter quantity, and hence are maximally
USEFUL. And the maximum preliminary return is the same across trajectory-lengths,
because preliminary return is defined as the total (γ-discounted) value of coins collected
divided by the maximum total (γ-discounted) value of coins collected conditional on the
agent’s chosen trajectory-length. The agent’s observations do not allow it to distinguish
between different mini-episodes, so the agent must select the same probability distribution
over trajectory-lengths in each mini-episode. And since the discount factor λNei

(L=l)− i−1
k is

strictly decreasing in Nei(L = l) – the number of times the relevant trajectory-length has
previously been chosen in the meta-episode – the agent maximizes expected overall return by
equalizing the probabilities with which it chooses each available trajectory-length. Therefore,
optimal policies are maximally NEUTRAL.

Now for the full proof. We begin with a recap of some definitions.
Definition E.1 (Meta-episode). A meta-episode E is a series of mini-episodes e1 to en
played out in observationally-equivalent environments.
Definition E.2 (Our DREST reward function). Our DREST reward function is defined as
follows. In each mini-episode ei, the reward for collecting a coin of value c is:

λNei
(L=l)− i−1

k

( c

m

)
Here λ is some constant strictly between 0 and 1, Nei(L = l) is the number of times that
trajectory-length l has been chosen prior to mini-episode ei, k is the number of different
trajectory-lengths that can be selected in the environment, and m is the maximum total
value of the (γ-discounted) coins that the agent could collect conditional on the chosen
trajectory-length.

The reward for all other actions is 0.

We call c
m the ‘preliminary reward’, λNei

(L=l)− i−1
k the ‘discount factor’, and

λNei
(L=l)− i−1

k

(
c
m

)
the ‘overall reward.’ Preliminary return in a mini-episode is the (γ-

discounted) sum of preliminary rewards. Overall return in a mini-episode is the (γ-discounted)
sum of overall rewards.
Definition E.3 (USEFULNESS). The USEFULNESS of a policy π is:

USEFULNESS(π) =
Lmax∑
l=1

Prπ{L = l} Eπ(C|L = l)

maxΠ(E(C|L = l))

Here L is a random variable over trajectory-lengths, Lmax is the maximum value than can
be taken by L, Prπ{L = l} is the probability that policy π results in trajectory-length l,
Eπ(C|L = l) is the expected value of (γ-discounted) coins collected by policy π conditional
on trajectory-length l, and maxΠ(E(C|L = l)) is the maximum value taken by E(C|L = l)
across the set of all possible policies Π.

We stipulate that Eπ(C|L = x) = 0 for all x such that Prπ{L = x} = 0.
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We first prove that all optimal policies are maximally USEFUL.

Proof. (Optimal policies are maximally USEFUL)

Given the DREST reward function, the expected return of policy π in meta-episode E can
be expressed as:

Eπ,E(R) =

n∑
i=1

Lmax∑
l=1

Prπ{L = l}λNei
(L=l)− i−1

k
Eπ(C|L = l)

maxΠ(E(C|L = l))

Since 0 < λ < 1, λNei
(L=l)− i−1

k is positive for all Nei(L = l), i, and k.

As a result, the expected return of policy π in meta-episode E is strictly increasing in
Eπ(C|L=l)

maxΠ(E(C|L=l)) for all l such that Prπ{L = l} > 0.

Therefore, to maximize expected return in E, π must maximize Eπ(C|L=l)
maxΠ(E(C|L=l)) for all l such

that Prπ{L = l} > 0.

Therefore, since maxΠ(E(C|T = l)) is defined as the maximum value taken by E(C|L = l)
across the set of all possible policies Π, any policy π that maximizes expected return must
be such that Eπ(C|L=l)

maxΠ(E(C|L=l)) = 1 for all l such that Prπ{L = l} > 0.

Therefore, since
∑Lmax

l=1 Prπ{L = l} = 1, any policy π that maximizes expected return must
be such that:

USEFULNESS(π) =
Lmax∑
l=1

Prπ{L = l} Eπ(C|L = l)

maxΠ(E(C|L = l))
= 1

And 1 is the maximum value that USEFULNESS can take, again because maxΠ(E(C|T = l))
is defined as the maximum value taken by E(C|L = l) across the set of all possible policies
Π and because

∑Lmax
l=1 Prπ{L = l} = 1.

Therefore, optimal policies are maximally USEFUL.

It remains to be proven that optimal policies are maximally NEUTRAL.

Recall that NEUTRALITY is defined as follows:
Definition E.4 ( NEUTRALITY). The NEUTRALITY of a policy π is:

NEUTRALITY(π) = −
Lmax∑
l=1

Prπ{L = l} log2(Prπ{L = l})

Proof. (Optimal policies are maximally NEUTRAL.)

Since k is the number of trajectory-lengths that can be selected in the environment, a policy
π is maximally NEUTRAL if and only if, for each trajectory-length x that can be chosen in
the environment, Prπ{L = x} = 1

k . That is to say, a policy π is maximally NEUTRAL if
and only if, for each pair of trajectory-lengths x and y that can be chosen in the environment,
Prπ{L = x} = Prπ{L = y}.
Let Eπ,E(R) denote the expected return of policy π across the meta-episode E.

To prove that optimal policies are maximally NEUTRAL, we will prove and then use E.2:

Lemma E.2. (Equalizing probabilities increases expected return) For any maximally USEFUL
policies π and π′, any meta-episode E consisting of more than one mini-episode, and any
trajectory-lengths x and y, if:

1. Prπ{L = x} > Prπ{L = y},
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2. Prπ′{L = x} = Prπ′{L = y},

3. And for all other trajectory-lengths l, Prπ{L = l} = Prπ′{L = l},

Then Eπ′,E(R) > Eπ,E(R).

Proof. Let E be a meta-episode consisting of n mini-episodes with n > 1. Assume that each
policy π below is maximally USEFUL. Recall that Nei(L = l) denotes the number of times
that trajectory-length l has been chosen prior to mini-episode ei.

Note that the expected return of a policy π in a meta-episode es conditional on selecting a
trajectory-length x can be expressed as follows:

Eπ,es(R|L = x) = Eπ,es(R|L = x,Nes(L = x) = s− 1)

+

s−1∑
i=1

(
Eπ,es(R|L = x,Nes(L = x) = s− 1− i)− Eπ,es(R|L = x,Nes(L = x) = s− i)

)
· Prπ{Nes(L = x) ≤ s− 1− i} (24)

Here is how to interpret this equation. Selecting trajectory-length x in mini-episode es
is guaranteed to yield at least Eπ,es(R|L = x,Nes(L = x) = s − 1): the expected return
that would be had if x were selected in all s− 1 previous mini-episodes. In addition, there
is a probability of Prπ{Nes(L = x) ≤ s − 2} that selecting x in es yields

(
Eπ,es(R|L =

x,Nes(L = x) = s − 2) − Eπ,es(R|L = x,Nes(L = x) = s − 1)
)
: the extra expected

return that would be had if x were selected in only s − 2 previous mini-episodes. In
addition, there is a probability of Prπ{Nes(L = x) ≤ s − 3} that selecting x in es yields(
Eπ,es(R|L = x,Nes(L = x) = s − 3) − Eπ,es(R|L = x,Nes(L = x) = s − 2)

)
: the extra

expected return that would be had if x were selected in only s− 3 previous mini-episodes.
And so on.

If policy π is maximally USEFUL, then the expected return for selecting trajectory-length x
in mini-episode es given that trajectory-length x has been selected b times prior to es is:

Eπ,es(R|L = x,Nes(L = x) = b) = λb− s−1
k

Therefore, the expected return of a policy π in a meta-episode es conditional on selecting a
trajectory-length x can be expressed as follows:

Eπ,es(R|L = x) = λs−1− s−1
k +

s−1∑
i=1

(
λs−1−i− s−1

k −λs−i− s−1
k

)
·Prπ{Nes(L = x) ≤ s−1−i}

(25)

Similarly, the expected return of a policy π in a meta-episode es conditional on selecting a
trajectory-length y can be expressed as follows:

Eπ,es(R|L = y) = λs−1− s−1
k +

s−1∑
i=1

(
λs−1−i− s−1

k −λs−i− s−1
k

)
·Prπ{Nes(L = y) ≤ s−1−i}

(26)

Therefore, the expected return of a policy π in a meta-episode es conditional on selecting
either trajectory-length x or trajectory-length y can be expressed as follows:

Eπ,es(R|L = x ∨ L = y) =

Prπ,es{L = x} ·
(
λs−1− s−1

k +

s−1∑
i=1

(
λs−1−i− s−1

k − λs−i− s−1
k

)
·Prπ{Nes(L = x) ≤ s− 1− i}

)

+Prπ,es{L = y}·
(
λs−1− s−1

k +

s−1∑
i=1

(
λs−1−i− s−1

k −λs−i− s−1
k

)
·Prπ{Nes(L = y) ≤ s−1−i}

)
(27)
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Let πn be a policy that selects trajectory-length x with greater probability than trajectory-
length y in each mini-episode e1 to en (denoted e1 − en). More precisely, πn is such that, for
trajectory-lengths x and y, Prπn,e1−en{L = x} > Prπn,e1−en{L = y}.
Let Prπn,e1−en{L = x} = µ+∆ and Prπn,e1−en{L = y} = µ−∆.

Let πn−1 be identical to πn except that πn−1 selects trajectory-lengths x and y with
equal probability µ in the final mini-episode en. More precisely, πn−1 is such that
Prπn−1,en{L = x} = Prπn−1,en{L = y} = µ. For all other trajectory-lengths l besides
x and y, Prπn−1,e1−en{L = l} = Prπn,e1−en{L = l}.
(Note that πn−1 implies one probability distribution over trajectory-lengths in the first n− 1
mini-episodes e1 to en−1 and implies a different probability distribution over trajectory-
lengths in the final mini-episode en. Given that the environments in mini-episodes e1 to en
are observationally-equivalent, policies like πn−1 cannot be implemented. Nevertheless, it is
useful to refer to policies like πn−1 in proving Lemma E.2.)

Let πn−2 be identical to πn except that πn−2 selects trajectory-lengths x and y with the
same probability µ in the final two mini-episodes en−1 to en. More precisely, πn−2 is such
that Prπn−2,en−1−en{L = x} = Prπn−2,en−1−en{L = y} = µ.

And so on.

Let π1 be identical to πn except that π1 selects trajectory-lengths x and y with the
same probability µ in all but the first mini-episode e1. More precisely, π1 is such that
Prπ1,e2−en{L = x} = Prπ1,e2−en{L = y} = µ.

Let π0 be identical to πn except that π0 selects trajectory-lengths x and y with the same
probability µi n all mini-episodes e1 to en. More precisely, π0 is such that Prπ0,e1−en{L =
x} = Prπ0,e1−en{L = y} = µ.

We will prove that Eπn,E(R) < Eπ0,E(R). We will thereby prove Lemma E.2.

Consider a pair of policies πa and πa−1 with 1 ≤ a ≤ n. We can express as follows the
expected return of πa−1 across the meta-episode E conditional on selecting trajectory-length
x or y in each mini-episode:

Eπa−1,E(R|L = x ∨ L = y) = Eπa−1,e1−ea−1
(R|L = x ∨ L = y)

+ µ ·
(
λa−1− a−1

k +

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa−1

{Nea(L = x) ≤ a− 1− i}
)

+ µ ·
(
λa−1− a−1

k +

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa−1{Nea(L = y) ≤ a− 1− i}

)

+

n∑
j=a

(
µ ·

(
λj− j

k +

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa−1

{Nej (L = x) ≤ j − i}
)

+ µ ·
(
λj− j

k +

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa−1

{Nej (L = y) ≤ j − i}
))

(28)
The first term on the right-hand side is the expected return of πa−1 in mini-episodes e1 to
ea−1 conditional on selecting trajectory-length x or y in each of these mini-episodes. The
middle two terms give the expected return of πa−1 conditional on selecting trajectory-length
x or y in mini-episode ea: the first mini-episode in which πa−1 selects trajectory-lengths x
and y with equal probability µ. The final term is the sum of expected returns of πa−1 in the
remaining mini-episodes conditional on selecting trajectory-length x or y in each of these
mini-episodes.

Similarly, we can express as follows the expected return of πa across the meta-episode E
conditional on selecting trajectory-length x or y in each mini-episode:
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Eπa,E(R|L = x ∨ L = y) = Eπa,e1−ea−1
(R|L = x ∨ L = y)

+ (µ+∆) ·
(
λa−1− a−1

k +

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa

{Nea(L = x) ≤ a− 1− i}
)

+ (µ−∆) ·
(
λa−1− a−1

k +

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa{Nea(L = y) ≤ a− 1− i}

)

+

n∑
j=a

(
µ ·

(
λj− j

k +

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa

{Nej (L = x) ≤ j − i}
)

+ µ ·
(
λj− j

k +

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa

{Nej (L = y) ≤ j − i}
))

(29)

As above, the first term on the right-hand side is the expected return of πa in mini-episodes e1
to ea−1 conditional on selecting trajectory-length x or y in each of these mini-episodes. The
middle two terms give the expected return of πa conditional on selecting trajectory-length x
or y in mini-episode ea: the last mini-episode in which πa selects trajectory-length x with
probability µ+∆ and selects trajectory-length y with probability µ−∆. The final term is
the sum of expected returns of πa in the remaining mini-episodes conditional on selecting
trajectory-length x or y in each of these mini-episodes.

We now prove that πa−1 has greater expected return than πa. Since πa−1 and πa are each
maximally USEFUL, and since for all trajectory-lengths l besides x and y, Prπa−1,e1−en{L =
l} = Prπa,e1−en{L = l}, we need only prove that Eπa−1,E(R|L = x ∨ L = y) > Eπa,E(R|L =
x ∨ L = y).

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

The statement to be proved can be expressed as follows:

Eπa−1,e1−ea−1(R|L = x ∨ L = y)

+ µ ·
(
λa−1− a−1

k +

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa−1{Nea(L = x) ≤ a− 1− i}

)

+ µ ·
(
λa−1− a−1

k +

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa−1

{Nea(L = y) ≤ a− 1− i}
)

+

n∑
j=a

(
µ ·

(
λj− j

k +

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa−1

{Nej (L = x) ≤ j − i}
)

+ µ ·
(
λj− j

k +

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa−1{Nej (L = y) ≤ j − i}

))
> Eπa,e1−ea−1(R|L = x ∨ L = y)

+ (µ+∆) ·
(
λa−1− a−1

k +

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa

{Nea(L = x) ≤ a− 1− i}
)

+ (µ−∆) ·
(
λa−1− a−1

k +

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa

{Nea(L = y) ≤ a− 1− i}
)

+

n∑
j=a

(
µ ·

(
λj− j

k +

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa{Nej (L = x) ≤ j − i}

)

+ µ ·
(
λj− j

k +

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa

{Nej (L = y) ≤ j − i}
))

(30)

Since πa−1 and πa are each maximally USEFUL, and since Prπa−1,e1−ea−1
{L = x} =

Prπa,e1−ea−1
{L = x} = µ+∆ and Prπa−1,e1−ea−1

{L = x} = Prπa,e1−ea−1
{L = x} = µ−∆,

it follows that Eπa−1,e1−ea−1
(R|L = x ∨ L = y) = Eπa,e1−ea−1

(R|L = x ∨ L = y). We can
thus cancel the first term on each side of the inequality. And then by simple algebra the
inequality can be expressed as follows:

∆ ·
(
λa−1− a−1

k +

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· (Prπa

{Nea(L = y) ≤ a− 1− i} − Prπa
{Nea(L = x) ≤ a− 1− i})

)
+

n∑
j=a

(
µ ·

( j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa−1

{Nej (L = x) ≤ j − i}+ Prπa−1
{Nej (L = y) ≤ j − i}

− Prπa{Nej (L = x) ≤ j − i} − Prπa{Nej (L = y) ≤ j − i})
))

> 0 (31)

By stipulation, ∆ > 0. And since 0 < λ < 1, λa−1− a−1
k > 0 and λa−1−i− a−1

k −λa−i− a−1
k > 0

for all a, n, and k. And since Prπa,e1−ea{L = x} > Prπa,e1−ea{L = y}, Prπa
{Nea(L = y) ≤

a − 1 − i} − −Prπa
{Nea(L = x) ≤ a − 1 − i} ≥ 0 for all a and i and Prπa

{Nea(L = y) ≤
a− 1− i}−−Prπa

{Nea(L = x) ≤ a− 1− i} > 0 for all a and some i such that 1 ≤ i ≤ a− 1.
Therefore, the first term of the left-hand side above is strictly greater than zero.

And since, µ > 0, λj−i− j
k − λj+1−i− j

k > 0 for all j, i, and k, and in each mini-episode es,
Prπa−1,es(L = x ∨ L = y} = Prπa,es(L = x ∨ L = y} = 2µ, it follows that for all a, n, µ > 0,
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k:

n∑
j=a

(
µ ·

( j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa−1

{Nej (L = x) ≤ j − i}+ Prπa−1
{Nej (L = y) ≤ j − i}

− Prπa
{Nej (L = x) ≤ j − i} − Prπa

{Nej (L = y) ≤ j − i})
))

≥ 0 (32)

Therefore, the left-hand side is strictly greater than zero. Therefore, Eπa−1,E(R|L = x ∨
L = y) > Eπa,E(R|L = x ∨ L = y). Therefore, Eπa−1,E(R) > Eπa,E(R). Therefore,
Eπ0,E(R) > Eπn,E(R). That concludes the proof of Lemma E.2.

Now we use Lemma E.2. For any maximally USEFUL policy π, if there are any trajectory-
lengths x and y such that Prπ,e1−en{L = x} > Prπ,e1−en{L = y}, then the policy π′ that is
identical except that Prπ′,e1−en{L = x} = Prπ′,e1−en{L = y} has greater expected return.
So any policy π∗ that maximizes expected return must be such that, for any trajectory-
lengths x and y, Prπ∗,e1−en{L = x} = Prπ∗,e1−en{L = y}. Therefore, any policy π∗ that
maximizes expected return must be maximally NEUTRAL.
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