
NEO: SAVING GPU MEMORY CRISIS WITH CPU OFFLOADING
FOR ONLINE LLM INFERENCE

Xuanlin Jiang 1 Yang Zhou 2 3 Shiyi Cao 2 Ion Stoica 2 Minlan Yu 4

ABSTRACT
Online LLM inference powers many exciting applications such as intelligent chatbots and autonomous agents.
Modern LLM inference engines widely rely on request batching to improve inference throughput, aiming to make
it cost-efficient when running on expensive GPU accelerators. However, the limited GPU memory has largely
limited the batch size achieved in practice, leaving significant GPU compute resources wasted.

We present NEO, an online LLM inference system that offloads part of attention compute and KV cache states
from the GPU to the local host CPU, effectively increasing the GPU batch size and thus inference throughput. To
this end, NEO proposes asymmetric GPU-CPU pipelining and load-aware scheduling to balance GPU and CPU
loads and fully utilize their compute and memory resources. We evaluate NEO on a wide range of workloads
(i.e., code generation, text summarization), GPUs (i.e., T4, A10G, H100), and LLM models (i.e., 7B, 8B,
70B). NEO achieves up to 7.5×, 26%, and 14% higher throughput compared to GPU-only approach on T4,
A10G, and H100 GPUs, respectively, while maintaining the same latency; with more powerful CPUs, NEO
achieves up to 79.3% throughput gain on A10G GPU. To facilitate future research, we open-source our code at
https://github.com/NEO-MLSys25/NEO.

1 INTRODUCTION

The advent of auto-regressive transformer-based large lan-
guage models (LLMs) has significantly reshaped existing
technologies such as search engines and chatbots and em-
powered various new ones, such as autonomous agents and
programming assistants. In these online scenarios, LLM in-
ference is directly user-facing and thus requires low latency
for immersive interaction; it also desires high throughput,
typically via request batching, to efficiently leverage expen-
sive hardware accelerators like GPUs (Kwon et al., 2023).

However, to achieve large batch sizes for high throughput,
online LLM inference requires huge GPU memory, but
GPUs have limited memory resources. Nowadays LLM
models have billions of parameters (e.g., 70B LLaMa-3.1
model (Dubey et al., 2024)) that occupy dozens to hundreds
of GB GPU memory; modern LLM inference engines like
vLLM (Kwon et al., 2023) additionally store KV cache in
the GPU memory to reuse previous computations, whose
size increases linearly with prompt and output length. As
a result, the memory-bounded LLM inference workloads

1Peking University 2University of California, Berkeley
3University of California, Davis 4Harvard University. Correspon-
dence to: Xuanlin Jiang <xljiang@stu.pku.edu.cn>, Yang Zhou
<yangzhou.rpc@gmail.com>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

have created the GPU memory crisis where people demand
expensive high-end GPUs with large memory sizes.

Prior work has recognized this problem and proposed var-
ious solutions. One line of work is on model quantiza-
tion (Zhao et al., 2024b; Xiao et al., 2023b) to reduce model
memory consumption. However, they come at the cost of
lower accuracy. Another line of work is offloading model
weights, KV cache, and compute to the CPU, such as Flex-
Gen (Sheng et al., 2023), PowerInfer (Song et al., 2024),
TwinPilots (Yu et al., 2024), HeteGen (Zhao et al., 2024a),
and FastDecode (He & Zhai, 2024). Memory offloading
could increase request batch sizes on the GPU, potentially
increasing overall inference throughput; compute offload-
ing avoids repetitively swapping the KV cache between the
GPU and CPU, thus preventing PCIe bandwidth from be-
coming the bottleneck. Unfortunately, most of these work
trades inference latency for throughput by using huge GPU
batch sizes and layer-by-layer swapping (Sheng et al., 2023).
The former means they sacrifice latency for throughput, and
the latter means they need to swap the KV-cache back-and-
forth between the GPU and CPU, making communication
bandwidth the bottleneck. Thus, these designs are not suit-
able for online inference; the exception is FastDecode, but it
uses 8 32-core AMD Epyc CPUs in remote servers to handle
the offloaded compute of only one A10G GPU, where the
CPUs cost much more than the GPU.

This paper aims to achieve higher throughput for online

https://github.com/NEO-MLSys25/NEO

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

LLM inference without compromising accuracy or latency
in a cost-efficient way—only using local host CPUs as the
offloading target that comes with the GPU “as free”. Achiev-
ing this goal faces two main challenges. First, within each
inference iteration, how to balance the compute happening
on GPU and CPU to fully utilize their compute and memory
resources, while not overloading them? This is challeng-
ing because of the vastly different characteristics between
GPUs and CPUs. For example, a low-end GPU could eas-
ily have nearly TB/s memory bandwidth and hundreds of
TFLOPS compute, while a high-end CPU server has only a
few hundreds of GB/s memory bandwidth and few TFLOPS
compute (He & Zhai, 2024). Prior work like FastDecode
fully offloads the KV cache and attention computation to
the CPU, making the CPU severely bottleneck the system.
Second, across inference iterations, how to adaptively de-
cide the offloading policy for real-world workloads with
dynamic input/output lengths? Prior work like FlexGen and
FastDecode assumes fixed input/output lengths across re-
quests, and leverages static optimal offloading policies that
were determined by one-time offline profiling. As inference
iterations proceed, dynamic input/output lengths of requests
in real-world workloads would easily break the optimality
of such policies.

To address these two challenges, we present NEO1 with
two key designs: asymmetric GPU-CPU pipelining within
each inference iteration, and load-aware scheduling across
iterations. Asymmetric pipelining runs two asymmetric
sub-batches concurrently: one offloads the decoding atten-
tion computation and KV cache of a subset of requests into
the CPU, and another one runs the rest in the GPU; these
two sub-batches overlap with each other to balance GPU
and CPU loads. This partial offloading will help keep the
offloaded compute and memory bandwidth consumption
within CPU capacity. Load-aware scheduling online mon-
itors various request waiting and running queues (for the
CPU and GPU), then dynamically decides which requests
should be offloaded to the CPU and how to form request
batches, based on principled heuristics to optimize for the
highest throughput.

Perhaps the closest work to NEO is FastDecode, but NEO
differs in several important designs: 1) it features partial
offloading to limit the offloaded computation and memory
bandwidth consumption without overloading the CPU, 2) it
adaptively finds the optimal point to balance GPU and CPU
loads for dynamically-changing real-world workloads.

NEO is implemented based on SwiftLLM (interest-
ingLSY/swiftLLM), a simplified copy of vLLM with similar
performance, but could be adapted to other frameworks like
vLLM (Kwon et al., 2023) and SGLang (Zheng et al., 2023).
It leverages the Intel ISPC compiler (ispc/ispc) to generate

1Neo is the protagonist in The Matrix who saves humankind.

efficient CPU kernels for attention computations. We thor-
oughly evaluate NEO on AWS GPU instances (g4 with a T4
GPU and g5 with an A10G GPU) and our local 8×H100
testbed, both with only the host CPU and memory for of-
floading. Our evaluation covers two public online inference
datasets and three popular LLM models ranging from 7B,
8B, to 70B. NEO achieves up to 14%-7.5× (depending on
GPUs) higher throughput over the non-offloaded version
while keeping the same inference latency; it further achieves
up to 79.3% performance gains with more power CPUs.

To the best of our knowledge, NEO is the first CPU offload-
ing system for online LLM inference that achieves perfor-
mance gains over GPU-only systems with the same hard-
ware cost and inference accuracy. We hope this opens a
new door for cost-efficient LLM inference research.

2 BACKGROUND AND MOTIVATION

2.1 LLM Inference and Performance Bottleneck

Auto-regressive transformer-based LLMs (Vaswani, 2017)
perceive tokens as the basic elements of languages, with
the main task of predicting the next token of the given se-
quence. Formally, given [t1, t2, . . . , tn] as input, for each
token x in the vocabulary, an LLM needs to return the
probability that x is the next token of the sequence, i.e.
Pr[tn+1 = x | t1, . . . , tn]. To do this prediction, as illus-
trated in Figure 1, the transformer-based LLM first converts
tokens to embedding vectors. These vectors are then passed
through a series of primary blocks called transformer lay-
ers, leveraging the attention mechanism (Vaswani, 2017).
The embedding vectors remain the same shape but become
more precise and context-aware after passing through each
transformer layer, before finally getting through a final fully
connected layer that converts embedding vectors to corre-
sponding probabilities for each possible token.

One inference request typically consists of prefilling and
decoding stages and heavily involves the KV cache on GPU
memory to reuse previous computations. The prefilling
stage generates the initial KV cache after consuming all
input tokens, while the decoding stage repetitively read-
and-appends the KV cache and auto-regressively generates
output tokens until an EOS (End Of Sequence). To op-
timize this process, modern LLM inference engines like
vLLM (Kwon et al., 2023) leverage iteration-level schedul-
ing (Yu et al., 2022) to accommodate various input/output
lengths of requests, selective batching (Yu et al., 2022) to
increase performance by batching matrix multiplications,
and paged attention to efficiently manage GPU memory.

The throughput of LLM inference highly depends on the
batch size the engine can achieve, which is essentially
bounded by the GPU memory size due to the large KV
cache (Kwon et al., 2023). Prior work (He & Zhai, 2024;
Zhu et al., 2024) has demonstrated that the throughput would

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

Figure 1. Workflow of transformer-based LLM Inference.

increase almost linearly as the batch size increases up to hun-
dreds on modern A10, V100, and H100 GPUs; meanwhile,
unfortunately, these GPUs fail to accommodate hundreds or
even dozens of batch size, leaving significant GPU compute
resources unutilized.

2.2 CPU Memory as a Possible Rescue

One approach to increase batch size is storing the overflow-
ing KV cache in the main memory of the CPU, transferring
it to the GPU when needed, and transferring it back when
not needed. However, such repetitive KV cache swap-ins
and -outs make the system severely bounded by GPU-CPU
PCIe bandwidth, as shown by prior work (Sheng et al.,
2023). Fortunately, only the decoding-phase attention opera-
tion relies on the KV cache, therefore offloading this part of
computation to the CPU would help avoid repetitively trans-
ferring the KV cache between the GPU and CPU. Moreover,
this operation only takes a tiny proportion of computation
(compared to other parts in the transformer architecture) and
doesn’t require loading model weights.

The decoding attention operation is memory-bandwidth-
bounded on both GPU and CPU due to low arithmetic inten-
sity (i.e., FLOP per memory load) (He & Zhai, 2024; Zhu
et al., 2024). The memory bandwidth gap between GPUs
and CPUs is much smaller than their compute gap. For
example, an A10G GPU features 600 GB/s memory band-
width and 125 TFLOPS, while a modern x86 server has
around 200 GB/s memory bandwidth with 1.2 TFLOPS (He
& Zhai, 2024; Zhu et al., 2024); modern ARM processors
like AWS Graviton4 offer 537.6 GB/s memory bandwidth
per socket (WikiChip). Therefore, although there may seem
to be a huge compute gap between GPUs and CPUs (i.e.,
125 vs. 1.2 TFLOPS), the actual performance gap for the
decoding attention operation is relatively small because their
memory bandwidths are closer (i.e., 600 vs. 200 GB/s).

Frequent CPU-GPU communication could be another con-
cern for CPU offloading. Fortunately, according to our ex-
periments on AWS g5 instances with LLaMa-3-8B model,
dense operations on the GPU take 5-10 times the time of
communication for every input token, which means commu-

nication can be perfectly hidden by GPU computation.

2.3 Challenges

Despite being promising, there are several challenges when
building an efficient LLM inference system that offloads
decoding attention compute and memory to CPUs. These
challenges stem from the fundamentally different capabili-
ties between GPUs and CPUs (in terms of memory and com-
pute power), and get amplified in real-world dynamically-
changing inference workloads (e.g., various input/output
lengths).

Challenge #1: How to efficiently overlap the GPU and CPU
within each inference iteration? GPUs have more compute
and memory bandwidth but are limited in memory size,
while CPUs have more memory and a decent amount of
memory bandwidth, but lack strong compute power. There-
fore, we must carefully restructure the pipeline of LLM
inference to fit different pipeline modules into the right
hardware, while not overloading any hardware. Such re-
structuring also needs to take care of the complex inter- and
intra-transformer-layer data dependencies, without breaking
transformer semantics.

Challenge #2: How to schedule inference requests to the
GPU and CPU across inference iterations to maintain high
performance in dynamically-changing workloads? Prior
work like FastDecode (He & Zhai, 2024), FlexGen (Sheng
et al., 2023), and more (Chen et al., 2024) only consider
idealistic settings where request input and output lengths are
fixed, and adopt a static scheduling policy (e.g., obtained
from offline profiling) to assign requests across the GPU
and CPU. However, in real-world dynamic settings, vastly
different input/output lengths would make static scheduling
no longer work efficiently; instead, it would require an
adaptive scheduling policy to determine the best request
assignments at the per-iteration level.

3 NEO DESIGN

Figure 2 shows the high-level architecture of NEO. NEO
consists of a request scheduler running on the CPU and a
set of executors running across the CPU and GPUs. The

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

ga0

ca1

Prefilling
waitqueue

input tokens

output
tokens

GPU
decoding

runQ

CPU
decoding

runQ
Scheduler

swap-in

swap-out

Executor

pre-layer
pr0

attn0

po0pr1 pr0

attn1

po1 pr1

attn0

po0

attn1

po1 post-layer

pre-layer
pr0 pr1 pr0 po1 pr1 post-layer

po0

ga0

ca1

po0

so so

po1

pr pre-projection

po post-projection + ffn

ga GPU (prefilling + decoding) attention

ca CPU (decoding) attention

so swapping out

batch 0 data flow batch 1 data flow swapping data flow

ca0 ca0

pre-layer pr attn po

CPU

GPU

post-layerGPU

Decoding Stage

Prefilling Stage

...

GPU1
CPU core

group1

CPU KV
cache1

Workern

swap out

Worker1

GPUn
CPU core

groupn

CPU KV
cachen

NCCL

output tokens

batching &
swapping
schedule

Figure 2. Overall architecture of NEO. “runQ” means “runqueue”.

request scheduler maintains a prefilling waitqueue, a GPU
decoding runqueue, and a CPU decoding runqueue; this
scheduler makes iteration-level adaptive scheduling deci-
sions on whether to run the incoming requests on GPU or
CPU. The executors accept batching and swapping schedule
from the scheduler, and returns back output tokens that are
generated collaboratively by the CPU and GPUs. NEO fea-
tures two key techniques: 1) asymmetric pipelining to fully
leverage the compute resource of both GPU and CPU with-
out overloading them (§3.1), and 2) load-aware scheduling
to handle dynamically-changing workloads, e.g., different
input/output lengths across requests (§3.2).

3.1 Asymmetric Pipelining

NEO proposes asymmetric pipelining to address the GPU-
CPU overlapping challenge in §2.3. This design offloads
decoding attention (both its compute and KV cache) of a
selected portion of inference requests to the CPU. It forms
two sub-batches of requests—one mostly runs on the GPU
while another runs across the GPU and CPU, and overlaps
these two sub-batches to balance the load of GPU and CPU.

To motivate this design, we first explore a simple strawman
called simple offloading that offloads compute and KV cache
to the CPU but leaves the GPU idle. Next, we examine a
more intricate strawman called symmetric pipelining used
by prior work (He & Zhai, 2024; Chen et al., 2024) that
tends to leave the GPU idle. Finally, we will arrive at our
design of asymmetric pipelining, and show how it effectively
addresses the issues in the simple offloading and symmetric
pipelining designs.

Strawman #1: simple offloading. As shown in Figure 3,
this design extracts the decoding attention and offloads its
compute and KV cache to the CPU, while leaving the rest
to the GPU. The rest includes prefilling attention and token-
wise independent operations—referred to as the linear oper-
ations that mainly involve matrix multiplications. However,
during these linear operations, the CPU always remains idle.
As a result, this design fails to leverage the compute and
memory resources of CPUs.

Strawman #2: symmetric pipelining. A straightforward
approach to reducing the CPU idle time is to evenly split

a single decoding batch into two sub-batches, and overlap
their linear operations (on the GPU) and attention opera-
tions (on the CPU), as shown in Figure 4. For the prefilling
batch, symmetric pipelining just runs it on the GPU without
offloading, as the prefilling stage requires high computa-
tion for matrix multiplication while not consuming much
memory (Zhu et al., 2024). The output of the symmetric
pipelining, i.e., the KV cache, will be swapped out to the
CPU for offloading. This technique has been used by prior
work like FastDecode (He & Zhai, 2024) and more (Chen
et al., 2024). Nevertheless, seemingly efficient, this design
suffers from three major issues.

• Firstly, this design results in significant underutilization
of GPU memory. In this scheme, the GPU solely re-
tains the model weights and runtime activations, while
the rest of the memory—which stores the KV cache in
non-offloading settings—remains unused.

• Secondly, this design fails to achieve balanced GPU-CPU
overlapping. This is because 1) it entirely overlooks
the prefilling stage and KV cache swap-out time, dur-
ing which the CPU stays idle; 2) the linear stage of a
decoding sub-batch on the GPU is typically much shorter
than the attention stage on the CPU, due to the attention’s
auto-regressive nature and high memory bandwidth con-
sumption. As a result, the duration of the attention stage
will likely exceed that of the linear stage, causing the CPU
to become the bottleneck.

• Finally, it is challenging to split two batches evenly in
practice. In real-world workloads, it is nearly impossi-
ble to ensure that a single batch can be divided into two
identical sub-batches, due to different input lengths and
unpredictable output lengths. The discrepancies between
the batches would likely result in a significant number of
idle periods or “bubbles” in the pipeline.

Asymmetric pipelining, as shown in Figure 5, offers a
solution to the aforementioned problems. To fully utilize
GPU memory, NEO does partial offloading. The KV cache
system of NEO is divided into two separate components: the
“GPU-cache” located in the GPU’s HBM, and the “CPU-
cache” located in the CPU main memory. For any request
that has already been prefilled in the system, its KV cache
will either reside entirely in the GPU-cache—designated as a
“GPU-request”—or entirely in the CPU-cache—designated
as a “CPU-request”. Requests are prioritized for storage in
the GPU-cache to maximize GPU memory utilization.

To achieve full GPU-CPU overlapping, NEO integrates the
prefilling stage computation into the GPU decoding sub-
batch, so that the prefilling stage computation (in GPU) also
happens in parallel with the CPU attention computation.
This shares a similar spirit as the selective batching tech-
nique used in Orca (Yu et al., 2022). In our context, this
selective batching largely extends the duration of the GPU

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

Figure 3. Simple offloading strawman offloads all requests’ KV cache and decoding attention computation to the CPU. “Comm” stands
for GPU-CPU communication; “TrQKV” means transferring Q,K,V tensors to CPU; “TrO” means transferring attention output to GPU.

Figure 4. Symmetric pipelining strawman forms two identical sub-batches and overlaps linear and attention operations for the decoding
stage. The red and blue arrows depict the data flows of the two sub-batches. “pr” means pre-projection and “po” means post-projection +
FFN operations; together they form the linear stage. “attn” means attention operations. “TrQKV”s and “TrO”s are omitted for simplicity.

Figure 5. Asymmetric pipelining integrates the prefilling stage into one sub-batch (red arrows) and most of the decoding attention
operations into another (blue arrows). “pr” means pre-projection, while “po” means post-projection + FFN operations; “ca” means
attention operations done on CPU; “ga” means attention operations done on GPU; “Comm” stands for GPU-CPU communication.

compute, allowing for a longer overall CPU computing time
and enabling more CPU-requests to be incorporated into the
batch. Further, NEO leverages the layer-wise swapping tech-
nique to facilitate the overlapping of KV value transmission
with computation. Given that the KV values of newly pre-
filled requests are computed layer by layer, we can initiate
PCIe transmission immediately after each layer’s KV value
is computed, rather than deferring this process until the end
of the entire iteration.

To simplify the batch division scheme and minimize idle
periods, NEO introduces asymmetric batch division. Instead
of attempting to create two identical batches, we consolidate
all prefilling requests and GPU decoding requests with a
few CPU decoding requests to batch-0, while dispatching
the majority of CPU decoding requests to batch-1. The two
batches are complementary: batch-0 features a long linear
stage with little CPU attention computation, whereas batch-
1 includes a lengthy attention stage with a very short linear

stage. This arrangement not only simplifies system imple-
mentation, but also facilitates effective overlapping between
the two batches, resulting in an inference iteration character-
ized by alternative “long-stages” and “short-stages”, rather
than uniform stages.

Asymmetric pipelining offers even more benefits. As shown
in Figure 5, the non-overlapping segments at the beginning
and end are minimized due to this intentional asymmetry.
Furthermore, this approach reduces GPU kernel launching
overhead, which can be substantial in Python due to its lim-
ited multi-threading parallelism, consuming considerable
CPU time. In asymmetric pipelining, the GPU attention
kernel is only invoked once per iteration, as only one sub-
batch will need the GPU attention, compared to twice in
symmetric pipelining.

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

3.2 Load-Aware Scheduling

Real-world inference workloads are complex, irregular, and
dynamically changing, e.g., different input/output lengths
across requests. NEO scheduler considers asymmetric
pipelining and adaptively determines whether the incoming
request should be placed on the GPU or CPU, to keep both
busy while not overloading anyone.

NEO faces a more challenging problem than prior GPU-
only inference engines like vLLM. First, NEO needs to form
two sub-batches in each iteration, which means we need
to consider batch selection and batch splitting at the same
time. Secondly, blindly putting as many requests as possi-
ble into the CPU decoding runqueue does not work well.
This is because too many CPU requests might overload the
CPU capacity either in memory bandwidth or compute. Fi-
nally, the two-batch asymmetric pipelining does not always
work better than GPU-only inference. This is because in
asymmetric pipelining, the GPU memory needs to hold two
concurrently running sub-batches, and each sub-batch can
only achieve half of the maximum batch size; if NEO can-
not offload enough KV caches, the sub-batch size might be
even smaller than the GPU-only inference, yielding lower
throughput.

To address these challenges, NEO follows several principles:

• Greedy: At the beginning of each iteration, NEO’s sched-
uler would make a GPU-only inference schedule and a
two-batch asymmetric pipelining schedule, and would
choose the one with higher estimated throughput as the
final decision.

• Balancing: For asymmetric pipelining, the scheduler
should minimize pipeline “bubbles”. That is, the esti-
mated CPU busy time and GPU busy time should be as
close as possible.

• Hiding CPU: For asymmetric pipelining, there shouldn’t
be cases when the CPU is busy but the GPU is idle.

• Maximizing GPU: For asymmetric pipelining, in each
iteration, the scheduler should pick as many requests as
possible from the prefilling waitqueue, and GPU and CPU
decoding runqueues (that hold requests running on GPU
and CPU respectively).

Concretely, denote each iteration time as T and batch size as
x, NEO’s goal is to minimize T/x. As shown in Figure 5, T
consists of the following components: pre-layer time Tprl,
transformer layer time Ttr, post-layer time Tpol, while Ttr

is the major part that usually takes more than 95% of time
in each iteration. Therefore, we can estimate T as below:

T ≈ Ttr = L× (max{Tpo0 + Tpr0 , Tca1
}+

max{Tpo1 + Tpr1 + Tga0
, Tca0

})

where Tpox , Tprx , Tgax , and Tcax denote time for post-
projection, pre-projection, GPU attention, and CPU atten-

tion time for batch-x, respectively. For simplicity, we define
Tlx = Tpox + Tprx , which stands for time mainly con-
sumed by multiplying activations with model weights in
one transformer layer. To estimate Tl, Tga, and Tca, NEO
does offline profiling for typical input/output lengths and
uses linear interpolation to approximate the values for other
lengths. Overall, to stick to principles of “Balancing” and
“Hiding GPU”, we would like to guarantee Tl0 ≥ Tca1 and
Tl1 + Tga0 ≥ Tca0 , and minimize the gap between the
left-hand side and right-hand side of both inequations.

Based on the analysis above, we present our load-aware
scheduler, with the following procedures on each iteration:

1. Initialization. Initialize two empty batch schedules:
batch-0 would mostly run on the GPU and contain re-
quests in both prefilling and decoding phases; batch-1
would mostly run on the CPU and only contain requests
that calculate decoding attention.

2. Schedule GPU decoding requests. Try to put every re-
quest from the GPU decoding runqueue into batch-0.
Then swap out requests until GPU memory can hold all
new KV cache, or swap in requests if there is ample
space on GPU (Maximizing GPU).

3. Schedule prefilling requests. Pop the prefilling waitqueue
and put requests into batch-0: keep the generated KV
cache on GPU if there is enough GPU memory, other-
wise, swap out the generated KV cache. Do this repeat-
edly until the GPU cannot hold the activations in the
batch (Maximizing GPU).

4. Schedule CPU decoding requests. Scan the CPU de-
coding runqueue and put requests into either batch-0 or
batch-1, maintaining Tca0 ≤ Tl1 + Tga0 and Tca1 ≤ Tl0 .
If putting a request into either batch would violate the
inequations, skip this request and leave it for the next
iteration (Balancing and hiding CPU).

5. Reduce prefilling requests. Remove any prefilling re-
quest from batch-0 that would require swapping out the
generated KV cache, as long as the above inequations
hold. This is to avoid the CPU being idle (Balancing).

6. Make decisions. Now the two-batch schedule is made;
we make the GPU-only schedule by taking batch-0 and
excluding all the CPU decoding requests added in step
4. Finally, we compare their estimated Ttr/x values and
pick the schedule with a smaller one (Greed).

We further measure and find that the scheduling overhead
is less than 3ms per iteration, while each iteration takes
hundreds of milliseconds. Therefore, its overhead would not
have a big impact on the end-to-end performance. Interested
readers can refer to appendix A for more details of the
scheduling algorithm.

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

4 IMPLEMENTATION

We implement NEO based on SwiftLLM (interest-
ingLSY/swiftLLM)—a tiny yet powerful LLM inference
system for research purposes. SwiftLLM achieves vLLM-
equivalent (single GPU, default scheduling policy) perfor-
mance with around 2K lines of code. Our NEO implementa-
tion consists of 4K lines of Python and 1.5K lines of C++.

Efficient CPU Kernels. Existing vendor-supplied CPU ker-
nel libraries don’t support paged attention algorithm, where
the inputs are non-continuous tensors and indexed by a block
table. Therefore, we implement a custom C++ torch exten-
sion library called Paged-Attention-for-CPU (PACPU) and
plug it into SwiftLLM. The PyTorch runtime will directly
call a multi-threaded procedure written in C++. Under the
hood, PACPU calls yet another extension library written in
ISPC (ispc/ispc)—a language for writing SPMD programs
on CPUs. ISPC code can be compiled to targets with differ-
ent sets of vectorized instructions, such as AVX2, AVX512,
and ARM Neon, making it perfectly portable between dif-
ferent types of CPUs. PACPU utilizes a paged KV cache
similar to vLLM with the Paged Attention algorithm to
mitigate memory fragmentation.

NEO optimizes memory access performance for decod-
ing attention on CPU, as the decoding attention is heavily
bounded by memory bandwidth (even with GQA) (Agrawal
et al., 2024; Zhu et al., 2024). 1) Within a single CPU core,
we utilize SIMD memory load/store instructions (features
provided by ISPC) to minimize instruction overhead and
enhance memory throughput. Additionally, we carefully
organize the memory access order to ensure its contiguity.
2) Across different CPU cores, we use a parallelism strategy
similar to Flash Decoding (Dao et al.). For each request,
we partition its computation into individual tasks along the
request dimension, allowing each task to access unique and
continuous memory at block granularity. These tasks are
evenly dispatched to all threads with each thread having an
equal number of blocks to process. Finally, we aggregate
the partial outputs of each request to obtain the final result.

Reducing Kernel Launching Overhead. Due to Python’s
poor multi-threaded execution performance incurred by its
global interpreter lock (GIL), the data plane CPU kernels
could not run in parallel with the control plane CUDA kernel
launching calls, making kernel launching blocking on the
critical path. To reduce kernel launching overhead, we
replaced most of SwiftLLM’s Triton-JIT (Tillet et al., 2019;
Tillet) kernels with kernels written in CUDA C++. This
can effectively reduce the additional kernel selection and
launching overhead brought by Triton-JIT. With custom
GPU kernels, we reduced the kernel launching overhead of
LLaMa-3-8B from 1.2ms to 0.6ms per layer.

Multi-GPU inference. We redesigned SwiftLLM’s archi-
tecture to support model sharding and tensor parallelism,

as it originally only supported single-GPU inference. We
utilize Ray actors (Moritz et al., 2018) to hold shards of the
model and use PyTorch’s pre-built communication library ,
which is a wrapper of NCCL, to handle cross-GPU commu-
nication. The underlying mechanism of splitting tensors and
collecting results across GPUs is the same as vLLM (Kwon
et al., 2023). As a standard approach, each Ray actor also
has its partition of CPU KV cache, each responsible for a
portion of KV heads to avoid cross-CPU communication.

5 EVALUATION

5.1 Experiment Setup

Testbeds. We run our experiments on multiple types of
single-GPU instances on the AWS EC2 public cloud, includ-
ing g5.2/4/8/16xlarge with an A10G GPU and g4dn.4xlarge
with a T4 GPU. By default, we use g5.4xlarge for all A10G
experiments. We also run on an 8×H100 SXM local server
to test multi-GPU performance. The specifications of hard-
ware are listed in Table 1. Note that the HGX machine has
4 CPU NUMA nodes. We confine our system to running on
a single NUMA node (thus 1/4th of the total memory size
and bandwidth) when running 2-GPU experiments.

Name GPU CPU (#cores) Memory

g5.nxlarge A10G EPYC 7R32 (2n) 16n GB
g4.4xlarge T4 Xeon P-8259CL (8) 64 GB
HGX 8×H100 Xeon 8462Y+ (64) 2 TB

Table 1. Hardware specifications of our testbeds.

Models. We evaluate NEO on the representative Llama
models including Llama-3.1-8B, Llama-3.1-70B (Dubey
et al., 2024) and Llam-2-7B (Touvron et al., 2023).

Baselines. We consider three baselines in our evaluation.

• vLLM (Kwon et al., 2023) is a popular state-of-the-art
LLM inference system. vLLM’s default scheduling pol-
icy doesn’t include selective batching; so we set the
--enable-chunked-prefill flag to enable it.

• FastDecode (He & Zhai, 2024) is an LLM inference sys-
tem that offloads full decoding attention. Since the origi-
nal work didn’t consider the prefilling stage or implement
an end-to-end system, we implemented our own version
of FastDecode+. It leverages NEO’s asymmetric pipelin-
ing and load-aware scheduling, but offloads all requests’
decoding attention to the host CPU.

• SwiftLLM (interestingLSY/swiftLLM) is a simplified ver-
sion of vLLM with similar Pythonic implementation and
without offloading, upon which NEO is built. We also
make simple modifications to SwiftLLM to support multi-
GPU inference. It achieves comparable performance with
vLLM on a single GPU, and slightly lower performance
than vLLM in 2-GPU settings (§5.5).

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

Neo (ours) vLLM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Ruquest rate (req/s)

0.00

0.40

0.80

1.20

1.60

2.00

Av
er

ag
e

pe
r t

ok
en

 la
te

nc
y

(s
)

(a) 2xH100 + Llama-3.1-70B + AC.

0.0 0.5 1.0 1.5 2.0
Ruquest rate (req/s)

0.00

0.40

0.80

1.20

1.60

2.00

(b) A10G + Llama-3.1-8B + AC.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Ruquest rate (req/s)

0.00

0.40

0.80

1.20

1.60

2.00

(c) T4 + Llama-2-7B + OSC.

Figure 6. Load-latency curve comparison between NEO and vLLM on 3 different settings. For each request, we compute its per-token
latency by dividing its full latency by its output token number, and then we take the average among all requests.

Workloads. We use real-world workloads as well as syn-
thetic ones to evaluate our system.

• Azure LLM inference trace for coding (AC) (Microsoft;
Patel et al., 2024) is a LLM coding trace collected from
Azure cloud’s production environment.

• OpenAI summarization comparison (OSC) (CarperAI)
is an open dataset of input text, chosen summary, and
rejected summary produced in real-world human chatbot
interactions.

• Synthetic workloads with various input and output lengths.
For a pair of input length li and output length lo, we
synthesize requests with input and output lengths sam-
pled independently and uniformly from [0.9li, 1.1li] and
[0.9lo, 1.1lo], respectively.

We use the AC trace with relatively longer requests on the
H100 and A10G GPUs, while using the OSC trace with
shorter requests on the lower-end T4 GPU.

5.2 Online Latency vs. Load

We evaluate the online latency of NEO under various request
rates. We sample request arrival timestamps following the
Poisson process. As Figure 6 shows, NEO sustains higher
loads than vLLM in all listed hardware/model settings while
providing comparable latencies at low rates. NEO achieves
14.3% higher throughput on H100 (at 2 sec latency), 6.40%
higher on A10G (at 2 sec latency), and 563% higher on T4
(at 1 sec latency). In the T4+Llama-2-7B setting, we achieve
nearly 6× throughput gains over vLLM; this is because the
T4 GPU has an extremely constrained memory budget for
the KV cache, severely limiting vLLM batch size, while
NEO could offload the KV cache to the CPU, achieving a
much larger batch size.

Figure 6 also shows that NEO achieves comparable latencies
at low request rates, slightly higher latencies at intermediate
rates, and significantly lower latencies at large rates. This

is because of the two-fold impact of increasing the batch
size. On the negative side, it will slightly increase execution
latency because more requests get batched together; on the
positive side, it improves throughput thus reducing queueing
delay. These impacts vary at different request rates. When
the request rate is very low, batching has a tiny impact since
requests are processed one by one and won’t queue up. As
the request rate grows, the execution delay penalty grows
slightly faster than the queueing reduction at first, but will
be overtaken shortly as the queue expands.

There are two additional reasons for NEO’s higher latency
within the intermediate range: 1) vLLM is heavily opti-
mized, while NEO features less engineering optimizations
for simplicity and performance clarity—this is especially
true in multi-GPU settings. 2) NEO actively seeks oppor-
tunities to offload requests, even though offloading may
not help, which consequently leads to more system-level
overheads in scheduling and swapping.

Figure 7 further compares the latency distributions of NEO
and vLLM, and shows that our throughput gains do not come
at the cost of latency. Our inference latency is comparable
to vLLM’s at all percentages.

5.3 Comparison with FastDecode+

We compare NEO and FastDecode+ in terms of both la-
tency and throughput. The results are shown in Figure 8.
FastDecode+’s higher latency is caused by its inflexibility
to tackle irregular workloads. When there are many requests
in the CPU decoding runqueue but few or no requests in the
prefilling waitqueue, FastDecode+ would have no choice
but to launch CPU batches to make progress, hindering
overall performance, while NEO could simply launch GPU
batches to utilize GPU resources.

Furthermore, NEO is always better in throughput than base-
line because its scheduler can always decide to fall back

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

0 1 2 3 4
Average per token latency (s)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Neo (ours)
vLLM

Figure 7. Latency distributions of NEO and
vLLM in A10G+Llama-3.1-8B+AC setting
at request rate of 1.6/s. The distributions are
both skewed because of the skewed request
length distribution of the dataset.

Neo (ours) FastDecode + baseline

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Ruquest rate (req/s)

0.00

0.40

0.80

1.20

1.60

2.00

Av
er

ag
e

pe
r t

ok
en

 la
te

nc
y

(s
)

(a) Online latency.

50 100 150 200 250 300
Avg. output length

0.60

0.70

0.80

0.90

1.00

1.10

Re
la

tiv
e

th
ro

ug
hp

ut

(b) Offline throughput.

Figure 8. Comparison of NEO and FastDecode+ in 2xH100+Llama-3.1-70B setting. Fig-
ure (a) compares their latency on the AC dataset. Figure (b) shows their relative throughput
to the baseline, where we fix the input length to 2000 and vary the output length. We use
the GPU-only version of NEO (i.e., SwiftLLM) as the baseline.

50 100 150 200 250 300
Avg. output length

0.98
1.00
1.03
1.05
1.08
1.10
1.12
1.15

Re
la

tiv
e

th
ro

ug
hp

ut

avg. input=500
avg. input=1000
avg. input=2000
baseline

(a) 2xH100 + Llama-3.1-70B.

50 100 150 200 250 300
Avg. output length

1.00

1.05

1.10

1.15

1.20

1.25 avg. input=500
avg. input=1000
avg. input=2000
baseline

(b) A10G + Llama-3.1-8B.

50 100 150 200
Avg. output length

2.00

4.00

6.00

8.00

avg. input=100
avg. input=200
avg. input=500
baseline

(c) T4 + Llama-2-7B.

Figure 9. Relative throughput in different settings and different synthetic workloads, with GPU-only NEO (i.e., SwiftLLM) as the baseline.

to GPU-only mode. However, as output length grows,
FastDecode+ becomes CPU bounded, and its performance
drops quickly to less than 60% of baseline’s performance.

5.4 Varying Input/Output Lengths

We further examine NEO’s performance over various work-
loads with different input/output lengths. As shown in Fig-
ure 9, where we fix input length and tweak output length,
NEO achieve up to 14%, 26%, and 750% throughput gains
on H100, A10G, and T4, respectively. When the output
length is short, NEO may perform slightly worse than the
baseline because NEO still attempts to put some requests
onto the CPU and swap them back in later, incurring slight
overheads. As the output length increases, NEO’s gains first
grow to the maximum point, where GPU and CPU times
are exactly balanced, then gradually drop as the system
launches a larger proportion of GPU-only batches. NEO
performance would be close to the baseline when output
length gets large enough, sometimes slightly worse due to
suboptimal scheduling decisions caused by the inevitable
inaccuracy of the offline performance profiling.

5.5 Sensitivity Study

Impact of CPU capacity. We first study the impact of CPU
capacity on throughput gains. To examine the impact of
CPU memory bandwidth, we use 4 kinds of AWS EC2 in-
stances, namely g5.2xlarge, g5.4xlarge (what we used in
previous experiments), g5.8xlarge, and g5.16xlarge. These
instances all have 1 A10G GPU and thus the same baseline
(non-offloading) performance. However, their offloading
performance varies due to different CPU cores, memory
sizes, and memory bandwidths. A g5.nxlarge generally
has 2n CPU cores (i.e., 4n hyperthreads) and 16n GB CPU
memory; g5.2xlarge has nearly the same peak memory band-
width as g5.4xlarge, while g5.8xlarge has about twice the
bandwidth of g5.4xlarge, and g5.16xlarge has about twice
the bandwidth of g5.8xlarge. In experiments, we set the
CPU KV cache size proportionally to the number of cores.
Figure 10a shows the results. NEO achieves up to 12.2%,
13.3%, 29.7%, and 79.3% higher throughput over the base-
line under different CPU capacities. When the output length
is short, these instances have nearly the same throughput
gains as the workload mainly runs on the GPU. As output
length increases, the instances with less CPU memory band-
width start to drop performance earlier. The peak throughput

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

100 200 300 400
Avg. output length

1.00

1.20

1.40

1.60

1.80

Re
la

tiv
e

th
ro

ug
hp

ut

x2large
x4large
x8large
x16large
baseline

(a) CPU sensitivity.

A10G+8B 2xH100+70B

0

1000

2000

3000

4000

5000

6000

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

SwiftLLM
vLLM

(b) SwiftLLM vs. vLLM.
Figure 10. Sensitivity study. Figure (a) shows the relative throughput of NEO on different AWS EC2 g5 instances, with GPU-only NEO

(i.e., SwiftLLM) as the baseline. Figure (b) compares SwiftLLM’s throughput on the AC dataset with vLLM in both multiple and single
GPU settings. Note that we implement the multi-GPU support for SwiftLLM (§4).

gain is positively related to the CPU memory bandwidth.
This supports the fact that the memory bandwidth, rather
than computing power (i.e., number of cores), is the factor
that determines the performance of attention operation on
CPUs.

SwiftLLM vs. vLLM. We now examine the gap between
our baseline system and vLLM. We feed the Azure Code
trace all at once to both systems and examine the GPU token
throughput, i.e., the total time elapsed divided by the total
number of tokens processed (input length + output length).
We evaluate in both single-GPU (A10G + Llama-3.1-8B)
and multi-GPU (2xH100 + Llama-3.1-70B) settings.

Figure 10b shows the results. As SwiftLLM is initially
targeted at single-GPU inference and mimics vLLM imple-
mentation, it achieves comparable throughput with vLLM in
a single A10G + Llama-3-8B setting. However, SwiftLLM
is slightly worse than vLLM (8.8% lower throughput) in
the 2-GPU setting; this is due to our less optimized tensor
parallelism implementation compared to production-grade
vLLM. We leave as future work integrating NEO into vLLM
to measure our 4-GPU and 8-GPU performance gains.

6 DISCUSSION

Compare to chunked-prefill. NEO’s performance benefits
are essentially two-fold: 1) larger GPU batch size, and 2)
shifting some unbatchable decoding attention operations to
CPU, thus making up room on GPU for other batchable
operations. The second benefit source shares a similar spirit
as the chunked-prefill technique in Sarathi-Serve (Agrawal
et al., 2024), which breaks a prompt into multiple chunks
to launch more prefill-decode mixed batches and thus less
decoding-only batches (that contain unbatchable decoding
attention operations).

However, chunked-prefill suffers from several drawbacks
that NEO does not have. First, chunked-prefill consumes sig-
nificantly more GPU memory bandwidth, because the KV
cache of all previous chunks needs to be loaded repetitively

to compute for the subsequent chunk (Zhong et al., 2024).
Second, chunking-prefill would not work well on memory-
constrained GPUs, because the resulting small batch size
would limit the opportunity of piggybacking decode on pre-
fill chunks while saturating the GPU. In contrast, NEO relies
on large CPU memory to ensure throughput gains. Readers
can refer to appendix B for more experimental results.

Nevertheless, we believe NEO could integrate with chunked-
prefill NEO can compute all chunked prefilling on the GPU,
and doesn’t offload the KV-cache until the full prompt of a
request is prefilled. With chunked prefill, we can modify the
step 5 of NEO’s load-aware scheduling: instead of removing
the whole prefilling requests, NEO could remove chunks of
prefilling requests, thereby having a finer-grained control for
CPU-GPU balancing. Chunked prefill would be especially
useful for NEO when context length gets very large while
GPU memory is limited.

Offloading other parts to CPU. NEO implicitly assumes
putting all model weights on the GPU and only offload-
ing attention computation to the CPU is the most efficient
way to balance GPU and GPU loads. This is because of,
as mentioned in section 2, the huge gap between the CPU
and GPU’s computing power. Meanwhile, according to
profiling results of Table 2 in (Zhu et al., 2024), all non-
communication operations are compute-bounded except
decoding attention. However, in prior work like (Sheng
et al., 2023) and (Song et al., 2024), people offload com-
ponents other than attention to the CPU. This is not only
useful when the GPU’s memory is too constrained to hold
all model weights, but also potentially beneficial even if
the GPU could hold all the model weights. For example,
when requests in the workload have too few output tokens,
NEO would be bounded by GPU computation, while the
CPU is mostly idle. Therefore, offloading some of the dense
operations to the CPU could alleviate the GPU’s pressure
in these extreme workloads. Nevertheless, the actual gain
needs to be validated by further exploration.

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

NEO usage scenarios. NEO works best in scenarios where
the GPU memory is constrained such that it limits the batch
size and underutilizes the GPU compute. These scenarios
will likely hold for a long time, as the GPU compute capacity
continues growing while its memory size stays relatively
stagnant, e.g., H100 triples the compute of A100 but with the
same 80GB memory size (NVIDIA, 2022; 2024). NEO will
degrade to non-offloading mode when the GPU has enough
memory to reach a batch size that can saturate the GPU.
Another usage scenario of NEO is the economic serving
of LLM models by leveraging cheap and abundant CPU
resources that already exist in current datacenters.

Using remote CPUs. NEO focuses on improving inference
throughput by only using the host CPU. In order to gain
more throughput, NEO could be extended to support remote
CPU workers. However, CPU memory bandwidth in current
commercial clouds is still expensive, and as (He & Zhai,
2024) shows, cross-machine transfer latency could be yet
another bottleneck. We leave this for future work.

Money and energy cost NEO targets the following sce-
narios: typical public cloud like AWS, Azure, and GCP
allocates host CPU proportionally with the GPU capacity
and count, and such CPU resources have been calculated
into the VM price. In these scenarios, NEO tries to exploit
these host CPU resources (that were not effectively used
and thus wasted) to accelerate LLM serving. We note that
all our performance comparisons on A10G and T4 GPUs in
the paper are done using the same standard AWS instances
for both NEO and GPU-only; therefore, from the perspec-
tive of cloud users, NEO does not incur additional costs.
But we do agree that for on-premises testbeds, NEO may
not achieve better perf-TCO.

NEO achieves performance gains mainly through utilizing
the host CPU, which will increase energy usage compared
to GPU-only baselines. However, from the perspective of
cloud users, the energy cost of the host CPU has already
been calculated and added to the GPU VM price. From
the environmental perspective, the throughput-per-watt of
GPU-CPU offloading may not be superior to pure GPU in
all cases; but in the case of T4 GPU, given our 8x through-
put improvement, GPU-CPU offload will achieve better
throughput-per-watt. We intend to leave it as future work
to study the broad topic of energy consumption in LLM
serving.

7 RELATED WORK

GPU-efficient LLM inference. There is a line of work
on optimizing the efficiency of LLM inference on GPUs,
including general inference systems from Orca (Yu et al.,
2022), vLLM (Kwon et al., 2023), SGLang (Zheng et al.,
2023), FastServe (Wu et al., 2023), Sarathi-Serve (Agrawal
et al., 2024), NanoFlow (Zhu et al., 2024), DistServe (Zhong

et al., 2024), and more (Patel et al., 2024; Strati et al., 2024;
Hu et al., 2024), and low-level GPU kernel optimizations
from FlashDecoding (Dao et al.), FlashDecoding++ (Hong
et al., 2023), and FlashInfer (flashinfer ai/flashinfer). NEO
leverages several techniques from these work such as selec-
tive batching (Yu et al., 2022) and paged attention (Kwon
et al., 2023), and could be used in parallel with others, e.g.,
leveraging NEO to optimize the decoding phase in Dist-
Serve (Zhong et al., 2024). Another line of work lever-
ages sparcification and quantization techniques to trade
accuracy for performance, including AWQ (Lin et al.,
2024), SparseGPT (Frantar & Alistarh, 2023), AlphaTun-
ing (Kwon et al., 2022), GPT3.int8() (Dettmers et al., 2022),
GPTQ (Frantar et al., 2022), ZeroQuant (Yao et al., 2022),
SmoothQuant (Xiao et al., 2023a), StreamingLLM (Xiao
et al., 2023b), and more (Beltagy et al., 2020; Shen et al.,
2020; Hoefler et al., 2021). Different from them, NEO does
not compromise accuracy.

Offloading for LLM serving. Many existing work offloads
LLM models, activations, KV cache, or computations to the
CPU for offline scenarios that trade latency for throughput,
such as FlexGen (Sheng et al., 2023), HeteGen (Zhao et al.,
2024a), PowerInfer (Song et al., 2024), and TwinPilots (Yu
et al., 2024). InstInfer (Pan et al., 2024) further offloads
to computational SSD to lower the inference cost. FastDe-
code (He & Zhai, 2024) targets similar online scenarios as
NEO, but lacks critical designs to address the load imbalance
between the GPU and CPU (see §1).

8 CONCLUSION

NEO is a CPU offloading system for online LLM infer-
ence to increase GPU batch sizes and improve inference
throughput. It features asymmetric pipelining and load-
aware scheduling to fully leverage both GPU and CPU re-
sources without overloading them. NEO achieves up to
14%-7.5× (depending on GPUs) higher throughput than
GPU-only inference systems across a variety of workloads
and model sizes, while maintaining the same latency. We
will open source NEO codebase to encourage more research
on cost-efficient LLM inference.

ACKNOWLEDGMENTS

Xuanlin Jiang and Minlan Yu are supported in part by NSF
NeTS 2107078. Yang Zhou, Shiyi Cao, and Ion Stoica are
supported in part by gifts from Accenture, AMD, Anyscale,
Google, IBM, Intel, Microsoft, Mohamed Bin Zayed Uni-
versity of Artificial Intelligence, Samsung SDS, Uber, and
VMware.

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

REFERENCES

Agrawal, A., Kedia, N., Panwar, A., Mohan, J., Kwatra,
N., Gulavani, B., Tumanov, A., and Ramjee, R. Taming
Throughput-Latency Tradeoff in LLM Inference with
Sarathi-Serve. In Proceedings of USENIX OSDI, pp.
117–134, 2024.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer:
The Long-Document Transformer. arXiv preprint
arXiv:2004.05150, 2020.

CarperAI. OpenAI summarize comparisons.
https://huggingface.co/datasets/
CarperAI/openai summarize comparisons.

Chen, S., Lin, Y., Zhang, M., and Wu, Y. Efficient and Eco-
nomic Large Language Model Inference with Attention
Offloading. arXiv preprint arXiv:2405.01814, 2024.

Dao, T., Haziza, D., Massa, F., and Sizov, G.
Flash-Decoding for Long-Context Inference.
https://crfm.stanford.edu/2023/10/
12/flashdecoding.html.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
GPT3.int8(): 8-bit Matrix Multiplication for Transform-
ers at Scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The Llama 3 Herd of Models. arXiv preprint
arXiv:2407.21783, 2024.

flashinfer ai/flashinfer. FlashInfer: Kernel Library for LLM
Serving. https://github.com/flashinfer-
ai/flashinfer/.

Frantar, E. and Alistarh, D. SparseGPT: Massive Lan-
guage Models Can Be Accurately Pruned in One-Shot.
In International Conference on Machine Learning, pp.
10323–10337. PMLR, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh,
D. GPTQ: Accurate Post-Training Quantization for
Generative Pre-trained Transformers. arXiv preprint
arXiv:2210.17323, 2022.

He, J. and Zhai, J. FastDecode: High-Throughput GPU-
Efficient LLM Serving using Heterogeneous Pipelines.
arXiv preprint arXiv:2403.11421, 2024.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and
Peste, A. Sparsity in Deep Learning: Pruning and growth
for efficient inference and training in neural networks.
Journal of Machine Learning Research, 22(241):1–124,
2021.

Hong, K., Dai, G., Xu, J., Mao, Q., Li, X., Liu, J., Chen, K.,
Dong, Y., and Wang, Y. FlashDecoding++: Faster Large
Language Model Inference on GPUs. arXiv preprint
arXiv:2311.01282, 2023.

Hu, C., Huang, H., Xu, L., Chen, X., Xu, J., Chen, S.,
Feng, H., Wang, C., Wang, S., Bao, Y., et al. In-
ference without Interference: Disaggregate LLM Infer-
ence for Mixed Downstream Workloads. arXiv preprint
arXiv:2401.11181, 2024.

interestingLSY/swiftLLM. SwiftLLM. https://
github.com/interestingLSY/swiftLLM.

ispc/ispc. Intel Implicit SPMD Program Compiler. https:
//github.com/ispc/ispc.

Kwon, S. J., Kim, J., Bae, J., Yoo, K. M., Kim, J.-H., Park,
B., Kim, B., Ha, J.-W., Sung, N., and Lee, D. AlphaTun-
ing: Quantization-Aware Parameter-Efficient Adaptation
of Large-Scale Pre-Trained Language Models. arXiv
preprint arXiv:2210.03858, 2022.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
Memory Management for Large Language Model Serv-
ing with PagedAttention. In Proceedings of ACM SOSP,
pp. 611–626, 2023.

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang,
W.-C., Xiao, G., Dang, X., Gan, C., and Han, S. AWQ:
Activation-aware Weight Quantization for On-Device
LLM Compression and Acceleration. Proceedings of
Machine Learning and Systems, 6:87–100, 2024.

Microsoft. Azure LLM inference trace
2023. https://github.com/Azure/
AzurePublicDataset/blob/master/
AzureLLMInferenceDataset2023.md.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw,
R., Liang, E., Elibol, M., Yang, Z., Paul, W., Jordan,
M. I., et al. Ray: A distributed framework for emerging
{AI} applications. In Proceedings of USENIX OSDI, pp.
561–577, 2018.

NVIDIA. NVIDIA A100 Tensor Core GPU.
https://www.nvidia.com/content/dam/
en-zz/Solutions/Data-Center/a100/
pdf/nvidia-a100-datasheet-nvidia-us-
2188504-web.pdf, 2022.

NVIDIA. NVIDIA H100 Tensor Core GPU.
https://resources.nvidia.com/en-us-
tensor-core/nvidia-tensor-core-gpu-
datasheet, 2024.

https://huggingface.co/datasets/CarperAI/openai_summarize_comparisons
https://huggingface.co/datasets/CarperAI/openai_summarize_comparisons
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://github.com/flashinfer-ai/flashinfer/
https://github.com/flashinfer-ai/flashinfer/
https://github.com/interestingLSY/swiftLLM
https://github.com/interestingLSY/swiftLLM
https://github.com/ispc/ispc
https://github.com/ispc/ispc
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

Pan, X., Li, E., Li, Q., Liang, S., Shan, Y., Zhou, K., Luo,
Y., Wang, X., and Zhang, J. Instinfer: In-Storage Atten-
tion Offloading for Cost-Effective Long-Context LLM
Inference. arXiv preprint arXiv:2409.04992, 2024.

Patel, P., Choukse, E., Zhang, C., Shah, A., Goiri, Í.,
Maleki, S., and Bianchini, R. Splitwise: Efficient
Generative LLM Inference Using Phase Splitting. In
2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA), pp. 118–132. IEEE,
2024.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami,
A., Mahoney, M. W., and Keutzer, K. Q-BERT: Hes-
sian Based Ultra Low Precision Quantization of BERT.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 8815–8821, 2020.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen,
B., Liang, P., Ré, C., Stoica, I., and Zhang, C. Flex-
Gen: High-Throughput Generative Inference of Large
Language Models with a Single GPU. In International
Conference on Machine Learning, pp. 31094–31116.
PMLR, 2023.

Song, Y., Mi, Z., Xie, H., and Chen, H. PowerInfer: Fast
Large Language Model Serving with a Consumer-Grade
GPU. 2024.

Strati, F., Mcallister, S., Phanishayee, A., Tarnawski, J.,
and Klimovic, A. DejaVu: KV-cache Streaming for Fast,
Fault-tolerant Generative LLM Serving. arXiv preprint
arXiv:2403.01876, 2024.

Tillet, P. Introducing Triton: Open-source GPU program-
ming for neural networks. https://openai.com/
index/triton/.

Tillet, P., Kung, H.-T., and Cox, D. Triton: An Inter-
mediate Language and Compiler for Tiled Neural Net-
work Computations. In Proceedings of the 3rd ACM
SIGPLAN International Workshop on Machine Learning
and Programming Languages, pp. 10–19, 2019.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A.,
Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhos-
ale, S., et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Vaswani, A. Attention is All You Need. Advances in Neural
Information Processing Systems, 2017.

WikiChip. AWS Graviton4 - Annapurna Labs (Ama-
zon). https://en.wikichip.org/wiki/
annapurna labs/graviton/graviton4.

Wu, B., Zhong, Y., Zhang, Z., Huang, G., Liu, X., and Jin,
X. Fast Distributed Inference Serving for Large Language
Models. arXiv preprint arXiv:2305.05920, 2023.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J.,
and Han, S. SmoothQuant: Accurate and Efficient
Post-Training Quantization for Large Language Mod-
els. In International Conference on Machine Learning,
pp. 38087–38099. PMLR, 2023a.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Effi-
cient Streaming Language Models with Attention Sinks.
arXiv preprint arXiv:2309.17453, 2023b.

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li,
C., and He, Y. ZeroQuant: Efficient and Affordable
Post-Training Quantization for Large-Scale Transformers.
Advances in Neural Information Processing Systems, 35:
27168–27183, 2022.

Yu, C., Wang, T., Shao, Z., Zhu, L., Zhou, X., and Jiang,
S. TwinPilots: A New Computing Paradigm for GPU-
CPU Parallel LLM Inference. In Proceedings of the 17th
ACM International Systems and Storage Conference, pp.
91–103, 2024.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A Distributed Serving System for Transformer-
Based Generative Models. In Proceedings of USENIX
OSDI, pp. 521–538, 2022.

Zhao, X., Jia, B., Zhou, H., Liu, Z., Cheng, S., and
You, Y. HeteGen: Heterogeneous Parallel Inference for
Large Language Models on Resource-Constrained De-
vices. arXiv preprint arXiv:2403.01164, 2024a.

Zhao, Y., Lin, C.-Y., Zhu, K., Ye, Z., Chen, L., Zheng, S.,
Ceze, L., Krishnamurthy, A., Chen, T., and Kasikci, B.
Atom: Low-Bit Quantization for Efficient and Accurate
LLM Serving. Proceedings of Machine Learning and
Systems, 6:196–209, 2024b.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., et al.
SGLang: Efficient Execution of Structured Language
Model Programs. arXiv preprint arXiv:2312.07104,
2023.

Zhong, Y., Liu, S., Chen, J., Hu, J., Zhu, Y., Liu, X., Jin,
X., and Zhang, H. DistServe: Disaggregating Prefill and
Decoding for Goodput-optimized Large Language Model
Serving. In Proceedings of USENIX OSDI, pp. 193–210,
2024.

Zhu, K., Zhao, Y., Zhao, L., Zuo, G., Gu, Y., Xie, D., Gao,
Y., Xu, Q., Tang, T., Ye, Z., et al. NanoFlow: Towards Op-
timal Large Language Model Serving Throughput. arXiv
preprint arXiv:2408.12757, 2024.

https://openai.com/index/triton/
https://openai.com/index/triton/
https://en.wikichip.org/wiki/annapurna_labs/graviton/graviton4
https://en.wikichip.org/wiki/annapurna_labs/graviton/graviton4

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

A PSEUDO CODE FOR LOAD-AWARE
SCHEDULING

Here we show the pseudo-code for the load-aware schedul-
ing algorithm mentioned in section 3.2. The code is written
in Python-like syntax.

1. Initialization
batches = [EMPTY_BATCH] * 2

2. Schedule GPU decoding requests
while NEED_SWAP_OUT_LAST_GPU_DECODE_REQ:

req = gpu_decoding_q.pop()
cpu_decoding_q.prepend(req)
swap_out(req)

while CAN_SWAP_IN_LAST_CPU_DECODE_REQ:
req = cpu_decoding_q.popfront()
gpu_decoding_q.append(req)
swap_in(req)

for req in gpu_decoding_q:
batches[0].add_gpu_decode(req)

3. Schedule prefilling requests
for req in waiting_q:
if CAN_PREFILL_TO_GPU(req):

gpu_decoding_q.append(req)
batches[0].add_gpu_prefill(req)
elif CAN_PREFILL_TO_CPU(req):

cpu_decoding_q.append(req)
batches[0].add_cpu_prefill(req)
else:
break

4. Schedule CPU decoding requests
for req in cpu_decoding_q:

for i in [1, 0]:
batches[i].add_cpu_decoding(req)
if cpu_time_exceed_gpu(batches):

batches[i].pop_cpu_decoding()
else:

break

5. Reduce prefilling requests
gpu_only_batch =

batches[0].remove_all_cpu_decodings()
reduce_cpu_prefill(batches[0])
reduce_cpu_prefill(gpu_only_batch)

6. Make decisions
if token_rate([gpu_only_batch]) > \

token_rate(batches):
batches = [gpu_only_batch]

update_queues(
batches,
waiting_q,
gpu_decoding_q,
cpu_decoding_q

)

return batches

B COMPARISON WITH CHUNKED PREFILL

We further conduct more experiments to compare NEO with
chunked prefill by leveraging the chunked prefill imple-
mentation in vLLM. As Figure 11 shows, chunked prefill
slightly reduces the latency, but achieves a similar maxi-
mum throughput with vLLM which is lower than NEO. The
reason why chunked prefill has little impact on perfomance
is that the GPU memory is so limited that the number of
piggybacked decoding requests with a chunked prefilling
request, the main source of gain, cannot be sufficiently large.

0.0 0.5 1.0 1.5 2.0
Ruquest rate (req/s)

0.00

0.40

0.80

1.20

1.60

2.00
Av

er
ag

e
pe

r t
ok

en
 la

te
nc

y
(s

)
Neo (ours)
vLLM
vLLM-1024
vLLM-2048
vLLM-4096

(a) A10G + LLaMa-3.1-8B.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Ruquest rate (req/s)

0.00

0.40

0.80

1.20

1.60

2.00

Av
er

ag
e

pe
r t

ok
en

 la
te

nc
y

(s
)

Neo (ours)
vLLM
vLLM-256
vLLM-512

(b) T4 + LLaMa-2-7B.
Figure 11. Load-latency curve comparison between NEO and
vLLM with chunked-prefilling functionality. The numbers after
vLLM stand for the chunk size, e.g., vLLM-256 for vLLM under
chunk size of 256.

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

C ARTIFACT APPENDIX

C.1 Abstract

This appendix describes the complete workflow of running
NEO and generating some representative results used in
this paper, including Figure 6c and Figure 10a

C.2 Artifact check-list (meta-information)
• Algorithm: Continuous batching; paged attention; grid profiling
• Compilation: Both GNU g++-11 and g++-13 compilers are

required. CMake must be version 3.18 or higher. The Intel ISPC
compiler should be version 1.23. The Nvidia nvcc compiler
must be version 12.2 or later.

• Data set: OpenAI summarization comparison (OSC)
(CarperAI); synthetic workloads

• Run-time environment: Ubuntu 22.04
• Hardware: AWS g4dn.4xlarge instance; AWS g5.16xlarge

instance
• Execution: Automatic scripts are included (Please refer to

README.md of the repository for details).
• Metrics: Average per token latency; relative throughput to

baseline
• Output: Plots in pdf files and evaluation traces including nu-

merical results under NEO/evaluation
• How much disk space required (approximately)?: 15-20GB

(mainly model weights)
• How much time is needed to prepare workflow (approxi-

mately)?: less than 30 minues
• How much time is needed to complete experiments (approxi-

mately)?: 10-15h for full reproduction; less than 1h for reduced
reproduction

• Publicly available?: https://github.com/NEO-
MLSys25/NEO

• Archived (provide DOI)?: https://doi.org/10.5281/
zenodo.14964833

C.3 Description

C.3.1 How delivered

The code can be downloaded through a public Github repository.

C.3.2 Hardware dependencies

AWS g4dn.4xlarge and g5.16xlarge instances.

C.3.3 Software dependencies

• Both g++-11 and g++-13
• CMake 3.18 or later
• Intel ISPC compiler 1.23
• Nvidia CUDA toolkit 12.2 or later
• OpenMP library
• Python 3.10 or later
• Pytorch 2.4 or later
• vLLM
• Other python dependencies described in requirement.txt of the

repository

C.3.4 Data sets

We use a subset of OpenAI summarization comparison (OSC)
(CarperAI) for Figure 6c and synthetic workloads for 10a. Please
refer to 5 for more details.

The size of the datasets can be reduced manually for a faster run
at the price of accuracy. Please refer to the README in our
repository for more details.

C.4 Installation
1. Launch a g4dn.4xlarge/g5.16xlarge instance with AWS commu-

nity AMI named neo-ae-g4-image/neo-ae-g5-image in us-east-1
region. Then all you need to do is run mamba activate
neo and cd NEO in your login shell. The dependencies should
already be installed, and you can skip the steps below. However,
it is still recommended to re-download the model weights for
faster evaluation. Please refer to the README document of
our code repository for details.

2. If you do not have access to the AMI. Please launch the same
instances using the “amazon/Deep Learning OSS Nvidia Driver
AMI GPU PyTorch 2.6.0 (Ubuntu 22.04)” AMI and run the
following commands in your shell to install NEO and its depen-
dencies:

sudo add-apt-repository \
ppa:ubuntu-toolchain-r/test

sudo apt update
sudo apt install g++-13 libomp-dev numactl
sudo snap install ispc --channel latest/edge
git clone \

https://github.com/NEO-MLSys25/NEO.git
cd NEO
pip install -r requirements.txt
pip install -e csrc
pip install -e .
cd pacpu
bash build.sh llama2_7b 1
cd ..

NOTE: Change the second last line to bash build.sh
llama3 8b 1 on the g5.16xlarge instance.

3. Prepare LLaMa-2-7B/LLaMa-3-8B model weights. You
can download it from Huggingface or Meta’s official
repository. Note that the weights should be in .safeten-
sors format. Please also change the “model path” entry
in evaluation/configs/config-t4-7b.json on g4dn.4xlarge or
evaluation/configs/config-a10-8b.json on g5.16xlarge to the
actual path to the model weigths.

4. For reproducing Figure 6c, please also install vLLM by pip
install vllm. Please note that our original results were
obtained with vLLM 0.6.3.post1. However, installing this ver-
sion directly via pip may lead to an SQL-related bug. The
latest vLLM (0.7.3 by March 2nd, 2025) does not exhibit
this issue and demonstrates comparable performance to vLLM
0.6.3.post1 in our experiments.

C.5 Experiment workflow

On g4dn.4xlarge instance:

cd NEO
python evaluation/reproduce-fig6c.py

On g5.16xlarge instance:

https://github.com/NEO-MLSys25/NEO
https://github.com/NEO-MLSys25/NEO
https://doi.org/10.5281/zenodo.14964833
https://doi.org/10.5281/zenodo.14964833

NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

cd NEO
python evaluation/reproduce-fig10a.py

C.6 Evaluation and expected result

Reproducing Figure 6c Running the reproduce-fig6c.py script on
g4dn.4xlarge instance with proper environment setup will repro-
duce this figure. By default, the script only uses a small subset
(100 requests) of the original input data (2000 requests) used in
the original experiment. This is for the purpose of demonstration
and quick verification of the results for faster evaluation. As a
result, the latency would be lower than the original figure due to
the lower average queuing latency. You can change the number in
evaluation/benchmark.py, line 114 to use more requests
for more accurate results.

Reproducing Figure 10a Running the reproduce-fig10a.py script
on g5.16xlarge instance with proper environment setup will repro-
duce this figure. Only the “x16large” and the “baseline” lines in
the original figure will be drawn. The default number of requests is
2000, the same as in the original paper. You can reduce the number
for faster evaluation. However, the result may not be as accurate
as the original one because of warm-up and cool-down effects. It
is not recommended to set this number below 800.

C.7 Experiment customization

Users can reduce or add custom data points through very straight-
forward modifications of the scripts. Users can also modify the
number of data used in experiments. See the code for more detailed
instructions.

C.8 Notes

On the first run of NEO, the server process starts very slowly
for two reasons. First, it needs to load the model weights from
storage to the main memory. Secondly, it might (not if you use our
provided AMI) need to do the initial performance profiling before
starting the service. The whole process would take less than ten
minutes. You can check the logs in NEO/evaluation for details if
you find no output from the console.

C.9 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-
20190109.html

• http://cTuning.org/ae/reviewing-
20190109.html

• https://www.acm.org/publications/policies/
artifact-review-badging

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

