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Abstract

Electronic structure simulation (ESS) has been
used for decades to provide quantitative scien-
tific insights on an atomistic scale, enabling ad-
vances in chemistry, biology, and materials sci-
ence, among other disciplines. Following stan-
dard practice in scientific computing, the soft-
ware packages driving these studies have been
implemented in compiled languages such as FOR-
TRAN and C. However, the recent introduction
of machine learning (ML) into these domains has
meant that ML models must be coded in these lan-
guages, or that complex software bridges have to
be built between ML models in Python and these
large compiled software systems. This is in con-
trast with recent progress in modern ML frame-
works which aim to optimise both ease of use and
high performance by harnessing hardware accel-
eration of tensor programs defined in Python. We
introduce MESS: a modern electronic structure
simulation package implemented in JAX; port-
ing the ESS code to the ML world. We outline
the costs and benefits of following the software
development practices used in ML for this impor-
tant scientific workload. MESS shows significant
speedups on widely available hardware acceler-
ators and simultaneously opens a clear pathway
towards combining ESS with ML. MESS is avail-
able at github.com/graphcore-research/mess.

1. Introduction
Approximating the quantum-mechanical behaviour of elec-
trons in atoms, molecules, and solids is a long standing
central challenge in the physical sciences (Dirac, 1929).
Overcoming this challenge would provide a deeper under-
standing of the atomistic processes that underpin diverse
phenomena. For example, these simulations could be used to
efficiently screen drug candidates through direct modelling
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of their interactions with biological targets at the molecular
level (Batra et al., 2020). In materials science, this under-
standing could accelerate the design of advanced materials
for renewable energy by precisely tailoring their electronic
properties (Gómez-Bombarelli et al., 2016; Shipley et al.,
2021). Density Functional Theory (DFT) has emerged as
a leading approach for ESS, striking a favourable balance
between computational cost and accuracy when compared
to more computationally demanding methods like coupled
cluster theory or configuration interaction (Keith et al., 2021;
Szabo & Ostlund, 2012).

A recent high-impact research direction in computational
chemistry has been the development of simulation environ-
ments that integrate ML models (Keith et al., 2021; von
Lilienfeld & Burke, 2020; Westermayr et al., 2021). While
significant progress has been made by establishing complex
software bridges between traditional ESS codes and ML
frameworks, this approach presents a steep learning curve
for researchers. These scientists must become proficient
in not only electronic structure theory and its application
to atomistic systems, but also the intricacies of ML model
training and deployment, as well as high-performance scien-
tific computing techniques. This multifaceted expertise re-
quirement acts as a significant barrier, hindering the broader
adoption and potential impact of these powerful simulation
tools.

To address these challenges and accelerate this naturally
interdisciplinary research, we introduce MESS: a Modern
Electronic Structure Simulation framework. MESS is de-
signed to bridge the gap between electronic structure meth-
ods and machine learning models by enabling their integra-
tion within a single unified environment.

We summarise our contributions as follows:

• Implementation of end-to-end differentiable elec-
tronic structure simulations, enabling algorithmic gra-
dient evaluation for routine tasks such as electronic
energy minimisation and atomic force evaluation.

• Development of a high-throughput DFT simulation
framework leveraging hardware acceleration and batch
processing for efficient exploration of configurational
space.

• Creation of an extensible and modular simulation
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environment that facilitates the seamless integration
of machine learning models into electronic structure
calculations.

MESS is released as an open-source Python package under
the permissive MIT license, with all examples and bench-
marks described here provided as executable notebooks for
reproducible results and interactive exploration. 1 Addi-
tionally, by leveraging the powerful libraries of the JAX
ecosystem, MESS demonstrates the potential of adapting
software abstractions developed for machine learning to
enhance and accelerate computational chemistry workloads.

2. Related Work
DFT in principle provides an exact solution to the electronic
structure problem by placing the electron density on par with
solving the Schrödinger equation for the many-body wave-
function (Hohenberg & Kohn, 1964; Kohn & Sham, 1965).
This dramatic simplification is possible by the introduc-
tion of the exchange-correlation functional that accounts for
the quantum-mechanical nature of electron-electron interac-
tions. However, the exact form of the universal exchange-
correlation functional is still unknown (Burke & Wagner,
2013). Practical implementations of DFT require selecting
an approximate exchange-correlation functional, introduc-
ing a critical trade-off between accuracy and computational
cost (Rappoport et al., 2008).

With hundreds of such functionals available, navigating the
vast landscape of options and selecting the most appropriate
form for a specific application can become a laborious task
even for experts in the field (Lehtola et al., 2018; Rappoport
et al., 2008). Numerous studies have attempted to bench-
mark and classify these functionals, offering guidance on
their strengths and weaknesses for different types of systems
and properties (Pribram-Jones et al., 2015; Peverati, 2021;
Goerigk & Mehta, 2019; Kim et al., 2013; Kalita et al.,
2022). Recent efforts have leveraged machine learning and
offer a promising route towards a computationally efficient
approximation to the universal functional (Kirkpatrick et al.,
2021; Li et al., 2021).

While DFT simulations offer valuable insights into the elec-
tronic structure and static properties of molecules, they do
not inherently capture the dynamic evolution of these sys-
tems over time. To study the time-dependent behavior of
atomistic structures, such as the breaking and forming of
chemical bonds, molecular dynamics (MD) simulations are
employed (Eastman et al., 2017; Thompson et al., 2022;
Case et al., 2023). In MD simulations, the forces acting on
atoms can be derived from a variety of models, ranging from
simple analytic functions to more sophisticated quantum-

1Notebooks are available as documentation pages at
graphcore-research.github.io/mess

mechanical calculations (Car, 2006). These forces are then
used to numerically integrate the equations of motion, al-
lowing the trajectories of atoms to be followed over time.
This approach provides a powerful tool for investigating a
wide range of phenomena, from chemical reactions to the
self-assembly of complex materials (Lindorff-Larsen et al.,
2011).

DFT-based MD simulations offer high accuracy in captur-
ing the intricate electronic interactions that govern chemical
bonding and reactivity. However, their widespread adop-
tion has been hampered by the inherent computational cost
of repeatedly solving the electronic structure problem at
each time step. This limitation has typically restricted DFT-
based MD simulations to relatively small systems and short
timescales (Musaelian et al., 2023). To overcome this bot-
tleneck and enable simulations of large-scale systems over
extended periods, researchers have utilised computation-
ally cheaper alternatives, such as hand-crafted interatomic
potentials and targeting specialised hardware architectures
(Klepeis et al., 2009; Shaw et al., 2010; 2014).

One promising solution that has emerged in recent years are
Machine Learning Interatomic Potentials (MLIPs) (Behler
& Parrinello, 2007; Bartók et al., 2010; Thompson et al.,
2015; Schütt et al., 2018; Deringer et al., 2019; Drautz,
2019; von Lilienfeld & Burke, 2020; Batzner et al., 2022).
These potentials leverage the flexibility of machine learning
algorithms to learn complex relationships between atomic
configurations and their corresponding energies and forces,
as calculated by DFT. By utilising supervised learning on
vast datasets of DFT simulations, MLIPs can accurately
reproduce the potential energy surface of a system, en-
abling efficient and accurate MD simulations (Eastman
et al., 2023; Batatia et al., 2023). MLIP-driven MD simu-
lations offer a substantial advantage over pure DFT-based
MD, enabling the study of significantly larger systems and
longer timescales due to their reduced computational de-
mands (Musaelian et al., 2023; Jia et al., 2020).

Various permutations of the combined features of hardware
acceleration, automatic differentiation, and dynamic inter-
preted programs have been previously explored for ESS.
TeraChem pioneered ESS on GPU accelerators by imple-
menting these calculations directly in the CUDA frame-
work (Seritan et al., 2021; Nickolls et al., 2008). Being
a closed-source project inherently limits the scope of al-
gorithmic research that can be explored with TeraChem
but it has been applied to investigate quantum simulations
of proteins (Kulik et al., 2012). PySCF supports modu-
lar ESS workflows through the familiar and easy-to-use
NumPy interface (Sun et al., 2018). Extensions to PySCF
have been developed to support automatic differentiation
and GPU acceleration (Zhang & Chan, 2022; Wu et al.,
2024). Automatic differentiation is one of the pillars of
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modern machine learning and has recently been explored
for ESS (Baydin et al., 2018; Tan et al., 2023). JAX MD
implements a differentiable simulation environment with
straightforward interoperability between MLIPs and MD
time-integrators (Schoenholz & Cubuk, 2020). Differen-
tiable implementations for the Hartree-Fock method have
been explored (Tamayo-Mendoza et al., 2018; Yoshikawa
& Sumita, 2022). These projects demonstrated the applica-
bility of automatic differentiation for solving this particular
instantiation of electronic structure simulation. The DQC
project demonstrated that a differentiable DFT implemen-
tation enables learning the exchange-correlation functional
from data (Kasim et al., 2022). DQC uses the libcint library
to evaluate the molecular integrals which prevents utilising
modern hardware accelerators (Sun, 2015).

To the best of our knowledge, MESS is the first project to
fully integrate end-to-end differentiable high-level programs
with hardware-agnostic acceleration through compilation.

3. Electronic Structure Theory in a Nutshell
The central problem of electronic structure is solving the
Schrödinger equation for the ground-state configuration of
electrons given a molecular structure of interest. We will
focus the discussion here on simulations within the Born-
Oppenheimer approximation (Martin, 2020). The electron
representation in MESS is flexible and the examples shared
here use localised molecular orbitals, represented as a linear
combination of atomic orbitals (LCAO) (Szabo & Ostlund,
2012)

ψi(r) =
∑
µ

Cµiϕµ(r−Rµ;Zµ), (1)

where the {ψi} are the set of orthonormal molecular orbitals
that are expressed as an expansion in terms of a basis set of
atomic orbitals {ϕµ}. Each atomic orbital ϕµ is associated
with a unique atom which defines the centre Rµ and the
atomic number Zµ. We have some freedom in how we se-
lect the basis set of atomic orbitals and, following standard
practice, MESS uses Gaussian orbitals (Szabo & Ostlund,
2012). The specific parametrisation of the basis set is a
critical decision that significantly impacts the accuracy and
computational cost of the simulation. A plethora of pre-
computed basis sets are available, ranging from minimal
sets designed for rapid calculations to larger, more compre-
hensive sets that offer increased accuracy at the expense of
computational resources. MESS interfaces with the basis
set exchange which provides the pre-computed parameters
defining the atomic orbitals (Pritchard et al., 2019).

The molecular orbital coefficients can be arranged as a ma-
trix C which leads us to the Roothaan equation (Roothaan,
1951; Lehtola et al., 2020)

F(C)C = SCϵ, (2)

where F is known as the Fock matrix which is a function of
the molecular orbital coefficients C, S is the overlap matrix,
and ϵ is a diagonal matrix containing the molecular orbital
energies. The elements of both the Fock matrix and the
overlap matrix are found by integrating over combinations
of the atomic orbitals. For example, an element of the
overlap matrix is evaluated as:

Sµν =

∫
ϕ∗µ(r)ϕν(r)dr. (3)

The Gaussian representation of atomic orbitals has proven
to be particularly convenient as there are closed-form ana-
lytic solutions for the various integrals needed to evaluate
Equation 2. MESS provides a basic implementation of these
closed-form expressions for all the relevant integrals needed
for a typical simulation (Taketa et al., 1966).

Equation 2 is a non-linear generalised eigenvalue problem
since the Fock matrix F depends on the molecular orbital
coefficients C. Standard implementations will iteratively
solve the Roothaan equation until finding the electronic
energies converge to a fixed-point. This process is known as
the self-consistent field (SCF) method (Lehtola et al., 2020).

MESS provides an SCF solver but the preferred implemen-
tation performs direct minimisation of the total energy func-
tional:

min
C

E(C), (4)

subject to the orthonormality constraint of the molecular
orbitals:

CTSC = 1. (5)

There are many ways to approach solving this constrained
optimisation problem. We provide one such implementation
in the minimise function of MESS that uses the BFGS
solver from the Optimistix library (Rader et al., 2024). The
orthogonality constraint is incorporated by using the QR de-
composition method as outlined in the DQC library (Kasim
et al., 2022). Further, we demonstrate using first-order gra-
dient methods in Section 5 based on the Adam optimiser
(Kingma & Ba, 2014).

4. Software Architecture
MESS is designed to facilitate a new generation of hybrid
electronic structure and machine learning simulations by
providing a common framework that is hardware agnos-
tic and optimised for current and future hardware. This
forward-looking perspective is encapsulated by the term
modern in MESS. Our goals extend beyond mere integra-
tion: we aim to make electronic structure methods more
accessible, transparent, and, crucially for research progress,
more hackable.

To accelerate progress towards these ambitious goals, we
have adopted several key requirements, inspired by factors
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that have driven recent advancements in machine learning
across various domains:

• Hardware Acceleration: Efficient utilisation of mod-
ern hardware accelerators is essential for successfully
scaling computationally intensive simulations.

• Automatic Differentiation: This capability enables
seamless gradient calculations, which are vital for opti-
mising complex models and exploring potential energy
surfaces.

• High-Level Interpreted Language: A high-level lan-
guage (e.g. Python) allows for rapid prototyping and
experimentation, while modern machine learning com-
pilers can mitigate the traditional performance con-
cerns associated with interpreted languages.

Researchers accustomed to electronic structure codes im-
plemented in compiled languages such as FORTRAN or
C might be skeptical about the performance of interpreted
languages. However, the advent of machine learning com-
pilers has significantly narrowed the gap between high-level
code and optimised machine code. These compilers excel
at optimising tensor operations, the fundamental building
blocks of many scientific computing and machine learn-
ing workloads, often achieving performance comparable to
hand-tuned implementations (Tillet et al., 2019).

MESS is implemented entirely within the JAX framework,
leveraging its rich ecosystem of libraries tailored for both
machine learning and scientific computing (Bradbury et al.,
2018; Frostig et al., 2018). To encapsulate simulation pa-
rameters and provide an intuitive interface, we adopt the
”callable dataclass” abstraction from the Equinox library
(Kidger & Garcia, 2021). This approach enhances code
readability and maintainability while aligning with JAX’s
functional programming paradigm.

JAX provides the following higher-order function transfor-
mations that we use throughout MESS:

• vmap: Automatically vectorises functions, enabling
efficient batch processing of multiple inputs.

• grad: Provides convenient and efficient Automatic
Differentiation capabilities, allowing us to compute
gradients of arbitrary order.

• jit: Just-in-time (JIT) compilation is a key feature
of JAX that dynamically compiles Python functions
into optimised machine code. By leveraging XLA, a
high-performance compiler for linear algebra, jit
significantly accelerates numerical computations in
MESS.

• pmap: This transformation enables single-program,
multiple-data (SPMD) parallel execution of functions
across multiple devices (e.g. CPU, GPU, TPU, etc).

Broadly speaking, electronic structure simulation and ma-
chine learning model training share a common thread: both
involve optimisation processes where the objective function
that is being evaluated requires the interleaving of linear
algebra, reductions, and point-wise operations. This fun-
damental similarity suggests that software abstractions and
optimisation techniques developed for machine learning
can be effectively applied to accelerate electronic structure
calculations.

However, the rapidly evolving landscape of specialised hard-
ware architectures and accompanying software frameworks
presents a significant challenge for scientific software devel-
opment. This constant change can dramatically influence
the computational feasibility of various simulation methods.
Choosing JAX as the foundation for MESS represents a
strategic wager in this “hardware lottery” (Hooker, 2021).
We posit that the substantial community interest in JAX-
based machine learning models will drive the continued
development and optimisation of the framework. Therefore,
ensuring its optimisation on current hardware accelerators
and further adaptation to future systems. This, in turn, will
directly benefit MESS by enabling it to leverage cutting-
edge hardware capabilities.

5. Motivating Examples
The examples that follow have been adapted from executable
notebooks that are provided as part of the documentation for
MESS. We have curated these examples to demonstrate how
first-order gradient optimisation methods developed for ma-
chine learning can be applied to tackle complex electronic
structure simulations. In addition to this, a preliminary
benchmark has shown a promising speedup of roughly 16x
compared to performing the same energy minimisation with
PySCF. While this initial result is encouraging, a more com-
prehensive benchmarking study is needed to definitively
characterise the performance of MESS. We provide this
benchmark as an executable notebook 2, inviting commu-
nity feedback and ensuring the replicability of our findings.

2The reported 16X performance speedup was measured for a
single water molecule with the PBE density functional and the
6-31G basis set. MESS was executed on an NVIDIA A100 GPU
accessed through Google Colab and PySCF was executed on the
CPUs from the same runtime. Full setup and measurements are
available at graphcore-research.github.io/mess/tour
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5.1. Direct Minimisation of Density Functional

A central problem of DFT simulations is finding the charge density ρ(r) that minimises the total energy functional. This
is a constrained optimisation since the charge density is derived from a basis of molecular orbitals that are required to be
orthonormal to produce a valid solution. Within MESS a single DFT calculation is setup by first defining the molecule,
selecting a basis set, and building a Hamiltonian instance.

mol = from_pyquante("CH4")
basis = basisset(mol, "6-31g")
H = Hamiltonian(basis, xc_method="pbe")

This builds a single molecule of methane and represents the molecular orbitals with the 6-31G Pople basis set retrieved
through the basis set exchange (Pritchard et al., 2019). The quantum-mechanical interactions are modelled within the
Hamiltonian by selecting the xc_method argument which in the above example uses the widely PBE exchange-correlation
functional (Perdew et al., 1996). The PBE functional incorporates a gradient expansion of the electron density and the
implementation in MESS uses automatic differentiation to evaluate this gradient. In addition to various density functionals,
MESS also implements the Hartree-Fock method, another widely used technique (Szabo & Ostlund, 2012). Users can
select Hartree-Fock by setting the xc_method="hfx" parameter to incorporate the Hartree-Fock exchange energy in the
electron-electron interaction.

There are many possible approaches to solving the constrained optimisation for the molecular orbital coefficients that
minimise the total energy. The conjugate gradient method has been widely used in electronic structure simulations (Payne
et al., 1992). Here we take a different approach and minimise the electronic energy using the Adam implementation from
the Optax optimisation library (Kingma & Ba, 2014; DeepMind et al., 2020). The objective function we are minimising
evaluates the total energy given a trial set of unconstrained parameters. The total energy is comprised of an electronic
contribution that depends on the trial parameters and a static nuclear contribution that represents the electrostatic energy of
assembling the positively charged nuclear cores.

@jax.jit
@jax.value_and_grad
def total_energy(Z):

C = H.orthonormalise(Z)
P = basis.density_matrix(C)
return H(P) + nuclear_energy(mol)

Notice that the objective function explicitly applies the orthonormality constraint within the orthonormalise method of
the Hamiltonian instance. The current implementation uses the QR decomposition algorithm as described in the DQC project
to ensure that the orthonormality condition in Equation 5 is satisfied (Kasim et al., 2022). Applying value_and_grad
as a function decorator will transform the objective function to calculate the gradient with respect to the input at the same
point as evaluating total energy. As described Section 4 the jit function decorator is applied to optimise and compile the
simulation so that it runs efficiently on the available hardware.

We use an arbitrary initial guess for the unconstrained parameters. Otherwise the following energy minimisation will appear
similar to a standard neural-network training loop

Z = jnp.eye(basis.num_orbitals)
optimiser = optax.adam(learning_rate=0.1)
state = optimiser.init(Z)

for _ in range(200):
e, grads = total_energy(Z)
updates, state = optimiser.update(grads, state)
Z = optax.apply_updates(Z, updates)

Figure 1 visualises how the energy varies through the optimisation process and shows the convergence of the total energy,
which is exactly analogous to the analysis of the training loss curve in a neural-network.
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Figure 1. Total energy convergence for methane molecule with 6-31G basis set and PBE functional by direct optimisation using the Adam
optimiser.

5.2. Batching over Conformations

Training neural networks over batches of data is an essential component when efficiently utilising massively parallel
hardware accelerators. We can recast a standard electronic minimisation problem as a batched one by using the JAX
vectorising map (vmap). By doing this we can parallelise the electronic structure optimisation over multiple conformations
of the same molecule. Just like in training neural networks, this will allow for more efficient utilisation of the accelerator
which in turn allows parallel sampling of potential energy surfaces using quantum-mechanical simulations.

We demonstrate this idea by calculating the molecular hydrogen dissociation curve using a batch of hydrogen molecules
where the bond length (H-H distance) is varied. To setup the batch we build a Hamiltonian for each bond length and
stack the built modules to create a batched-Hamiltonian. This example uses the minimal STO-3G basis set and the
simple local density approximation (LDA) of DFT (Kohn & Sham, 1965; Parr & Yang, 1989). However, this batching
formulation is not limited to these choices for how the Hamiltonian is represented.

def h2_hamiltonian(r: float):
mol = Structure(

atomic_number=np.array([1, 1]),
position=np.array([[0.0, 0.0, 0.0], [r, 0.0, 0.0]]),

)
basis = basisset(mol, basis_name="sto-3g")
return Hamiltonian(basis, xc_method="lda")

num_confs = 64
rs = np.linspace(0.6, 10, num_confs)
H = [h2_hamiltonian(r) for r in rs]
H = jax.tree.map(lambda *xs: jnp.stack(xs), *H)
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The following energy function evaluates the electronic energy of a single Hamiltonian for an unconstrained trial
matrix Z. The vmap function transformation converts this function that evaluates the energy for a single Hamiltonian to
process a batched-Hamiltonian. We also apply the jit function transformation to compile this function.

@jax.jit
@jax.vmap
def energy(Z, H):

C = H.orthonormalise(Z)
P = H.basis.density_matrix(C)
return H(P)

As described in Section 5.1, we convert the constrained optimisation over molecular orbital coefficients into an unconstrained
one through the orthonormalise method of the Hamiltonian instance. We initialise the optimisation to simultaneously
minimise the energy of the batch of molecular conformations.

num_orbitals = H[0].basis.num_orbitals
Z = jnp.tile(jnp.eye(num_orbitals), (num_confs, 1, 1))
optimiser = optax.adam(learning_rate=0.1)
state = optimiser.init(Z)

We define a straightforward loss function that simply takes the sum over the energy for each molecular conformation
in the batch. In basic terms, the optimisation will follow the gradient to minimise the loss. We use the transformation
value_and_grad as a function decorator on this loss function to evaluate the loss and the corresponding gradient with
automatic differentiation.

@jax.value_and_grad
def loss_fn(z, h):

return jnp.sum(energy(z, h))

Just as in Section 5.1, the optimisation looks familiar to a basic neural-network training loop

for _ in range(128):
loss, grads = loss_fn(Z, H)
updates, state = optimiser.update(grads, state)
Z = optax.apply_updates(Z, updates)

Our loss function is only minimising the electronic energy. In order to calculate the total energy we must add the electrostatic
contribution that arises from each arrangement of nuclear charges. We can evaluate this additive constant using the vmap
transformation to calculate the nuclear energy for the entire batch of Hamiltonians

E_nuclear = jax.vmap(nuclear_energy)(H.basis.structure)
E_total = energy(Z, H) + E_nuclear

In Figure 2 we visualise the batched total loss as well as the converged bond dissociation curve which is evaluated entirely
in parallel within our batch processing implementation for DFT. As far as we are aware, MESS is the first demonstration of
a batched implementation for DFT with full parallel evaluation. We envision that batched implementations such as this can
be used as a building block for high-throughput DFT simulations for generating large-scale datasets.
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Figure 2. Batched evaluation of DFT energy for H2 molecule
within LDA approximation and the minimal STO-3G basis set.

6. Concluding Thoughts
We have presented MESS, a unified simulation environment
designed to remove any friction for adopting machine learn-
ing within electronic structure simulations. One of MESS’s
key features is the ability to leverage the JAX ecosystem, en-
abling hardware acceleration, automatic differentiation and
optimisation through high-level function transformations.

Another promising direction for MESS is accelerating algo-
rithmic research in electronic structure. Significant progress
has been made in reformulating DFT to scale linearly with
the number of atoms in the simulation rather than the cu-
bic scaling of standard DFT implementations (Bowler &
Miyazaki, 2012; Kohn, 1996; Prodan & Kohn, 2005). These
efforts have demonstrated that scaling electronic structure
can be essential to elucidating complex phenomena across
biochemistry and materials (Cole & Hine, 2016). We see
MESS as an ideal environment for exploring novel electron
density representations that can satisfy the requirements for
achieving linear scaling DFT.

Software and Data
Source code for MESS is available on GitHub at the follow-
ing address: github.com/graphcore-research/mess

Executable notebooks described here and API documen-
tation for MESS are available at the following address:
graphcore-research.github.io/mess
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ing interatomic potentials as emerging tools for materials
science. Advanced Materials, 31(46):1902765, 2019.

Dirac, P. A. M. Quantum mechanics of many-electron sys-
tems. Proceedings of the Royal Society of London. Series
A, Containing Papers of a Mathematical and Physical
Character, 123(792):714–733, 1929.

Drautz, R. Atomic cluster expansion for accurate and trans-
ferable interatomic potentials. Physical Review B, 99(1):
014104, 2019.

Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T.,
Zhao, Y., Beauchamp, K. A., Wang, L.-P., Simmonett,
A. C., Harrigan, M. P., Stern, C. D., et al. Openmm 7:
Rapid development of high performance algorithms for
molecular dynamics. PLoS computational biology, 13(7):
e1005659, 2017.

Eastman, P., Behara, P. K., Dotson, D. L., Galvelis, R., Herr,
J. E., Horton, J. T., Mao, Y., Chodera, J. D., Pritchard,
B. P., Wang, Y., et al. Spice, a dataset of drug-like
molecules and peptides for training machine learning
potentials. Scientific Data, 10(1):11, 2023.

Frostig, R., Johnson, M. J., and Leary, C. Compiling ma-
chine learning programs via high-level tracing. Systems
for Machine Learning, 4(9), 2018.

Goerigk, L. and Mehta, N. A trip to the density functional
theory zoo: warnings and recommendations for the user.
Australian Journal of Chemistry, 72(8):563–573, 2019.
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Schütt, K. T., Sauceda, H. E., Kindermans, P.-J.,
Tkatchenko, A., and Müller, K.-R. Schnet–a deep learn-
ing architecture for molecules and materials. The Journal
of Chemical Physics, 148(24), 2018.

Seritan, S., Bannwarth, C., Fales, B. S., Hohenstein, E. G.,
Isborn, C. M., Kokkila-Schumacher, S. I., Li, X., Liu, F.,
Luehr, N., Snyder Jr, J. W., et al. Terachem: A graphical
processing unit-accelerated electronic structure package
for large-scale ab initio molecular dynamics. Wiley Inter-
disciplinary Reviews: Computational Molecular Science,
11(2):e1494, 2021.

10



Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S.,
Dror, R. O., Eastwood, M. P., Bank, J. A., Jumper, J. M.,
Salmon, J. K., Shan, Y., et al. Atomic-level characteriza-
tion of the structural dynamics of proteins. Science, 330
(6002):341–346, 2010.

Shaw, D. E., Grossman, J., Bank, J. A., Batson, B., Butts,
J. A., Chao, J. C., Deneroff, M. M., Dror, R. O., Even, A.,
Fenton, C. H., et al. Anton 2: raising the bar for perfor-
mance and programmability in a special-purpose molec-
ular dynamics supercomputer. In SC’14: Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 41–53.
IEEE, 2014.

Shipley, A. M., Hutcheon, M. J., Needs, R. J., and Pickard,
C. J. High-throughput discovery of high-temperature
conventional superconductors. Physical Review B, 104
(5):054501, 2021.

Sun, Q. Libcint: An efficient general integral library for
gaussian basis functions. Journal of computational chem-
istry, 36(22):1664–1671, 2015.

Sun, Q., Berkelbach, T. C., Blunt, N. S., Booth, G. H., Guo,
S., Li, Z., Liu, J., McClain, J. D., Sayfutyarova, E. R.,
Sharma, S., et al. Pyscf: the python-based simulations of
chemistry framework. Wiley Interdisciplinary Reviews:
Computational Molecular Science, 8(1):e1340, 2018.

Szabo, A. and Ostlund, N. S. Modern quantum chem-
istry: introduction to advanced electronic structure the-
ory. Courier Corporation, 2012.

Taketa, H., Huzinaga, S., and O-ohata, K. Gaussian-
expansion methods for molecular integrals. Journal of
the physical society of Japan, 21(11):2313–2324, 1966.

Tamayo-Mendoza, T., Kreisbeck, C., Lindh, R., and Aspuru-
Guzik, A. Automatic differentiation in quantum chem-
istry with applications to fully variational hartree–fock.
ACS central science, 4(5):559–566, 2018.

Tan, C. W., Pickard, C. J., and Witt, W. C. Automatic
differentiation for orbital-free density functional theory.
The Journal of Chemical Physics, 158(12), 2023.

Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M.,
and Tucker, G. J. Spectral neighbor analysis method for
automated generation of quantum-accurate interatomic
potentials. Journal of Computational Physics, 285:316–
330, 2015.

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu,
D. S., Brown, W. M., Crozier, P. S., In’t Veld, P. J.,
Kohlmeyer, A., Moore, S. G., Nguyen, T. D., et al.
Lammps-a flexible simulation tool for particle-based ma-
terials modeling at the atomic, meso, and continuum

scales. Computer Physics Communications, 271:108171,
2022.

Tillet, P., Kung, H.-T., and Cox, D. Triton: an intermediate
language and compiler for tiled neural network computa-
tions. In Proceedings of the 3rd ACM SIGPLAN Interna-
tional Workshop on Machine Learning and Programming
Languages, pp. 10–19, 2019.

von Lilienfeld, O. A. and Burke, K. Retrospective on a
decade of machine learning for chemical discovery. Na-
ture communications, 11(1):4895, 2020.

Westermayr, J., Gastegger, M., Schütt, K. T., and Maurer,
R. J. Perspective on integrating machine learning into
computational chemistry and materials science. The Jour-
nal of Chemical Physics, 154(23), 2021.

Wu, X., Sun, Q., Pu, Z., Zheng, T., Ma, W., Yan, W., Yu,
X., Wu, Z., Huo, M., Li, X., et al. Python-based quan-
tum chemistry calculations with gpu acceleration. arXiv
preprint arXiv:2404.09452, 2024.

Yoshikawa, N. and Sumita, M. Automatic differentiation
for the direct minimization approach to the hartree–fock
method. The Journal of Physical Chemistry A, 126(45):
8487–8493, 2022.

Zhang, X. and Chan, G. K.-L. Differentiable quantum
chemistry with pyscf for molecules and materials at the
mean-field level and beyond. The Journal of Chemical
Physics, 157(20):204801, 2022.

11


