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Abstract

We propose an end-to-end framework using transformers to construct analytical
(local) Lyapunov functions for addressing key challenges in current neural network-
based approaches, namely scalability and interpretability. Our framework includes
a transformer-based generator, which proposes candidate Lyapunov functions, and
a falsifier that validates these candidates. The model is updated via risk-seeking
policy gradient. We demonstrate the efficiency of our approach on a range of
nonlinear dynamical systems with up to ten dimensions and show that it can
discover Lyapunov functions not previously identified in the control literature. This
work has been accepted by International Conference on Machine Learning 2025.
Full implementation is available on Github.

1 Introduction

A Lyapunov function is an energy-like function used to certify the stability of dynamical systems. A
sufficient condition for stability is that the Lyapunov function decreases along system trajectories. It
is also central to controller design, offering formal guarantees of closed-loop stability and robust-
ness [Khalil, 2002]. However, designing Lyapunov functions for nonlinear systems has long been
considered more of an ‘art’ than a science, even for stable dynamics, due to its inherent complexities.

Existing techniques for Lyapunov function construction can be categorized into two kinds. The
computational approaches, such as sum-of-squares (SOS) methods [Papachristodoulou and Prajnal
2005albl /Ahmadi and Majumdar, 2016} |Dai and Permenter} 2023|], formulate the task as an optimiza-
tion problem. However, the restriction of the candidates’ form (e.g., polynomial formula) impedes its
applicability to general nonlinear dynamics for real-world problems [Papachristodoulou and Prajnal,
2005albl]. The neural network-based approaches [Chang et al., 2019, Zhou et al., [2022, Wu et al.,
2023, [Edwards et al.| [2024] |Yang et al.,|2024]] parametrize the Lyapunov function as a neural network
and optimize parameters with respect to Lyapunov conditions. Due to the black-box nature of NN,
these methods offer limited insights into the system’s dynamical behavior, and over-parameterization
and nonlinear activations complicate the condition verification, leading to scalability issues.

In this work, we aim to address the following question: Can neural networks effectively discover
valid analytical Lyapunov functions directly from complex system dynamics? To tackle this challenge,
we introduce an end-to-end framework designed to find analytical Lyapunov functions for nonlinear
dynamical systems given in analytical form. Building on the transformer’s ability to model complex
dependencies [Vaswani et al, [2017]] and the success of deep symbolic regression methods [Holt
et al.| 2023]], our framework deploys a symbolic transformer [Kamienny et al., 2022]] for Lyapunov
function discovery. Given the lack of high-quality (local) Lyapunov function datasets, particularly
for high-dimensional systems, we propose a reinforcement learning (RL)-based approach to search
for Lyapunov functions on a per-system basis, instead of pre-training like |Alfarano et al.| [2024]].
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Lyapunov conditions are verified by localized sampling in the neighborhoods of minimizers of
candidate expressions, and identified counterexamples are incorporated into the training set for
further optimization. We demonstrate the efficiency of our method on various systems, including non-
polynomial dynamics like the pendulum, quadrotor, and power system frequency control. Notably,
our approach scales to a 10-D system and discovers a valid local Lyapunov function for power system
frequency control with lossy transmission lines, which is previously unknown in the literature.

2 Preliminary

Our framework searches for analytical Lyapunov functions of autonomous nonlinear dynamics at an
equilibrium point. Without loss of generality, we assume the origin to be the equilibrium point.

Definition 1 (Dynamical systems). An n-D autonomous nonlinear dynamical system is given by
d
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where f : D — R" is a Lipschitz-continuous vector field, and D C R"™ is a set containing the origin
that defines the state space. Each z(t) € D is a state vector.

Definition 2 (Asymptotic stability). A system of (I) is stable at the origin if V € > 0, there exists
d = 6(e) > 0 such that ||z(0)|| <0 = ||z(¢)|| < e, ¥t > 0. The origin is asymptotically stable if
it is stable and d can be chosen such that || z(0)|| < 6 = tlim xz(t) =0.
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Definition 3 (Lie derivative). The Lie derivative of a continuously differentiable scalar function
V : D — R along the trajectory of (I)) is given by

oV dx;
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Proposition 1 (Lyapunov functions for asymptotic stability). Let x = 0 be an equilibrium point for
and D C R"™ be a domain containing the t = 0. Let V : D — R be a continuously differentiable
function such that

V(0) = 0and V(x) > 0 in D\{0}, (3a)
LV(z) < 0in D\{0}, (3b)

then the origin is asymptotically stable.

Definition 4 (Lyapunov risk). Consider a candidate Lyapunov function V for system f(z) from

Deﬁmtlon For a dataset X = {z1,--- ,zx} where z; € D, the Lyapunov risk of 14 Chang et al.
[2019] over D is defined by N

L(V) = % Z (maX(O, LV (x;)) 4+ max(0, —V(xﬁ)) . €]
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3 Proposed Method

Our framework consists of three components: 1) a symbolic transformer for candidate analytical
Lyapunov functions generation, 2) a numerical verifier employing the Simplicial Homology Global
Optimization (SHGO) [Endres et al., 2018] for Lyapunov conditions’ checking, and 3) a risk-seeking
policy gradient algorithm optimizing the transformer’s parameters based on candidate expressions’
rewards. Implementation details of these parts are in Appendix [A] We denote X C D as the training
set for reward calculation.

Candidate Lyapunov Function Generation. We use a symbolic transformer model, parametrized
as ¢, as the backbone. The transformer takes a dynamical system f(zx) as input and aims to generate
candidate analytical Lyapunov functions Vj such that: Vy(z) > 0and LV, < 0,V = € D\{0}.
Following the representation rules in[Lample and Charton| [2020]], our framework represents symbolic
transformer models’ input and output as sequences of symbolic tokens. In each epoch, we sample
a batch of @ candidates V,, = {V ~ p(Vy|o, f ()}, which will be verified according to the
Lyapunov conditions and guide the optimization direction of parameters ¢ for further generation.



Verification and Falsification Feedback. SHGO is a constrained global optimization algorithm
with theoretical guarantees for convergence (Proposition [2). Taking advantage of the theoretical
results, we propose a global-optimization-based verification algorithm using SHGO that effectively
checks the Lyapunov conditions and feedbacks counterexamples for further training. For a candidate
Vi, SHGO is first applied to identify minimizers 27 and x; of Vs and — LV}, in the state space D.
These minimizers highlight the regions where Lyapunov conditions are most likely to fail. Next, data
points z from neighborhoods around these minimizers, B, (x7) and B,.(z3) for some r < ||D||z, are
sampled to check Lyapunov conditions, i.e. Vy(z) > 0 and —LVy(z) > 0 for = € D\{0}. This
localized sampling scheme effectively identifies violations within D. Identified counterexamples X
are added to the training set X’ for reward calculations. Once a candidate Lyapunov function passes
this verification process and does not encounter any violation in /X, it indicates a numerically valid
solution is found, pending the final formal verification by SMT solver.

Proposition 2 (Convergence Gurantees of SHGO [Endres et al., 2018]]). For a given continuous
objective function f that is adequately sampled by a sampling set of size Ns. If the size of the
minimizer pool M extracted from the directed simplex (a convex polyhedron) H is |M|. Then any
further increase of the sampling size N will not increase | M|.

Risk-Seeking Policy Gradient. We define the proposed Lyapunov risk reward as:
~ 1
R(Vy) = ——=— 5
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where the empirical Lyapunov risk £(V;) in Equation (@) is measured over training set X’. This
reward quantifies the violation degree of Lyapunov conditions over X'. Since the violation measure
for V4 is non-differentiable with respect ¢, we employ the risk-seeking policy gradient to update ¢
end-to-end. In our task, final performance depends on finding at least one valid Lyapunov function
fulfilling the conditions in Proposition [I] so standard policy gradient methods, which maximize
the expected reward for candidates generated from current parameters, misalign with our objective.
Instead, we adopt risk-seeking policy gradient [[Petersen et al.,[2020]. Let R, (¢) as the 1 — « quantile
of the distribution of rewards of sampled candidates under the current policy ¢. The learning objective
of risk-seeking policy gradient, parameterized by «, is formulated as:

rlsk(d)? ) V¢~p(V¢\¢ f(z)) |:7R(‘~/¢) | R(f/(i)) > Ra(¢):| . (6)

This objective aims to optimize only rewards of high-quality candidates from the top 1 — « quantile.

Automated Expert Guidance. Inspired by Mundhenk et al.| [2021]], we incorporate a Genetic
Programming (GP) component [Fortin et al.||2012] into the training paradigm to further enhance the

training efficiency. In each epoch, we feed {V¢ ~ p(Vylo, f(x NI, into the GP module, which
refines these expressions through evolutionary operatlons with respect to R(V¢). We select an ‘elite

set’ of the refined expressions f)gp = {f/g ~ GP(V¢) i—1, regard them as target expressions, and
optimize the transformer with the following expert guidance loss:
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where G is the number of expressions in V,,,, and k; is the complexity (number of symbolic tokens in

the pre-order traversal) of IN/;p. The GP solutions explore the characteristics of Lyapunov functions

that have not been captured by the transformer yet and effectively guide the transformer.

4 Experiment Results

We validate our algorithm across a variety of nonlinear dynamics. The test dynamics fall into two
kinds: 1). Polynomial Systems, and 2). Non-polynomial Systems, where detailed information is
summarized in Appendices [E| & [Fl dReal [Gao et al., 2013]] SMT solver is used for final verification
of found Lyapunov functions. We compare against four baseline algorithms on our test dynamics.
Neural methods: 1) Augmented Neural Lyapunov Control (ANLC) [Grande et al.| [2023], 2) FOSSIL
2.0 [Edwards et al., [2024]. Analytical methods: 3) the transformer-based global Lyapunov search
of |Alfarano et al.|[2024], 4) SOS methods via SOSTOOLS (Matlab) [Papachristodoulou et al.,|2013].



Table 1: Comparison between ours and neural baselines. Succ % is the successful rate of finding a valid
Lyapunov function in 5 hours out of 5 random seeds. Runtime is the average training time for a successful trial.

2-D Dynamics 3-D Dynamics 6-D Dynamics 8-D Dynamics (App.
Frameworks Suce % Runtime Suce % Runtime Suce % Runtime Suce % Runtime
Ours 100 165s 100 124s 80 6290s 80 14358s
ANLC 533 1.409s 46.7 63.91s 0 0 -
FOSSIL 2.0 80 7.708s 66.7 221s 0 0

Performance Analysis. Table E] summarizes the runtime, success rate, and discovered Lyapunov
functions for a selection of tested nonlinear systems, ranging from 2-D to 10-D, demonstrating
the robustness and scalability of our framework. Unlike existing methods that produce neural
Lyapunov functions, our framework yields interpretable analytical candidates. For example, it
correctly identifies the energy function as a valid Lyapunov function for the simple pendulum.
Likewise, for the 3-bus power system, it discovers the commonly used energy-based storage function
for incremental [Weitenberg et al.| [2018]]. The simplicity of analytical formulations allow SMT
solvers to efficiently verify Lyapunov conditions over the identified expressions.

Newly Discovered Lyapunov Function. The lossy frequency dynamics in power systems [[Chiang,
1989\ |Cui and Zhang| [2022] is a system that lacks a valid Lyapunov function to directly certify its
stability. In this paper, we focus on a 2-bus (4-D) lossy system with the equilibrium point at the origin,
with detailed descriptions in Appendix [F.3] Using the proposed method, we successfully discovered
two local Lyapunov functions valid in the considered region D = {(61, 62, w1, w2) € R* | |8;] <
0.75 and |w;| < 2 fori = 1,2}:

2 2
V1(61,62,w1,w2) = wa + (Sin(lsg) - sin(51) erg)z, V2(61,62,UJ1¢4}2) = wa -+ (Sin((sz) - sin(él) —_ w1>2.
i=1 i=1
To the best of our knowledge, these are the first analytical Lyapunov functions used to certify the
local stability of a 2-bus lossy power system.

Neural Lyapunov Function Baselines. Table|l|compares ours with two neural methods. While the
baselines train faster on low-dimensional systems, their restricted small networks fail to converge on
harder tasks (e.g., the pendulum and 3-D Trig), yielding lower success rates overall. As dimensionality
increases, verification of lie derivative becomes a bottleneck for neural approaches. Even networks
with fewer than 15 neurons per layer requires hours for formal checks. In contrast, our method scales
robustly to 8-D systems: its analytical forms enable fast numerical verification and allow SMT solvers
to certify candidates within milliseconds through term cancellations and algebraic restructuring.

Analytical Lyapunov Function Baselines. Solely trained on globally stable systems with fewer than
6 states, the pre-trained model of |Alfarano et al.|[2024]] can only produce valid Lyapunov functions
for the low-dimensional examples in Appendices E3 & which are globally stable.
For polynomial systems, as shown in Table [2] though SOS is more efficient for low-dimensional
examples, it fails on higher-dimensional locally stable cases (Appendices [E.4] [E.5] & [E.6), where
additional Lie derivative constraints render verification intractable. For non-polynomial dynamics,
we applied the recasting scheme [Papachristodoulou and Prajna, [2005b]], replacing non-poly with
auxiliary variables linked by extra (in)equalities. While SOS recovered certificates for the pendulum
and 3-D trig systems, runtimes were far higher than ours (over one hour vs. 157s for 3-D trig
dynamics shown in Table[3). This approach suffers from three major drawbacks - heavy reliance on
domain expertise, significant computational overhead, and the ability to certify only stability, not
asymptotical stability — limiting its practicality for high-dimensional, non-polynomial systems.

Table 2: Training/solving time of ours and sum-of-squares (SOS) on polynomial systems, averaged over successful Table 3: Training/solving time of ours and
trials. The stable regions (local or global) of the considered dynamics are indicated in smaller font. SOS on two non-poly systems.
Test Systems 2-D Systems 3-D Systems 6-D System 8-D System 10-D System Test System: App. App.
¥s (App-App (App. (app[E4) | (App[ES) (Apn estSystems
Ours 97s 108s 1667s 14358s 64223s Ours 288s 157s
SOS 0.765s 1.503s - - - SOS 19.58s 6163s

5 Conclusion

We present an end-to-end framework for discovering analytical Lyapunov functions for nonlinear
dynamics. Symbolic transformer, trained with a risk-seeking policy gradient and enhanced by genetic



programming, proposes candidate expressions; the SHGO optimizer verifies candidates and generates
counterexamples during training; and an SMT solver certifies the final candidates. The method
scales to 10-D dynamics and has discovered previously unknown Lyapunov functions for lossy power
systems, with potential extension to other certificate functions such as control barrier functions.
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A Implementation Details of Framework

The proposed framework, visualized in Figure[l] consists of three components: 1) a symbolic trans-
former for candidate analytical Lyapunov functions generation, where ¢ and 6 denote the parameters
of encoder and decoder, 2) a numerical verifier employing the SHGO [Endres et al.,[2018]] global
optimization algorithm for Lyapunov conditions’ checking (Proposition [I)) and counterexamples’
feedback, and 3) a risk-seeking policy gradient algorithm optimizing the transformer’s parameters
based on candidate Lyapunov functions’ rewards. To tackle the challenges posed by the exponentially
growing search space of complex, high-dimensional systems, our framework integrates Genetic
Programming as expert guidance to improve expression quality and training efficiency. We denote
X C D as the training set for reward calculation. Algorithm [I| summarizes the overall training
process.
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Figure 1: Framework overview: The transformer takes embeddings of the dynamical system model as input
and generates candidate Lyapunov functions in an autoregressive manner. Hierarchical information is deployed
to enhance the model input. For example, when generating the last token x2, its parent is +, and its sibling
is 1. The output is the pre-order traversal of the expression’s binary tree. Candidates are verified using
a global-optimization-based verification process, with counterexamples added to the training set for reward
calculation. The transformer is updated via the risk-seeking policy gradient. The program terminates once a
valid expression is found.
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A.1 Symbolic Transformer Model

We outline the details of our symbolic transformer model, a conditional generator for analytical
candidate expression generation, comprising two components: 1) an encoder, and 2) a decoder.
¢ = {¢, 8} denotes the transformer parameters, where ¢ and 6 denote the parameters of encoder and
decoder respectively.

Expression Representation. Inspired by the deep symbolic regression frameworks, we use a
symbolic transformer model as the backbone. The transformer takes a dynamical system f(x) as

input and generates candidate analytical Lyapunov functions V;, such that: Vi (x) > 0 and LV <
0,V 2 € D\{0}. Following the expression representation rules in|Lample and Charton| [2020], our
framework represents symbolic transformer models’ input and output as sequences of symbolic
tokens. Each mathematical expression can be converted into a symbolic expression tree, a binary tree
where internal nodes are symbolic operators and terminal nodes (leaves in the tree) are variables or
constants. Symbolic operators can be either unary (i.e., one child), such as sin, cos, or binary (i.e., two
children), such as +, x. Furthermore, each symbolic expression tree can be represented as a sequence
of node values, either symbolic tokens or numerical coefficients, by its pre-order traversal (i.e., first
visiting the parent, then traversing the left child and right child). In this way, each expression obtains
a pre-order traversal representation, which can uniquely reconstruct the original expression [Petersen
et al.,2020].



Algorithm 1 Training Framework for Analytical Lyapunov Function Discovery via Reinforcement
Learning

Input: Dynamics f(x), state space D, quantile «, symbolic library £, batch size ), max complexity
k, radius r.
Output: Valid Lyapunov function V* for system f(z).
1: Initialize the conditional generator with parameters ¢,
2: Randomly sample training datapoints X = {z1,-- ,xx} where x; € D,
3: while no valid candidates found do
4 Vo e Vg~ p(Valo, @)}y,
V,p ¢ Genetic Programming(Vy),
V Vs U Vg,
V*, X, + verification(V, r, D), { Verify candidates ), return the valid Lyapunov function V*
(if any) and counterexamples X.. Details in App.[A.2] }
8:  if V* is not empty then
9: Return V*.
10 endif ~ .
11: R+ {R(VHVVieV},
12:  R,(¢) < (1 — a)-quantile of R,
13: ¢+ ¢ — Vyudux(o, ) , {risk-seeking policy gradient update. Equation (6) }
14: ¢ + ¢ — VuL(Vyp) , {expert guidance loss based on the genetic programming refined
Lyapunov functions f/gp to update policy. Equation (7).}
15:  Concatenate counterexamples X, to dataset X
16: end while
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Figure 2: We visualize the dynamics tokenization process of the simple pendulum system. Each
analytical formula in the ODE representation of input dynamics is first converted into an expression
tree and then represented by the pre-order traversal in symbolic tokens and constant coefficients.

Encoder Structure. Our framework employs the vanilla transformer encoder from|Vaswani et al.
[2017] to encode two types of input information: 1) the input system dynamics f(x), encoded into
a latent vector F € RP, where p € R, and 2) the hierarchical tree state representation [Petersen
et al., [2020] of the selected tokens, introduced below, encoded as a latent vector W € R¥, where
k € R. The resulting representations are concatenated as Z. Both inputs are expressed as sequences
of symbolic tokens and numerical coefficients when fed into the encoder. The numerical coefficients
are tokenized in two schemes: an integer is represented as a sequence of digits in base b = 10 (e.g.
123 is tokenized as [1, 2, 3]), and a real number is represented in scientific notation rounded to 4
significant digits (e.g. 3.14 is tokenized as [3, 1,4, 0, 10°]). For damped pendulum example in Figure
[2] suppose we have m = 0.5kg, l = 1m, g = 9.81, and b = 0.1, the dynamics can be tokenized as:
[SOS, 22, EOS, SOS, +, X, —,9,8,1,0,10°, sin, z1, x, —,2,0,0,0,10~ !, 25, E0S]. In this work, we
set the embedding dimension to 128, attention head to 2, and applied a 2-layer transformer encoder
for system dynamics f(x) encoding and a 3-layer transformer encoder for hierarchical tree state
representation encoding.

Decoder Structure. The decoder of the symbolic transformer model also uses the vanilla trans-
former decoder, with an additional linear layer to output the token probability ¢ over the symbolic
library L, for token selection. Candidate Lyapunov functions V;, are sampled as sequences of



symbolic tokens in pre-order traversal. Each symbolic token Vj, is sampled autogressively from con-
ditional distribution p(Vis, Vs, ,_,,, @, f(z)). Since analytical expression in its pre-order traversal is
inherently hierarchical, we also deploy the hierarchical tree state representation [Petersen et al., 2020,
Holt et al.,2023]]. This method enhances the decoder input by concatenating the representations of the
parent and sibling nodes with previously selected outputs and the dynamics. Upon token sampling is
complete for V¢, we subtract V¢( ) from the candidate expression to enforce the Lyapunov condition

V(0) = 0. In each epoch, a batch of candidate Lyapunov functions (Vg ~ p(Vylo, )L, is
sampled as candidates, which are verified by global-optimization-based numerical verification. In this
work, we set the embedding dimension to 128, attention head to 2, and applied a 6-layer transformer
decoder for the candidate expression generation. In each epoch, we sample = 500 expressions as
candidates.

A.2 Global-optimization-based Numerical Verification

For a given dynamics f(x), suppose f/¢ is an invalid analytical candidate Lyapunov function. Ac-
cording to Lyapunov conditions defined in Proposition [T} for 27, 25 € D, where z7, x5 are the global

minimizers of V¢ and — Ly V¢ in the state space D, the following two inequalities hold: V¢(x1) <0

and Ly V¢(z2) > 0. This implies that if V¢ is invalid, the neighborhoods of z7 and x5 are highly likely
to capture significant violations. Based on this observation, we propose a global-optimization-based
numerical verification. This verification identifies minimizers 7 and x5 by Simplicial Homology
Global Optimization (SHGO), verifies Lyapunov conditions on localized samples in neighborhoods
B, (z7) and B, (x3), and feeds counterexamples back into the training set X'. We detail the sampling
and condition-checking procedures in Algorithm 2] Figure [3]illustrates this verification process on a
sampled candidate, V = (1 + :1:2)2 + x4, for the Van der Pol Oscillator. In the implementation,
we initiate with 2048 starting points and iterate 3 times in the SHGO algorithm for the minimizer
detection. We tested the number of starting points with values [1024, 2048, 4096, 8196] on various
high-dimensional continuous functions, and the setting with 2048 starting points achieves the best
efficiency. In datapoint sampling for counter-example identification, for each candidate expression,
800 data points are sampled from each of B, (z7) and B, (z3), and additional 800 data points are
randomly sampled across the state space D.

Algorithm 2 Global-optimization-based Numerical Verification

Input: A set of analytical expressions V = {V¢| i = 1,--- ,Q}, radius r, and state space D.
Output: a set of numerically valid candidate V*, a set of encountered counterexample
Xee-

LV, Xee < {},{}

2 forz—ltono _

3: a3}, 23 < SHGO(V', D), SHGO(—L;V", D), {Identify global minimizers within the state
space D}

4 Xy, X, Xs — {z;| @i € Br(a})}, {z;| z; € Br(a3)}, {zx| zx € D}
5:  Check Lyapunov conditions on X7 U Xo U X5,
6:  if R(V?) = 1 and no counter example found in X; U X5 U X5 then
7: VeV U{V}.
8. else

9: Xee + Xce Uidentified counterexamples in X3 U Ao U X3, {Gather falsification }
10:  endif
11: end for

12: Return V*, X...

A.3 Risk-seeking Policy Gradient

Objective. The standard policy gradient Jguq(¢) = B, n(@,10, f(m))[R(%)] aims to optimize
the average performance of a policy given the reward function R(-). However, for the task of
Lyapunov function construction, the final performance is measured by identifying a single or a
few valid analytical Lyapunov functions that satisfy the Lyapunov conditions. Thus, Jgq4(¢) is not
an appropriate objective, as there is a mismatch between the objective being optimized and the
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Vp = (1 + %)% + x, LV = 2x1(x; + x3) — (1 = 2202 = D)% +x) + 1)

Figure 3: This plot visualizes our proposed verification process on a sampled candidate. V =
(v1 + 22)% + x5 is a sampled candidate during the training for Van Der Pol Oscillator. Using
Simplicial Homology Global Optimization, we first identify the minimizer of the Lyapunov function
and the maximizer of the Lie Derivative, the black dots in each graph. Next, data points are sampled
in the neighborhoods of the two points, the regions in red circles. For sampled data points that violate
the Lyapunov conditions, we feed them into the training set X.

final performance evaluation metric. To address this misalignment, we adopt risk-seeking policy
gradient [Petersen et al.|, 2020]], optimizing the best-case performance via the objective Jyiek (4, @), as
defined in Equation (6). In implementation, we choose cv = 0.1 in the training for all tested dynamics.

Proposition 3 (Petersen et al.| [2020]). Let Jix (b, ) denote the conditional expectation of rewards
above the (1 — «)-quantile R, (¢) as in Equation (6). Then the gradient of Jis(¢, ) is given by:

Vods(60) =By, yiy1.50 | (Ral@) = ROV)) - Valogp(Vy | 6, f(2) | R(V) = Ra(9)] -
(®)

The proposition suggests a Monte Carlo estimate of the gradient of Jys (¢, ) from a batch of N
samples:

N
1 ; iy
V¢Jrlsk d)a 7N Z |: V( )):| (‘“/éﬂ)zéa(d,)v(ﬁ 10gp(v¢g ) | ¢7 f(x))a 9

where R,,(¢) is the empirical (1 — «)-quantile of the batch of rewards, and 1, returns 1 if condition
2 is true and 0 otherwise. Compared to standard REINFORCE algorithm [1992], Equation
(E[) has two distinct features: (1) it has a specific baseline, R,,(¢), instead of an arbitrary baseline in
standard policy gradients chosen by user; (2) the gradient computation only uses the top « fraction of
samples.

Reward Design. To optimize the symbolic transformer parameters ¢ such that the decoder generates
a valid candidate Lyapunov function Vj satisfying Lyapunov conditions, we employ empirical
Lyapunov risk as the fitness metric to measure the violation degree of Lyapunov conditions within
the state space following |Chang et al.|[2019]. However, directly using the unbounded empirical
Lyapunov risk as the reward for risk-seeking policy gradient might introduce bias. To address this
issue, we adopt a bounded reward function using the continuous mapping g(x) = %

11



2020, Bastiani et al.,[2024], defined as:

R(V;) = g(L(V)) = 1+2<v¢>

where E(f@) measures the violation degree over the training set X'. This design ensures the reward is
bounded in [0, 1], avoiding bias in the risk-seeking policy gradient.

A4 Genetic Programming

In the field of symbolic regression, given the large, combinatorial search space, traditional approaches
commonly utilize evolutionary algorithms, especially genetic programming (GP) [Koza, [1992], to
retrieve analytical expressions that approximate the output values y given input data x. The GP-based
symbolic regression operates by evolving the input population of mathematical expressions through
evolutionary operations such as selection, crossover, and mutation. A pre-defined fitness metric serves
as the objective function to guide the optimization of the population over successive generations.
However, for analytical Lyapunov function construction, GP algorithms lack the capability to directly
generate Lyapunov functions from the given dynamics and require an initial population that represents
potential Lyapunov functions.

As the search space grows exponentially with the expression complexity and the number of states
in input dynamics, it is a challenging task even for the symbolic transformer model to search a
valid Lyapunov function for complex, high-dimensional systems. Inspired by [Mundhenk et al.
[2021]], we incorporate a GP component into the training framework to complement the symbolic
transformer model - the symbolic transformer model outputs a well-behaved initial populations of
expressions V;, which serve as the starting points for the GP component, and GP component refines

Vs through evolutionary operations to explore the characteristics of Lyapunov functions that might
be overlooked by symbolic transformer. The fitness metric for the GP component is the same as
the reward function used in the risk-seeking policy gradient. After each refinement, we select an
‘elite set’ of the top-performing refined expressions, f/gp, based on fitness values. These expressions
are treated as ground-truth solutions for the transformer decoder, and transformer parameters ¢ are
optimized through the expert guidance loss introduced. In the implementation, the size of ‘elite set’
Vgp 18 chosen to be 0.1Q), where () is the number of sampled candidate expressions V3 in each epoch.

In our framework, we employ three evolutionary operations: mutation, crossover, and selection, within
our Genetic Programming component (DEAP [Fortin et al.,2012]). A mutation operator introduces
random variations to an expression, such as replacing a subtree of one expression with another
randomly generated subtree. A crossover operator exchanges content between two expressions,
e.g., by swapping a subtree of one expression with a subtree of another expression, enabling the
combination of their features. A selection operator determines which expressions persist into the
next population. A common method is tournament selection [[Kozal [1992], where a set of [ candidate
expressions is randomly sampled from the population, and the expression with the highest fitness
value is selected. In each iteration of GP evolution, each expression has a probability of undergoing
mutation and a probability of undergoing crossover; selection is performed until the new generation’s
population has the same size as the current generation’s population. In empirical experiments, we
set the probability of undergoing mutation and crossover to be 0.5, and we adjust the size of the
tournament and number of evolutions proportional to the dimension of the input system.

B Experiment Settings

We validate the proposed algorithm across a variety of nonlinear dynamics by finding their local
Lyapunov functions at the equilibrium point to verify their stability, where the systems are autonomous
(or closed-loop systems with known feedback control laws). We use dReal [Gao et al.,|[2013]] SMT
solver for final verification of found Lyapunov functions, with a numerical tolerance error € = e¢~>
and precision § = e~ '2, over the state space, i.e. V(z) > § and LV (z) < —§ over D\B.(0). The
excluded ball B, (0) is to avoid numerical issues, which is a common practice for SMT-based formal
verification [Chang et al.| 2019]. Global stability can be determined through further expert analysis;
for instance, if the Lie derivative is a negation of SOS, it is sufficient to establish global stability. The
symbolic library L, is defined as {4, —, X, sin, cos, ; } in all tests.
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Algorithm 3 Expert Guidance Loss

Input: ‘Elite set’ of analytical expressions f}gp, input dynamics f(z), and transformer parameters ¢.
Output: The weighted cross-entropy loss between the transformer model output probability distribu-

tion and given refined expressions V.

1: G < |Vypl, {Get the size of “elite set’}

2: L0,

3: fori=1to G do

4 L+ LA+ R(V,,) Z?L1 —log (p(V;pJ_ Vaprisny» @ f(a:))), {Calculate the expert guid-

ance loss based on ‘elite set’ figp. Equation (7)}
end for
2 L(Vgp) éﬁ,

: Return £L(V,,,).

aw

3

C Baseline Descriptions

C.1 Augmented Neural Lyapunov Control (ANLC)

The Augmented Neural Lyapunov Control (ANLC) [[Grande et al.l 2023]] combines Artificial Neural
Networks (ANNs) with Satisfiability Modulo Theories (SMT) solvers to synthesize stabilizing control
laws for the input dynamics f(z) with formal guarantees. The neural network is trained over a
dataset of state-space samples to generate candidate control laws and Lyapunov functions, while the
SMT solvers are tasked with certifying the Lyapunov conditions of the neural Lyapunov function
over a continuous domain and returning a counterexample if the function is invalid. To ease the
computationally inefficient verification process in the SMT module, ANLC proposed a discrete
falsifier, which discretized the state space for sample selection and evaluation, employed before
the SMT call to avoid the frequent calling of the time-consuming SMT falsifier. As the previous
learning-based Lyapunov function construction approaches usually initialized the parameters of
control policy with pre-computed gains from state-feedback controllers, e.g. Linear-Quadratic
Regulators, which requires user time and control expertise to properly perform the initialization
process, ANLC instead removes the need of control initialization by its proposed compositional
control architecture containing both linear and nonlinear control laws so that the proposed method
allows the synthesis of nonlinear (as well as linear) control laws with the sole requirement being the
knowledge of the system dynamics. For empirical experiments, we tested the ANLC algorithm for
all system dynamics in Appendices|[E|and[F} We tested on the Van Der Pol Oscillator and 3D Trig
dynamics to get the best hyperparameter setting. In bold, we show the chosen parameters, selected to
have the best success discovery rate on Van Der Pol Oscillator and 3D Trig Dynamics.

« Ir=[0.1,0.01,0.001]

» activations = [(2%, 22, 2?), (tanh, tanh, 2?), (22, 2, tanh), (tanh, tanh, tanh)]
* hidden neurons = [6,12, 15, 20]

data = [500, 1000, 2000]

* iteration = [500, 1000, 2000]

C.2 FOSSIL 2.0

FOSSIL 2.0 [Edwards et al., [2024] is a software tool for robust formal synthesis of certificates
(e.g., Lyapunov and barrier functions) for dynamical systems modelled as ordinary differential and
difference equations. FOSSIL 2.0 implements a counterexample-guided inductive synthesis (CEGIS)
for the construction of certificates alongside a feedback control law. In the loop of CEGIS, the learner,
based upon neural network templates, acts as a candidate to satisfy the conditions over a finite set
D of samples, while the verifier (formal verification tools) works in a symbolic environment that
either confirms or falsifies whether the candidate from learner satisfies the conditions over the whole
dense domain X'. If the verifier falsifies the candidate, one or more counterexamples identified by
the verifier are added to the sample set, and the network is retrained. This loop repeats until the
verification proves that no counterexamples exist or until a timeout is reached. Similar to the ANLC,
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in the empirical experiment, we set the hyperparameters based on the Van Der Pol Oscillator and 3-D
Trig dynamics and tested for all other dynamics in Appendices [E|and [F}

« Ir=0.1,0.01,0.001]

» activations = [(22, 22), (tanh, tanh, 22), (tanh, £2)]
* hidden neurons = [6, 10, 12]

« data = [500, 1000, 2000]

* iteration = [25, 50, 100]

C.3 Global Lyapunov Function Discovery by Pre-trained Transformer

Alfarano et al.|[2024] pre-trained a transformer on backward-generated and forward-generated global
Lyapunov function datasets. The backward-generated datasets involve sampling arbitrary positive
definite functions and deriving corresponding stable dynamics through some specific symbolic
designs, while the forward-generated polynomial datasets contain randomly generated dynamics with
corresponding Lyapunov functions identified by SOS methods if the system is inherently globally
stable. Candidate Lyapunov expressions are sampled using beam search in a token-by-token manner.
However, their method cannot adaptively refine the candidate Lyapunov functions if the beam search
fails on specific dynamics, and it requires a dataset that is expensive to generate (e.g., thousands
of CPU hours for a 5-D dynamics dataset) to achieve adequate generalization during inference.
Furthermore, its emphasis on global stability limits its applicability to real-world, nonpolynomial
control systems, which typically only admit local stability. Due to the lack of resources of multiple
industrial-level GPUs, we contacted the authors of |/Alfarano et al.|[2024]] to conduct the evaluation
of their pre-trained model on our test systems, which is shown in Section ] Trained solely on
globally stable systems with fewer than six states, it produced valid Lyapunov functions only for the
low-dimensional examples in Appendices &[F1] which have global stability guarantees,
and failed on every benchmark that is only locally stable.

C.4 Sum-of-Squares (SOS) Methods

SOS methods formulate Lyapunov functions discovery of given dynamics as a semi-definite program-
ming task, where the coefficients of a pre-defined SOS candidate expressions are optimized to satisfy
the Lyapunov conditions (hard constraints in the optimization problem) using convex optimization
tools. SOS methods are generally applied to polynomial systems for stability analysis. With proper
recasting techniques, SOS methods can also be applied to non-polynomial systems.

Definition 5 (Sum of Squares [Papachristodoulou and Prajna, [2005a]). For x € R", a multivariate

polynomial p(z) is a sum of squares (SOS) if there exist some polynomials f;(z),i = 1,--- , M
such that

p(r) =3 il

Polynomial systems. By |Papachristodoulou and Prajnal [2005a]], for a given n-dimensional polyno-
mial dynamics f(x) and an integer degree 2d, to check the globally asymptotical stability of f(x),
SOS method aims to find a polynomial V'(x) of degree 2d, such that

L V(z)—>0r, Z?:l €7 is a SOS, where ijl €j >, Vi=1,..,nwithy > 0, and
€ij Z OViandj,

2. —9Y f(z)is a SOS.

For local stability analysis, consider a ball of radius r centered at origin B,.(0), which can be
represented by the semialgebraic set S = {z : g(z,7) > 0, where g(z,7) = r — > 1 2?}.
We require that the stability condition holds in S. Retaining the same optimization objective and
constraints on V' (x) as before, a modified constraint on Lie derivative is imposed: —%—Z fz) —

s(x)g(x,r) is a SOS for some SOS s(x). If such an s(z) exists, we can establish local stability.
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In Sectiond] we develop our code based on the findlyap function from SOSTOOLS (MATLAB)
and issue-16/of SOSTOOLS’ official GitHub repo to examine the SOS method on polynomial systems
in Appendix [E] Table ] summarizes the experiment results of SOS approach on our polynomial test
dynamics.

Table 4: Training\solving time of sum-of-squares (SOS) on test polynomial systems.

Systems | App. F.1 | App. E2 | App. E3-1 | App. E3-1I | App. E4 | App. E5 | App. F.6

Degree 2d 2 2 2 4 2 2 2
Region B1(0) Global Global Global B1(0) B1(0) B1(0)
Runtime 0.697s 0.832s 0.497s 2.509s - - -

D Experiment Results Summary

We summarized the runtime, success rate, and discovered Lyapunov functions for a selection of
tested nonlinear systems, ranging from 2-D to 10-D, demonstrating the robustness and scalability
of our framework in Table[5} As dimensionality increases, runtime grows with the exponentially
expanding search space, reward calculations, SHGO optimization, and genetic programming. Detailed
experiment results for each test dynamics are in Appendices [E| & [

Unlike existing methods that produce neural Lyapunov functions, our framework yields interpretable
analytical candidates. For example, it correctly identifies the energy function as a valid Lyapunov
function for the simple pendulum. Likewise, for the 3-bus power system (Appendix [F3),, it discovers
the commonly used energy-based storage function for incremental passive systems |Weitenberg et al.
[2018].

Analytical Lyapunov functions can potentially bypass the need for formal verification. In the 3-D Trig
system (Appendix[F.2), over the state space D = {(z1, 22, 73) € R® | |z;| < 1.5,V € {1,2,3}},
the positive definiteness of the identified Lyapunov function is evident from its formulation. Moreover,
the Lie derivative L;V = —2z3 — x5 sin(2x3) is directly identifiable as non-positive in D, since
xsin(z) > 0 forall x € (—m, 7). By the invariance principle [Khalil,2002], the discovered function
certifies the asymptotic stability of the origin in state space D. When direct identification is non-trivial,
SMT solvers can efficiently verify Lyapunov conditions given analytical formulations’ simplicity.

Table 5: Performance and time consumption of our method on test dynamics. ‘App.” refers to Appendix.

Dynamics Runtime  Ver.” Found Lyapunov Functions Stab* Suce % *
2-D Polynomial Sys (App.|E.2) 68s 2ms V=923 + 223 Las. 100
2-D Van Der Pol (App. [E.1) 126s 1ms V =2a? 422 Las. 100
2-D Simple Pendulum (App. |F.1) 288s 1 ms V = 2(1 — cos(z1)) + =2 La.s. 100
3-D Polynomial Sys (App. | 112s 1 ms V = 933% —+ grg + £§ las. 100
3-D Trig Dynamics (App. [F.2) 157s 1 ms V =1 —cos(x1)? + 22 + sin(x3)? Las. 100
4-D Lossy Power Sys (App.[E5) | 36325 621s V= w? + w? + (ws —sin(61) +sin(52))>  las. 100
6-D Polynomial Sys (Ap. 1667s 7 ms V = 26:1 ’I'? Las. 100
6-D Quadrotor (App. 3218s 1ms V= Z?:})’ m? g.as. 80
6-D Lossless Power Sys (App.|E3) | 18094s 2 ms V=(X2, wi)- Las. 60

3 3
05> > cos(d;—d6;)—1
i=1j=1,i#j
9-D Synthetic Sys (App. [F.6) 27047s 6.6s V = (3%, 27) +sin(ar)? lLas. 60
+:r§ —cos(zg) + 1
10-D Polynomial Sys (App.[E6) | 642235 2ms V=310 a2 Las. 60

a. ‘Ver.” presents the time consumption for the final verification of the found Lyapunov functions. All found Lyapunov functions passed SMT solver’s verification.
. ‘Stab’ means stability. In this column, ‘g.a.s’ represents globally asymptotically stable, and ‘l.a.s.” represents locally asymptotically stable.
. "Succ %’ denotes the successful rate of finding a valid Lyapunov function out of 5 random seeds.
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E Polynomial Nonlinear Dynamical System

E.1 Van Der Pol Oscillator
Van Der Pol Oscillator is a nonconservative, oscillating system with nonlinear damping [Zhou et al.,
2022|. The dynamics of the Van Der Pol Oscillator have two state variables, formulated as follows:
T 1 = T2,
iy = —xp — p(l — 22) - 29,

where 1 and x5 represent the object’s position in the Cartesian coordinate, parameter p € R
indicates the strength of the damping. Under the state space D = {(x1,72) € R? | |z;| < 1} and
setting 11 = 1, our proposed method found valid local Lyapunov function V (1, 22) = 2% + 3. Other
forms of Lyapunov functions for Van Der Pol Oscillator, for example, V (x1,z2) = :z:f +xo(z1 +22),
are also recovered during the experiments.

E.2 Two-variable-polynomial-system with higher degree
Here we have a polynomial system of two variables with a higher degree, adopted from |Alfarano
et al.| [2024]], formulated as:

i = =513 — 2wy - a3,

By = =9z + 323 - xo — 423,

Under the state space D = {(z1,22) € R? | |z;| < 1}, our proposed method successfully found
valid local Lyapunov function V (x1,x2) = 927 + 23.

E.3 Three-variable-polynomial-systems with higher degree

Table [6] describes two polynomial systems of three variables with a higher degree, adopted from AT}
farano et al.[[2024]. Our framework successfully retrieves valid local Lyapunov functions on both
examples under the state space D = {(z1, z2,x3) € R® | |z;| < 1}.

Table 6: Three-Dimensional Polynomial Example with Higher Degree.

System | Lyapunov function
T, = —3.1’:13 + 321 - x3 — 921
ity = —x3 — 5rg + b3 V(x1, 22, 23) = 922 + 23 + 23
j?3 = —91’%
iy = —8x1 - 23 — 1023
iy = —8x3 + 323 — 89 V(zy, 9, 23) = 2§ - 23 - 23 + 23
"tg = —x3

E.4 6-D Polynomial Nonlinear System

This 6-D dynamics consists of three two-dimensional asymptotically stable linear subsystems that
are coupled by three nonlinearities with small gains adopted from |Griine|[2019]]. The dynamics are
written as:

i = —x1 4+ 0.529 — 0.122,
To = —0.521 — 22,
i3 = —x3 4+ 0.524 — 0.12%,
T4 = —0.523 — 24,
T5 = —x5 + 0.524,
ig = —0.505 — 26 4+ 0.123.
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Our proposed method is trained over the state space D = {(z1, ¥, 73, 74, T5,26) € RS | |z;] <
1,Vi € {1,2,..,6}}, and is able to find a valid Lyapunov function V (z) = 23+ 23 +x3+23+22+22.
This dynamics is not globally asymptotically stable since if =, z2, or x5 has a significantly large
value, the perturbations introduced by the small gains will shift the object by a significant amount
away from the equilibrium point. By empirical checking, our found Lyapunov function certifies

the asymptotical stability of this system over the region D’ = {(x1,z2, 23,74, 75,26) € RO |
Yoy a? < 500},

7

E.5 8-D Polynomial Nonlinear System

This 8-D dynamics consists of four two-dimensional asymptotically stable linear subsystems that are
coupled by four nonlinearities with small gains, modified from the above 6D polynomial dynamics.
The dynamics are written as:

iy = —x1 4+ 0.529 — 0.122,
To = —0.521 — 22,
i3 = —x3 4+ 0.524 — 0.122,
i‘4 = —0.51‘3 — T4,
i5 = —x5 4+ 0.526 + 0.122,
i‘@ = —0.51'5 — Tg,
7 = —x7 + 0.523,
ig = —0.507 — xg — 0.127.

Our proposed method is trained over state space D = {(z1, ¥, 3, T4, Ts, Tg, T7, 73) € R® | |2;] <
1,Vi € {1,2,..,8}}, and is able to find a valid Lyapunov function V (z) = 2% + a3 + 23 + 2 + 22 +
22 + 22 + x3. This Lyapunov function certifies the asymptotical stability of this system over the
region D = {(x1, T2, 73,24, T5, T¢, T7, Tg) € RS | Zle x? < 450}. This dynamics is not globally
asymptotically stable since if x1, x4, x5, or 7 has a significantly large value, the perturbations
introduced by the small gains will shift the object by a significant amount away from the equilibrium
point.

E.6 10-D Polynomial Nonlinear System

Finally, we extend to the original 10-D polynomial dynamics proposed in |Griine|[2019]]. This 10-D
dynamics consists of five two-dimensional asymptotically stable linear subsystems that are coupled
by four nonlinearities with small gains. The dynamics are written as:

&y = —x1 4+ 0.529 — 0.122,
To = —0.521 — 22,
i3 = —x3 4+ 0.524 — 0.12%,
T4 = —0.523 — 24,
i5 = —x5 4+ 0.526 + 0.122,
g = —0.525 — g,
7 = —x7 + 0.523,
g = —0.5x7 — x3.
Tg = —x9 + 0.5z,
T19 = —0.529 — x19 — O.lxi.

Our proposed method is trained over the state space D = {(x1, 2, T3, Z4, T5, Te, T7, Ts, L9, T10) €
R | |2;] < 1,Vi € {1,2,..,10}}, and is able to find a valid Lyapunov function V' (z) = 2% + x3 +
x3+ 23 + 2 + 23 + 2% + 2 + x5 + x,. This Lyapunov function certifies the asymptotic stability of
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this system over the region D = {(z1, ¥2, 3, T4, T5, T, T7, T3, Tg, T19) € RO | Zl L2 <400},
This dynamics is not globally asymptotically stable since if x1, x4, x5, Or xg has a s1gn1ﬁcantly large
value, the perturbations introduced by the small gains will shift the object by a significant amount
away from the equilibrium point.

F Non-polynomial Nonlinear Dynamical Systems

F.1 Simple Pendulum

The simple pendulum is a well-known classical nonlinear system that contains two state variables.
The dynamics are formulated as follows,

T = T2,

b

Gy = —2 sin(zq) — —x2,
l m

where x; is the angular position from the inverted position, o is the angular velocity, and parameters
g,m,l, b are the acceleration of gravity, the mass of the inverted object, the length of the string,
and the coefficient of friction, respectively. In experiments, since we don’t incorporate the constant
generation capability within the training framework, we set g =1, m = 1kg,/ = 1m, and b = 0.1.
Our proposed method finds the valid Lyapunov function V' = 2 — 2cos(z1) + 23 over the state
space: D = {(x1,22) € R? | |x1] < 7 and |z2| < 6}. This found Lyapunov function has the same
analytical structure as the energy function of the inverted pendulum.

F.2 3-D Trigonometric System

3-D trig dynamics comes from exercise problems in textbook [Khalil,[2002]] whose dynamics are
written as follows,

1 = T2,
x.Q = —h(xl) — T9 — h(xg),
T3 = Tz — 3,

where h(z) = sin(z) - cos(x). When the state space is D = {(x1,z2,23) € R3 | |z;] < 1.5,V i €
{1,2,3}}, the valid local Lyapunov function found by our proposed method is V (21, x2,z3) =
1 — cos(z1)? + 23 + sin(z3)?, which is consistent to the textbook solution of Lyapunov function for
this particular dynamics.

F.3 N-bus Lossless Power System

We test our proposed framework on the N-bus power lossless system [[Cui et al., 2023} |Feng et al.}
2024] to examine its ability to handle complex high-dimensional dynamics. Consider 6;, w; as the
phase angle and the frequency of bus 7, respectively, the dynamics for each bus are formulated as
follows,

91‘ = Wi,
N
mlwz =D; — diwi — UZ(UJZ) — Z Bij . sin(&i — 0]'),

where m; is the generator inertia constant, d; is the combined frequency response coefficient from
synchronous generators and frequency sensitive load, and p; is the net power 1nJect10n for each bus
i=1,---,N. B € RVXV is the susceptance matrix with B; ;; = 0 for every pair {¢, j} such that
bus ¢ and bus J are not connected, and u; (w;) is the controller at bus ¢ that adjusts the power injection
to stabilize the frequency.

Since the frequency dynamics of the system depends only on the phase angle differences, so we
change the coordinates:



where d; can be understood as the center-of-inertia coordinates of each bus. In our experiment, we
test the proposed framework on the 3-bus power system. For simplicity, we set p; = 0, m; = 2,
d; = 1, u;j(w;) = w;, and B;j = 1V # j,By = 0. In this case, the equilibrium point for our
system is at the origin, i.e. §; = w; = 0, ¢ = 1, 2, 3. The state space for our experiment is defined
as: D = {(d1, 02,03, w1, w2, w3) € RC | |§;] < 0.75and |w;| < 1.2fori = 1,2,3}. Through
our method, we retrieved a valid Lyapunov function V (81, d2, 03, w1, wa, w3) = (Zf’zl w?) —
3 3
05[> >, cos(é —d;)— 1], whichis consistent to the known Lyapunov function presented
i=1j=1,i#j

in Cui et al.|[[2023]]. The Lie derivative of the identified Lyapunov function can be simplified as
LV = —2(wf + w3 + w3). The analytical structure of this found Lyapunov function and invariance
principle allows us to easily identify it as a valid Lyapunov function by hand.

F.4 Indoor Micro Quadrotor

For the angular rotations subsystems of the quadrator from |Bouabdallah et al.| [2004]], it has 6 states to
describe the angular motion of the quadrotor. The states x1, x3, and x5 describe the roll, pitch, and
yaw of the quadrator, and states zs, x4, and zg represent their time derivatives. With perturbation
terms €2 and control inputs Uy, Us, and Us, the subsystem can be formulated as follows,

i‘l = T2,
. I, —1 J l
372:33‘4376( yI Z)—TR$4Q+TU1a
T3 = Ty,

I, —1, Jr l
by = — 2,0+ —U-
&y = zoxe( 1, )+ 1, T3 +Iy 2,
T5 = Tg,
. I, -1 l
&g = Toxa( 7 L) + TUS’

where I, I,;, and I, represents the body inertia, [ denotes the lever, and Jp is the rotor inertia. With
the control policy

I,
U= —7(1’1 - CU(ll) — kyzo,
I, d
U = —7(173 — %) — kaxy,
Us = —I,(z5 — 2f) — kazs,

and restricting I, = I, the angular rotations subsystems is stabilized to the chosen equilibrium
point X; = {z¢,0,2¢,0,2¢,0}. In empirical experiments, we set Xy = {0,0,0,0,0,0}, state
space D = {($1,l‘2,$3,l‘4,$5,l‘6) € RS | ‘JJZI < 3,Vi € {1,2,..,6}}, I, = Iy =2,1, =5,
k1 =5,ks =20, ks =4,1 =1, Jp = 1, and Q = sin(z3) cos(x4), our framework successfully
found Lyapunov function V' (z1, 22, x5, T4, 5, Tg) = Zle x2. By examining the Lie derivative
L;V = —2.52% — 102 — 0.82% and using the Invariance principle, we conclude that this subsystem
is globally asymptotically stable. Under other parameter settings, our framework can also retrieve
valid analytical Lyapunov functions for this dynamics.

F.5 N-bus Lossy Power System

Unlike N-bus lossless power systems in Appendix [F.3] which has a well-known energy-based storage
function served as a valid Lyapunov function for asymptotical stability guarantee, the N-bus lossy
power system [Cui and Zhang}, |2022] does not have a known analytical Lyapunov function to certify
stability, though by passivity the system should be asymptotically stable at origin. Utilizing the
proposed framework, we aim to discover a valid analytical Lyapunov function for an N-bus lossy
power system to formally certify its asymptotic stability.
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The 6; and §; are the angle and frequency deviation of bus ¢, the dynamics of an N-bus lossy power
system is represented by the swing equation, formulated as:

0i = W,

N N
m,wZ =Di — dqwz — uq(wl) — ZB” . sin(ﬂi — HJ) — Z Gij . COS(91; — Qj),

where m; is the generator inertia constant, d; is the combined frequency response coefficient from
synchronous generators and frequency-sensitive load, and p; is the net power injection, for each bus
i =1,---,N. The susceptance and conductance of the line (¢, j) are B;; = B;; and G;; = Gjs,
respectlvely The value is 0 if the buses are not connected. In this work, we consider input u; to be
a static feedback controller where only its local frequency measurement w; is available. Like the
lossless power system, since the frequency dynamics of the system depends only on the phase angle
differences, we change the coordinates:

N

1
di=0i— D 0

i=1
where J; can be understood as the center-of-inertia coordinates of each bus.

We test the proposed framework on a 2-bus lossy power system. In experiment, we set p; = 1,m; = 2,
d; =1, ul(wz) = w;, Bi]‘ =1, Gij =1V 75 7, Bii =0, Gij = 0. By this setting, the equilibrium
point for this system is at the origin, i.e. §; = w; = 0. The state space for the experiment is defined
as: D = {(01,02,w1,wq) € R* | |§;] < 0.75 and |w;| < 2fori = 1,2}. The proposed method
found two valid Lyapunov function V (81, da, w1, wa) = w? + w3 + (we — sin(dy) + sin(d2))? and
V (81,02, w1, w2) = w? + w3 + (—w; — sin(d;) + sin(dz))2. Both Lyapunov functions pass the
formal verification by SMT solver in the state space D\B,(0), where precision 4 is set to be ¢~ 12
and € = e~ to avoid tolerable numerical error.

F.6 9-D Synthetic Dynamics

Consider the synthetic dynamics adapted from Appendices|E.4) & [F.2] with linear interactions between
two subsystems:

1 = —x1 + 0.529 — 0.19;%,

Ty = —0.521 — 22 4+ 0.1z,

i3 = —x3 + 0.524 — 0.1,

T4 = —0.5x3 — 14,

.Cb5 = —T5 + 0.5x6,

g = —0.5x5 — xg + 0.13@3,

T7 = s,

g = —sin(x7) cos(x7) — xg — sin(xzg) cos(xg) — 0.1xa,

.’tg = Ig — X9.

To properly address the trigonometric terms in &g, the Lyapunov function for this dynamics can’t be
a simple form like "7, 7 and should include some trigonometric terms. Setting the state space

={z € R9||x7\ < 1.5,Vi=1,---,9}, our method successfully identifies a valid Lyapunov
functlon V= Z _, o7 +sin(z7)? + 2 — cos(zg) + 1, which passes formal verification following
settings in SCCUOHE}
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