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Abstract

We address Stackelberg models of combinatorial congestion games (CCGs); we
aim to optimize the parameters of CCGs so that the selfish behavior of non-atomic
players attains desirable equilibria. This model is essential for designing such social
infrastructures as traffic and communication networks. Nevertheless, computational
approaches to the model have not been thoroughly studied due to two difficulties:
(D bilevel-programming structures and (II) the combinatorial nature of CCGs.
We tackle them by carefully combining (I) the idea of differentiable optimization
and (IT) data structures called zero-suppressed binary decision diagrams (ZDDs),
which can compactly represent sets of combinatorial strategies. Our algorithm
numerically approximates the equilibria of CCGs, which we can differentiate with
respect to parameters of CCGs by automatic differentiation. With the resulting
derivatives, we can apply gradient-based methods to Stackelberg models of CCGs.
Our method is tailored to induce Nesterov’s acceleration and can fully utilize the
empirical compactness of ZDDs. These technical advantages enable us to deal with
CCGs with a vast number of combinatorial strategies. Experiments on real-world
network design instances demonstrate the practicality of our method.

1 Introduction

Congestion games (CGs) [49] form an important class of non-cooperative games and appear in various
resource allocation scenarios. Combinatorial CGs (CCGs) can model more complex situations where
each strategy is a combination of resources. A well-known example of a CCG is selfish routing [50],
where each player on a traffic network chooses an origin-destination path, which is a strategy given
by a combination of some roads with limited width (resources). Computing the outcomes of players’
selfish behaviors (or equilibria) is essential when designing social infrastructures such as traffic
networks. Therefore, how to compute equilibria of CCGs has been widely studied [5, 12, 57, 42].

In this paper, we are interested in the perspective of the leader who designs non-atomic CCGs. For
example, the leader aims to optimize some traffic-network parameters (e.g., road width values) so
that players can spend less traveling time at equilibrium. An equilibrium of non-atomic CCGs is
characterized by an optimum of potential function minimization [41, 53]. Thus, designing CCGs can
be seen as a Stackelberg game; the leader optimizes the parameters of CCGs to minimize an objective
function (typically, the social-cost function) while the follower, who represents the population of
selfish non-atomic players, minimizes the potential function. This mathematical formulation is called
the Stackelberg model in the context of traffic management [46]. Therefore, we call our model with
general combinatorial strategies a Stackelberg model of CCGs.
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Stackelberg models of CCGs have been studied for cases where the potential function minimization
has desirable properties. For example, Patriksson and Rockafellar [46] proposed a descent algorithm
for traffic management using the fact that projections onto flow polyhedra can be done efficiently.
However, many practical CCGs have more complicated structures. For example, in communication
network design, each strategy is given by a Steiner tree (see [24, 42] and Section 1.1), and thus the
projection (and even optimizing linear functions) is NP-hard. How to address such computationally
challenging Stackelberg models of CCGs has not been well studied, despite its practical importance.

Inspired by a recent equilibrium computation method [42], we tackle the combinatorial nature of
CCGs by representing their strategy sets with zero-suppressed binary decision diagrams (ZDDs)
[39, 32], which are well-established data structures that provide empirically compact representations
of combinatorial objects (e.g., Steiner trees and Hamiltonian paths). Although the previous method
[42] can efficiently approximate equilibria with a Frank—Wolfe-style algorithm [18], its computation
procedures break the differentiability of the outputs in the CCG parameters (the leader’s variables),
preventing us from obtaining gradient information required for optimizing leader’s objective functions.

Our contribution is to develop a differentiable pipeline from leader’s variables to equilibria of CCGs,
thus enabling application of gradient-based methods to the Stackelberg models of CCGs. We smooth
the Frank—Wolfe iterations using softmin, thereby making computed equilibria differentiable with
respect to the leader’s variables by automatic differentiation (or backpropagation). Although the idea
of smoothing with softmin is prevalent [29, 38], our method has the following technical novelty:

* Our algorithm is tailored to induce Nesterov’s acceleration, making both equilibrium com-
putation and backpropagation more efficient. To the best of our knowledge, the idea of
simultaneously making iterative optimization methods both differentiable and faster is new.

* Our method consists of simple arithmetic operations performed with ZDDs as in Algorithm 2.
This is essential for making our equilibrium computation accept automatic differentiation.
The per-iteration complexity of our method is linear in the ZDD size.

Armed with these advantages, our method can work with CCGs that have an enormous number of
combinatorial strategies. We experimentally demonstrate its practical usefulness in real-world network
design instances. Our method brings benefits by improving the designs of social infrastructures.

Notation. Let [n] := {1,...,n}. Forany S C [n], 15 € {0,1}"™ denotes a binary vector whose
i-thentry is 1 if and only if ¢ € S. Let || - || be the £5-norm.

1.1 Problem setting

We introduce the problem setting and some assumptions. For simplicity, we describe the symmetric
setting, although our method can be extended to an asymmetric setting, as explained in Appendix A.

Combinatorial congestion games (CCGs). Suppose that there is an infinite amount of players
with an infinitesimal mass (i.e., non-atomic). We assume the total mass is 1 without loss of generality.
Let [n] be a set of resources and let S C 2["] be a set of all feasible strategies. We define d := |S]|,
which is generally exponential in n. Each player selects strategy S € S. Let y € [0, 1]™ be a vector
whose i-th entry indicates the total mass of players using resource 7 € [n]. In other words, if we let
z € A% be a vector whose entry zg (S € S) indicates the total mass of players choosing S, we have
Y =Y ges25ls € R™. Therefore, y is included in convex hull C := {} o 52515 | z € A},
where A == {z € R4 | 220,) gc525 = 1} is the (d — 1)-dimensional probability simplex. A
player choosing S incurs cost cs(y) = ;g ci(y:), where each ¢; : R — R is assumed to be
strictly increasing; this corresponds to a natural situation where cost ¢; increases as i € [n] becomes
more congested. Each player selfishly selects a strategy to minimize his/her own cost.

Equilibrium and potential functions. We say z € A? attains a (Wardrop) equilibrium if for every
S € S such that zg > 0, it holds that cs(y) < minges cs/(y), where y == > ¢ g 251s. That is,
no one has an incentive to deviate unilaterally. Let f : R™ — R be a potential function defined as
f) =2 J3 ci(u)du. From the first-order optimality condition, it holds that z attains an
equilibrium iff y = > o5 2515 satisfies y = argmin,, .. f(u). Note that minimizer y is unique
since c; is strictly increasing, which means f is strictly convex (not necessarily strongly convex).



Stackelberg model of CCGs. We turn to the problem of designing CCGs. For i € [n], let ¢;(y;; 0)
be a cost function with parameters 8 € ©. We assume ¢;(y;; 0) to be strictly increasing in y; for any
6 € © and differentiable with respect to 6 for any y € C. Let f(y;0) = 3", J3 ci(u;0)dubea
parameterized potential function, which is strictly convex in y for any @ € O. A leader who designs
CCGs aims to optimize 8 values so that an objective function, F' : © x C — R, is minimized at an
equilibrium of CCGs. Typically, " is a social-cost function defined as (6, y) = >, ¢, ¢i(vi; 0)yi,
which represents the total cost incurred by all players. Since an equilibrium is characterized as a
minimizer of potential function f, the leader’s problem can be written as follows:

minimize F(0,y) subject to y = argmin f(u;8). (1)

6ce uec

Since minimizer y(0) := y is unique, we can regard F'(0, y(0)) as a function of 8. We study how to
approximate derivatives of F'(0,y(0)) with respect to 0 for applying gradient-based methods to (1).

Example 1: traffic management. We are given a network with an origin-destination (OD) pair.
Let [n] be the edge set and let S C 2] be the set of all OD paths. Each edge in the network has cost
function ¢;(y;; €), where 6 controls the width of the roads (edges). A natural example of the cost
functions is ¢(y;; @) = y;/0; for 6; > 0 (see, e.g., [46]), which satisfies the above assumptions, i.e.,
strictly increasing in y; and differentiable in ;. Once 0 is fixed, players selfishly choose OD paths
and consequently reach an equilibrium. The leader wants to find 8 that minimizes social cost F' at
equilibrium, which can be formulated as a Stackelberg model of form (1). Note that although the
Stackelberg model of standard selfish routing is well studied [46], there are various variants (e.g.,
routing with budget constraints [28, 42]) for which existing methods do not work efficiently.

Example 2: communication network design. We consider a situation where multi-site meetings
are held on a communication network (see, e.g., [24, 42]). Given an undirected network with edge
set [n] and some vertices called terminals, groups of people at terminals hold multi-site meetings,
including people at all the terminals. Since each group wants to minimize the communication delays
caused by congestion, each selfishly chooses a way to connect all the terminals, namely, a Steiner
tree covering all the terminals. If we let ¢;(y;; @) indicate the delay of the i-th edge, a group choosing
Steiner tree S € S incurs cost ¢s(y; 0). As with the above traffic-management example, the problem
of optimizing @ to minimize the total delay at equilibrium can be written as (1).

1.2 Related work

Problems of form (1) arise in many fields, e.g., Stackelberg games [55], mathematical programming
with equilibrium constraints [36], and bilevel programming [10, 13], which have been gaining
attention in machine learning [17, 15]. Optimization problems with bilevel structures are NP-hard
in most cases [22] (tractable cases include, e.g., when follower’s problems are unconstrained and
strongly convex [19], which does not hold in our case). Thus, how to apply gradient-based methods
occupies central interest [15, 20]. In our Stackelberg model of CCGs, in addition to the bilevel
structure, the follower’s problem is defined on combinatorial strategy sets S, further complicating it.
Therefore, unlike the above studies, we focus on how to address such difficult problems by leveraging
computational tools, including ZDDs [39] and automatic differentiation [34, 21].

Stackelberg models often arise in traffic management. Although many existing studies [46, 35, 6, 9]
analyze theoretical aspects utilizing instance-specific structures (e.g., compact representations of flow
polyhedra), applications to other types of realistic CCGs remain unexplored. By contrast, as with the
previous method [42], our method is built on versatile ZDD representations of strategy sets, and the
derivatives with respect to CCG parameters can be automatically computed with backpropagation.
Thus, compared to the methods studied in traffic management, ours can be easily applied to and
works efficiently with a broad class of realistic CCGs with complicated combinatorial strategies.

Our method is inspired by the emerging line of work on differentiable optimization [4, 60, 2, 51]. For
differentiating outputs with respect to the parameters of optimization problems, two major approaches
have been studied [20]: implicit and iterative differentiation. The first approach applies the implicit
function theorem to equation systems derived from the Karush—-Kuhn-Tucker (KKT) condition (akin
to the single-level reformulation approach to bilevel programming). In our case, this approach is
too expensive since the combinatorial nature of CCGs generally makes the KKT equation system
exponentially large [16]. Our method is categorized into the second approach, which computes



a numerical approximation of an optimum with iterations of differentiable steps. This idea has
yielded success in many fields [14, 37, 45, 7, 17]. Concerning combinatorial optimization, although
differentiable methods for linear objectives are well studied [38, 60, 47, 8], no differentiable method
has been developed for convex minimization on polytopes of, e.g., Steiner trees or Hamiltonian paths;
this is what we need for dealing with the potential function minimization of CCGs. To this end, we
use a Frank—Wolfe-style algorithm and ZDD representations of combinatorial objects.

2 Differentiable iterative equilibrium computation

We consider applying gradient-based methods (e.g., projected gradient descent) to problem (1). To
this end, we need to compute the following gradient with respect to @ € © C RF in each iteration:

VF(0.y(0)) = VeF(8,y(8)) + Vy(8) 'V, F(6,y(0)),

where Vo F(0,y(6)) and V,F(6,y(0)) denote the gradients with respect to the first and second
arguments, respectively, and Vy(8) is the n x k Jacobian matrix.! The computation of V(8) is the
most challenging part and requires differentiating y(0) = argmin, . f(u; @) with respect to 8. We
employ the iterative differentiation approach for efficiently approximating Vy(0).

2.1 Technical overview

For computing equilibrium y(0), Nakamura et al. [42] solved potential function minimization with a
variant of the Frank—Wolfe algorithm [33], whose iterations can be performed efficiently by using
compact ZDD representations of combinatorial strategies. To the best of our knowledge, no other
equilibrium computation methods can deal with various CCGs that have complicated combinatorial
strategies, e.g., Steiner trees. Hence we build on [42] and extend their method to Stackelberg models.

First, we review the standard Frank—Wolfe algorithm. Starting from x( € C, it alternately computes
sy = argmingo(Vf(x;0),s) and 411 = (1 — v)x: + 7+ 5¢, where -y, is conventionally set to
t%z' As shown in [18, 27], &1 has an objective error of O(1/T). Thus, we can obtain numerical
approximation yr(6) = xr of equilibrium y(0) such that f(yr(0);0) — f(y(0);0) < O(1/T).
For obtaining gradient Vyr(8), however, the above Frank—Wolfe algorithm does not work (neither
does its faster variant used in [42]). This is because s; = argmin . (V f(x¢;0), s) is piecewise
constant in €, which makes Vyr () zero almost everywhere and undefined at some 6.

To resolve this issue, we develop a differentiable Frank—Wolfe algorithm by using softmin. We denote
the softmin operation by ps(c) (detailed below). Since softmin can be seen as a differentiable proxy
for argmin, one may simply replace s; = argmin - (V f(x; 0), s) with s, = pus(n:V f(x;9)),
where 7; > 0 is a scaling factor. Actually, the modified algorithm yields an O(1/7") convergence by
setting 7, = €(t) (see [27, Theorem 1]). This modification, however, often degrades the empirical
convergence of the Frank—Wolfe algorithm, as demonstrated in Section 4.1. We, therefore, consider
leveraging softmin for acceleration while keeping the iterations differentiable. Based on an accelerated
Frank—Wolfe algorithm [59], we compute y7(0) as in Algorithm 1, and obtain Vyr(0) by applying
backpropagation. Furthermore, in Section 3, we explain how to efficiently compute ps(c) by using a
ZDD-based technique [52]; importantly, its computation procedure also accepts the backpropagation.

While our work is built on the existing methods [59, 52, 42], none of them are intended to develop
differentiable methods. A conceptual novelty of our work is its careful combination of those methods
for developing a differentiable and accelerated optimization method, with which we can compute
Vyr(0). This enables the application of gradient-based methods to the Stackelberg models of CCGs.

2.2 Details of Algorithm 1

We compute yr(60) with Algorithm 1. Note that s;, ¢;, and x; depend on 6, which is not explicitly
indicated for simplicity. The most crucial part is Step 5, where we use softmin rather than argmin to

! Although the derivatives of () may not be unique, we abuse the notation and write Vy(8) for simplicity.
As we will see shortly, we numerically approximate y(0) with y7(8) whose derivative, Vyr(8), exists uniquely.
Therefore, when discussing our iterative differentiation method, we can ignore the abuse of notation.



Algorithm 1 Differentiable Frank—Wolfe-based equilibrium computation

I: sozcofO Tr_4 :azg ps(cp),and oy =t (t=0,...,7)

2: fort=1,.

3 Sy = St—l — o 1®—2 + (-1 + )X

4: ct=ci1+nouVyf (t(t%l)st; 9) >V f(y;0); = ci(ys; 0) is differentiable in 6
5: Compute x; = ps(ct) with Algorithm 2 > Differentiable softmin computation

return y7(0) = 771y S oy

make the output differentiable in 8. Specifically, given any ¢ € R™, we compute ps(c) as follows:

Z 1s exp T15)

Ses ZS’ sexp(—cTls)

Intuitively, each entry in ¢ represents the cost of each i € [n], and ¢ 15 represents the cost of S € S.
We consider a probability distribution over S defined by softmin with respect to costs {¢" 15} ses,
and then marginalize it. The resulting vector is a convex combination of {15} . and thus always
included in C. In the context of graphical modeling, this operation is called marginal inference [58].
Here, ps is defined by a summation over S, and explicitly computing it is prohibitively expensive.
Section 3 details how to efficiently compute ps by leveraging the ZDD representations of S.

2.3 Convergence guarantee

Algorithm 1 is designed to induce Nesterov’s acceleration [43, 59] and achieves an O(1/T"?) con-
vergence, which is faster than the O(1/T) convergence of the original Frank—Wolfe algorithm.

Theorem 1. Fix 6 € © and assume f(-;0) to be L-smooth on R?, i.e., ®(z) = f(> gc5 2515;0)
(Vz € RY) satisfies ®(z') < ®(z) + (VO(2),2' — z) + L ||z’ — z|? for all z,z' € R%? If we let
RS [CL, 4L} for some C' > 4, Algorithm 1 returns y7(0) such that

F(yr(0);0) — f(y(6);0) < O(C’I%lgld)

We present the proof in Appendix B. In essence, softmin can be seen as a dual mirror descent step
with the Kullback-Leibler divergence, and combining it with a primal gradient descent step yields the
acceleration [3]. Although the acceleration technique itself is well studied, it has not been explored
in the context of differentiable optimization. To the best of our knowledge, simultaneously making
iterative optimization methods both differentiable and faster is a novel idea. This observation can be
beneficial for developing other fast differentiable iterative algorithms. Experiments in Section 4.1
demonstrate that the acceleration indeed enhances the convergence speed in practice.

Note that the faster convergence enables us to more efficiently compute both y7(6) and Vyr(0).
The latter is because Algorithm 1 with a smaller 7" generates a smaller computation graph, which
determines the computation complexity of the backpropagation for obtaining Vyr(8). Therefore,
Algorithm 1 is suitable as an efficient differentiable pipeline between 8 and yr(6).

2.4 Implementation consideration: how to choose n and T’

While Theorem 1 suggests setting 7 to ﬁ or less, this choice is often too conservative in practice.
Thus, we should search for 7 values that bring high empirical performances. When using Algorithm 1
as a subroutine of gradient-based methods, it is repeatedly called to solve similar equilibrium
computation instances. Therefore, a simple and effective way for locating good 7 values is to apply
Algorithm | with various 7 values to example instances, as we will do in Section 4.1. We expect the
empirical performance to improve with a line search of 1, which we leave for future work.

2Smoothness parameter L defined on R? can be, in general, exponentially large in n, albeit constant in 7.
How to alleviate the dependence on L remains an open problem.



Algorithm 2 Computation of ps(c) with
ZDD Zs = (V,A)

I: Br=1and B, =0
2: forv e V\ {T, L} (bottom-up) :
3: B, = B + exp(—¢;,) x Ba
4: P,=1landP, =0(v e V\{r})
5:x2=(0,...,0)7
6: forve V\{T,_L} (top-down) :
Figure 1: Example of ZDD Zs (right), where 7 p? =B /By and p' =1 —p°
n = 5 and S is a family of all simple s—t paths 8: P.o += p°P, and Pu += p'P,
(left). ZDD has two terminal nodes (T and ) 9: Y1 v
. : x;, +=p P,
and non-terminal nodes labeled by I, € [n]. v T
Solid (dashed) arcs represent 1-arcs (0-arcs). 10: return = (21, ..., %)

To check whether the Frank—Wolfe algorithm has converged or not, we usually use the Frank—Wolfe
gap [27], an upper-bound on an objective error. To obtain high-quality solutions, we terminate the
algorithm when the gap becomes sufficiently small. In our case, however, our purpose is to obtain
gradient information Vyr(8), and y7(0) with a small T' sometimes suffices to serve the purpose.
By using a small 7', we can reduce the computation complexity. Experiments in Section 4.2 show
that the performance of a projected gradient method that uses Vyr(8) is not so sensitive to T" values.

3 Efficient softmin computation with decision diagrams

This section describes how to efficiently compute ps(c) by leveraging ZDD representations of S.
The main idea is to apply a technique called weight pushing [40] (or path kernel [56]) to ZDDs. A
similar idea was used for obtaining efficient combinatorial bandit algorithms [52], but this research
does not use it to develop differentiable algorithms. Our use of weight pushing comes from another
important observation: it consists of simple arithmetic operations that accept reverse-mode automatic
differentiation with respect to ¢, as shown in Algorithm 2. In other words, Algorithm 2 does not use,
e.g., | - | or argmin. Therefore, ZDD-based weight pushing can be incorporated into the pipeline
from 0 to y7 (@) without breaking the differentiability.

3.1 Zero-suppressed binary decision diagrams

Given set family S C 2", we explain how to represent it with ZDD Zs = (V, A), a DAG-shaped
data structure (see, e.g., Figure 1). The node set, V, has two terminal nodes T and _L (they represent
true and false, respectively) and non-terminal nodes. There is a single root, r € V \ {_L, T }. Each
veV\{L, T} haslabell, € [n ] and two outgoing arcs, 1- and 0-arcs, which indicate whether [, is
chosen or not, respectively. Let c, ¢! € V denote two nodes pointed by 0- and 1-arcs, respectively,
outgoing from v. Foranyv € V\ {T, L}, let R, C 2° be the set of all dlrected paths from v to T.
We define R := Uvev\{-r 1} Ry Forany R € R, let X(R)={l €] | (v,cl) € R}, ie., labels

of tails of 1-arcs belonging to R. ZDD Zs represents S as a set of =T paths S={X(R)|ReR,}.
There is a one-to-one correspondence between S € S and R € R, i.e., S = X (R).

Figure 1 presents an example of ZDD Z s, where S is the family of simple s—t paths. For example,
S ={2,5} € Sisrepresented in Zs by the red path, R € R,, with labels {1, 2, 3, 5, T }. The labels
of the tails of the 1-arcs form X (R) = {2, 5}, which equals S.

We define the size of Zs = (V, A) by |Zs]| := |V|. Note that |A| < 2 x |Zs| always holds. In general,
the ZDD sizes and the complexity of constructing ZDDs can be exponential in n. Fortunately, many
existing studies provide efficient methods for constructing compact ZDDs. One such method is
the frontier-based search [30], which is based on Knuth’s Simpath algorithm [32]. Their method
is particularly effective when S is a family of network substructures such as Hamiltonian paths,
Steiner trees, matchings, and cliques. Furthermore, the family algebra [39, 32] of ZDDs enables us
to deal with various logical constraints. Using those methods, we can flexibly construct ZDDs for
various complicated combinatorial structures, e.g., Steiner trees whose size is at most a certain value.



Moreover, we can sometimes theoretically bound the ZDD sizes and the construction complexity. For
example, if S consists of the aforementioned substructures on network G = (V, E') with a constant
pathwidth, the ZDD sizes and the construction complexity are polynomial in | E| [30, 26].

3.2 Details of Algorithm 2 and computation complexity

Algorithm 2 computes = ps(c) forany ¢ = (c1,...,¢,)" € R™ First, it computes {B, },cv in a
bottom-up topological order of Zs. Note that B, = Zse{ X(R) | RER, } exp(—_,cg ¢i) holds. Then
it computes {P, },ev. Each P, indicates the probability that a top-down random walk starting from
root node r reaches v € V, where we choose 0-arc (1-arc) with probability p® (p'). From B, = 0 and
the construction of {B, },cv, the random walk never reaches L, and its trajectory R € R, recovers
X(R) € S with a probability proportional to exp(— ;¢ x(g) €i) = exp(—¢' 1x(ry). Therefore, by
summing the probabilities of reaching v and choosing a 1-arc outgoing from v for each i € [n] as
in Step 9, we obtain = ps(c). In practice, we recommend implementing Algorithm 2 with the
log-sum-exp technique and double-precision computations for numerical stability.

Algorithm 2 runs in O(|Zs]) time, and thus Algorithm 1 takes O((n+ Cv +|Zs|)T) time, where Cy
is the cost of computing V f. From the cheap gradient principle [21], the complexity of computing
VF(0,yr(0)) with backpropagation is almost the same as that of computing F (0, yr(0)). That
is, smaller ZDDs make the computation of both yr(8) and Vyr(8) faster. Therefore, our method
significantly benefits from the empirical compactness of ZDDs. Note that we can construct ZDD Zg
in a preprocessing step; once we obtain Zs, we can reuse it every time ps(-) is called.

4 Experiments

Section 4.1 confirms the benefit of acceleration to empirical convergence speed. Section 4.2 demon-
strates the usefulness of our method via experiments on communication network design instances.
Section 4.3 presents experiments with small instances to see whether our method can empirically find
globally optimal 8. Due to space limitations, we present full experimental results in Appendix C.

All the experiments were performed using a single thread on a 64-bit macOS machine with 2.5 GHz
Intel Core 17 CPUs and 16 GB RAM. We used C++11 language, and the programs were compiled
by Apple clang 12.0.0 with -03 -DNDEBUG option. We used Adept 2.0.5 [23] as an automatic
differentiation package and Graphillion 1.4 [25] for constructing ZDDs, where we used a beam-
search-based path-width optimization method [26] to specify the traversal order of edges. The source
code is available at

Problem setting. We address Stackelberg models for optimizing network parameters 8 € R",
where [n] represents an edge set. We focus on two situations where combinatorial strategies S C 2!
are Hamiltonian cycles and Steiner trees. The former is a variant of the selfish-routing setting,
and the latter arises when designing communication networks as in Section 1.1. Note that in both
settings, common operations on C, e.g., projection and linear optimization, are NP-hard. We use two
types of cost functions: fractional cost ¢;(y;; 0) = d;(1 + C x y;/(6; + 1)) and exponential cost
¢i(yi;0) = d;i(1 4+ C x y; exp(—6;)), where d; € (0, 1] is the length of the -th edge (normalized so
that max;¢[,,) d; = 1 holds) and C' > 0 controls how heavily the growth in y; (congestion) affects
cost ¢;. We set C' = 10. Note that edge ¢ with a larger 6, is more tolerant to congestion. The leader
aims to minimize social cost F'(6,y(0)) = >_,c(,, ¢i(yi(0); 0)y:(6). In realistic situations, the
leader cannot let all edges have sufficient capacity due to budget constraints. To model this situation,
we impose a constraint on 6 by defining © = {6 € R% | 6" 1 = n }, where 1 is the all-one vector.

Datasets. Table 1 summarizes the information about datasets and ZDDs used in the experiments.
For the Hamiltonian-cycle setting (HAMILTON), we used att48 (ATT) and dantzigd2 (DANTZIG)
datasets in TSPLIB [48]. Following [11, 44], we obtained networks in Figure 4 using Delaunay
triangulation [54]. For the Steiner-tree setting (STEINER), we used Uninett 2011 (UNINETT) and TW
Telecom (Tw) networks of Internet Topology Zoo [31]. We selected terminal vertices as shown in
Figure 4. We can see in Table 1 that ZDDs are much smaller than the strategy sets. As mentioned in
Section 3.2, we can construct ZDDs in a preprocessing step, and the construction times were so short
as to be negligible compared with the times taken for minimizing the social cost (see Section 4.2).
Therefore, we do not take the construction times into account in what follows.


https://github.com/nttcslab/diff-eq-comput-zdd

Table 1: Sizes of networks G = (V, E), strategy sets S, and ZDDs Zs. ZDDs for DANTZIG, ATT,
UNINETT, and TW were constructed in 172, 258, 4, and 6 ms, respectively.

STRATEGY  DATASET |V| |E]| |S| |Zs|
DANTZIG 42 115 15164782028 (> 1.5 x 10'°) 23479

HAMILTON 48 130 1041278451879 (> 1.0 x 10'2) 35388

STRINER UNINETT 69 96 88920985482584429311488 (> 8.8 x 10%?) 3284
Tw 76 115 71363851011296173824385276416 (> 7.1 x 10%%) 5583
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Figure 2: Convergence results of equilibrium computation methods, where w/ A, w/o A, and FW
represent Algorithm 1, naive differentiable Frank—Wolfe without acceleration, and standard non-
differentiable Frank—Wolfe, respectively. We present the results on the other settings in Appendix C.

4.1 Empirical convergence of equilibrium computation

We studied the empirical convergence of Algorithm 1 with acceleration (w/ A), where we let n = 0.05,
0.1, 0.2, and 0.5. We applied it to the minimization problems of form minycc f(y; 0), where f is a
potential function defined by cost function ¢;(y;; @) (fractional or exponential). We let 8 = 1.

For comparison, we used two kinds of baselines. One is a differentiable Frank—Wolfe algorithm
without acceleration (w/o A), which just replaces argmin with softmin as explained in Section 2.1.
To guarantee the convergence of the modified algorithm, we let n; = 9 x ¢t (ng = 0.1, 1.0, and 10.0).
The other is the standard non-differentiable Frank—Wolfe algorithm (FW) implemented as in [27].

Figure 2 shows how quickly the Frank—Wolfe gap [27], which is an upper bound of the objective error,
decreased as the number of iterations and the computation time increased. w/ A and w/o A tend to be
faster and slower than FW, respectively. That is, Algorithm 1 (w/ A) becomes both differentiable
and faster than the original FW, while the naive modified one (w/o A) becomes differentiable but
slower. As in the TW results, however, w/ A with a too large 1 (n = 0.5) sometimes failed to be
accelerated; this is reasonable since Theorem 1 requires 7 to be a moderate value. Thus, if we can
locate appropriate 7, Algorithm 1 achieves faster convergence in practice. As discussed in Section 2.4,
we can search for 7 by examining the empirical convergence for various 7 values, as we did above.
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Figure 3: Plots of social costs achieved on network design instances. Error bands of baseline methods
show standard deviations over 20 trials. We present results on other settings in Appendix C.
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c, e, g) and red (b, d, f, h) edges represent y (@) and O values, respectively, computed by our method
with 7 = 0.1 and T" = 300 for fractional-cost instances.

4.2 Stackelberg models for designing communication networks

We consider minimizing social cost F'(8,y(0)). To this end, roughly speaking, we should assign
large 6; values to edges with large y; values. We applied the projected gradient method with a step
size of 5.0 to problem (1). We approximated V F'(0, y(0)) by applying automatic differentiation to
F(0,yr(0)), where yr(0) was computed by Algorithm 1 with 7' = 100, 200, and 300.

To the best of our knowledge, no existing methods can efficiently deal with the problems considered
here due to the complicated structures of S. Therefore, as a baseline method, we used the following
iterative heuristic. Given current y(6), we replace 6 with 6 + §(y(8) — 3(8)1), where § > 0 and
yo) =1 > ie(n) ¥i(0). That is, we increase/decrease 0; if edge i is used more/less than average.

We then project 8 onto © and compute y(0) with Algorithm 1 (7' = 300). If F'(0,y(0)) value does
not decrease after the above update, we restart from a random point in .

Figure 3 compares our method (77 = 0.1) and the baseline on ATT and TW instances, where both
started from @ = 1 and continued to update 6 for two minutes. Our method found better 8 values
than the baseline. The results only imply the empirical tendency, and our method is not guaranteed to
find globally optimal 6. Nevertheless, experiments in Section 4.3 show that it tends to find a global
optimum at least for small instances. Figure 4 shows the y7(0) and € values obtained by our method
with 7 = 0.1 and T" = 300 for fractional-cost instance. We confirmed that large 6; values were
successfully assigned to edges with large y; values. Those results demonstrate that our method is
useful for addressing Stackelberg models of CCGs with complicated combinatorial strategy sets S.



4.3 Experiments on empirical convergence to global optimum

We performed additional experiments on small instances to see whether the projected gradient method
used in Section 4.2 can empirically find € that is close to being optimal. We used small selfish-routing
instances, where a graph is given by the left one in Figure 1 and the edges are numbered from 1 to 5
in that order. We let strategy set S be the set of all simple s-t¢ paths. The cost functions and feasible
region © were set as with those in the above sections. Our goal is to minimize social cost (0, y(6)).

As in Section 4.2, we computed y(0) using Algorithm 1 with = 0.1 and T' = 300, and performed
the projected gradient descent to minimize F'(0,y(0)), where gradient VF'(0,y(6)) was computed
with backpropagation. On the other hand, to obtain (approximations of) globally optimal 8, we
performed an exhaustive search over the feasible region, where the step size was set to 0.05. Regarding
computation times, the projected gradient method converged in less than 30 iterations, which took
less than 20 ms, while the exhaustive search took about 1000 seconds.

Results on fractional costs. A global optimum found by the exhaustive search was 8 =
(0,2.5,0,0,2.5), whose social cost F'(6,y(0)) was 6.444. Our method started from 8 = 1, whose
social cost was 7.000, and returned 8 = (1.25, 1.25,0, 1.25, 1.25) with social cost 6.444. Although
the solution is different from that of the exhaustive search, both attain the identical social cost. Thus,
the solution returned by the projected gradient method is also globally optimal.

Results on exponential costs. A global optimum found by the exhaustive search was 8 =
(0,2.5,0,0,2.5) with social cost 3.517. Our method started from & = 1 with social cost 5.678
and reached 8 = (0,2.5,0,0, 2.5) with social cost 3.517. Along the way, the projected gradient
method was about to be trapped in 8 = (1.25,1.25,0,1.25,1.25) with social cost 4.865, which
seems to be a saddle point. However, it successfully got out of there and reached the global optimum.

5 Conclusion and discussion

We proposed a differentiable pipeline that connects CCG parameters to their equilibria, enabling us to
apply gradient-based methods to the Stackelberg models of CCGs. Our Algorithm 1 leverages softmin
to make the Frank—Wolfe algorithm both differentiable and faster. ZDD-based softmin computation
(Algorithm 2) enables us to efficiently deal with complicated CCGs. It also naturally works with
automatic differentiation, offering an easy way to compute desired derivatives. Experiments confirmed
the accelerated empirical convergence and practicality of our method.

An important future direction is further studying theoretical aspects. From our experimental results,
Vyr(0) is expected to converge to Vy(0), although its theoretical analysis is very difficult. Recently,
some relevant results have been obtained for simple cases where iterative optimization methods are
written by a contraction map defined on an unconstrained domain [1, 20]. In our CCG cases, however,
we need to study iterative algorithms that numerically solve the constrained potential minimization,
which requires a more profound understanding of iterative differentiation approaches. Another
interesting future work is to make linearly convergent Frank—Wolfe variants [33] differentiable.

Finally, we discuss limitations and possible negative impacts. Our work does not cover cases where
minimizer y(@) of potential functions is not unique. Since the complexity of our method mainly
depends on the ZDD sizes, it does not work if ZDDs are prohibitively large, which can happen when
strategy sets consist of the substructures of dense networks. Nevertheless, many real-world networks
are sparse, and thus our ZDD-based method is often effective, as demonstrated in experiments. At a
meta-level, optimizing social infrastructures in terms of a single objective function (e.g., the social
cost) may lead to an extreme choice that is detrimental to some individuals. We hope our method can
provide a basis for designing social infrastructures that are beneficial for all.
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