
DOFEN: Deep Oblivious Forest ENsemble

Kuan-Yu Chen
Sinopac Holdings

lavamore@sinopac.com

Ping-Han Chiang
Sinopac Holdings

u10000129@gmail.com

Hsin-Rung Chou
Sinopac Holdings

sherry.chou@sinopac.com

Chih-Sheng Chen
Sinopac Holdings

sheng77@sinopac.com

Darby Tien-Hao Chang
Sinopac Holdings

National Cheng Kung University
darby@sinopac.com

Abstract

Deep Neural Networks (DNNs) have revolutionized artificial intelligence, achiev-
ing impressive results on diverse data types, including images, videos, and texts.
However, DNNs still lag behind Gradient Boosting Decision Trees (GBDT) on
tabular data, a format extensively utilized across various domains. This pa-
per introduces DOFEN, which stands for Deep Oblivious Forest ENsemble.
DOFEN is a novel DNN architecture inspired by oblivious decision trees and
achieves on-off sparse selection of columns. DOFEN surpasses other DNNs
on tabular data, achieving state-of-the-art performance on the well-recognized
benchmark: Tabular Benchmark [1], which includes 73 total datasets span-
ning a wide array of domains. The code of DOFEN is available at: https:
//github.com/Sinopac-Digital-Technology-Division/DOFEN.

1 Introduction

Tree-based models, including RandomForest [2], Extra Trees [3], and Gradient Boosting Decision
Tree (GBDT) frameworks such as XGBoost [4], LightGBM [5], and CatBoost [6], are widely
recognized for their simplicity, efficiency, and remarkable performance with tabular data. This
has inspired numerous studies investigating the integration of tree-based algorithms with deep
neural networks (DNNs), leading to tree-inspired DNNs such as Deep Forest [7], NODE [8], and
TabNet [9]. In another line of tabular DNN research, novel DNN architectures such as SAINT
[10], FT-Transformer [11], and Trompt [12] have been proposed. These novel architectures, which
are essentially attention-based, demonstrate better performance compared with tree-inspired DNNs
but require significantly more time and space. While these tabular DNNs have shown promising
performance in specific contexts, recent surveys and benchmarks generally indicate that they do not
surpass the performance of GBDTs on tabular data [1, 11, 13–15].

Hence, we begin by questioning what’s missing in existing tabular DNNs and identify one key
difference: in tree-based models, only a limited number of features are used in the construction of
each tree. This concept of "sparse selection of columns" not only increases feature diversity but also
helps mitigate overfitting in tree-based models [2–6]. However, existing tabular DNNs are unable to
achieve a sparse selection. For example, attention-based models [10–12] use the softmax operation to
aggregate column information, resulting in a "dense selection" across columns. Some tree-inspired
DNNs [8, 9] have utilized methods like entmax and sparsemax [16, 17] to enhance sparsity, but they
can still only achieve near-sparse effects. Therefore, we opt to develop a new approach to achieve
this characteristic.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Sinopac-Digital-Technology-Division/DOFEN
https://github.com/Sinopac-Digital-Technology-Division/DOFEN

CatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoost

DOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFEN

FT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−Transformer

GradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTree
GRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDE

HistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTree

LightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBM

MLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLP

NODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODE

RandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForest

ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet
SAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINT

TromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTrompt

XGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoost

0.5

0.6

0.7

0.8

0.9

1 10 100
Number of random search iterations

N
or

m
al

iz
ed

 te
st

 a
cc

ur
ac

y
of

 b
es

t
m

od
el

 (
on

 v
al

id
 s

et
)

up
 to

 th
is

 it
er

at
io

n

(a) Medium, Classification.

CatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoost
DOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFEN

FT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−Transformer

GradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTree

GRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDE

HistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTree
LightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBM

MLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLP

NODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODE

RandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForest

ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet

SAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINT
TromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTrompt

XGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoost

0.5

0.6

0.7

0.8

0.9

1 10 100
Number of random search iterations

N
or

m
al

iz
ed

 te
st

 R
2

sc
or

e
of

 b
es

t
m

od
el

 (
on

 v
al

id
 s

et
)

up
 to

 th
is

 it
er

at
io

n

(b) Medium, Regression.

CatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoost
DOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFEN

FT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−Transformer

GradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTree

GRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDE

LightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBM
NODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODE

RandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForest
ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet

SAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINT

TromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTrompt

XGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoost

0.5

0.6

0.7

0.8

0.9

1 10 100
Number of random search iterations

N
or

m
al

iz
ed

 te
st

 a
cc

ur
ac

y
of

 b
es

t
m

od
el

 (
on

 v
al

id
 s

et
)

up
 to

 th
is

 it
er

at
io

n

(c) Large, Classification.

CatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoost
DOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFEN

FT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−Transformer

GradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTree

GRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDE

LightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBM

NODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODE

ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet

SAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINT

TromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTrompt

XGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoost

0.5

0.6

0.7

0.8

0.9

1 10 100
Number of random search iterations

N
or

m
al

iz
ed

 te
st

 R
2

sc
or

e
of

 b
es

t
m

od
el

 (
on

 v
al

id
 s

et
)

up
 to

 th
is

 it
er

at
io

n

(d) Large, Regression.

Figure 1: Evaluation results on the Tabular Benchmark. The model names are sorted by their
performances at the end of the random search of hyperparameters. The result are averaged over
various datasets included in each benchmark respectively, detailed number of datasets of each
benchmark is provided in Appendix B.1

For deep learning models, the biggest challenge is that generating a sparse matrix for on-off column
selection is non-differentiable. In this study, we propose a novel two-step process to work around
this issue: (1) enumerating as many sparse selections of columns as possible, and (2) weighting the
importance of these sparse selections, making the weights differentiable and trainable by a DNN
model. We name this new tree-inspired DNN DOFEN, an abbreviation for Deep Oblivious Forest
ENsemble, and further demonstrate how DOFEN implements these two steps below:

1. Condition Generation and rODT Construction. In DOFEN, the step of enumerating
sparse selections is further divided into two parts. The first part generates conditions,
each involving exactly one column and corresponding to a decision rule of a tree node, as
described in Section 3.2.1. The second part combines conditions using a shuffle-then-reshape
procedure, detailed in Section 3.2.2. Each resultant combination of conditions can be seen
as a differentiable counterpart to the Oblivious Decision Tree (ODT) [18], referred to as a
relaxed ODT (rODT) in the context. Consequently, all the combinations collectively form a
pool of rODTs.

2. Two-level rODT Ensemble. To ensure that the weighting of a limited number of rODTs
can achieve good predictive performance, the previous step requires a sufficiently large pool.
However, assembling all the rODTs in the pool into a single giant forest tends to cause
overfitting, as shown in Appendix F.1 and Figure 9. Thus, DOFEN implements the step
of importance weighting using a two-level ensemble procedure. The first level involves
ensembling only a randomly selected subset of the rODT pool to form individual rODT
forests, which is similar to applying dropout [19] to the rODT pool. The second level treats
each rODT forest as a weak learner and aggregates them into a forest ensemble. This level is
designed to enhance performance and stability, similar to standard ensemble learning. Both
level of ensemble is detailed in Algorithm 1 of Section 3.2.3.

To evaluate DOFEN comprehensively and objectively, we have chosen a recent and well-recognized
benchmark: the Tabular Benchmark [1]. This benchmark addresses the issue of inconsistent dataset
selection, which is prevalent in deep learning research on tabular data. It includes a variety of regres-
sion and classification datasets with standardized feature processing for consistency. Additionally,
we have conducted detailed analyses focusing on the distinct features of DOFEN, thereby offering
insights into its functionalities. In summary, our research makes two key contributions:

1. Innovative Neural Network Architecture. The DOFEN model is fundamentally inspired
by ODTs and incorporates an innovative two-step process to achieve on-off sparse selection
of columns. This unique approach enhances performance beyond that of current tree-inspired
DNNs and offers differentiability compared to conventional tree-based models.

2. State-of-the-Art Performance. The DOFEN model exhibits outstanding performance,
surpassing that of other neural network models and competing closely with GBDTs on the
Tabular Benchmark. This achievement underscores its robustness and versatility across
various tasks, as illustrated in Figure 1.

2

2 Related Work

In this section, we start by exploring ODT and detail our rationale for selecting ODT as the founda-
tional element in our study. We then systematically categorize deep tabular neural networks into two
distinct streams: tree-inspired DNN architectures and novel DNN architectures. Through comparing
DOFEN with these established models, our goal is to highlight its unique contributions and position
it within the broad landscape of deep tabular network research.

Oblivious Decision Tree. The ODT is a variant of the traditional decision tree algorithm [20], which
makes a series of feature-based decisions along its root-to-leaf path to deliver a prediction. In the
context, a feature-based decision rule, e.g. age > 18, is called a condition. The traditional decision
tree algorithm [18] chooses different conditions on different nodes, while in ODT, all nodes at the
same level apply the same condition, resulting in a more uniform decision-making process. This
uniformity allows for streamlined and vectorized decision-making, thus enhancing computational
efficiency, while it also comes at the cost of capacity [8]. However, studies have shown that ensembles
of ODTs can achieve remarkable performance with sufficient capacity [6, 8]. In this research, we
integrate ODTs as the foundational element in the DOFEN model and capitalize on the strengths of
ODTs while mitigating their limitations through ensemble strategies and deep learning techniques.

Tree-inspired DNN Architectures. Integrating decision tree (DT) algorithms with DNNs has become
prominent for handling tabular data. Pioneering works like Deep Forest [7], NODE [8], TabNet [9],
GradTree [21] and GRANDE [22] have each introduced unique methodologies.

Deep Forest adapts the random forest algorithm and incorporates multi-grained feature scanning to
leverage the representation learning capabilities of DNNs. TabNet models the sequential decision-
making process of traditional decision trees using a DNN, featuring a distinct encoder-decoder
architecture that enables self-supervised learning. GradTree recognizes the importance of hard, axis-
aligned splits for tabular data and uses a straight-through operator to handle the non-differentiable
nature of decision trees, allowing for the end-to-end training of decision trees. NODE and GRANDE
share a similar observation and high-level structure to DOFEN, in that they ensemble multiple tree-
like deep learning base models. NODE uses ODT as a base predictor and employs a DenseNet-like
multi-layer ensemble to boost performance. GRANDE, a successor to GradTree, uses DT as a
base predictor and introduces advanced instance-wise weighting for ensembling each base model’s
prediction.

However, DOFEN distinguishes itself from NODE and GRANDE through its unique architectural
design. First, DOFEN employs a different approach to transform tree-based models into neural
networks. Unlike NODE and GRANDE, which explicitly learn the decision paths (i.e., selecting
features and thresholds for each node) and the leaf node values of a tree, DOFEN randomly selects
features to form rODTs and uses a neural network to measure how well a sample aligns with the
decision rule. Additionally, the leaf node value of an rODT is replaced with an embedding vector for
further ensembling. Second, DOFEN introduces a novel two-level ensemble process to enhance model
performance and stability. Unlike NODE and GRANDE, which simply perform a weighted sum on
base model predictions, DOFEN first constructs multiple rODT forests by randomly aggregating
selected rODT embeddings and then applies bagging on the predictions of these rODT forests.

Novel DNN Architectures. Beyond merging decision tree algorithms with DNNs, significant
progress has been made in developing novel architectures for tabular data. Notable among these
are TabTransformer [23], FT-Transformer [11], SAINT [10], TabPFN [24], and Trompt [12]. These
models primarily leverage the transformer architecture [25], utilizing self-attention mechanisms to
capture complex feature relationships.

TabTransformer applies transformer blocks specifically to numerical features, while FT-Transformer
extends this approach to both numerical and categorical features. SAINT enhances the model further
by applying self-attention both column-wise and sample-wise, increasing its capacity. TabPFN, a
variant of the Prior Fitted Network (PFN) [26], is particularly effective with smaller datasets. Trompt
introduces an innovative approach by incorporating prompt learning techniques from natural language
processing [27], aiming to extract deeper insights from the tabular data’s columnar structure.

These models have demonstrated impressive performance across various studies and benchmarks.
As a result, we choose them as our baselines to offer a comprehensive evaluation for deep learning
models on tabular data.

3

3 DOFEN: Deep Oblivious Forest Ensemble

In this section, we begin with discussion about how DOFEN relax an ODT to be differentiable in
Section 3.1, and elaborate on the details of the overall architecture design in Section 3.2. In the
following figures and equations, three sub-networks—composites of fundamental neural network
layers such as linear layers, layer normalization, and dropout—are simplified into symbols ∆1,
∆2, and ∆3 for readability. The detailed configurations of these sub-networks can be found in
Appendix A.2.

3.1 ODT Relaxation

An ODT operates on an input vector x⃗, where x⃗ ∈ RNcol and Ncol is the number of columns in a
tabular dataset, as described in Equation (1). Although these columns can be either numerical or
categorical, we focus on real numbers in Equations (2) and (3) to simplify the notations.

x⃗ = (xi | i = 1, 2, . . . , Ncol), xi ∈ R (1)

Fundamentally, an ODT of depth d is a decision table consisting of d entries [28], as depicted in
Equation (2). Here, Ij indicates the index of a selected column, and xIj denotes its column value
at depth j. The corresponding threshold is denoted by bj , and H denotes the Heaviside function.
In practice, the choice of xIj is decided by a predefined criterion, e.g., entropy or Gini impurity. It
is possible for a raw column to be selected multiple times at different depths, each with a varying
threshold.

ODT(x⃗) = {H(xIj − bj)}, x⃗
decided by entropy, Gini impurity, etc.−−−−−−−−−−−−−−−−−−−→ {(xIj , bj)},

Ij ∈ {1, 2, . . . , Ncol}, bj ∈ R, j = (1, 2, . . . , d) (2)

Equation (2) involves non-differentiable calculations, including the Heaviside function and the
predefined criterion. Consequently, the key to integrating an ODT within a neural network model
lies in making the following operations differentiable: selecting columns, deciding thresholds, and
modeling H .

To address these challenges, DOFEN proposes a method to relax an ODT, as shown in Equation (3).
In DOFEN, the columns of an ODT at different depths are selected randomly. The thresholds and the
Heaviside function for column Ij are replaced with a sub-network ∆1Ij , which employs the sigmoid
activation function to create soft conditions. To avoid confusion, we introduce a new term, relaxed
ODT (rODT), in this context. This term distinguishes between the original ODT and the relaxed
version proposed in this study, which can be integrated to neural networks.

rODT(x⃗) = {∆1Ij (xIj)}, x⃗
randomly select−−−−−−−−→ {xIj},

Ij ∈ {1, 2, . . . , Ncol}, j = (1, 2, . . . , d) (3)

3.2 DOFEN Model

3.2.1 Condition Generation

This module transforms input vector x⃗ into multiple soft conditions for subsequent modules. The raw
input in tabular data comprises a combination of numerical and categorical columns. In this study, a
soft condition is defined as a scalar indicating how well a column adheres to a decision rule.

This transformation process creates a matrix M, as shown in Equation (4), where Ncond is a hyper-
parameter denoting the number of conditions we aim to generate for each column. Notably, each
column xi is processed by individual sub-network ∆1i in this context, where i ∈ {1, . . . , Ncol}. This
design is derived from the original ODT, where each condition involves only a single column. The
sub-network ∆1 is an embedding layer for a categorical column or a linear layer for a numerical
column. Further details of ∆1 can be found in Appendix A.2. As depicted in Figure 2a, three
instances of ∆1 generate four conditions for each column, resulting in a 3× 4 matrix.

4

paired

paired

paired

paired

(a) Condition Generation (b) Relaxed ODT Construction (c) Forest Construction

paired

paired

Perm
utation w

ith
and reshape

Figure 2: (a) Condition Generation: For each column xi, Ncond conditions are generated through an
individual sub-network ∆1i. The aggregate of the conditions of all columns is denoted by the matrix
M. (b) Relaxed ODT Construction: The condition matrix M is shuffled (i.e. permutation with π) and
reshape into O, representing NrODT rODTs each with depth d. (c) Forest Construction: To compute
the weights wi, an individual sub-networks ∆2i is applied to each rODT. In addition, each wi is
paired with a learnable embedding vector ei. The aggregate of all weights and their corresponding
embedding vectors are denoted as w⃗ and E, respectively.

M =

 m11 . . . m1Ncol

...
. . .

...
mNcond1 . . . mNcondNcol

 ∈ RNcond×Ncol , (mi1, . . . ,miNcond) = ∆1i(xi), i = (1, 2, . . . , Ncol)

(4)

3.2.2 Relaxed ODT Construction

This module constructs multiple rODTs. Unlike traditional ODT, which selects columns and their
corresponding thresholds based on predefined criteria, DOFEN randomly selects d elements from
the Ncond ×Ncol conditions in matrix M without replacement to build an rODT with depth d. In our
implementation, M is shuffled and reshaped into a matrix O with dimensions NrODT × d, as shown
in Equation (5). Here, we use π to represent a bijective function that maps the index of each element
in M to a unique position in O (i.e. permutation). The whole process is also illustrated in Figure 2b.

Specifically, NrODT = NcondNcol/d. To guarantee that NrODT is an integer, we introduce an interme-
diate parameter, m, which ensures that Ncond is always a multiple of d by formulating Ncond = md.
In practice, we use m to adjust Ncond instead of directly changing Ncond.

On the other hand, note that each row in O represents an rODT, which is crucial for subsequent
operations. To ensure this consistency and the stability during training, the permutation is done only
once during model construction and the configuration is then maintained throughout.

O =

 o11 . . . o1d
...

. . .
...

oNrODT1 . . . oNrODTd

 ∈ RNrODT×d,

{
ojk | j =

⌈
π(n)

d

⌉
, k = π(n) mod d, n = u×Ncol + v

}
= {muv} ⊂M,

where 1 ≤ u ≤ Ncond, 1 ≤ v ≤ Ncol (5)

5

average

sum

sam
ple

 instances of (
,

)
w

ithout replacem
ent and repeat

 tim
es

a shared

(a) Forest Construction (b) Forest Ensemble

 = softmax operation
 = weighted sum operation

Figure 3: (a) Forest Construction: First, Nestimator pairs of (wi, e⃗i) are randomly sampled to form
w⃗′ and E′. Secondly, w⃗′ is transformed through a softmax function, and is used for computing the
weighted sum of E′ to form forest embedding f⃗ . (b) Forest Ensemble: a shared-weight sub-network
∆3 is employed to make a prediction ŷ for each embedding. The final prediction is the average of all
ŷ values, and the total loss is the sum of their individual losses.

3.2.3 Two-level Relaxed ODT Ensemble

This module integrates rODTs to construct forests and then assembles multiple forests to conduct a
final prediction.

Forest Construction. To construct an rODT forest using the generated rODTs, DOFEN introduces a
sub-network and a standalone embedding vector for each rODT, denoted as ∆2i and e⃗i respectively,
where i ∈ {1, . . . , NrODT}. The role of ∆2i is to evaluate how well a sample aligns with the conditions
of an rODT, producing a weight scalar wi, as shown in Equation (6) and Figure 2c.

w⃗ =

∆21((o11, . . . , o1d))

...
∆2NrODT((oNrODT1, . . . , oNrODTd))

 = (w1, . . . , wNrODT) ∈ RNrODT (6)

The embedding vector e⃗i represents the tree information and is independent of the samples. The
embedding vectors are combined into a matrix E, as depicted in Equation (7), where Nhidden represents
the size of the hidden dimension. Importantly, each tree embedding vector is directly linked to
the specific conditions of its corresponding rODT. It is crucial to keep this association consistent
throughout each training session to effectively train the tree embedding vectors.

E =

 e⃗1
...

e⃗NrODT

 ∈ RNrODT×Nhidden ,where e⃗i ∈ RNhidden , i = (1, 2, . . . , NrODT) (7)

To further construct an rODT forest, Nestimator of paired weights and embeddings are sampled from
w⃗ and E. This process is graphically represented in Figure 3a and described in line 3 to 7 of the
pseudo-code for the two-level ensemble (Algorithm 1). The weights are processed through a softmax
function and the weighted sum of embeddings forms the embedding vector f⃗ for an rODT forest.
The magnitude of these softmaxed weights indicate the importance of the selected rODTs for making
predictions. Noted that this process is repeated Nforest times to form Nforest instances of rODT forests.

Forest Ensemble. To make a prediction, DOFEN applies a shared sub-network ∆3 to the embedding
of each rODT forest to make individual predictions. The predictions are then averaged for a bagging

6

Algorithm 1: Two-level Relaxed ODT Ensemble
Input: w⃗, E, Nforest, y, L
Output: ŷ, loss

1 Initialize ŷ, loss← 0, 0;
2 for r ← 1 to Nforest do
3 w⃗′,E′ sample without replacement←−−−−−−−−−−−−−− w⃗,E ; /* Nestimator paired elements are sampled. */
4 w⃗′ ∈ RNestimator ;
5 E′ ∈ RNestimator×Nhidden ;

6 f⃗ ←
Nestimator∑

softmax(w⃗′) ◦E′ ; /* Element-wise multiplication with broadcast. */

7 f⃗ ∈ RNhidden ; /* f⃗ represents an rODT forest embedding. */

8 ŷ′ ← ∆3(f⃗) ; /* Give prediction with a shared ∆3. */
9 loss← loss+ L(ŷ′, y) ; /* Calculate loss with loss function L and aggregate. */

10 ŷ ← ŷ + ŷ′ ; /* Aggregate each forest’s prediction. */
11 end
12 ŷ ← ŷ/Nforest;
13 return (ŷ, loss);

ensemble. The process is detailed in line 1, 8, 10, and 12 in Algorithm 1 and is illustrated in Figure 3b.
Notice that the output ŷi is a scalar for regression tasks and a vector for classification tasks.

During training, DOFEN updates the model parameters by aggregating the loss from each prediction,
as shown in line 9 in Algorithm 1. The loss function L is cross-entropy for classification tasks and
mean squared error for regression tasks.

Notably, the sampling of weight-embedding pairs allows resampling in each forward pass without
disrupting the training. In fact, the two-level rODT ensemble essentially implements a form of
bootstrap aggregating (i.e. bagging) of trees. Conventional tree-based models like random forest
bootstrap samples to generate a variety of trees, which are then combined to form a forest. In DOFEN,
the w⃗ and E represent a tree pool. From this pool, trees are sampled with replacement to create diverse
tree sets, or forests, represented by w⃗′ and E′. These forests are then integrated to make the final
prediction. The design of this tree bagging method enables the construction of varied base models (in
this case, forests rather than individual trees) within a single training session, which is particularly
suited to deep learning contexts. Although the randomization may seem chaotic, experiments shows
that this approach contributes to the model’s stability and generalizability, which is discussed in detail
in Section 4.3.1 and Appendix F.1.

4 Experiments

This section presents a comprehensive analysis of our experimental results, organized as follows: The
Tabular Benchmark and the baseline models are first introduced in Section 4.1. In Section 4.2, we
evaluate DOFEN on the medium-sized Tabular Benchmark, while leaving the results for large-sized
benchmark in Appendix G.1. Section 4.3 delves into DOFEN to elucidate the underlying mechanics
that drive its performance. Additionally, we discuss DOFEN’s computational efficiency in Appen-
dices C.1 to C.3, analyze DOFEN’s scalability in Appendix D, and show DOFEN’s interpretability in
Appendix E.

4.1 Tabular Benchmark Setup

Datasets. We strictly follow the protocols of the Tabular Benchmark as detailed in its official imple-
mentation1. This includes dataset splits, preprocessing methods, hyperparameter search guidelines,
and evaluation metrics. For full details, please refer to the original paper [1]. The Tabular Bench-
mark categorized datasets into classification and regression, with features being either exclusively
numerical or a combination of numerical and categorical (heterogeneous). These datasets are further

1https://github.com/LeoGrin/tabular-benchmark

7

https://github.com/LeoGrin/tabular-benchmark

CatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoost

DOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFEN

FT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−Transformer

GradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTree
GRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDE

HistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTree

LightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBM

MLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLP

NODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODE

RandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForest

ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet
SAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINT

TromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTrompt

XGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoost

0.5

0.6

0.7

0.8

0.9

1 10 100
Number of random search iterations

N
or

m
al

iz
ed

 te
st

 a
cc

ur
ac

y
of

 b
es

t
m

od
el

 (
on

 v
al

id
 s

et
)

up
 to

 th
is

 it
er

at
io

n

(a) Exclusively Numerical,
Classification

CatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoost

DOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFEN

FT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−Transformer

GradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTree

GRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDE

HistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTree

LightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBM

MLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLP

NODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODE

RandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForest

ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet

SAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINT

TromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTrompt

XGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoost

0.5

0.6

0.7

0.8

0.9

1 10 100
Number of random search iterations

N
or

m
al

iz
ed

 te
st

 a
cc

ur
ac

y
of

 b
es

t
m

od
el

 (
on

 v
al

id
 s

et
)

up
 to

 th
is

 it
er

at
io

n

(b) Heterogeneous,
Classification

CatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoost
DOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFEN

FT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−Transformer
GradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTree

GRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDE

HistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTree

LightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBM

MLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLP

NODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODE

RandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForest

ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet

SAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINT
TromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTrompt

XGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoost

0.5

0.6

0.7

0.8

0.9

1 10 100
Number of random search iterations

N
or

m
al

iz
ed

 te
st

 R
2

sc
or

e
of

 b
es

t
m

od
el

 (
on

 v
al

id
 s

et
)

up
 to

 th
is

 it
er

at
io

n

(c) Exclusively Numerical,
Regression

CatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoost

DOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFEN
FT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−Transformer

GradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTree

GRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDE

HistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTreeHistGradientBoostingTree

LightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBM

MLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLP

NODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODE

RandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForest

ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet

SAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINT

TromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTrompt

XGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoost

0.5

0.6

0.7

0.8

0.9

1 10 100
Number of random search iterations

N
or

m
al

iz
ed

 te
st

 R
2

sc
or

e
of

 b
es

t
m

od
el

 (
on

 v
al

id
 s

et
)

up
 to

 th
is

 it
er

at
io

n

(d) Heterogeneous,
Regression

Figure 4: Results on medium-sized classification and regression datasets.

classified according to their sample size: medium-sized or large-sized. The dataset counts from Tabu-
lar Benchmark are provided in Appendix B.1, and the detailed datasets used in Tabular Benchmark
are provided in Appendix B.3.

Model Selection. For model comparison, Tabular Benchmark includes four tree-based models:
RandomForest, GradientBoostingTree [29], HGBT [30], and XGBoost; two generic DNN models:
MLP and ResNet [11]; and two tabular DNN models: SAINT and FT-Transformer. To ensure a
comprehensive comparison, we also included two additional tree-based models: LightGBM and
CatBoost, and three tabular DNN models: NODE, Trompt, and GRANDE. LightGBM and CatBoost
are selected due to their widespread use across various domains. NODE and GRANDE both share
similar motivation and high-level structure with DOFEN, while Trompt represents the current state-
of-the-art tabular DNNs when following the origin protocols of the Tabular Benchmark. The default
hyperparameter configuration of DOFEN and hyperparameter search space of different models are
presented in Appendices A.1 and H.2, and the list of some missing model baselines from Tabular
Benchmark is provided in Appendix B.2.

4.2 Performance Evaluation

We analyze the results of medium-sized benchmark on classification and regression tasks separately.
The evaluation metrics adhere to the Tabular Benchmark protocols, which use accuracy for classifica-
tion datasets and the R-squared score for regression datasets. We discuss the overall performance in
this section and provide comprehensive results for each dataset in Appendix G.2.

Classification. In Figure 4a, the models can be roughly categorized into three groups: (1) tree-based
models and three tabular DNN models: DOFEN, Trompt and GRANDE, (2) three other tabular DNN
models, and (3) the two generic DNN models. Prior to DOFEN, Trompt was the sole DNN model
comparable to tree-based models. DOFEN not only matches but also surpasses the performance of
most tree-based models, establishing a new benchmark for DNN models in tabular data. In Figure 4b,
DOFEN and Trompt are again the only two DNN models grouped with tree-based models, yet they
are positioned at the bottom of this group.

Regression. In Figure 4c, XGBoost stands out as a distinct category. Meanwhile, CatBoost and
DOFEN represent a second level of performance. Notably, XGBoost and DOFEN demonstrate a
significant improvement during the hyperparameter optimization, whereas CatBoost maintains strong
performance consistently. In Figure 4d, XGBoost and CatBoost continue to hold the top two positions.
DOFEN, ending up in sixth place, is overtaken by GradientBoostingTree as well as HGBT, and is
comparable with FT-Transformer towards the end of the hyperparameter search process.

The analysis of Figure 4 allows us to draw several conclusions. When compared to DNN models,
DOFEN consistently either ranks first or shares the top positions. Additionally, DOFEN exhibits
strong competitiveness against tree-based models. In datasets with numerical features, it consistently
places within the top three. However, in the context of heterogeneous features, DOFEN’s performance
is moderate, typically falling in the middle or lower tiers in comparison with tree-based models.
This challenge in managing heterogeneous features is a prevalent issue among all DNN models,
highlighting an area for potential improvement in future tabular DNN models.

8

Table 1: Mean (µ) and standard deviation (σ) of DOFEN’s performance with 15 random seeds on 4
datasets from different tasks.

Nforest 1 10 20 50 100 (default) 400

jannis
(numerical classification)

µ (↑) 0.7382 0.7747 0.7782 0.7800 0.7808 0.7814
σ (↓) 0.0060 0.0019 0.0015 0.0006 0.0007 0.0004

road-safety
(heterogeneous classification)

µ (↑) 0.7517 0.7712 0.7720 0.7728 0.7732 0.7732
σ (↓) 0.0118 0.0010 0.0007 0.0004 0.0005 0.0003

delays-zurich
(numerical regression)

µ (↑) 0.0054 0.0248 0.0258 0.0265 0.0268 0.0270
σ (↓) 0.0033 0.0009 0.0005 0.0003 0.0003 0.0002

abalone
(heterogeneous regression)

µ (↑) 0.5469 0.5810 0.5846 0.5862 0.5868 0.5870
σ (↓) 0.0181 0.0038 0.0026 0.0017 0.0010 0.0004

4.3 Additional Analysis

This section is dedicated to a deeper exploration of the DOFEN model. Randomness plays an
important role in DOFEN, as both the condition selection of an rODT and rODT selection of a forest
involve random processes. A straightforward concern is the stability of DOFEN, which is examined
in Section 4.3.1. Moreover, given that the conditions are randomly selected, we investigate whether
this randomness leads to redundant trees in Section 4.3.2. In addition to randomness, another distinct
feature of DOFEN is the introduction of a higher-level ensemble that combines multiple forests,
instead of merely assembling trees into a forest. Appendix F.1 discusses the impact of removing this
higher-level ensemble on DOFEN.

All experiments in this section are conducted using the default hyperparameters and medium-sized
datasets from the Tabular Benchmark. For evaluation metrics, accuracy is used for classification
datasets, while the R-squared score for regression datasets. Except for the cases evaluated on
individual datasets, the results represent the averaged metrics across the corresponding datasets.

4.3.1 Model Stability

DOFEN incorporates randomness at two steps: firstly, in the selection of conditions as shown in
Equation (5) for rODT construction, and secondly, in the sampling of rODTs as shown in line 3
of Algorithm 1 for a two-level rODT ensemble. This section explores how randomness affects the
stability of DOFEN.

We start by analyzing the variation in performance of four datasets, where DOFEN ranks first, as
shown in Table 1. The standard deviations are even negligible when Nforest = 1 (about 0.1% to 1% to
mean), except for the delays-zurich dataset. Moreover, with increased Nforest, the standard deviations
become even smaller (about 0.01% to 0.1% to mean). These results suggest that the stability of
DOFEN is not an issue in most cases (Nforest > 10), and using the default setting of DOFEN
(Nforest = 100) ensures both adequate performance and stability for most datasets. Furthermore,
the performance improves as the Nforest increases, indicating that the tree bagging of DOFEN not
only mitigates instability but also enhances the model’s generalizability.

In addition to analyzing the intrinsic instability, we also replace the steps involving randomness with
deterministic alternatives to assess the impact of the randomness on DOFEN from a different perspec-
tive. For the selection of conditions, we utilize CatBoost to choose columns based on a predefined
criterion. The detailed results, presented in Appendix F.3, reveal that the predefined criterion perform
only slightly better than the shuffle-then-reshape process. Considering the differentiability and the
potential for end-to-end training, random selection of conditions remains a viable and promising
option. For sampling rODTs, we implement a sliding window technique to lock in the selected trees
for each forest. The results are detailed in Appendix F.4, which suggests that our straightforward
approach is comparable to a more sophisticated approach.

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
rODT rank

6

4

2

0

2

av
er

ag
e

rO
DT

 w
ei

gh
t

TP
TN

(a) Relaxed ODTs with large weight variation.

84
0

84
1

84
2

84
3

84
4

84
5

84
6

84
7

84
8

84
9

85
0

85
1

85
2

85
3

85
4

85
5

85
6

85
7

85
8

85
9

86
0

86
1

86
2

86
3

86
4

rODT rank

2.0

1.5

1.0

0.5

0.0

av
er

ag
e

rO
DT

 w
ei

gh
t

TP
TN

(b) Relaxed ODTs with small weight variation.

Figure 5: In the covertype dataset, Figure 5a shows that the average weights of true positives differ
significantly from those of true negatives. Conversely, Figure 5b reveals a contrasting result for
rODTs with small weight variation.

4.3.2 Weights of Individual Relaxed ODT

In DOFEN, an rODT is assigned a weight to predict a sample, as shown in Equation (6). In this
section, we analyze a binary classification dataset (covertype) to observe the variation in the weights
assigned to individual rODTs, as shown in Figure 5.

Figure 5a shows that, for most rODTs ranked in the top 25 according to their standard deviations of
weights, there is a significant difference between the average weights of true positives and those of
true negatives. Conversely, Figure 5b shows an opposite trend for rODTs with the smallest standard
deviations of weights. These trends are also observed in another dataset, as shown in Appendix F.5.
These observations imply that rODTs with larger standard deviations of weights is more crucial role
in classifying samples.

In addition, we come up with an idea to examine the performance change after pruning weights with
small standard deviations and their corresponding embeddings, since they are not sensitive to samples
with different label. The results are provided in Appendix F.6 and suggest that the variation serves as
a reliable indicator of the importance of rODTs. Moreover, pruning the less important rODTs not
only enhances the model’s efficiency but also its performance.

5 Limitation and Conclusion

Limitation. Although DOFEN shows promising results, it still contains two weaknesses. First,
the inference time of DOFEN is relatively long compared to other DNN models, as shown in
Appendix C.1. However, Appendix C.1 also shows that DOFEN possesses the fewest floating point
operations (FLOPs). This inconsistency between inference time and FLOPs is mainly caused by
the group convolution operation for calculating weights for each rODT (Appendix C.2), which can
be improved in the future implementation of DOFEN. Second, the randomization steps involved in
DOFEN result in a slower convergence speed, meaning that DOFEN requires more training steps to
reach optimal performance. This is reflected in the relatively larger number of training epochs needed
for DOFEN. Therefore, the workaround strategy of differentiable sparse selection proposed in this
study is merely a starting point, demonstrating its potential. Finding more efficient strategies will be
the future work.

Conclusion. In this work, we proposed DOFEN, a novel tree-inspired DNN for tabular data that
achieves on-off sparse selections of columns. DOFEN first constructs sufficiently large number
of rODTs and randomly ensembles these rODTs into multiple rODT forests to make prediction.
DOFEN was evaluated on the Tabular Benchmark, achieving state-of-the-art results compared to
DNN-based models and proving competitive with tree-based ones. Furthermore, we showed that the
randomization steps involved in DOFEN do not compromise stability but do yield redundant rODTs.
Nevertheless, redundant rODTs can be efficiently removed through our pruning method. In summary,
based on DOFEN’s outstanding performance, it has the potential to serve as the backbone model
for tabular data across various scenarios, including self- and semi-supervised learning, as well as
multi-modal training.

10

References
[1] Grinsztajn, L.; Oyallon, E.; Varoquaux, G. Why do tree-based models still outperform deep

learning on typical tabular data? Advances in Neural Information Processing Systems 2022, 35,
507–520.

[2] Breiman, L. Random forests. Machine learning 2001, 45, 5–32.

[3] Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Machine learning 2006, 63,
3–42.

[4] Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery and data mining. 2016; pp 785–794.

[5] Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A
highly efficient gradient boosting decision tree. Advances in neural information processing
systems 2017, 30.

[6] Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A. V.; Gulin, A. CatBoost: unbiased
boosting with categorical features. Advances in neural information processing systems 2018,
31.

[7] Zhou, Z.-H.; Feng, J. Deep forest. National science review 2019, 6, 74–86.

[8] Popov, S.; Morozov, S.; Babenko, A. Neural oblivious decision ensembles for deep learning on
tabular data. arXiv preprint arXiv:1909.06312 2019,

[9] Arik, S. Ö.; Pfister, T. Tabnet: Attentive interpretable tabular learning. Proceedings of the AAAI
conference on artificial intelligence. 2021; pp 6679–6687.

[10] Somepalli, G.; Goldblum, M.; Schwarzschild, A.; Bruss, C. B.; Goldstein, T. Saint: Improved
neural networks for tabular data via row attention and contrastive pre-training. arXiv preprint
arXiv:2106.01342 2021,

[11] Gorishniy, Y.; Rubachev, I.; Khrulkov, V.; Babenko, A. Revisiting deep learning models for
tabular data. Advances in Neural Information Processing Systems 2021, 34, 18932–18943.

[12] Chen, K.-Y.; Chiang, P.-H.; Chou, H.-R.; Chen, T.-W.; Chang, T.-H. Trompt: Towards a Better
Deep Neural Network for Tabular Data. arXiv preprint arXiv:2305.18446 2023,

[13] Shwartz-Ziv, R.; Armon, A. Tabular data: Deep learning is not all you need. Information Fusion
2022, 81, 84–90.

[14] Borisov, V.; Leemann, T.; Seßler, K.; Haug, J.; Pawelczyk, M.; Kasneci, G. Deep neural
networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning
Systems 2022,

[15] McElfresh, D.; Khandagale, S.; Valverde, J.; Ramakrishnan, G.; Goldblum, M.; White, C.;
others When Do Neural Nets Outperform Boosted Trees on Tabular Data? arXiv preprint
arXiv:2305.02997 2023,

[16] Peters, B.; Niculae, V.; Martins, A. F. Sparse Sequence-to-Sequence Models. Proc. ACL. 2019.

[17] Martins, A.; Astudillo, R. From softmax to sparsemax: A sparse model of attention and
multi-label classification. International conference on machine learning. 2016; pp 1614–1623.

[18] Kohavi, R. Bottom-up induction of oblivious read-once decision graphs. European Conference
on Machine Learning. 1994; pp 154–169.

[19] Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: a simple
way to prevent neural networks from overfitting. The journal of machine learning research
2014, 15, 1929–1958.

[20] Quinlan, J. R. Induction of decision trees. Machine learning 1986, 1, 81–106.

11

[21] Marton, S.; Lüdtke, S.; Bartelt, C.; Stuckenschmidt, H. GradTree: Learning axis-aligned deci-
sion trees with gradient descent. Proceedings of the AAAI Conference on Artificial Intelligence.
2024; pp 14323–14331.

[22] Marton, S.; Lüdtke, S.; Bartelt, C.; Stuckenschmidt, H. GRANDE: Gradient-Based Decision
Tree Ensembles for Tabular Data. The Twelfth International Conference on Learning Represen-
tations. 2024.

[23] Huang, X.; Khetan, A.; Cvitkovic, M.; Karnin, Z. Tabtransformer: Tabular data modeling using
contextual embeddings. arXiv preprint arXiv:2012.06678 2020,

[24] Hollmann, N.; Müller, S.; Eggensperger, K.; Hutter, F. Tabpfn: A transformer that solves small
tabular classification problems in a second. arXiv preprint arXiv:2207.01848 2022,

[25] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł.;
Polosukhin, I. Attention is all you need. Advances in neural information processing systems
2017, 30.

[26] Müller, S.; Hollmann, N.; Arango, S. P.; Grabocka, J.; Hutter, F. Transformers can do bayesian
inference. arXiv preprint arXiv:2112.10510 2021,

[27] Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I.; others Improving language under-
standing by generative pre-training. 2018,

[28] Lou, Y.; Obukhov, M. Bdt: Gradient boosted decision tables for high accuracy and scoring
efficiency. Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. 2017; pp 1893–1901.

[29] Friedman, J. H. Stochastic gradient boosting. Computational statistics & data analysis 2002,
38, 367–378.

[30] Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research 2011, 12, 2825–2830.

[31] Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.;
Gimelshein, N.; Antiga, L.; others Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems 2019, 32.

[32] Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 2017,

[33] fvcore library. https://github.com/facebookresearch/fvcore/.

[34] Averagemn LGBM with hyperopt tuning. 2019; https://www.kaggle.com/code/donkeys/
lgbm-with-hyperopt-tuning/notebook, [Online; accessed 5-January-2023].

[35] Bahmani, M. Understanding LightGBM Parameters (and How to Tune Them). 2022; https:
//neptune.ai/blog/lightgbm-parameters-guide, [Online; accessed 5-January-2023].

[36] Vanschoren, J.; van Rijn, J. N.; Bischl, B.; Torgo, L. OpenML: Networked Science in Machine
Learning. SIGKDD Explorations 2013, 15, 49–60.

12

https://github.com/facebookresearch/fvcore/
https://www.kaggle.com/code/donkeys/lgbm-with-hyperopt-tuning/notebook
https://www.kaggle.com/code/donkeys/lgbm-with-hyperopt-tuning/notebook
https://neptune.ai/blog/lightgbm-parameters-guide
https://neptune.ai/blog/lightgbm-parameters-guide

Appendix

Table of Contents
A More DOFEN Settings 14

A.1 Default Hyperparameters Settings for DOFEN 14
A.2 Detailed Model Configurations. 14
A.3 Actual Nestimator for each Dataset . 14

B More Tabular Benchmark Settings 16
B.1 Dataset Counts . 16
B.2 Missing Model Baselines . 16
B.3 Mappings of OpenML Task ID and Dataset Name 16

C Computational Efficiency Analysis 18
C.1 Computational Efficiency Analysis . 18
C.2 Long Inference Time of DOFEN . 19
C.3 Training Time of DOFEN . 20

D Scalability of DOFEN 21

E Interpretability of DOFEN 22

F More Analysis 23
F.1 Sampling in Relaxed ODT Forest Ensemble 23
F.2 Seed Ensemble . 24
F.3 An Alternative Strategy for Condition Selection 25
F.4 An Alternative Strategy for Weight Selection 25
F.5 More Experiments for Section 4.3.2 (Activated rODT for Different Classes) . . . 26
F.6 Pruning of Relaxed ODT . 26

G More Evaluation Results on Tabular Benchmark 27
G.1 Performance Evaluation on Large-sized Benchmark 27
G.2 Detailed Evaluation Results . 28

H More Experiment Settings 44
H.1 Hardware Used . 44
H.2 Hyperparameter Search Space . 44

13

A More DOFEN Settings

A.1 Default Hyperparameters Settings for DOFEN

In this section, we describe the hyperparameters used in our DOFEN model, along with their default
values, as shown in Table 2. All notations used here have been previously introduced in Section 3,
except for dropout_rate. The dropout_rate is applied in dropout layers, and its usage is detailed in
Appendix A.2.

The calculated Nestimator for each dataset can be found in Appendix A.3. Additionally, the hyperparam-
eter search spaces for both the DOFEN model and all baseline models are detailed in Appendix H.2.

DOFEN is implemented in Pytorch [31]. For hyperparameters used in model optimization (e.g.
optimizer, learning rate, weight decay, etc.), all experiments share the same settings. Specifically,
DOFEN uses AdamW optimizer [32] with 1e−3 learning rate and no weight decay. The batch size
is set to 256, and DOFEN is trained for 500 epochs without using learning rate scheduling or early
stopping.

Table 2: The default hyperparameters of DOFEN.
Hyperparameter Default Value

Ncol depends on dataset
d 1 4
m 2 16
Ncond md
NrODT NcolNcond/d = Ncolm
Nestimator max{2,

⌊√
Ncol

⌋
} ·Ncond/d

Nforest 100
Nhidden 128
Nclass depends on dataset
dropout_rate 0.0

1 depth of a rODT
2 an intermediate parameter to ensure that NrODT is an integer

A.2 Detailed Model Configurations.

In this appendix, we elucidate the specific configurations of the neural network layer composites,
denoted as ∆1, ∆2, and ∆3 in the main paper.

1. ∆1 - Generate conditions for each column: ∆1 is designed to generate conditions for both
numerical and categorical data columns, as detailed in Figure 6. For categorical columns in
particular, we employ embedding layers. These layers are utilized to transform categorical
features into a format that the neural network can effectively process.

2. ∆2 and ∆3 - Derive weights and make predictions: The layers represented by ∆2 and ∆3

are responsible for generating weights based on the combination of conditions and making
predictions, respectively. The relevant structures and processes are illustrated in Figure 7
and Figure 8.

3. Key Parameters:
• num_categories: This parameter represents the number of distinct categories in a given

categorical column.
• drop_rate: This hyperparameter defines the extent of dropout operations applied within

the network.

A.3 Actual Nestimator for each Dataset

The Nestimator is calculated through a pre-defined formula as shown in Table 2. In this section, we
provide the calculated Nestimator for each dataset in Table 3 when using default hyperparameters.
Datasets are represented by their OpenML ID as described in Appendix B.3.

14

Linear(1,)

Sigmoid()

Linear (1, cond_per_column)

LayerNorm()

Sigmoid()

Embedding(num_categories,)

Linear(,)

Numerical
Column

Categorical
Column

Figure 6: Detailed network layer composite for ∆1.

Linear(,)

LayerNorm()

Dropout(drop_rate)

ReLU()

Linear(, 1)

LayerNorm()

Dropout(drop_rate)

Figure 7: Detailed network layer composite
for ∆2.

Linear(,)

LayerNorm()

Dropout(drop_rate)

ReLU()

Linear(, 1 or)

LayerNorm()

Dropout(drop_rate)

Figure 8: Detailed network layer composite
for ∆3.

Table 3: Nestimator for each dataset, as long as their Ncol and NrODT.
OpenML ID 361086 361294 361094 361289 361293 361085 361082 361103 361080

Ncol 3 3 4 4 5 6 6 6 6
NrODT 48 48 64 64 80 96 96 96 96
Nestimator 32 32 32 32 32 32 32 32 32

OpenML ID 361273 361066 361060 361280 361093 361110 361288 361281 361277

Ncol 7 7 7 7 7 8 8 8 8
NrODT 112 112 112 112 112 128 128 128 128
Nestimator 32 32 32 32 32 32 32 32 32

OpenML ID 361081 361078 361104 361083 361096 361055 361061 361065 361095

Ncol 8 8 9 9 9 10 10 10 10
NrODT 128 128 144 144 144 160 160 160 160
Nestimator 32 32 48 48 48 48 48 48 48

OpenML ID 361076 361098 361291 361099 361286 361087 361084 361063 361074

Ncol 11 11 11 11 11 13 15 16 16
NrODT 176 176 176 176 176 208 240 256 256
Nestimator 48 48 48 48 48 48 48 64 64

OpenML ID 361079 361101 361102 361070 361275 361072 361283 361278 361111

Ncol 16 16 17 20 20 21 21 22 23
NrODT 256 256 272 320 320 336 336 352 368
Nestimator 64 64 64 64 64 64 64 64 64

OpenML ID 361069 361062 361073 361282 361285 361077 361279 361068 361113

Ncol 24 26 26 31 32 33 42 50 54
NrODT 384 416 416 496 512 528 672 800 864
Nestimator 64 80 80 80 80 80 96 112 112

OpenML ID 361274 361088 361091 361292 361287 361097 361276

Ncol 54 79 91 124 255 359 419
NrODT 864 1264 1456 1984 4080 5744 6704
Nestimator 112 128 144 176 240 288 320

15

B More Tabular Benchmark Settings

B.1 Dataset Counts

In this section, we provide the dataset counts for each task for your reference, as presented in Table 4.

Table 4: Dataset counts for each task.
Task Feature Count

medium-sized classification numerical 16
heterogenous 7

medium-sized regression numerical 19
heterogenous 17

large-sized classification numerical 4
heterogenous 2

large-sized regression numerical 3
heterogenous 5

B.2 Missing Model Baselines

We found that two baselines, MLP and HGBT, are absent from the evaluation results in the large-sized
classification task because they are missing from the official repository. Furthermore, MLP, HGBT,
and RandomForest are not included in the large-sized regression task for the same reason.

B.3 Mappings of OpenML Task ID and Dataset Name

In this section, we introduce the mappings between OpenML Task IDs and elaborate on how to
download the corresponding datasets using these IDs.

The mappings are provided in Tables 5 to 8. To access the datasets, please follow the links below,
which direct you to the OpenML website for each type of dataset. You can then search using the
OpenML ID.

• Classification datasets with numerical features only:
https://www.openml.org/search?type=benchmark&study_type=task&id=337

• Classification datasets with heterogeneous features:
https://www.openml.org/search?type=benchmark&study_type=task&id=334

• Regression datasets with numerical features only:
https://www.openml.org/search?type=benchmark&study_type=task&id=336
https://www.openml.org/search?type=benchmark&study_type=task&id=297
(only for task ID 361091)

• Regression datasets with heterogeneous features:
https://www.openml.org/search?type=benchmark&study_type=task&id=335
https://www.openml.org/search?type=benchmark&study_type=task&id=299
(only for task ID 361095)

16

https://www.openml.org/search?type=benchmark&study_type=task&id=337
https://www.openml.org/search?type=benchmark&study_type=task&id=334
https://www.openml.org/search?type=benchmark&study_type=task&id=336
https://www.openml.org/search?type=benchmark&study_type=task&id=297
https://www.openml.org/search?type=benchmark&study_type=task&id=335
https://www.openml.org/search?type=benchmark&study_type=task&id=299

Table 5: OpenML Task ID mappings for classification datasets with numerical features only.
OpenML ID Dataset

361055 credit
361060 electricity
361061 covertype
361062 pol
361063 house_16H
361065 MagicTelescope
361066 bank-marketing
361068 MiniBooNE
361069 Higgs
361070 eye_movements
361273 Diabetes130US
361274 jannis
361275 default-of-credit-card-clients
361276 Bioresponse
361277 california
361278 heloc

Table 6: OpenML Task ID mappings for classification datasets with heterogeneous features.
OpenML ID Dataset

361110 electricity
361111 eye_movements
361113 covertype
361282 albert
361283 default-of-credit-card-clients
361285 road-safety
361286 compas-two-years

Table 7: OpenML Task ID mappings for regression datasets with numerical features only.
OpenML ID Dataset

361072 cpu_act
361073 pol
361074 elevators
361076 wine_quality
361077 Ailerons
361078 houses
361079 house_16H
361080 diamonds
361081 Brazilian_houses
361082 Bike_Sharing_Demand
361083 nyc-taxi-green-dec-2016
361084 house_sales
361085 sulfur
361086 medical_charges
361087 MiamiHousing2016
361088 superconduct
361091 year
361279 yprop_4_1
361280 abalone
361281 delays_zurich_transport

17

Table 8: OpenML Task ID mappings for regression datasets with heterogeneous features.
OpenML ID Dataset

361093 analcatdata_supreme
361094 visualizing_soil
361095 black_friday
361096 diamonds
361097 Mercedes_Benz_Greener_Manufacturing
361098 Brazilian_houses
361099 Bike_Sharing_Demand
361101 nyc-taxi-green-dec-2016
361102 house_sales
361103 particulate-matter-ukair-2017
361104 SGEMM_GPU_kernel_performance
361287 topo_2_1
361288 abalone
361289 seattlecrime6
361291 delays_zurich_transport
361292 Allstate_Claims_Severity
361293 Airlines_DepDelay_1M
361294 medical_charges

C Computational Efficiency Analysis

C.1 Computational Efficiency Analysis

To discuss the computational efficiency, we analyzed the average floating point operations (FLOPs)
[33], parameter sizes, and inference time of DOFEN and other baseline models. Our analyses covered
both the default and optimal hyperparameter settings, where the optimal hyperparameter delivers the
best performance for each model on each dataset. The experiments involving DNN-based models
were performed using an NVIDIA GeForce RTX 2080 Ti, while those for the GBDT-based models
utilized an AMD EPYC 7742 64-core Processor with 16 threads.

We begin with the comparison between DNN-based and GBDT-based models. This comparison
primarily focuses on inference time, as FLOPs and parameter sizes are applicable for evaluating the
efficiency of DNN-based models but cannot be applied to GBDTs. Additionally, inference times
under the optimal parameters are provided only when those parameters are available. As shown in
Tables Table 9 to Table 12, the inference times for all DNN-based models are slower than those
for GBDT-based models. This is expected due to the inherent differences between the two types of
models.

When compared to other DNN baselines, DOFEN achieves the highest performance, the lowest
FLOPs, and the smallest parameter sizes but exhibits the relatively long inference time among
all the DNN-based models. This inconsistency between FLOPs and inference time suggests that
there is still room for implementation improvements in DOFEN. Hence, we conduct additional
experiments to analyze which part of the DOFEN model is the computational bottleneck, as discussed
in Appendix C.2, showing that the bottleneck of DOFEN arises from using group operations when
constructing rODTs. Although this does not affect DOFEN’s article, improvements can be made
during future open-source releases.

18

Table 9: Computational efficiency analysis of default hyperparameters on medium-sized classification
datasets.

Model Performance (Accuracy) FLOPs (M) Parameters (M) Inference time (sec.)

DOFEN 0.7725 0.1845 0.0140 0.0125
Trompt 0.7704 53.2127 3.8608 0.0225
FT-Transformer 0.7662 3.3147 0.0908 0.0058
NODE 0.7658 0.8299 0.7525 0.0041
XGBoost 0.7717 – – 0.0015
LightGBM 0.7757 – – 0.0016
CatBoost 0.7777 – – 0.0029

Table 10: Computational efficiency analysis of optimal hyperparameters on medium-sized classifica-
tion datasets.

Model Performance (Accuracy) FLOPs (M) Parameters (M) Inference time (sec.)

DOFEN 0.7805 0.2093 0.0437 0.0213
Trompt 0.7797 38.7712 2.0398 0.0202
FT-Transformer 0.7686 6.0696 0.2514 0.0061
NODE 0.7677 3.2860 2.6778 0.0033
XGBoost 0.7848 – – 0.0014
LightGBM * 0.7838 – – N/A
CatBoost * 0.7858 – – N/A
* The evaluation results are obtained from the Trompt paper without the corresponding optimal hyperparame-

ters. Thus, the inference time under the optimal hyperparameters is unavailable.

Table 11: Computational efficiency analysis of default hyperparameters on medium-sized regression
datasets.

Model Performance (R2 Score) FLOPs (M) Parameters (M) Inference time (sec.)

DOFEN 0.6611 0.1875 0.0173 0.0105
Trompt 0.6541 45.8507 3.8591 0.0224
FT-Transformer 0.6359 2.7795 0.0909 0.0039
NODE 0.1080 0.5839 0.5065 0.0039
XGBoost 0.6719 – – 0.0012
LightGBM 0.6832 – – 0.0014
CatBoost 0.6896 – – 0.0030

Table 12: Computational efficiency analysis of optimal hyperparameters on medium-sized regression
datasets.

Model Performance (R2 Score) FLOPs (M) Parameters (M) Inference time (sec.)

DOFEN 0.6882 0.2030 0.0364 0.0182
Trompt 0.6830 17.9560 1.2857 0.0200
FT-Transformer 0.6834 9.0576 0.2965 0.0065
NODE 0.6631 2.1379 1.6930 0.0035
XGBoost 0.6985 – – 0.0014
LightGBM * 0.6896 – – N/A
CatBoost * 0.6940 – – N/A
* The evaluation results are obtained from the Trompt paper without the corresponding optimal hyperparame-

ters. Thus, the inference time under the optimal hyperparameters is unavailable.

C.2 Long Inference Time of DOFEN

To find out the computation bottleneck of DOFEN, we analyzed the inference time of each DOFEN
module in proportion, as shown in Table 13 and Table 14, which is averaged across 59 medium-sized

19

datasets with default hyperparameters. Table A1 shows that the Forest Construction module consumes
the most inference time. In Table A2, more detailed operations reveal that the sub-module ∆2 in the
Forest Construction module, which generates weights for each rODT, has the longest inference time.

The sub-module ∆2 is designed with multiple MLP and normalization layers, implemented using
group convolution and group normalization to parallelize scoring for each rODT. However, the
efficiency of group convolution in PyTorch has been problematic and remains unresolved. Specifically,
the operation efficiency decreases as the number of groups increases, sometimes making it slower than
separate convolutions in CUDA streams (see PyTorch issues 18631, 70954, 73764). The sub-module
∆1 also uses group convolution to parallelize condition generation across different numerical columns,
resulting in slower inference times compared to other operations, though less significant than ∆2 due
to fewer groups being used.

However, we mainly focus on the concept and model structure in this paper, acknowledging that
model implementation can be further optimized. For example, attention operations are originally
slow due to quadratic complexity, and many recent works have successfully accelerated the speed
of attention operations and reduced their memory usage. Hence, we believe there will be better
implementations of these group operations with much greater efficiency in the future.

Table 13: Average inference time proportion of each DOFEN module across 59 medium-sized
datasets.

Module Name Source Inference time proportion
(mean)

Inference time proportion
(std)

Condition Generation Figure 2a 7.03 % 5.29 %
Relaxed ODT Construction Figure 2b 1.64 % 0.90 %
Forest Construction Figure 2c and Figure 3a 87.39 % 7.68 %
Forest Ensemble Figure 3b 3.94 % 2.36 %

Table 14: Average inference time proportion of each DOFEN operation across 59 medium-sized
datasets.

Module Name Operation Source Inference time
proportion (mean)

Condition Generation ∆1 Equation (4) 7.03 %
Relaxed ODT Construction permutation and reshape Equation (5) 1.64 %
Forest Construction ∆2 Equation (6) 85.11 %

get rODT embedding Equation (7) 0.22 %
sample rODTs to form forests Algorithm 1, line 3 1.01 %

softmax + weighted sum Algorithm 1, line 6 1.05 %
Forest Ensemble ∆3 Algorithm 1, line 8 3.55 %

average forest predictions Algorithm 1, line 10 and 12 0.39 %

C.3 Training Time of DOFEN

To know more about how the slow inference time will affect the training time of DOFEN, we also
conducted an experiment to compare the training time of DOFEN with other deep learning methods
included in our paper (i.e. Trompt, FT Transformer, and NODE). We measured the training time on
medium-sized datasets using both default and optimal hyperparameter settings, where the optimal
hyperparameters refers to the settings that deliver the best performance for each model on each
dataset.

This experiment was conducted using a single NVIDIA Tesla V100 GPU. During model training,
we carefully ensured that no other computational processes were running concurrently to enable a
fair comparison. Additionally, we excluded datasets that would cause OOM (Out of Memory) issues
during training, resulting in the selection of 50 out of 59 medium-sized datasets.

The average training time across datasets for each model is provided in Table A7. The results show
that the training time for DOFEN is relatively long, approximately twice as long as Trompt when

20

using optimal hyperparameters. This extended training time may be due to the inefficient group
operations involved in DOFEN, which consume about 80% of the computation time during the
forward pass. For more details, please refer to Appendix C.2. Therefore, improving the efficiency of
group operations could reduce both the training and inference time of DOFEN.

Table 15: Average training time of different methods using default and optimal hyperparameter
settings on 50 medium-sized datasets. Numbers are in Seconds, with lower values indicating faster
training speed.

Model Name Training Time (Default) Training Time (Optimal)

DOFEN 332.6998 +/- 125.1965 1143.7674 +/- 804.3809
Trompt 552.3495 +/- 213.3278 535.1781 +/- 291.9933
FT-Transformer 80.3425 +/- 57.2647 99.1068 +/- 79.2272
NODE 95.0274 +/- 54.7463 427.8625 +/- 394.1191

D Scalability of DOFEN

To discuss the scalability of DOFEN, we have conducted experiments to investigate its performance
given changes in hyperparameters m, d, and the number of MLP layers (num_layers). In detail,
changes in m and d affect the number of conditions (Ncond), while alterations in m impact both the
total number of rODTs (NrODT) and the number of rODTs within an rODT forest (Nestimator). For
further details on these parameters, please refer to Table 2. The num_layers hyperparameter, newly
introduced, refers to the number of MLP layers in neural networks ∆1, ∆2, and ∆3. A detailed
introduction to ∆1, ∆2, and ∆3 can be found in Appendix A.2.

Due to limited computational resources, we only conducted this experiment on datasets that would
not cause out-of-memory (OOM) issues on our machine across all hyperparameter settings. This
selection resulted in 51 out of 59 medium-sized datasets and 10 out of 14 large-sized datasets.

Based on Table 16 to Table 21, we observed that larger values of m and d enhance DOFEN’s
performance. Notably, improvements are more significant with large-sized datasets than with medium-
sized datasets, likely because larger datasets benefit more from increased model capacity. In contrast,
Table 20 reveals that an increase in num_layers generally results in poorer performance. This could
be attributed to the substantial growth in parameter size and FLOPs, compared to adjustments in the
m and d, potentially leading to overfitting.

Table 16: Analysis of performance and efficiency across varied settings of m on medium-sized
datasets.

m 4 8 16 (default) 32 64

Classification Performance (Accuracy) 0.7491 0.7552 0.7602 0.7601 0.7603
Parameters (M) 0.0029 0.0042 0.0070 0.0134 0.0296

FLOPs (M) 0.1797 0.1802 0.1815 0.1849 0.1951

Regression Performance (R2 score) 0.6496 0.6488 0.6796 0.6940 0.6603
Parameters (M) 0.0026 0.0035 0.0056 0.0105 0.0235

FLOPs (M) 0.1783 0.1787 0.1797 0.1825 0.1912

Table 17: Analysis of performance and efficiency across varied settings of m on large-sized datasets.
m 4 8 16 (default) 32 64

Classification Performance (Accuracy) 0.7498 0.7635 0.7800 0.7922 0.8010
Parameters (M) 0.0033 0.0050 0.0084 0.0159 0.0333

FLOPs (M) 0.1798 0.1804 0.1819 0.1854 0.1949

Regression Performance (R2 score) 0.7227 0.7521 0.7583 0.7698 0.7697
Parameters (M) 0.0025 0.0034 0.0058 0.0127 0.0350

FLOPs (M) 0.1783 0.1788 0.1803 0.1856 0.2045

21

Table 18: Analysis of performance and efficiency across varied settings of d on medium-sized
datasets.

d 2 3 4 (default) 6 8

Classification Performance (Accuracy) 0.7402 0.7588 0.7602 0.7583 0.7545
Parameters (M) 0.0058 0.0064 0.0070 0.0087 0.0108

FLOPs (M) 0.1801 0.1807 0.1815 0.1834 0.1857

Regression Performance (R2 score) 0.5961 0.6699 0.6796 0.6111 0.6914
Parameters (M) 0.0047 0.0051 0.0056 0.0069 0.0087

FLOPs (M) 0.1786 0.1791 0.1797 0.1812 0.1831

Table 19: Analysis of performance and efficiency across varied settings of d on large-sized datasets.
d 2 3 4 (default) 6 8

Classification Performance (Accuracy) 0.7433 0.7726 0.7800 0.7853 0.7916
Parameters (M) 0.0071 0.0077 0.0084 0.0102 0.0125

FLOPs (M) 0.1803 0.1810 0.1819 0.1840 0.1865

Regression Performance (R2 score) 0.6572 0.7443 0.7583 0.7694 0.7704
Parameters (M) 0.0043 0.0050 0.0058 0.0082 0.0113

FLOPs (M) 0.1787 0.1794 0.1803 0.1828 0.1860

Table 20: Analysis of performance and efficiency across varied settings of num_layers on medium-
sized datasets.

num_layers Default (1, 2, 2) Twice (2, 4, 4) Triple (3, 6, 6)

Classification Performance (Accuracy) 0.7602 0.7592 0.7481
Parameters (M) 0.0070 0.0189 0.0308

FLOPs (M) 0.1815 0.5311 0.8808

Regression Performance (R2 score) 0.6796 0.6595 0.7731
Parameters (M) 0.0056 0.0150 0.0245

FLOPs (M) 0.1797 0.5267 0.8737

Table 21: Analysis of performance and efficiency across varied settings of num_layers on large-
sized datasets.

num_layers Default (1, 2, 2) Twice (2, 4, 4) Triple (3, 6, 6)

Classification Performance (Accuracy) 0.7800 0.7959 0.7638
Parameters (M) 0.0084 0.0231 0.0379

FLOPs (M) 0.1819 0.5346 0.8873

Regression Performance (R2 score) 0.7583 0.7575 0.6715
Parameters (M) 0.0058 0.0139 0.0220

FLOPs (M) 0.1803 0.5259 0.8715

E Interpretability of DOFEN

This section aims to demonstrate the interpretability of DOFEN. Specifically, we adopt a feature
importance metric akin to the "split" or "weight" importance used in LightGBM and XGBoost, which
counts how often a feature is used in the model.

To calculate DOFEN’s feature importance of a specific sample, let F ∈ RNrODT×Ncol be a matrix of
feature occurrences across different rODTs. We then use the output of sub-module ∆2, a vector
w⃗ ∈ RNrODT (Equation (6)), to represent the importance across all rODTs for each sample, as this
weight w⃗ is used for constructing rODT forest to perform prediction in DOFEN model. A softmax

22

operation is further applied to the vector w⃗ to ensure the importance sums to 1 (also done in line
6 of Algorithm 1). Finally, we perform a weighted sum between the feature occurrences and the
importance of each rODT, resulting in a single vector t⃗ ∈ RNcol representing DOFEN’s feature
importance for a specific sample. To calculate DOFEN’s overall feature importance of a dataset, we
simply average the feature importance of all samples in training dataset.

We tested the reliability of DOFEN’s feature importance on three real-world datasets: the mushroom
dataset, the red wine quality dataset, and the white wine quality dataset, following the experimental
design used by Trompt. The results of these three datasets are shown in Tables 22 to 24, respectively.
The results indicate that the top-3 important features identified by DOFEN align closely with
those selected by other tree-based models, with only minor ranking differences. This demonstrates
DOFEN’s ability to reliably identify key features while maintaining interpretability despite its deep
learning architecture. This further indicates that DOFEN may contain similar decision-making
process as tree-based model does, as it is a tree-inspired deep neural network.

Table 22: Top 3 Feature importance of DOFEN on mushroom dataset.
1st 2nd 3rd

Random Forest odor (15.11%) gill-size (12.37%) gill-color (10.42 %)
XGBoost spore-print-color (29.43%) odor (22.71%) cap-color (14.07%)
LightGBM spore-print-color (22.08%) gill-color (14.95%) odor (12.96%)
CatBoost odor (72.43%) spore-print-color (10.57%) gill-size (2.71%)
GradientBoostingTree gill-color (31.08%) spore-print-color (19.89%) odor (17.44%)
Trompt odor (24.93%) gill-size (8.13%) gill-color (5.73%)
DOFEN (ours) odor (13.15%) spore-print-color (6.84%) gill-size (5.58%)

Table 23: Feature importance of DOFEN on red wine dataset.
1st 2nd 3rd

Random Forest alcohol (27.17%) sulphates (15.44%) volatile acidity (10.92%)
XGBoost alcohol (35.42%) sulphates (15.44%) volatile acidity (7.56%)
LightGBM alcohol (26.08%) sulphates (15.75%) volatile acidity (10.63%)
CatBoost sulphates (16.29%) alcohol (15.67%) volatile acidity (10.40%)
GradientBoostingTree alcohol (26.27%) sulphates (16.24%) volatile acidity (11.12%)
Trompt alcohol (11.83%) sulphates (10.94%) total sulfur dioxide (9.78%)
DOFEN (ours) alcohol (11.16%) volatile acidity (10.77%) sulphates (10.17%)

Table 24: Feature importance of DOFEN on white wine dataset.
1st 2nd 3rd

Random Forest alcohol (24.22%) volatile acidity (12.44%) free sulfur dioxide (11.78%)
XGBoost alcohol (31.87%) free sulfur dioxide (11.38%) volatile acidity (10.05%)
LightGBM alcohol (24.02%) volatile acidity (12.47%) free sulfur dioxide (11.45%)
CatBoost alcohol (17.34%) volatile acidity (12.07%) free sulfur dioxide (11.47%)
GradientBoostingTree alcohol (27.84%) volatile acidity (13.59%) free sulfur dioxide (12.87%)
Trompt fixed acidity (10.91%) volatile acidity (10.47%) pH (10.37%)
DOFEN (ours) alcohol (10.90%) free sulfur dioxide (10.21%) volatile acidity (10.01%)

F More Analysis

F.1 Sampling in Relaxed ODT Forest Ensemble

The forest ensemble in DOFEN is a level higher than common tree-based models. This section
attempts to explore its impact on model performance by ablating this higher-level ensemble. The
experiment involves using all the constructed rODTs from Equation (5) to form a single forest,
without the sampling of weights and embeddings as described in line 6 in Algorithm 1. In practice,

23

we directly apply a softmax function to the weight vector w⃗ and calculate the weighted sum of
corresponding embeddings E. As a result, there is only one prediction for each sample, unlike Nforest
predictions as in Algorithm 1.

From the results in Table 25, it can be seen that with the ensemble of forests, the performance of
DOFEN is improved across all datasets, independent of the types of tasks and features. The average
improvement in classification datasets has reached 0.0363 in accuracy, while in regression datasets
has reached 0.3367 in the R-squared score.

To further investigate the drastic drop in performance without using sampling in forest ensembles, we
analyze performance at various training checkpoints. As shown in Figure 9, when sampling is not
used in forest ensembles, training performance is significantly better compared to testing performance,
and testing performance decreases with increasing training epochs, indicating an overfitting issue.
Conversely, with an ensemble of multiple forests, both training and testing performance improve
concurrently, thus mitigating the overfitting issue.

Based on the performance improvements from introducing a forest ensemble, we have applied an
extra level of ensemble that combines multiple DOFEN models. However, the enhancement in
performance is negligible. The detailed results can be found in Appendix F.2.

Table 25: Comparing DOFEN with and without sampling in forest ensemble
w/ (default) w/o

Classification 0.7725 0.7362
– Numerical Only 0.7920 0.7526
– Heterogeneous 0.7281 0.6988

Regression 0.6605 0.3238
– Numerical Only 0.6814 0.1867
– Heterogeneous 0.6371 0.4770

100 200 300 400 500
Number of Training Epochs

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

(a) Classification

100 200 300 400 500
Number of Training Epochs

0.6

0.7

0.8

0.9

R2
 S

co
re

(b) Regression

train, w/
test, w/
train, w/o
test, w/o

Figure 9: Overfitting arises when not using sampling in the forest ensemble, affecting both (a)
classification and (b) regression tasks. "Train" refers to training performance, and "Test" refers to
testing performance. "w/" indicates the use of sampling to construct multiple forests, while "w/o"
indicates the use of all constructed rODTs to form a single forest.

F.2 Seed Ensemble

In this section, we explore the results of applying an additional layer of bagging ensemble to the
DOFEN model, a technique we denote as the seed ensemble. Specifically, we infer the trained
DOFEN model using 15 different random seeds. This results in 15 distinct predictions due to the
random sampling procedure conducted in the rODT Forest Construction module. Building upon
these predictions, we average the 15 different predictions to create another layer of bagging ensemble,
which we then present as the final prediction. This experiment is conducted on a medium-sized tabular
benchmark. As shown in Table 26, this seed ensemble approach further enhances the performance of
the DOFEN model, even with a small Nforest. The results further suggest that the DOFEN model can
easily benefit from ensemble strategies, thanks to the random sampling procedure.

24

Table 26: Comparing evaluation performance with and without seed ensemble at varying Nforest.
Nforest 10 20 50 100 (default) 300

w/o seed ensemble Classification 0.7698 0.7713 0.7725 0.7725 0.7726
Regression 0.6568 0.6586 0.6589 0.6605 0.6607

w/ seed ensemble Classification 0.7727 0.7732 0.7731 0.7731 0.7731
Regression 0.6619 0.6619 0.6616 0.6616 0.6616

F.3 An Alternative Strategy for Condition Selection

In the rODT Construction module, we implement a shuffle-then-reshape procedure to construct
rODTs as outlined in Equation (5). The shuffle of matrix M serves as a straightforward approach
to delivering a diverse set of condition combinations for subsequent segmentation. In this section,
we aim to experiment with an alternative strategy for selecting columns to construct rODTs, which
we adopt the column selection strategy used by CatBoost to form the rODTs in our DOFEN model,
we denote this approach as ’Catboost-Init’. Specifically, we begin by selecting a machine learning
algorithm that also employs ODT as the base element, namely, CatBoost. Subsequently, we train the
CatBoost model and use the columns it identifies post-training to construct our rODTs. In the context
of experimental configurations, to ensure a fair comparision, it is crucial to equate the capacity of
CatBoost model with the default settings of DOFEN. To achieve this, we set the depth and number of
boosting iterations of Catboost as the depth of an rODT (d) and the total number of rODT (NrODT) in
DOFEN, respectively. The CatBoost trained based on these configurations is denoted as ’CatBoost*’
in the context.

The results are presented in Table 27. As can be seen, the ’Catboost-Init’ approach achieves
performance comparable to the ’CatBoost*’ approach and generally outperforms the default shuffle
approach. This indicates that designing a more sophisticated approach for rODT construction indeed
contributes to better performance. However, adopting a selection strategy from a tree-based model
results in a two-stage modeling process, which contradicts our goal of designing an end-to-end
differentiable DNN model. This intriguing insight leads us to consider a more innovative end-to-end
condition selection approach, which we will explore in future work.

Table 27: Comparing the column selection strategy of DOFEN.
Shuffle (default) Catboost-Init Catboost*

Classification 0.7725 0.7769 0.7722
Regression 0.6604 0.6792 0.6811

F.4 An Alternative Strategy for Weight Selection

In the Two-level rODT Ensemble module, our default method involves random sampling of weights.
We contrast this approach with an alternative weight selection strategy, denoted as sliding window
selection. The method creates Nforest windows, each containing Nestimator weights. These windows
are then evenly distributed across NrODT weights. Within each window, the weights are collectively
treated as a rODT forest. As shown in Table 28, our results indicate that random sampling yields
better performance compared to the sliding window selection. This finding substantiates that the
random sampling approach already works well compared to a sophisticated alternative. Investigating
a more advanced and effective approach is worth considering in future work.

Table 28: The comparison of random sampling and sliding window selection of weights.
random sampling

(default)
sliding window

selection

Classification 0.7725 0.7716
Regression 0.6605 0.6593

25

F.5 More Experiments for Section 4.3.2 (Activated rODT for Different Classes)

In this section, we aim to test whether the findings presented in Section 4.3.2 can be replicated on
another dataset. Consequently, we have chosen another binary classification dataset (compass-two-
years) and repeated the experiment using the same settings. The experimental results are depicted
in Figure 10. As shown in Figure 10a, weights with higher standard deviation exhibit distinct
distributions between true positive and true negative samples. Conversely, Figure 10b illustrates an
opposite trend. Overall, conducting the experiment on another dataset further validates our findings.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
rODT rank

3

2

1

0

1

2

av
er

ag
e

rO
DT

 w
ei

gh
t

TP
TN

(a) Relaxed ODTs with large weight variation.

15
2

15
3

15
4

15
5

15
6

15
7

15
8

15
9

16
0

16
1

16
2

16
3

16
4

16
5

16
6

16
7

16
8

16
9

17
0

17
1

17
2

17
3

17
4

17
5

17
6

rODT rank

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

av
er

ag
e

rO
DT

 w
ei

gh
t

TP
TN

(b) Relaxed ODTs with small weight variation.

Figure 10: In the compass dataset, the weights wi of rODT are sorted based on the standard deviation
calculated across true positive (TP) and true negative (TN) samples in the testing data. Figure 10a
shows that the weights of TP samples differ significantly from those of TN samples when the standard
deviation of the weights is higher. Conversely, Figure 10b reveals contrasting results for weights with
a lower standard deviation.

F.6 Pruning of Relaxed ODT

Following Section 4.3.2, in this section, we aim to examine the performance change after pruning
weights with small standard deviations and their corresponding embeddings.

Table 29 shows the performance under different pruning ratios. The column labeled ’by dataset’
indicates that we tailored the pruning ratio for each dataset based on its validation data. As shown in
Table 29, pruning these rODTs does not negatively affect performance. In fact, a minor degree of
pruning can actually enhance performance, with the optimal pruning ratio being 0.02 for classification
datasets and 0.1 for regression datasets. Notice that the ’by dataset’ approach is better suited to
real-world scenarios, even though it does not always yield the best performance.

Table 29: Pruning of rODT with varying ratio. Weights wi with lower standard deviation are pruned.

Ratio 0.0 (default) 0.02 0.1 0.2 by dataset

Classification 0.7725 0.7733 0.7726 0.7709 0.7732
Regression 0.6605 0.6629 0.6630 0.6621 0.6657

We then investigate the outcomes when weights with higher standard deviations are pruned. Conse-
quently, we sort the weights and prune them from the higher end. The results, presented in Table 30,
show that the performance in both classification and regression tasks monotonically drops as the
prune ratio increases. This finding suggests that the standard deviation of weights is a good indicator
of their importance in making predictions. It further validates why pruning weights with lower
standard deviation does not harm performance and, in some cases, even helps.

Table 30: rODT pruning with varying ratio. Weights wi with higher standard deviation are pruned.
Ratio 0.0(default) 0.02 0.05 0.10 0.2

Classification 0.7725 0.7725 0.7715 0.7667 0.763
Regression 0.6605 0.6571 0.6484 0.6383 0.601

26

In addition, we discuss another, potentially more straightforward, pruning approach. Specifically, we
prune the weights wi based on their average value across samples. Similar to the experiments that
use standard deviation as the metric for pruning, this time we sort the weights by their average. We
then attempt to prune the weights from both the top and bottom ends. The results are provided in
Table 31 and Table 32, suggesting that the value of weights is not an effective indicator for pruning.
Although there is some improvement in performance at a low ratio, this approach generally diminishes
performance with larger ratios, regardless of whether the weights are pruned from the higher or lower
end.

Table 31: rODT pruning with varying ratio. Weights wi with lower average value are pruned.
Ratio 0.0(default) 0.02 0.05 0.10 0.2

Classification 0.7725 0.773 0.7715 0.7722 0.7703
Regression 0.6605 0.6611 0.6592 0.6575 0.6425

Table 32: rODT pruning with varying ratio. Weights wi with higher average value are pruned.
Ratio 0.0(default) 0.02 0.05 0.10 0.2

Classification 0.7725 0.7731 0.7725 0.7704 0.7643
Regression 0.6605 0.6619 0.6573 0.6352 0.4881

G More Evaluation Results on Tabular Benchmark

G.1 Performance Evaluation on Large-sized Benchmark

This section discusses the evaluation results on large-sized classification and regression tasks. Overall,
the results demonstrate a similar trend as the medium-sized tabular benchmark. Notably, DOEFN
achieves the top ranks in both tasks with numerical features.

CatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoost

DOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFEN

FT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−Transformer

GradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTree
GRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDE

LightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBM

NODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODE

RandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForest
ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet

SAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINT

TromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTrompt

XGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoost

0.5

0.6

0.7

0.8

0.9

1 10 100
Number of random search iterations

N
or

m
al

iz
ed

 te
st

 a
cc

ur
ac

y
of

 b
es

t
m

od
el

 (
on

 v
al

id
 s

et
)

up
 to

 th
is

 it
er

at
io

n

(a) Exclusively Numerical

CatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoost

DOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFEN

FT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−Transformer

GradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTree

GRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDE

LightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBM

NODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODE

RandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForestRandomForest
ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet
SAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINT

TromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTrompt

XGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoost

0.5

0.6

0.7

0.8

0.9

1 10 100
Number of random search iterations

N
or

m
al

iz
ed

 te
st

 a
cc

ur
ac

y
of

 b
es

t
m

od
el

 (
on

 v
al

id
 s

et
)

up
 to

 th
is

 it
er

at
io

n

(b) Heterogeneous

Figure 11: Results on large-sized classification datasets.

Classification. In Figure 11a, DOFEN even surpasses CatBoost to become the top performer.
Conversely, in Figure 11b, CatBoost clearly outperforms other models. FT-Transformer, Trompt
and DOFEN are the best-performing tabular DNN models, though they rank in the middle among
all models. As a result, with the current development of tabular DNN models, their performance in
processing numerical features is already on par with or even surpass that of tree-based models, and
they are more advantageous for large-sized datasets. However, DOFEN and other DNN models are
still less efficient in handling heterogeneous features.

27

CatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoost

DOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFEN

FT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−Transformer

GradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTree

GRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDE

LightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBM

NODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODE

ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet

SAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINT

TromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTrompt

XGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoost

0.5

0.6

0.7

0.8

0.9

1 10 100
Number of random search iterations

N
or

m
al

iz
ed

 te
st

 R
2

sc
or

e
of

 b
es

t
m

od
el

 (
on

 v
al

id
 s

et
)

up
 to

 th
is

 it
er

at
io

n

(a) Large; Numerical

CatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoostCatBoost

DOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFENDOFEN

FT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−TransformerFT−Transformer

GradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTreeGradientBoostingTree

GRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDEGRANDE

LightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBMLightGBM

NODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODENODE

ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet

SAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINTSAINT

TromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTromptTrompt

XGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoostXGBoost

0.5

0.6

0.7

0.8

0.9

1 10 100
Number of random search iterations

N
or

m
al

iz
ed

 te
st

 R
2

sc
or

e
of

 b
es

t
m

od
el

 (
on

 v
al

id
 s

et
)

up
 to

 th
is

 it
er

at
io

n

(b) Large; Heterogeneous

Figure 12: Results on large-sized regression datasets.

Regression. In Figure 12a, the leading models remain DOFEN, XGBoost, and CatBoost. DOFEN’s
proficiency in handling numerical features, further enhanced by the increased data volume, enables
it to secure the top position once again. In Figure 12b, DOFEN and Trompt barely maintain their
positions within the leading group, yet they still stand out from the other DNN models.

G.2 Detailed Evaluation Results

In the main paper, we have discussed the overall performance of DOFEN. To simplify tables, we map
dataset names with their OpenML ID, as described in Appendix B.3. The evaluation results of each
task are organized in Table 33. Please refer to the detailed figures and tables for each task of your
interest. The evaluation metrics are accuracy for classification tasks and R2 score for regression tasks,
consistent with our main paper. Furthermore, we calculate the mean and standard deviation of ranks
across datasets to provide the rank for each model in the tables.

Table 33: Tables and figures for each task.
Task Feature Figure Table

medium-sized classification numerical Figure 13 Tables 34 and 35
heterogeneous Figure 14 Table 36

medium-sized regression numerical Figure 15 Tables 37 and 38
heterogeneous Figure 16 Tables 39 and 40

large-sized classification numerical Figure 17 Table 41
heterogeneous Figure 18 Table 42

large-sized regression numerical Figure 19 Table 43
heterogeneous Figure 20 Table 44

28

jannis MagicTelescope MiniBooNE pol

eye_movements heloc Higgs house_16H

credit default−of−credit−card−clients Diabetes130US electricity

bank−marketing Bioresponse california covertype

1 10 100 1 10 100 1 10 100 1 10 100

1 10 100 1 10 100 1 10 100 1 10 100

1 10 100 1 10 100 1 10 100 1 10 100

1 10 100 1 10 100 1 10 100 1 10 100

0.78

0.80

0.82

0.84

0.82

0.84

0.86

0.875

0.880

0.885

0.890

0.93

0.95

0.97

0.87

0.88

0.89

0.90

0.56

0.57

0.58

0.59

0.60

0.68

0.69

0.70

0.71

0.920

0.925

0.930

0.935

0.940

0.74

0.76

0.78

0.80

0.69

0.70

0.71

0.72

0.70

0.71

0.72

0.85

0.86

0.87

0.790

0.795

0.800

0.805

0.810

0.75

0.76

0.77

0.78

0.575

0.600

0.625

0.650

0.74

0.75

0.76

0.77

0.78

Number of random search iterations

Te
st

 a
cc

ur
ac

y
of

 b
es

t m
od

el

(o
n

va
lid

 s
et

)
up

 to
 th

is
 it

er
at

io
n

CatBoost
DOFEN
FT−Transformer

GradientBoostingTree
GRANDE
HistGradientBoostingTree

LightGBM
MLP
NODE

RandomForest
ResNet
SAINT

Trompt
XGBoost

Figure 13: Results on each medium-sized classification datasets with only numerical features.

29

electricity eye_movements road−safety

albert compas−two−years covertype default−of−credit−card−clients

1 10 100 1 10 100 1 10 100

1 10 100 1 10 100 1 10 100 1 10 100

0.700

0.705

0.710

0.715

0.720

0.80

0.82

0.84

0.86

0.88

0.75

0.76

0.77

0.62

0.64

0.66

0.68

0.600

0.625

0.650

0.62

0.63

0.64

0.65

0.66

0.83

0.85

0.87

Number of random search iterations

Te
st

 a
cc

ur
ac

y
of

 b
es

t m
od

el

(o
n

va
lid

 s
et

)
up

 to
 th

is
 it

er
at

io
n

CatBoost
DOFEN
FT−Transformer

GradientBoostingTree
GRANDE
HistGradientBoostingTree

LightGBM
MLP
NODE

RandomForest
ResNet
SAINT

Trompt
XGBoost

Figure 14: Results on each medium-sized classification datasets with heterogeneous features.

30

superconduct wine_quality yprop_4_1

MiamiHousing2016 nyc−taxi−green−dec−2016 pol sulfur

house_16H house_sales houses medical_charges

cpu_act delays_zurich_transport diamonds elevators

abalone Ailerons Bike_Sharing_Demand Brazilian_houses

1 10 100 1 10 100 1 10 100

1 10 100 1 10 100 1 10 100 1 10 100

1 10 100 1 10 100 1 10 100 1 10 100

1 10 100 1 10 100 1 10 100 1 10 100

1 10 100 1 10 100 1 10 100 1 10 100
0.00

0.25

0.50

0.75

1.00

0.7

0.8

0.9

0.00

0.25

0.50

0.75

1.00

0.70

0.75

0.80

0.85

0.90

0.0

0.2

0.4

0.6

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

1.00

0.000

0.025

0.050

0.075

0.00

0.25

0.50

0.75

0.00

0.01

0.02

0.03

0.00

0.25

0.50

0.75

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Number of random search iterations

Te
st

 R
2

sc
or

e
of

 b
es

t m
od

el

(o
n

va
lid

 s
et

)
up

 to
 th

is
 it

er
at

io
n

CatBoost
DOFEN
FT−Transformer

GradientBoostingTree
GRANDE
HistGradientBoostingTree

LightGBM
MLP
NODE

RandomForest
ResNet
SAINT

Trompt
XGBoost

Figure 15: Results on each medium-sized regression datasets with numerical features.

31

visualizing_soil

particulate−matter−ukair−2017 seattlecrime6 SGEMM_GPU_kernel_performance topo_2_1

house_sales medical_charges Mercedes_Benz_Greener_Manufacturingnyc−taxi−green−dec−2016

Bike_Sharing_Demand Brazilian_houses delays_zurich_transport diamonds

abalone Airlines_DepDelay_1M Allstate_Claims_Severity analcatdata_supreme

1 10 100

1 10 100 1 10 100 1 10 100 1 10 100

1 10 100 1 10 100 1 10 100 1 10 100

1 10 100 1 10 100 1 10 100 1 10 100

1 10 100 1 10 100 1 10 100 1 10 100

0.94

0.96

0.98

0.00

0.25

0.50

0.75

1.00

0.2

0.4

0.6

0.00

0.02

0.04

0.06

0.0

0.2

0.4

0.00

0.02

0.04

0.06

0.08

0.0

0.2

0.4

0.6

0.00

0.25

0.50

0.75

1.00

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.6

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.0

0.2

0.4

0.6

0.00

0.25

0.50

0.75

1.00

Number of random search iterations

Te
st

 R
2

sc
or

e
of

 b
es

t m
od

el

(o
n

va
lid

 s
et

)
up

 to
 th

is
 it

er
at

io
n

CatBoost
DOFEN
FT−Transformer

GradientBoostingTree
GRANDE
HistGradientBoostingTree

LightGBM
MLP
NODE

RandomForest
ResNet
SAINT

Trompt
XGBoost

Figure 16: Results on each medium-sized regression datasets with heterogeneous features.

32

covertype Higgs jannis MiniBooNE

1 10 100 1 10 100 1 10 100 1 10 100

0.93

0.94

0.95

0.75

0.77

0.79

0.70

0.71

0.72

0.73

0.80

0.84

0.88

Number of random search iterations

Te
st

 a
cc

ur
ac

y
of

 b
es

t m
od

el

(o
n

va
lid

 s
et

)
up

 to
 th

is
 it

er
at

io
n

CatBoost
DOFEN
FT−Transformer

GradientBoostingTree
GRANDE
LightGBM

NODE
RandomForest
ResNet

SAINT
Trompt
XGBoost

Figure 17: Results on each large-sized classification datasets with only numerical features.

covertype road−safety

1 10 100 1 10 100
0.75

0.76

0.77

0.78

0.79

0.80

0.80

0.85

0.90

Number of random search iterations

Te
st

 a
cc

ur
ac

y
of

 b
es

t m
od

el

(o
n

va
lid

 s
et

)
up

 to
 th

is
 it

er
at

io
n

CatBoost
DOFEN
FT−Transformer

GradientBoostingTree
GRANDE
LightGBM

NODE
RandomForest
ResNet

SAINT
Trompt
XGBoost

Figure 18: Results on each large-sized classification datasets with heterogeneous features.

diamonds nyc−taxi−green−dec−2016 year

1 10 100 1 10 100 1 10 100

0.15

0.20

0.25

0.30

0.0

0.2

0.4

0.6

0.825

0.850

0.875

0.900

0.925

0.950

Number of random search iterations

Te
st

 R
2

sc
or

e
of

 b
es

t m
od

el

(o
n

va
lid

 s
et

)
up

 to
 th

is
 it

er
at

io
n

CatBoost
DOFEN
FT−Transformer

GradientBoostingTree
GRANDE
LightGBM

NODE
ResNet
SAINT

Trompt
XGBoost

Figure 19: Results on each large-sized regression datasets with numerical features.

33

SGEMM_GPU_kernel_performance

black_friday diamonds nyc−taxi−green−dec−2016 particulate−matter−ukair−2017

1 10 100

1 10 100 1 10 100 1 10 100 1 10 100

0.64

0.66

0.68

0.70

0.0

0.2

0.4

0.6

0.900

0.925

0.950

0.975

0.4

0.5

0.6

0.92

0.94

0.96

0.98

1.00

Number of random search iterations

Te
st

 R
2

sc
or

e
of

 b
es

t m
od

el

(o
n

va
lid

 s
et

)
up

 to
 th

is
 it

er
at

io
n

CatBoost
DOFEN
FT−Transformer

GradientBoostingTree
GRANDE
LightGBM

NODE
ResNet
SAINT

Trompt
XGBoost

Figure 20: Results on each large-sized regression datasets with heterogeneous features.

Table 34: The performance of medium-sized classification task (numerical features only) (1).
361276 361273 361069 361065 361068 361066 361277 361061 361055 361275

Default

DOFEN (ours) 0.7839 0.6016 0.7113 0.8662 0.9369 0.8030 0.8827 0.7901 0.7732 0.7151
Trompt 0.7831 0.5823 0.6926 0.8630 0.9382 0.7936 0.8909 0.8268 0.7584 0.6994
GRANDE 0.7776 0.6023 0.7099 0.8586 0.9334 0.8039 0.8845 0.7880 0.7796 0.7206
FT-Transformer 0.7463 0.6025 0.7031 0.8553 0.9320 0.7958 0.8846 0.7944 0.7745 0.7137
ResNet 0.7424 0.6029 0.6755 0.8548 0.9345 0.7864 0.8641 0.7820 0.7706 0.7093
MLP 0.7277 0.6033 0.6752 0.8520 0.9307 0.7886 0.8661 0.7727 0.7710 0.7077
SAINT 0.7537 0.6044 0.6967 0.8534 0.9348 0.7891 0.8791 0.7775 0.7741 0.7133
NODE 0.7360 0.6039 0.7060 0.8581 0.9363 0.7957 0.8763 0.8108 0.7750 0.7169
CatBoost 0.7881 0.6001 0.7130 0.8614 0.9364 0.8045 0.9021 0.8016 0.7695 0.7129
LightGBM 0.7878 0.5934 0.7079 0.8547 0.9316 0.8033 0.9006 0.7950 0.7717 0.7109
XGBoost 0.7831 0.5850 0.6925 0.8531 0.9329 0.7981 0.9030 0.7987 0.7591 0.6974
HistGradientBoostingTree 0.7909 0.5619 0.7018 0.8647 0.9364 0.7880 0.9007 0.8193 0.7490 0.6884
GradientBoostingTree 0.7657 0.6018 0.7048 0.8444 0.9216 0.8027 0.8800 0.7685 0.7752 0.7184
RandomForest 0.7859 0.5579 0.6998 0.8514 0.9208 0.7958 0.8876 0.8124 0.7635 0.7029

Searched

DOFEN (ours) 0.7992 0.6043 0.7160 0.8715 0.9404 0.8017 0.8958 0.8162 0.7747 0.7220
Trompt 0.7831 0.6032 0.7090 0.8635 0.9374 0.7930 0.8913 0.8373 0.7760 0.7217
GRANDE 0.7795 0.6042 0.7125 0.8620 0.9368 0.8005 0.8885 0.8021 0.7759 0.7150
FT-Transformer 0.7566 0.6044 0.7042 0.8582 0.9350 0.7929 0.8865 0.8048 0.7754 0.7145
ResNet 0.7652 0.6046 0.6931 0.8565 0.9357 0.7866 0.8783 0.7942 0.7692 0.7054
MLP 0.7658 0.6033 0.6855 0.8535 0.9346 0.7888 0.8676 0.7834 0.7686 0.7067
SAINT 0.7629 0.6044 0.7063 0.8478 0.9355 0.7912 0.8870 0.8041 0.7613 0.7155
NODE 0.7596 0.6043 0.7084 0.8556 0.9375 0.7952 0.8808 0.8194 0.7753 0.7169
CatBoost 0.7898 0.6052 0.7144 0.8599 0.9382 0.8047 0.9003 0.8299 0.7768 0.7201
LightGBM 0.7942 0.6050 0.7105 0.8572 0.9378 0.8011 0.9017 0.8188 0.7715 0.7196
XGBoost 0.7917 0.6057 0.7138 0.8606 0.9369 0.8031 0.9016 0.8176 0.7732 0.7156
HistGradientBoostingTree 0.7859 0.6050 0.7092 0.8592 0.9372 0.8108 0.8932 0.8231 0.7772 0.7194
GradientBoostingTree 0.7694 0.6044 0.7100 0.8557 0.9331 0.8015 0.8974 0.8182 0.7728 0.7172
RandomForest 0.7936 0.6047 0.7053 0.8541 0.9269 0.7985 0.8924 0.8275 0.7727 0.7182

34

Table 35: The performance of medium-sized classification task (numerical features only) (2).
361060 361070 361278 361063 361274 361062 Ranking

Default

DOFEN (ours) 0.8169 0.6196 0.7189 0.8895 0.7806 0.9822 4.81± 3.42
Trompt 0.8289 0.6160 0.6987 0.8805 0.7689 0.9849 7.41± 4.22
GRANDE 0.8131 0.6010 0.7210 0.8890 0.7788 0.9783 5.38± 3.61
FT-Transformer 0.8082 0.5864 0.7175 0.8816 0.7562 0.9780 8.19± 2.62
ResNet 0.8062 0.5852 0.7186 0.8755 0.7449 0.9366 10.75± 3.87
MLP 0.8105 0.5808 0.7151 0.8765 0.7418 0.9153 11.56± 3.82
SAINT 0.8098 0.5799 0.7146 0.8842 0.7668 0.9718 8.88± 3.56
NODE 0.8151 0.5931 0.7271 0.8823 0.7651 0.9701 6.75± 3.62
CatBoost 0.8448 0.6387 0.7222 0.8859 0.7785 0.9846 3.91± 3.55
LightGBM 0.8434 0.6439 0.7148 0.8843 0.7727 0.9838 6.06± 2.96
XGBoost 0.8611 0.6475 0.6948 0.8816 0.7600 0.9835 8.12± 4.05
HistGradientBoostingTree 0.8623 0.6633 0.7024 0.8848 0.7721 0.9846 6.22± 5.10
GradientBoostingTree 0.8216 0.6233 0.7157 0.8767 0.7618 0.9671 8.50± 3.88
RandomForest 0.8458 0.6308 0.7173 0.8782 0.7611 0.9803 8.47± 3.69

Searched

DOFEN (ours) 0.8257 0.6323 0.7281 0.8898 0.7791 0.9802 4.41± 4.10
Trompt 0.8307 0.6271 0.7263 0.8846 0.7782 0.9838 5.69± 3.57
GRANDE 0.8217 0.6050 0.7217 0.8881 0.7805 0.9792 7.31± 3.37
FT-Transformer 0.8191 0.5786 0.7194 0.8791 0.7675 0.9836 10.06± 3.29
ResNet 0.8097 0.5801 0.7189 0.8734 0.7509 0.9511 11.88± 3.26
MLP 0.8048 0.5823 0.7187 0.8773 0.7444 0.9474 12.94± 3.11
SAINT 0.8188 0.5859 0.7194 0.8835 0.7709 0.9803 10.44± 2.62
NODE 0.8175 0.5895 0.7257 0.8813 0.7694 0.9693 9.09± 3.14
CatBoost 0.8627 0.6532 0.7230 0.8855 0.7802 0.9846 2.88± 2.96
LightGBM 0.8594 0.6526 0.7217 0.8869 0.7777 0.9819 5.00± 2.57
XGBoost 0.8687 0.6615 0.7171 0.8882 0.7790 0.9815 4.75± 3.67
HistGradientBoostingTree 0.8625 0.6578 0.7203 0.8849 0.7739 0.9835 4.69± 2.67
GradientBoostingTree 0.8653 0.6343 0.7179 0.8817 0.7735 0.9813 7.69± 2.74
RandomForest 0.8608 0.6506 0.7164 0.8798 0.7724 0.9812 8.19± 3.51

35

Table 36: The performance of medium-sized classification task (heterogeneous features).
361282 361286 361113 361283 361110 361111 361285 Ranking

Default

DOFEN (ours) 0.6495 0.6823 0.8240 0.7162 0.8275 0.6241 0.7730 6.00± 4.17
Trompt 0.6191 0.6743 0.8729 0.7017 0.8450 0.6425 0.7580 8.43± 4.43
GRANDE 0.6549 0.6759 0.8278 0.7208 0.8266 0.6208 0.7659 5.43± 4.03
FT-Transformer 0.6543 0.6820 0.8565 0.7156 0.8252 0.5952 0.7635 5.71± 3.93
ResNet 0.6459 0.6756 0.8214 0.7055 0.8200 0.5883 0.7517 11.43± 4.39
MLP 0.6506 0.6826 0.8259 0.7078 0.8161 0.5939 0.7486 9.43± 5.21
SAINT 0.6501 0.6750 0.8261 0.7059 0.8234 0.5958 0.7618 8.86± 2.70
NODE 0.6497 0.6753 0.8397 0.7146 0.8172 0.5895 0.7597 8.43± 3.28
CatBoost 0.6570 0.6715 0.8369 0.7120 0.8501 0.6462 0.7680 4.86± 4.60
LightGBM 0.6489 0.6747 0.8323 0.7123 0.8637 0.6448 0.7643 6.29± 2.92
XGBoost 0.6315 0.6632 0.8413 0.6969 0.8786 0.6477 0.7594 7.71± 5.24
HistGradientBoostingTree 0.6500 0.6625 0.8334 0.7090 0.8685 0.6446 0.7647 6.43± 3.45
GradientBoostingTree 0.6559 0.6798 0.7892 0.7187 0.8293 0.6181 0.7501 7.29± 4.60
RandomForest 0.6482 0.6219 0.8471 0.7052 0.8629 0.6400 0.7531 8.71± 4.32

Searched

DOFEN (ours) 0.6581 0.6763 0.8618 0.7139 0.8515 0.6377 0.7760 6.14± 3.96
Trompt 0.6431 0.6801 0.8829 0.7159 0.8513 0.6429 0.7709 6.29± 4.00
GRANDE 0.6596 0.6534 0.8425 0.7186 0.8393 0.6060 0.7670 7.79± 4.03
FT-Transformer 0.6529 0.6819 0.8594 0.7118 0.8315 0.5865 0.7715 7.71± 4.21
ResNet 0.6510 0.6843 0.8380 0.7028 0.8258 0.5937 0.7621 10.43± 4.63
MLP 0.6524 0.6788 0.8339 0.7108 0.8242 0.5888 0.7556 12.00± 4.50
SAINT 0.6525 0.6724 0.8483 0.7142 0.8294 0.5862 0.7647 10.71± 3.37
NODE 0.6498 0.6766 0.8397 0.7146 0.8205 0.5927 0.7580 11.71± 3.82
CatBoost 0.6596 0.6775 0.8745 0.7226 0.8773 0.6655 0.7714 3.29± 4.63
LightGBM 0.6574 0.6747 0.8647 0.7209 0.8864 0.6596 0.7643 4.86± 4.53
XGBoost 0.6561 0.6798 0.8596 0.7183 0.8861 0.6673 0.7679 4.14± 3.58
HistGradientBoostingTree 0.6563 0.6786 0.8467 0.7169 0.8785 0.6327 0.7661 6.71± 2.17
GradientBoostingTree 0.6538 0.6805 0.8545 0.7186 0.8780 0.6355 0.7625 6.21± 2.84
RandomForest 0.6542 0.6795 0.8587 0.7167 0.8773 0.6575 0.7597 7.00± 2.27

36

Table 37: The performance of medium-sized regression task (numerical features only) (1).
361077 361082 361081 361087 361280 361072 361281 361080 361074 361079

Default

DOFEN (ours) 0.2011 0.6874 0.9931 0.9194 0.5651 0.9837 0.0269 0.9352 0.8921 0.5398
Trompt 0.8480 0.6829 0.9970 0.9275 0.5443 0.9723 0.0162 0.9415 0.8969 0.5453
GRANDE 0.7399 0.6376 0.9126 0.8340 0.5281 0.8812 0.0053 0.8239 0.6423 0.6173
FT-Transformer 0.8436 0.6691 0.9958 0.9205 0.5308 0.9594 0.0000 0.9419 0.9115 0.5571
ResNet 0.8331 0.6423 0.9923 0.9145 0.4696 0.9747 0.0000 0.9404 0.8979 0.4995
MLP 0.8299 0.6634 0.9939 0.9091 0.5435 0.9570 0.0000 0.9411 0.8958 0.5057
SAINT 0.0000 0.6816 0.9938 0.9158 0.5658 0.9835 0.0178 0.9422 0.8500 0.4679
NODE 0.4500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0083 0.0000 0.8684 0.0000
CatBoost 0.8576 0.6993 0.9960 0.9356 0.5279 0.9856 0.0000 0.9457 0.9117 0.5101
LightGBM 0.8468 0.6928 0.9938 0.9225 0.5124 0.9846 0.0070 0.9449 0.8859 0.5195
XGBoost 0.8258 0.6793 0.9976 0.9203 0.4817 0.9825 0.0000 0.9409 0.8848 0.4814
HistGradientBoostingTree 0.8464 0.6932 0.9938 0.9233 0.5259 0.9828 0.0052 0.9448 0.8855 0.5361
GradientBoostingTree 0.8397 0.6758 0.9962 0.8942 0.5399 0.9835 0.0251 0.9441 0.8022 0.4733
RandomForest 0.8372 0.6720 0.9931 0.9141 0.5359 0.9826 0.0000 0.9394 0.8330 0.5016

Searched

DOFEN (ours) 0.6458 0.6972 0.9941 0.9351 0.5637 0.9872 0.0282 0.9447 0.9068 0.5507
Trompt 0.8457 0.6915 0.9956 0.9280 0.5443 0.9873 0.0283 0.9427 0.8948 0.4650
GRANDE 0.7449 0.6426 0.9136 0.8352 0.5457 0.8786 0.0070 0.8270 0.6498 0.6165
FT-Transformer 0.8453 0.6805 0.9973 0.9223 0.5630 0.9844 0.0191 0.9435 0.9171 0.4214
ResNet 0.8342 0.3569 0.9969 0.9172 0.5731 0.9822 0.0120 nan 0.9079 0.4781
MLP 0.8367 0.6754 0.9932 0.9092 0.5776 0.9790 0.0146 0.9436 0.9181 0.4830
SAINT 0.7811 0.6858 0.9940 0.9245 0.5629 0.9849 0.0216 0.9442 0.9224 0.4660
NODE 0.8365 0.6704 0.9877 0.9260 0.5332 0.9730 0.0127 0.9427 0.9148 0.5257
CatBoost 0.8553 0.7062 0.9920 0.9377 0.5353 0.9865 0.0306 0.9450 0.9105 0.4586
LightGBM 0.8468 0.6928 0.9928 0.9339 0.5399 0.9811 0.0329 0.9449 0.8859 0.5167
XGBoost 0.8450 0.6943 0.9976 0.9360 0.5449 0.9861 0.0301 0.9456 0.9072 0.5454
HistGradientBoostingTree 0.8464 0.6932 0.9928 0.9265 0.5322 0.9745 0.0299 0.9449 0.8863 0.3912
GradientBoostingTree 0.8416 0.6889 0.9961 0.9249 0.5457 0.9854 0.0262 0.9450 0.8602 0.5158
RandomForest 0.8386 0.6871 0.9931 0.9242 0.5517 0.9829 0.0308 0.9453 0.8410 0.4806

37

Table 38: The performance of medium-sized regression task (numerical features only) (2).
361084 361078 361086 361083 361073 361085 361088 361076 361279 Ranking

Default

DOFEN (ours) 0.8723 0.8099 0.9756 0.4427 0.9885 0.8285 0.8950 0.4139 0.0000 6.84± 3.68
Trompt 0.8804 0.8352 0.9788 0.1699 0.9513 0.8096 0.8791 0.3168 0.0083 5.68± 3.30
GRANDE 0.7918 0.6854 0.8822 0.2149 0.9536 0.7400 0.7986 0.2609 0.0000 11.11± 3.70
FT-Transformer 0.8766 0.8235 0.9794 0.1499 0.9313 0.8400 0.8751 0.2648 0.0000 7.24± 3.77
ResNet 0.7948 0.7729 0.9772 0.2050 0.6279 0.6979 0.8739 0.2598 0.0000 10.71± 2.89
MLP 0.8575 0.8133 0.9789 0.1615 0.8343 0.7922 0.8842 0.2792 0.0000 9.08± 3.01
SAINT 0.8731 0.8139 0.9788 0.4713 0.9904 0.7859 0.8909 0.3632 0.0449 7.00± 3.49
NODE 0.0000 0.0000 0.0000 0.3622 0.0000 0.6828 0.0000 0.0000 0.0336 12.53± 3.80
CatBoost 0.8873 0.8472 0.9782 0.5291 0.9863 0.8685 0.9051 0.4500 0.0530 3.34± 4.03
LightGBM 0.8812 0.8351 0.9785 0.5306 0.9870 0.8143 0.8979 0.4286 0.0480 4.74± 2.98
XGBoost 0.8743 0.8374 0.9773 0.5487 0.9850 0.8349 0.8955 0.4237 0.0000 7.08± 3.36
HistGradientBoostingTree 0.8816 0.8325 0.9785 0.5186 0.9865 0.8161 0.8964 0.4336 0.0522 5.00± 2.64
GradientBoostingTree 0.8617 0.7874 0.9794 0.4516 0.9349 0.8106 0.8563 0.3763 0.0000 7.74± 3.62
RandomForest 0.8689 0.8270 0.9768 0.5460 0.9867 0.8439 0.9011 0.4807 0.0601 6.92± 3.81

Searched

DOFEN (ours) 0.8824 0.8395 0.9788 0.4950 0.9928 0.8907 0.9091 0.4757 0.0706 5.26± 3.53
Trompt 0.8832 0.8187 0.9792 0.4550 0.9958 0.8508 0.8949 0.4091 0.0376 7.26± 3.42
GRANDE 0.7918 0.6877 0.8840 0.2305 0.9541 0.7425 0.8082 0.2654 0.0000 12.74± 4.12
FT-Transformer 0.8824 0.8341 0.9795 0.4926 0.9949 0.8676 0.8870 0.3675 0.0519 7.16± 3.62
ResNet 0.8668 0.8236 0.9793 0.4743 0.9606 0.8237 0.8934 0.3666 0.0273 9.50± 3.70
MLP 0.8669 0.8202 0.9796 0.4666 0.9708 0.8418 0.8930 0.3949 0.0126 8.84± 3.82
SAINT 0.8804 0.8259 0.9794 0.4958 0.9948 0.7603 0.8937 0.3736 0.0579 7.63± 2.91
NODE 0.8762 0.7969 0.9782 0.3743 0.9580 0.7309 0.8857 0.2874 0.0393 11.11± 3.57
CatBoost 0.8872 0.8487 0.9793 0.5404 0.9908 0.8692 0.9095 0.4996 0.0736 4.42± 4.06
LightGBM 0.8863 0.8539 0.9785 0.5306 0.9870 0.8172 0.9048 0.4286 0.0663 6.53± 3.59
XGBoost 0.8886 0.8495 0.9787 0.5519 0.9909 0.8620 0.9102 0.5006 0.0814 3.74± 3.57
HistGradientBoostingTree 0.8819 0.8375 0.9791 0.5186 0.9871 0.8203 0.9010 0.4313 0.0612 7.79± 3.12
GradientBoostingTree 0.8828 0.8400 0.9794 0.5531 0.9896 0.8153 0.9030 0.4710 0.0525 6.37± 2.64
RandomForest 0.8712 0.8291 0.9789 0.5618 0.9891 0.8585 0.9087 0.5044 0.0937 6.42± 3.65

38

Table 39: The performance of medium-sized regression task (heterogeneous features) (1).
361293 361292 361099 361098 361097 361104 361288 361093 361291 361096

Default

DOFEN (ours) 0.0359 0.5258 0.9341 0.9932 0.5750 0.9997 0.5686 0.9837 0.0694 0.9869
Trompt 0.0195 0.4939 0.9393 0.9963 0.5409 0.9996 0.5459 0.9470 0.0364 0.9888
GRANDE 0.0000 0.4356 0.8014 0.9101 0.4853 0.9151 0.5354 0.9723 0.0231 0.8957
FT-Transformer nan 0.5160 0.9280 0.9960 0.5540 0.9997 0.5480 0.9490 0.0000 0.9872
ResNet 0.0000 0.4993 0.8861 0.9883 0.5470 0.9975 0.4229 0.9244 0.0000 0.9857
MLP 0.0000 0.5105 0.9213 0.9942 0.5546 0.9998 0.5486 0.9497 0.0000 0.9861
SAINT 0.0375 0.5191 0.9375 0.9930 0.5522 0.9990 0.5676 0.9777 0.0591 0.9867
NODE 0.0361 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9797 0.0566 0.0000
CatBoost 0.0156 0.5347 0.9421 0.9959 0.5633 0.9997 0.5375 0.9801 0.0621 0.9911
LightGBM 0.0234 0.5275 0.9402 0.9938 0.5477 0.9997 0.5183 0.9823 0.0618 0.9901
XGBoost 0.0000 0.4807 0.9393 0.9976 0.4968 0.9997 0.4797 0.9759 0.0000 0.9896
HistGradientBoostingTree 0.0290 0.5226 0.9410 0.9939 0.5421 0.9997 0.5289 0.9823 0.0557 0.9908
GradientBoostingTree 0.0451 0.5066 0.8415 0.9962 0.5717 0.9997 0.5470 0.9827 0.0736 0.9842
RandomForest 0.0000 0.4748 0.9369 0.9929 0.5034 0.9998 0.5407 0.9799 0.0000 0.9878

Searched

DOFEN (ours) 0.0440 0.5351 0.9453 0.9946 0.5755 0.9998 0.5641 0.9846 0.0738 0.9903
Trompt 0.0457 0.5330 0.9397 0.9957 0.5816 0.9997 0.5465 0.9848 0.0744 0.9899
GRANDE 0.0000 0.4386 0.8041 0.9137 0.4947 0.9166 0.5010 0.9725 0.0340 0.8957
FT-Transformer 0.0455 0.5217 0.9390 0.9979 0.5662 0.9998 0.5649 0.9797 0.0680 0.9899
ResNet 0.0382 0.5100 0.9361 0.9962 0.5685 0.9996 0.5712 0.9797 0.0599 nan
MLP 0.0413 0.5157 0.9337 0.9948 0.5572 0.9998 0.5775 0.9801 0.0622 0.9876
SAINT 0.0450 0.5253 0.9409 0.9958 0.5618 0.9997 0.5678 0.9789 0.0656 0.9893
NODE 0.0369 0.5169 0.8428 0.9878 0.5735 0.9998 0.5409 0.9823 0.0580 0.9860
CatBoost 0.0479 0.5350 0.9468 0.9921 0.5815 0.9997 0.5449 0.9847 0.0778 0.9917
LightGBM 0.0431 0.5336 0.9439 0.9941 0.5549 0.9997 0.5370 0.9823 0.0789 0.9907
XGBoost 0.0473 0.5352 0.9466 0.9976 0.5771 0.9998 0.5558 0.9832 0.0775 0.9911
HistGradientBoostingTree 0.0468 0.5267 0.9416 0.9931 0.5772 0.9997 0.5441 0.9814 0.0731 0.9909
GradientBoostingTree 0.0474 0.5298 0.9416 0.9956 0.5765 0.9998 0.5490 0.9816 0.0746 0.9898
RandomForest 0.0456 0.5004 0.9369 0.9934 0.5755 0.9998 0.5564 0.9807 0.0766 0.9881

39

Table 40: The performance of medium-sized regression task (heterogeneous features) (2).
361102 361294 361101 361103 361289 361287 361094 Ranking

Default

DOFEN (ours) 0.8838 0.9756 0.4178 0.6647 0.1835 0.0329 0.9996 5.47± 3.39
Trompt 0.8902 0.9782 0.0961 0.6494 0.1817 0.0445 0.9995 7.29± 3.71
GRANDE 0.7977 0.8822 0.2421 0.6217 0.0992 0.0000 0.9615 11.88± 2.95
FT-Transformer 0.8883 nan 0.2472 0.6710 0.0200 0.0000 0.9998 8.00± 3.17
ResNet 0.8736 0.9782 0.2434 0.6487 0.0305 0.0000 0.9958 11.00± 2.89
MLP 0.8751 0.9792 0.1580 0.6555 0.0321 0.0000 0.9999 8.06± 3.79
SAINT 0.8836 0.9777 0.4631 0.6602 0.1712 0.0401 0.9998 6.41± 2.62
NODE 0.0000 0.0000 0.3719 0.0000 0.0000 0.0370 0.0000 11.47± 4.58
CatBoost 0.8975 0.9776 0.5463 0.6916 0.1843 0.0313 0.9999 3.76± 3.45
LightGBM 0.8905 0.9779 0.5448 0.6874 0.1792 0.0199 0.9999 5.18± 2.89
XGBoost 0.8834 0.9773 0.5699 0.6619 0.1653 0.0000 1.0000 7.47± 3.94
HistGradientBoostingTree 0.8914 0.9785 0.5389 0.6904 0.1727 0.0302 0.9999 5.00± 3.11
GradientBoostingTree 0.8693 0.9794 0.4694 0.6717 0.1861 0.0305 0.9994 5.35± 4.27
RandomForest 0.8747 0.9767 0.5619 0.6551 0.1639 0.0233 1.0000 7.94± 3.49

Searched

DOFEN (ours) 0.8908 0.9788 0.5102 0.6647 0.1829 0.0531 0.9996 6.65± 2.51
Trompt 0.8916 0.9787 0.4804 0.6690 0.1821 0.0503 0.9999 7.00± 3.09
GRANDE 0.7943 0.8837 0.2621 0.6290 0.0956 0.0000 0.9622 13.88± 3.05
FT-Transformer 0.8930 0.9796 0.5281 0.6731 0.1797 0.0496 0.9999 7.24± 2.85
ResNet 0.8846 0.9793 0.4483 0.6565 0.1798 0.0219 0.9977 10.12± 3.89
MLP 0.8849 0.9796 0.4737 0.6590 0.1716 0.0256 0.9999 8.94± 4.13
SAINT 0.8913 0.9796 0.5195 0.6706 0.1820 0.0525 0.9999 7.88± 2.91
NODE 0.8842 0.9782 0.4972 0.6477 0.0477 0.0423 0.9984 11.00± 3.40
CatBoost 0.8941 0.9787 0.5665 0.6930 0.1854 0.0574 1.0000 4.18± 4.04
LightGBM 0.8935 0.9781 0.5448 0.6874 0.1868 0.0546 1.0000 6.41± 3.97
XGBoost 0.8965 0.9788 0.5820 0.6909 0.1850 0.0644 1.0000 3.12± 3.10
HistGradientBoostingTree 0.8910 0.9791 0.5383 0.6904 0.1857 0.0623 1.0000 6.12± 2.95
GradientBoostingTree 0.8901 0.9794 0.5773 0.6841 0.1858 0.0305 1.0000 5.41± 3.00
RandomForest 0.8749 0.9787 0.5838 0.6744 0.1827 0.0701 1.0000 6.82± 3.77

40

Table 41: The performance of large-sized classification task (numerical features only).
361069 361068 361061 361274 Ranking

Default

DOFEN (ours) 0.7306 0.9480 0.8222 0.8018 3.25± 5.22
Trompt 0.7213 0.9468 0.9004 0.7954 2.88± 4.35
GRANDE 0.7248 0.9425 0.8315 0.7979 5.00± 3.05
FT-Transformer 0.6960 0.9403 0.8983 0.7586 8.25± 4.16
ResNet 0.6988 0.9409 0.8801 0.7358 8.50± 4.04
MLP nan nan nan nan nan± nan
SAINT 0.7181 0.9436 0.8694 0.7860 6.00± 1.30
NODE 0.7247 0.9461 0.8886 0.7946 3.75± 2.92
CatBoost 0.7261 0.9432 0.8377 0.7954 4.38± 2.77
LightGBM 0.7212 0.9371 0.8071 0.7870 8.00± 2.30
XGBoost 0.7164 0.9367 0.8361 0.7828 8.50± 2.61
HistGradientBoostingTree nan nan nan nan nan± nan
GradientBoostingTree 0.7103 0.9225 0.7698 0.7718 11.00± 4.58
RandomForest 0.7158 0.9308 0.8767 0.7797 8.50± 3.29

Searched

DOFEN (ours) 0.7340 0.9479 0.8888 0.8033 3.50± 5.76
Trompt 0.7286 0.9436 0.9127 0.7988 4.00± 4.09
GRANDE 0.7265 0.9454 0.8522 0.7980 6.00± 3.70
FT-Transformer 0.7299 0.9441 0.9062 0.7962 4.00± 3.35
ResNet 0.7228 0.9446 0.8935 0.7781 9.25± 4.49
MLP nan nan nan nan nan± nan
SAINT 0.7255 0.9440 0.8956 0.7922 8.50± 2.11
NODE 0.7262 0.9471 0.8982 0.7946 5.25± 2.39
CatBoost 0.7299 0.9445 0.9015 0.7975 4.00± 2.77
LightGBM 0.7251 0.9433 0.8964 0.7938 8.50± 2.11
XGBoost 0.7279 0.9439 0.8956 0.7965 6.50± 1.52
HistGradientBoostingTree nan nan nan nan nan± nan
GradientBoostingTree 0.7247 0.9400 0.8978 0.7938 9.00± 3.27
RandomForest 0.7198 0.9353 0.9059 0.7885 9.50± 5.36

41

Table 42: The performance of large-sized classification task (heterogeneous features).
361113 361285 Ranking

Default

DOFEN (ours) 0.8691 0.7870 5.00± 5.11
Trompt 0.9276 0.7836 2.00± 5.77
GRANDE 0.8568 0.7785 8.00± 3.51
FT-Transformer 0.9317 0.7609 6.00± 5.03
ResNet 0.8945 0.7653 8.00± 3.51
MLP nan nan nan± nan
SAINT 0.9123 0.7731 6.50± 2.57
NODE 0.9199 0.7774 5.00± 3.75
CatBoost 0.8827 0.7821 5.50± 2.29
LightGBM 0.8476 0.7797 8.00± 4.16
XGBoost 0.8781 0.7822 5.50± 3.04
HistGradientBoostingTree nan nan nan± nan
GradientBoostingTree 0.7946 0.7519 12.00± 6.35
RandomForest 0.9066 0.7767 6.50± 1.61

Searched

DOFEN (ours) 0.9116 0.7979 7.00± 4.16
Trompt 0.9395 0.7844 4.00± 4.80
GRANDE 0.8914 0.7771 12.00± 6.35
FT-Transformer 0.9348 0.7890 4.00± 3.88
ResNet 0.9226 0.7834 8.50± 2.65
MLP nan nan nan± nan
SAINT 0.9252 0.7796 9.50± 4.04
NODE 0.9219 0.7800 10.00± 4.62
CatBoost 0.9368 0.8012 1.50± 6.08
LightGBM 0.9310 0.7977 4.50± 2.36
XGBoost 0.9294 0.7987 4.50± 3.40
HistGradientBoostingTree nan nan nan± nan
GradientBoostingTree 0.9302 0.7862 6.00± 0.58
RandomForest 0.9327 0.7813 6.50± 2.52

42

Table 43: The performance of large-sized regression task (numerical features only).
361080 361083 361091 Ranking

Default

DOFEN (ours) 0.9469 0.5459 0.3240 3.00± 3.54
Trompt 0.9458 0.3379 0.2498 7.00± 1.29
GRANDE 0.8272 0.3243 0.2031 9.33± 3.40
FT-Transformer 0.9452 0.1198 0.1172 9.67± 4.27
ResNet 0.9410 0.2469 0.1188 9.67± 4.11
MLP nan nan nan nan± nan
SAINT 0.9445 0.5344 0.2887 5.67± 2.53
NODE 0.9453 0.0000 0.2763 7.67± 3.10
CatBoost 0.9476 0.5847 0.3020 1.67± 4.69
LightGBM 0.9475 0.5607 0.2810 3.00± 3.35
XGBoost 0.9474 0.6087 0.2512 3.67± 3.30
HistGradientBoostingTree nan nan nan nan± nan
GradientBoostingTree 0.9459 0.4635 0.2574 5.67± 0.63
RandomForest nan nan nan nan± nan

Searched

DOFEN (ours) 0.9490 0.5640 0.3321 2.00± 4.72
Trompt 0.9461 0.5242 0.2971 8.33± 2.59
GRANDE 0.8289 0.3707 0.2078 11.00± 5.00
FT-Transformer 0.9463 0.5382 0.3049 6.67± 1.50
ResNet 0.9465 0.5277 0.2770 8.33± 2.72
MLP nan nan nan nan± nan
SAINT 0.9465 0.5491 0.3053 5.33± 1.26
NODE 0.9460 0.3967 0.2892 9.33± 3.79
CatBoost 0.9480 0.5996 0.3130 2.33± 3.61
LightGBM 0.9475 0.5607 0.2810 6.00± 2.16
XGBoost 0.9480 0.6249 0.3070 2.33± 3.71
HistGradientBoostingTree nan nan nan nan± nan
GradientBoostingTree 0.9471 0.6157 0.3046 4.33± 2.50
RandomForest nan nan nan nan± nan

43

Table 44: The performance of large-sized regression task (heterogeneous features).
361104 361095 361096 361101 361103 Ranking

Default

DOFEN (ours) 0.9998 0.6120 0.9923 0.5288 0.6823 4.00± 2.48
Trompt 0.9996 0.6097 0.9917 0.4035 0.7048 6.20± 1.86
GRANDE 0.9153 0.4275 0.9011 0.3544 0.6370 10.00± 3.99
FT-Transformer 0.9994 0.3514 0.9923 0.4061 0.6761 7.40± 2.79
ResNet 0.9895 0.3370 0.9816 0.3971 0.6660 9.80± 3.27
MLP nan nan nan nan nan nan± nan
SAINT 0.9997 0.3891 0.9918 0.5480 0.6874 5.80± 1.79
NODE 0.9997 0.4156 0.9875 0.0198 0.6626 8.80± 2.79
CatBoost 0.9998 0.6332 0.9928 0.6050 0.7068 2.00± 3.44
LightGBM 0.9998 0.6324 0.9916 0.5769 0.7037 4.00± 2.40
XGBoost 0.9998 0.6345 0.9922 0.6244 0.7060 1.80± 3.93
HistGradientBoostingTree nan nan nan nan nan nan± nan
GradientBoostingTree 0.9998 0.6165 0.9857 0.4809 0.6773 6.20± 1.74
RandomForest nan nan nan nan nan nan± nan

Searched

DOFEN (ours) 0.9998 0.6242 0.9935 0.5855 0.6923 4.40± 2.94
Trompt 0.9998 0.6286 0.9918 0.5479 0.7073 7.00± 2.34
GRANDE 0.9158 0.4350 0.9010 0.3899 0.6421 10.40± 4.02
FT-Transformer 0.9998 0.3891 0.9924 0.5708 0.7045 7.60± 2.83
ResNet 0.9998 0.3937 0.9923 0.5336 0.6864 7.80± 2.90
MLP nan nan nan nan nan nan± nan
SAINT 0.9998 0.3952 0.9926 0.5659 0.6974 6.40± 1.75
NODE 0.9998 0.5908 0.9918 0.4135 0.6668 8.20± 2.99
CatBoost 0.9998 0.6363 0.9932 0.6263 0.7116 3.20± 3.39
LightGBM 0.9998 0.6324 0.9924 0.5769 0.7096 5.20± 2.35
XGBoost 0.9998 0.6383 0.9932 0.6479 0.7122 1.40± 4.00
HistGradientBoostingTree nan nan nan nan nan nan± nan
GradientBoostingTree 0.9998 0.6301 0.9918 0.6361 0.7057 4.40± 3.07
RandomForest nan nan nan nan nan nan± nan

H More Experiment Settings

H.1 Hardware Used

The following hardware configuration was used for all of our experiments. The hardware selection
was based on availability, with neural networks consistently run on GPUs and tree-based models
executed on CPUs.

GPUs: NVIDIA GeForce RTX 2080 Ti, NVIDIA DGX1, NVIDIA A100

CPUs: Intel(R) Xeon(R) Silver 4210 CPU, Intel(R) Xeon(R) CPU E5-2698 v4, AMD EPYC605
7742 64-core Processor

H.2 Hyperparameter Search Space

This section details the hyperparameter search space adopted for each model, as referenced in
various tables (Tables 45 to 56). We have employed search spaces consistent with those presented in
the Tabular Benchmark [1] for models including XGBoost, GradientBoostingTree, RandomForest,
FT-Transformer, SAINT, ResNet, and MLP.

Additionally, we have defined specific search spaces for newer baselines such as CatBoost, LightGBM,
Trompt, NODE, and GRANDE. For CatBoost, our search space aligns with the parameters specified
by the FT-Transformer study [11]. In the case of LightGBM, we have derived the search space based
on recommendations from field practitioners, as cited in [34, 35]. For NODE, our approach follows
the guidelines provided in TabZilla [15]. For GRANDE, we follow the settings provided in the
notebook example from the official github of GRANDE.

44

Table 46: Hyperparameter search space of XGBoost.
Hyperparameter Distribution

max_depth uniform_int[1, 11]
num_estimators 1000

min_child_weight log_uniform_int[1, 1e2]
subsample unifrom[0.5, 1]

learning_rate log_unifrom[1e−5, 0.7]
col_sample_by_level uniform[0.5, 1]
col_sample_by_tree uniform[0.5, 1]

gamma log_uniform[1e−8, 7]
lambda log_uniform[1, 4]
alpha log_uniform[1e−8, 1e2]

Table 47: Hyperparameter search space of CatBoost.
Hyperparameter Distribution

max_depth [3, 4, 5, 6, 7, 8, 9, 10]
learning_rate log_uniform[1e−5, 1]

iterations quantile_uniform[100, 6000]
bagging_temperature uniform[0, 1]

l2_leaf_reg log_uniform[1, 10]
leaf_estimation_iteration [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In the context of our model, DOFEN, we have focused our search on the number of m and d, which
relate to the varied number of Ncond and the conditions per rODT. Additionally, we have explored the
drop_rate parameter to fine-tune the degree of regularization in our model. It is important to note
that the overall search space for DOFEN is relatively compact when compared to the other baseline
models while achieve competitive performance.

Table 45: Hyperparameter search space of DOFEN.
Hyperparameter Distribution

d [3, 4, 6, 8]
m [16, 32, 64]

drop_rate [0.0, 0.1, 0.2]

Table 48: Hyperparameter search space of LightGBM.
Hyperparameter Distribution

learning_rate uniform[0.001, 1]
max_depth [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

bagging_fraction uniform[0.1, 1.0]
bagging_frequency [1, 2, 3, 4, 5]

num_leaves quantile_uniform[30, 150]
feature_fraction uniform[0.1, 1.0]
num_estimators 1000

boosting [gbdt, rf, dart]

45

Table 49: Hyperparameter space of GradientBoostingTree.
Hyperparameter Distribution

loss [deviance, exponential](classification), [squared_error, absolute_error, huber](regression)
learning_rate log_normal[log(0.01), log(10)]

subsample uniform[0.5, 1]
num_estimators 1000

criterion [friedman_mse, squared_error]
max_depth [none, 2, 3, 4, 5]

min_samples_split [2.3]
min_impurity_decrease [0.0, 0.01, 0.02, 0.05]

max_leaf_nodes [none, 5, 10, 15]

Table 50: Hyperparameter search space of RandomForest.
Hyperparameter Distribution

max_depth [none, 2, 3, 4]
num_estimators 250

criterion [gini, entropy]
max_features [sqrt, log2, none, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

min_samples_split [2, 3]
min_samples_leaf log_uniform_int[1.5, 50.5]

bootstrap [true, false]
min_impurity_decrease [0.0, 0.01, 0.02, 0.05]

Table 51: Hyperparameter search space of NODE.
Hyperparameter Distribution

num_layers [2, 4, 8]
total_tree_count [1024, 2048]

tree_depth [6, 8]
tree_output_dimension [2, 3](regression), [num_classes](classification)

Table 52: Hyperparameter search space of Trompt.
Hyperparameter Distribution

hidden_dimension [18, 128]
feature_importances_type [concat, add]

feature_importances_dense [true, false]
feature_importances_residual_connection [true, false]

feature_importances_sharing_dense [true, false]
feature_embeddings_residual_connection [true, false]

minimal_batch_ratio [0.1, 0.01]

Table 53: Hyperparameter search space of FT-Transformer.
Hyperparameter Distribution

mum_layers uniform_int[1, 6]
feature_embedding_size uniform_int[64, 512]

residual_dropout uniform[0, 0.5]
attention_dropout uniform[0, 0.5]

FFN_dropout uniform[0, 0.5]
FFN_factor uniform[2/3, 8/3]

learning_rate log_uniform[1e−5, 1e−3]
weight_decay log_uniform[1e− 6, 1e− 3]

KV_compression [true, false]
LKV_compression_sharing [headwise, key_value]

learning_rate_scheduler [true, false]
batch_size [256, 512, 1024]

46

Table 54: Hyperparameter search space of SAINT.
Hyperparameter Distribution

num_layers uniform_int[1, 2, 3, 6, 12]
num_heads [2, 4, 8]
layer_size uniform_int[32, 64, 128]
dropout [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]

learning_rate log_uniform[1e−5, 1e−3]
batch_size [128, 256]

Table 55: Hyperparameter search space of ResNet.
Hyperparameter Distribution

num_layers uniform_int[1, 16]
layer_size uniform_int[64, 1024]

hidden_factor uniform[1, 4]
hidden_dropout [0, 0.5]
residual_dropout uniform[0, 0.5]

learning_rate log_uniform[1e−5, 1e−2]
weight_decay log_uniform[1e−8, 1e−3]

category_embedding_size uniform_int[64, 512]
normalization [batch_norm, layer_norm]

learning_rate_scheduler [true, false]
batch_size [256, 512, 1024]

Table 56: Hyperparameter search space of MLP.
Hyperparameter Distribution

num_layers uniform_int[1, 8]
layer_size uniform_int[16, 1024]
dropout [0, 0.5]

learning_rate log_uniform[1e−5, 1e−2]
category_embedding_size uniform_int[64, 512]
learning_rate_scheduler [true, false]

batch_size [256, 512, 1024]

Table 57: Hyperparameter search space of GRANDE.
Hyperparameter Distribution

depth [4, 6]
n_estimators [512, 1024, 2048]

learning_rate_weights log_uniform[1e−4, 1e−1]
learning_rate_index log_uniform[5e−3, 2e−1]
learning_rate_values log_uniform[5e−3, 2e−1]

learning_rate_leaf log_uniform[5e−3, 2e−1]
cosine_decay_steps [0, 100, 1000]

loss [crossentropy, focal_crossentropy](classification), [mse](regression)
dropout [0.0, 0.25, 0.5]

selected_variables uniform[0.5, 1.0]
data_subset_fraction uniform[0.8, 1.0]

47

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have verified our idea using experiments as shown in Section 4. The results
not only reveal the state-of-the-art performance of DOFEN among deep neural networks
on tabular data but also demonstrate the nuance of its architecture design, which echos the
contribution and scope we mentioned in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 5 for limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

48

Answer: [NA]
Justification: This paper focuses on model architecture design and empirical evaluations
based on hypotheses, without making theoretical assumptions or providing proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 3.2 and Appendix A.2 for model implementation details, Appen-
dices A.1 and H.2 for hyperparameter settings, and Section 4.1 and Appendices B.1 to B.3
for dataset settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

49

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code will be published in the future; currently, we provide an anonymous
version in the supplemental material. For datasets, we use an open-source benchmark and
strictly follow its official implementation as described in Section 4.1.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: For dataset settings, see Section 4.1 and Appendices B.1 to B.3. For detailed
hyperparameter settings, see Appendices A.1 and H.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For tables in Appendix G.2, we calculate the mean and standard deviation of
ranks across datasets to provide the rank for each model with their confidence interval.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

50

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix H.1 for hardware settings and Appendix C.1 for the FLOPs and
inference time of different models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in our paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper proposes a novel DNN model, with experiments focusing on
performance comparisons with other existing DNN and tree-based models, as well as
exploring the mechanisms behind this novel method. We acknowledge that the introduction
of new model structures can have both positive and negative societal impacts (e.g. fairness
considerations); however, these aspects are not the primary scope or focus of this paper.

51

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The public assets accessed in this paper include models and datasets. We have
clearly cited each of them and strictly followed their terms of use. For all public models,
please refer to their respective websites for the license information. Regarding the Tabular
Benchmark, all datasets used are publicly available from OpenML [36] under the CC-BY
4.0 license. Please refer to Appendix B.3 for detailed information on the datasets used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

52

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The source code for this paper will be published under the Apache License
2.0 in the future. During the reviewing process, a minimal workable example of DOFEN is
provided in the supplementary material, along with a simple README explaining how to
execute the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

53

paperswithcode.com/datasets

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

54

	
	Introduction
	Related Work
	DOFEN: Deep Oblivious Forest Ensemble
	ODT Relaxation
	DOFEN Model
	Condition Generation
	Relaxed ODT Construction
	Two-level Relaxed ODT Ensemble

	Experiments
	Tabular Benchmark Setup
	Performance Evaluation
	Additional Analysis
	Model Stability
	Weights of Individual Relaxed ODT

	Limitation and Conclusion
	Appendix

	 Appendix
	More DOFEN Settings
	Default Hyperparameters Settings for DOFEN
	Detailed Model Configurations.
	Actual Nestimator for each Dataset

	More Tabular Benchmark Settings
	Dataset Counts
	Missing Model Baselines
	Mappings of OpenML Task ID and Dataset Name

	Computational Efficiency Analysis
	Computational Efficiency Analysis
	Long Inference Time of DOFEN
	Training Time of DOFEN

	Scalability of DOFEN
	Interpretability of DOFEN
	More Analysis
	Sampling in Relaxed ODT Forest Ensemble
	Seed Ensemble
	An Alternative Strategy for Condition Selection
	An Alternative Strategy for Weight Selection
	More Experiments for sec:analysis-weight (Activated rODT for Different Classes)
	Pruning of Relaxed ODT

	More Evaluation Results on Tabular Benchmark
	Performance Evaluation on Large-sized Benchmark
	Detailed Evaluation Results

	More Experiment Settings
	Hardware Used
	Hyperparameter Search Space

