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Abstract

The growing diversity of language models, ranging from lightweight (small), cost-1

efficient models to powerful (large) but expensive ones, has made dynamic model2

selection essential for scalable and cost-effective deployment. We propose a unified3

LLM routing framework that jointly models query and model embeddings using4

a single-head cross-attention mechanism. We evaluate router’s decision-making5

capabilities on a large-scale, publicly available dataset called RouterBench [2],6

that enables evaluation across multiple LLM pools and domains. By capturing7

fine-grained query-model interactions, our router learns to predict both response8

quality and generation cost, outperforming existing predictive routers by up to 6.6%9

in Average Improvement in Quality (AIQ) and 2.9% in maximum performance. To10

better reflect the trade-off between performance and cost, we adopt a new expo-11

nential reward function with improved robustness. Our architecture is lightweight,12

generalizes well across various domains, and is more efficient than existing ones.13

1 Introduction14

Figure 1: LLM Router selects an appropriate model for each
query to route to

The rise of large language mod-15

els (LLM) has advanced reasoning,16

summarization, and code genera-17

tion. Yet, the wide range of options,18

from lightweight, cost-efficient mod-19

els (e.g., Mistral 7B [3]) to power-20

ful but costly ones (e.g., GPT-4 [1]),21

creates a core challenge: selecting22

the right model per query to bal-23

ance response quality and cost. This24

challenge is critical for hyperscalers,25

where both efficiency and user experi-26

ence are paramount.27

Recent work has proposed diverse28

strategies for LLM routing to balance29

quality and cost. Classification-based30

methods predict the best model from static query features [9, 8, 12], but assume fixed model sets and31

rely on pre-computed metrics, limiting adaptability. Reinforcement learning–based approaches learn32

dynamic policies [7, 11], yet require many interactions to converge and suffer in cold-start scenarios.33

Training-free and heuristic methods such as LLM-BLENDER[4] boost accuracy by combining out-34

puts, but incur the overhead of querying all models. Similarity-based approaches [13, 10] leverage35

embeddings or domain classifiers, but often depend on static experts or domain-specific assumptions.36
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A common limitation of prior approaches is treating queries and models as independent, with routing37

based on query-only features or model-agnostic heuristics. Our method instead models query–model38

interactions via cross-attention, allowing the router to assess how a model will perform on a given39

query, enabling flexible, domain-agnostic routing. A detailed discussion is deferred to Appendix A.40

Empirical results on RouterBench demonstrate that our attention-based router consistently achieves41

higher AIQ score across different LLM pools, outperforming traditional baselines- KNN, MLP and42

SVM routers by an average of 23.85%, 3.34% and 27.33% respectively. Ablation studies confirm43

that attention-based predictors consistently outperform regression and MLP variants, with up to44

10.9% higher AIQ and 9.7% higher maximum performance. These findings highlight the importance45

of modeling query–model interactions for scalable and efficient LLM1 routing.46

2 Method47

Problem Formulation Given a pool of LLMs M = {M1,M2, ..MK} and user query space Q,48

our goal is to design an LLM router (Figure 1) as a decision-making agent Π : Q → M, mapping49

queries to models under response uncertainty. The router is designed to balance the trade-off between50

performance and cost, optimizing the competing objectives of maximizing response quality while51

minimizing resource usage. Our guiding principle is that a query should only be routed to an52

expensive model if all cheaper models fail to give a promising response and the user is willing to pay53

the additional cost.54

Predictor-based Routing Framework In this work, we employ a predictor-based LLM routing55

framework and propose attention as an effective architecture to estimate the response quality or56

the generation cost of candidate models. Based on these estimates, the framework selects the most57

suitable model by incorporating user’s willingness to pay in the reward function, thus decoupling58

predictors training from user’s parameter. To ensure scalability across the model pool, we design59

a dual-predictor framework where one predictor estimates performance of all models, while the60

other estimates generation cost. Intuitively, as the user’s willingness to pay increases, the framework61

places greater emphasis on response quality while discounting the cost factor. Later, we perform a62

systematic study on choosing an appropriate reward function for this framework 4.63

Figure 2: Single-head cross-attention block

Attention-Based Predictors. We64

propose similarity-based routing us-65

ing a single-head cross-attention66

which encodes the incoming prompts67

as queries and LLM representations68

(See Appendix C) as keys and val-69

ues. We presume query (q⃗) captures70

level of prompt’s complexity in multi-71

dimensions, while key (k⃗) and value72

(v⃗) express LLM’s expertise in these73

dimensions. This predictor captures74

query–model interactions through at-75

tention, enabling it to estimate ex-76

pected performance and generation cost of response from each model for a given prompt.77

Attention(q⃗, k⃗, v⃗) = softmax

(
q⃗.k⃗T

√
dv

)
v⃗.

This similarity-based routing framework offers several advantages. By decoupling model representa-78

tion creation from the training process, it remains adaptive to an evolving model pool with minimal79

retraining effort. The cross-attention module maps queries and model embeddings into a shared latent80

space, without restraining sizes of prompt and LLM representations. As a second-order similarity81

mechanism, attention could potentially capture richer and more nuanced interactions between queries82

and models than dot product or cosine similarity. Further, its inherent parallelism makes the router83

scalable to heavy query traffic, effectively handle larger LLM pools and batched queries.84

1As the definition of ‘large’ language models evolves, we use ‘LLM’ to refer to the models included in our
experimental pool.
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LLM Pool AIQ ↑ λ− sensitivityperf ↓ λ− sensitivitycost ↓
R1 R2 R1 R2 R1 R2

Pool 1 0.85616 0.84221 0.0155 0.0035 2.66e-05 1.55e-05
Pool 2 0.83285 0.83366 0.0213 0.0027 8.15e-06 5.24e-06
Pool 3 0.87512 0.87362 0.0260 0.0040 1.88e-05 1.29e-05
Pool 4 0.80434 0.83626 0.0258 0.0019 4.74e-05 2.30e-05

Table 1: Comparison between R1 and R2 oracle routers on the basis of AIQ score, and performance
and cost sensitivity with λ. Higher AIQ score means better cost-efficiency, while lower sensitivity
indicates robustness of the oracle router to minor variations in λ, thereby the reward formulation.

3 Evaluation Methodology85

Data. We evaluate the generalization of our proposed routing model across multiple domains on86

RouterBench [2]. It is a large-scale, public dataset designed to evaluate multi-LLM routing systems87

and contains responses from 11 LLMs on 8 benchmarks, including MMLU, GSM8K, HellaSwag,88

ARC Challenge, Winogrande, MBPP and MT-Bench datasets. (More details in Appendix B)89

Baselines. We compare our proposed predictive router with established baseline routers [2] in-90

cluding multi-layer perceptron (MLP), support vector machines (SVM) and K nearest neighbors91

(KNN), as well as other proposed predictive routers. Our gold standard is the oracle router from92

RouterBench [2]. We draw parallels with oracle routers using different reward functions to identify93

the most appropriate formulation (see Section 4 and Table 1). Notably, the oracle router based on our94

exponential rewards achieves the best cost–performance trade-off, routes less queries to the expensive95

model, and is less sensitive to the user parameter.96

Evaluation Metrics For evaluating cost-efficiency of the routers, we plot a pareto frontier on97

cost-performance plane [2] using the average cost vs performance points, obtained by varying user’s98

willingness to pay (λ). The area under this convex hull divided by the cost range gives Average99

Improvement over Quality (AIQ), thus aggregating the router’s trade-off into a single metric. The100

AIQ is defined as AIQ(R) = Areacost-perf/(b− a), where [a, b] represent the cost range. Intuitively,101

higher AIQ score represents better performance is achieved for most of the cost range and vice versa,102

lower generation cost for most of the performance range. It indicates how well the router trades-off103

conflicting goals - performance and generation cost, thus serving as our primary metric.104

To identify an appropriate reward function for the predictive-routers framework, we employ λ-105

sensitivity, along with AIQ scores. λ-sensitivity (See Appendix E) measures the oracle router’s106

sensitivity to changes in the user’s willingness to pay (λ). We define performance sensitivity as107

the weighted average of the variation in the performance over a log scale difference of λ and cost108

sensitivity analogously.2 Lower λ-sensitivity indicates the oracle router remains stable and consistent109

under small changes in λ, without severe degradation in performance/cost.110

Along with AIQ score, we report maximum performance attained over the range of user’s parameter.111

4 Results and Discussion112

Reward functions. We determine an appropriate reward function in the predictive framework by113

evaluating oracle routers associated with them. We compare 2 reward functions, the traditionally used114

linear trade-off (R1 in Eqn. (1)) and novel exponential trade-off (R2 in Eqn. (1)), proposing the latter115

as an appropriate reward function. For a user prompt q with an LLM response r, the performance116

s(q, r) and generation cost c(q, r) are combined in reward functions as:117

R1 = s− 1

λ
c, R2 = s× exp

(
− 1

λ
c

)
(1)

Though both the reward functions have similar AIQ scores (in Table 1) while routing at most 20% of118

user prompts to the expensive LLM, the λ-sensitivity of R2 oracle router is drastically lesser than that119

2We intentionally keep the performance and cost sensitivity distinct, for fine-grained results and their differing
orders of magnitude.
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(a) LLM pool 1 (b) LLM pool 2 (c) LLM pool 3

Figure 3: Comparison of Attention Router with RouterBench Baseline Routers

(a) LLM pool 1 (b) LLM pool 2 (c) LLM pool 3

Figure 4: Cost-efficiency of predictors in predictor-based routing framework

of R1 router, indicating stability of R2 reward function over traditional linear trade-off R1. This could120

be attributed to the boundedness of the exponential trade-off while linear trade-off is unbounded.121

Cost-efficiency of LLM Routers Figure 3 and Table 2 show the performance of our attention-based122

router against KNN, SVM, and MLP baselines. The key metric is Average Improvement in Quality123

(AIQ), defined as the area under the cost–quality Pareto frontier. Across all LLM pools, the attention124

router achieves higher AIQ. In LLM pool 1, it improves AIQ by at least 3% over baselines. In125

other pools with similarly performing models, it outperforms KNN and SVM by at least 33.58% and126

29.41%, respectively, along with higher maximum performance (PerfMax). These results highlight127

the advantage of our similarity-based routing objective in both performance and cost-efficiency, and128

demonstrates that attention-based routing provides a robust and generalizable improvement.129

Router LLM Pool 1 LLM Pool 2 LLM Pool 3
AIQ ↑ PerfMax ↑ AIQ ↑ PerfMax ↑ AIQ ↑ PerfMax ↑

KNN router (k=20) 0 .70608 0.76912 0.49338 0.52573 0.55727 0.65385
MLP router 0.67598 0.73781 0 .66564 0 .67551 0 .72655 0 .76975

SVM router (margin=0) 0.70220 0 .77233 0.51452 0.57024 0.49760 0.67767
Attention router (R2) 0.72737 0.78082 0.66586 0.67748 0.74439 0.78347

LLM Blender - 0.62314 - 0.58982 - 0.64905

Table 2: Comparison of router’s performance and cost-efficiency with traditional routers

Ablation: Different Architectures in predictor-based LLM routing framework We ablate130

predictor architectures (regression, MLP, attention) and domains, finding attention-based router131

outperforms other predictive routers by up to 6.6% in AIQ and 2.9% in maximum performance.132

Detailed results are presented in Figure 4 and Tables 3–6 in Appendix H.133

5 Conclusion134

We propose a predictor-based LLM routing framework with dual predictors and a cross-attention135

similarity module, delivering strong cost–performance trade-offs and competitive AIQ. Its attention-136

based design enables scalable, plug-and-play routing for evolving LLM pools, and we also implement137

a new exponential reward formulation with improved robustness across multiple scenarios.138
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NeurIPS Paper Checklist179

1. Claims180

Question: Do the main claims made in the abstract and introduction accurately reflect the181

paper’s contributions and scope?182

Answer: [Yes]183

Justification: The abstract and/or introduction should clearly state the main topics and184

contributions of this work.185

Guidelines:186

• The answer NA means that the abstract and introduction do not include the claims187

made in the paper.188

• The abstract and/or introduction should clearly state the claims made, including the189

contributions made in the paper and important assumptions and limitations. A No or190

NA answer to this question will not be perceived well by the reviewers.191

• The claims made should match theoretical and experimental results, and reflect how192

much the results can be expected to generalize to other settings.193

• It is fine to include aspirational goals as motivation as long as it is clear that these goals194

are not attained by the paper.195

2. Limitations196

Question: Does the paper discuss the limitations of the work performed by the authors?197

Answer: [Yes]198

Justification: Yes, limitations are discussed in Section K.199

Guidelines:200

• The answer NA means that the paper has no limitation while the answer No means that201

the paper has limitations, but those are not discussed in the paper.202

• The authors are encouraged to create a separate "Limitations" section in their paper.203

• The paper should point out any strong assumptions and how robust the results are to204

violations of these assumptions (e.g., independence assumptions, noiseless settings,205

model well-specification, asymptotic approximations only holding locally). The authors206

should reflect on how these assumptions might be violated in practice and what the207

implications would be.208

• The authors should reflect on the scope of the claims made, e.g., if the approach was209

only tested on a few datasets or with a few runs. In general, empirical results often210

depend on implicit assumptions, which should be articulated.211

• The authors should reflect on the factors that influence the performance of the approach.212

For example, a facial recognition algorithm may perform poorly when image resolution213

is low or images are taken in low lighting. Or a speech-to-text system might not be214

used reliably to provide closed captions for online lectures because it fails to handle215

technical jargon.216

• The authors should discuss the computational efficiency of the proposed algorithms217

and how they scale with dataset size.218

• If applicable, the authors should discuss possible limitations of their approach to219

address problems of privacy and fairness.220

• While the authors might fear that complete honesty about limitations might be used by221

reviewers as grounds for rejection, a worse outcome might be that reviewers discover222

limitations that aren’t acknowledged in the paper. The authors should use their best223

judgment and recognize that individual actions in favor of transparency play an impor-224

tant role in developing norms that preserve the integrity of the community. Reviewers225

will be specifically instructed to not penalize honesty concerning limitations.226

3. Theory assumptions and proofs227

Question: For each theoretical result, does the paper provide the full set of assumptions and228

a complete (and correct) proof?229

Answer: [NA]230
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Justification: The paper does not include theoretical results.231

Guidelines:232

• The answer NA means that the paper does not include theoretical results.233

• All the theorems, formulas, and proofs in the paper should be numbered and cross-234

referenced.235

• All assumptions should be clearly stated or referenced in the statement of any theorems.236

• The proofs can either appear in the main paper or the supplemental material, but if237

they appear in the supplemental material, the authors are encouraged to provide a short238

proof sketch to provide intuition.239

• Inversely, any informal proof provided in the core of the paper should be complemented240

by formal proofs provided in appendix or supplemental material.241

• Theorems and Lemmas that the proof relies upon should be properly referenced.242

4. Experimental result reproducibility243

Question: Does the paper fully disclose all the information needed to reproduce the main ex-244

perimental results of the paper to the extent that it affects the main claims and/or conclusions245

of the paper (regardless of whether the code and data are provided or not)?246

Answer: [Yes]247

Justification: The main text along with the appendix mentions all the implementation details248

and experimental setup249

Guidelines:250

• The answer NA means that the paper does not include experiments.251

• If the paper includes experiments, a No answer to this question will not be perceived252

well by the reviewers: Making the paper reproducible is important, regardless of253

whether the code and data are provided or not.254

• If the contribution is a dataset and/or model, the authors should describe the steps taken255

to make their results reproducible or verifiable.256

• Depending on the contribution, reproducibility can be accomplished in various ways.257

For example, if the contribution is a novel architecture, describing the architecture fully258

might suffice, or if the contribution is a specific model and empirical evaluation, it may259

be necessary to either make it possible for others to replicate the model with the same260

dataset, or provide access to the model. In general. releasing code and data is often261

one good way to accomplish this, but reproducibility can also be provided via detailed262

instructions for how to replicate the results, access to a hosted model (e.g., in the case263

of a large language model), releasing of a model checkpoint, or other means that are264

appropriate to the research performed.265

• While NeurIPS does not require releasing code, the conference does require all submis-266

sions to provide some reasonable avenue for reproducibility, which may depend on the267

nature of the contribution. For example268

(a) If the contribution is primarily a new algorithm, the paper should make it clear how269

to reproduce that algorithm.270

(b) If the contribution is primarily a new model architecture, the paper should describe271

the architecture clearly and fully.272

(c) If the contribution is a new model (e.g., a large language model), then there should273

either be a way to access this model for reproducing the results or a way to reproduce274

the model (e.g., with an open-source dataset or instructions for how to construct275

the dataset).276

(d) We recognize that reproducibility may be tricky in some cases, in which case277

authors are welcome to describe the particular way they provide for reproducibility.278

In the case of closed-source models, it may be that access to the model is limited in279

some way (e.g., to registered users), but it should be possible for other researchers280

to have some path to reproducing or verifying the results.281

5. Open access to data and code282

Question: Does the paper provide open access to the data and code, with sufficient instruc-283

tions to faithfully reproduce the main experimental results, as described in supplemental284

material?285
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Answer: [No]286

Justification: While there is an open access to the data, we would like to disclose the code287

after the final decision about manuscript submission.288

Guidelines:289

• The answer NA means that paper does not include experiments requiring code.290

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/291

public/guides/CodeSubmissionPolicy) for more details.292

• While we encourage the release of code and data, we understand that this might not be293

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not294

including code, unless this is central to the contribution (e.g., for a new open-source295

benchmark).296

• The instructions should contain the exact command and environment needed to run to297

reproduce the results. See the NeurIPS code and data submission guidelines (https:298

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.299

• The authors should provide instructions on data access and preparation, including how300

to access the raw data, preprocessed data, intermediate data, and generated data, etc.301

• The authors should provide scripts to reproduce all experimental results for the new302

proposed method and baselines. If only a subset of experiments are reproducible, they303

should state which ones are omitted from the script and why.304

• At submission time, to preserve anonymity, the authors should release anonymized305

versions (if applicable).306

• Providing as much information as possible in supplemental material (appended to the307

paper) is recommended, but including URLs to data and code is permitted.308

6. Experimental setting/details309

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-310

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the311

results?312

Answer: [Yes]313

Justification: The details are present in Appendix B, C.314

Guidelines:315

• The answer NA means that the paper does not include experiments.316

• The experimental setting should be presented in the core of the paper to a level of detail317

that is necessary to appreciate the results and make sense of them.318

• The full details can be provided either with the code, in appendix, or as supplemental319

material.320

7. Experiment statistical significance321

Question: Does the paper report error bars suitably and correctly defined or other appropriate322

information about the statistical significance of the experiments?323

Answer: [No]324

Justification: The results are reproduced for multiple sets of LLMs to establish robustness325

of results. However, the current version of the manuscript does not report any error bars or326

confidence intervals.327

Guidelines:328

• The answer NA means that the paper does not include experiments.329

• The authors should answer "Yes" if the results are accompanied by error bars, confi-330

dence intervals, or statistical significance tests, at least for the experiments that support331

the main claims of the paper.332

• The factors of variability that the error bars are capturing should be clearly stated (for333

example, train/test split, initialization, random drawing of some parameter, or overall334

run with given experimental conditions).335

• The method for calculating the error bars should be explained (closed form formula,336

call to a library function, bootstrap, etc.)337
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• The assumptions made should be given (e.g., Normally distributed errors).338

• It should be clear whether the error bar is the standard deviation or the standard error339

of the mean.340

• It is OK to report 1-sigma error bars, but one should state it. The authors should341

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis342

of Normality of errors is not verified.343

• For asymmetric distributions, the authors should be careful not to show in tables or344

figures symmetric error bars that would yield results that are out of range (e.g. negative345

error rates).346

• If error bars are reported in tables or plots, The authors should explain in the text how347

they were calculated and reference the corresponding figures or tables in the text.348

8. Experiments compute resources349

Question: For each experiment, does the paper provide sufficient information on the com-350

puter resources (type of compute workers, memory, time of execution) needed to reproduce351

the experiments?352

Answer: [Yes]353

Justification: The details are included in Appendix J.354

Guidelines:355

• The answer NA means that the paper does not include experiments.356

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,357

or cloud provider, including relevant memory and storage.358

• The paper should provide the amount of compute required for each of the individual359

experimental runs as well as estimate the total compute.360

• The paper should disclose whether the full research project required more compute361

than the experiments reported in the paper (e.g., preliminary or failed experiments that362

didn’t make it into the paper).363

9. Code of ethics364

Question: Does the research conducted in the paper conform, in every respect, with the365

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?366

Answer: [Yes]367

Justification: The research conforms with the NeurIPS Code of Ethics.368

Guidelines:369

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.370

• If the authors answer No, they should explain the special circumstances that require a371

deviation from the Code of Ethics.372

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-373

eration due to laws or regulations in their jurisdiction).374

10. Broader impacts375

Question: Does the paper discuss both potential positive societal impacts and negative376

societal impacts of the work performed?377

Answer: [Yes]378

Justification: Positive impact could be the society as well as service providers benefit from379

LLM inference cost savings, while achieving near-optimal performance. This high-level380

impact is mentioned in introduction and conclusion sections.381

Guidelines:382

• The answer NA means that there is no societal impact of the work performed.383

• If the authors answer NA or No, they should explain why their work has no societal384

impact or why the paper does not address societal impact.385

• Examples of negative societal impacts include potential malicious or unintended uses386

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations387

(e.g., deployment of technologies that could make decisions that unfairly impact specific388

groups), privacy considerations, and security considerations.389
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• The conference expects that many papers will be foundational research and not tied390

to particular applications, let alone deployments. However, if there is a direct path to391

any negative applications, the authors should point it out. For example, it is legitimate392

to point out that an improvement in the quality of generative models could be used to393

generate deepfakes for disinformation. On the other hand, it is not needed to point out394

that a generic algorithm for optimizing neural networks could enable people to train395

models that generate Deepfakes faster.396

• The authors should consider possible harms that could arise when the technology is397

being used as intended and functioning correctly, harms that could arise when the398

technology is being used as intended but gives incorrect results, and harms following399

from (intentional or unintentional) misuse of the technology.400

• If there are negative societal impacts, the authors could also discuss possible mitigation401

strategies (e.g., gated release of models, providing defenses in addition to attacks,402

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from403

feedback over time, improving the efficiency and accessibility of ML).404

11. Safeguards405

Question: Does the paper describe safeguards that have been put in place for responsible406

release of data or models that have a high risk for misuse (e.g., pretrained language models,407

image generators, or scraped datasets)?408

Answer: [NA]409

Justification: The router models do not have any direct high risks for misuse.410

Guidelines:411

• The answer NA means that the paper poses no such risks.412

• Released models that have a high risk for misuse or dual-use should be released with413

necessary safeguards to allow for controlled use of the model, for example by requiring414

that users adhere to usage guidelines or restrictions to access the model or implementing415

safety filters.416

• Datasets that have been scraped from the Internet could pose safety risks. The authors417

should describe how they avoided releasing unsafe images.418

• We recognize that providing effective safeguards is challenging, and many papers do419

not require this, but we encourage authors to take this into account and make a best420

faith effort.421

12. Licenses for existing assets422

Question: Are the creators or original owners of assets (e.g., code, data, models), used in423

the paper, properly credited and are the license and terms of use explicitly mentioned and424

properly respected?425

Answer: [Yes]426

Justification: All the LLMs used are clearly attributed and original papers are cited whereever427

required.428

Guidelines:429

• The answer NA means that the paper does not use existing assets.430

• The authors should cite the original paper that produced the code package or dataset.431

• The authors should state which version of the asset is used and, if possible, include a432

URL.433

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.434

• For scraped data from a particular source (e.g., website), the copyright and terms of435

service of that source should be provided.436

• If assets are released, the license, copyright information, and terms of use in the437

package should be provided. For popular datasets, paperswithcode.com/datasets438

has curated licenses for some datasets. Their licensing guide can help determine the439

license of a dataset.440

• For existing datasets that are re-packaged, both the original license and the license of441

the derived asset (if it has changed) should be provided.442
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• If this information is not available online, the authors are encouraged to reach out to443

the asset’s creators.444

13. New assets445

Question: Are new assets introduced in the paper well documented and is the documentation446

provided alongside the assets?447

Answer: [NA]448

Justification: The paper leverages existing public datasets and existing LLMs / SLMs for the449

experiments.450

Guidelines:451

• The answer NA means that the paper does not release new assets.452

• Researchers should communicate the details of the dataset/code/model as part of their453

submissions via structured templates. This includes details about training, license,454

limitations, etc.455

• The paper should discuss whether and how consent was obtained from people whose456

asset is used.457

• At submission time, remember to anonymize your assets (if applicable). You can either458

create an anonymized URL or include an anonymized zip file.459

14. Crowdsourcing and research with human subjects460

Question: For crowdsourcing experiments and research with human subjects, does the paper461

include the full text of instructions given to participants and screenshots, if applicable, as462

well as details about compensation (if any)?463

Answer: [NA]464

Justification: The paper does not involve crowdsourcing nor research with human subjects465

Guidelines:466

• The answer NA means that the paper does not involve crowdsourcing nor research with467

human subjects.468

• Including this information in the supplemental material is fine, but if the main contribu-469

tion of the paper involves human subjects, then as much detail as possible should be470

included in the main paper.471

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,472

or other labor should be paid at least the minimum wage in the country of the data473

collector.474

15. Institutional review board (IRB) approvals or equivalent for research with human475

subjects476

Question: Does the paper describe potential risks incurred by study participants, whether477

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)478

approvals (or an equivalent approval/review based on the requirements of your country or479

institution) were obtained?480

Answer: [NA]481

Justification: The paper does not involve crowdsourcing nor research with human subjects.482

Guidelines:483

• The answer NA means that the paper does not involve crowdsourcing nor research with484

human subjects.485

• Depending on the country in which research is conducted, IRB approval (or equivalent)486

may be required for any human subjects research. If you obtained IRB approval, you487

should clearly state this in the paper.488

• We recognize that the procedures for this may vary significantly between institutions489

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the490

guidelines for their institution.491

• For initial submissions, do not include any information that would break anonymity (if492

applicable), such as the institution conducting the review.493
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16. Declaration of LLM usage494

Question: Does the paper describe the usage of LLMs if it is an important, original, or495

non-standard component of the core methods in this research? Note that if the LLM is used496

only for writing, editing, or formatting purposes and does not impact the core methodology,497

scientific rigorousness, or originality of the research, declaration is not required.498

Answer: [NA]499

Justification: Our methodology is not developed using LLMs.500

Guidelines:501

• The answer NA means that the core method development in this research does not502

involve LLMs as any important, original, or non-standard components.503

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for504

what should or should not be described.505
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A Related Work506

As large language models (LLMs) proliferate across domains and deployment settings, the challenge507

of selecting the most appropriate model for a given query has become central to efficient and effective508

LLM usage. Prior work on LLM routing has largely focused on optimizing for cost, quality, or509

adaptability — but often treats these objectives in isolation or relies on rigid assumptions about510

model behavior. Our work builds on this foundation by proposing a unified, interaction-based routing511

framework that jointly models query and LLM characteristics to make informed, flexible routing512

decisions.513

Early approaches to LLM routing framed the problem as a classification task, where a supervised514

model predicts the best LLM for a query. These methods, such as RouteLLM [9] and OptLLM [8],515

demonstrated that static query features could be used to reduce reliance on expensive models. Recent516

work, CARROT [12], predicts both cost and accuracy to select the most cost-effective model, and517

deduces minimax optimality under certain assumptions. However, they often assume a fixed set of518

models and rely on pre-computed performance metrics, limiting their ability to generalize to new519

domains or adapt to evolving model pools.520

In parallel, reinforcement learning-based methods introduced dynamic routing policies that adapt521

over time. Methods like LLM Bandit [7] and PickLLM [11] use online feedback to refine model522

selection strategies. While these methods offer adaptability, they typically require many interactions523

to converge and struggle with cold-start scenarios — a critical limitation in real-world deployments524

where immediate routing decision is essential. Causal LLM Routing [14] learns routing policies from525

observational data via end-to-end regret minimization, avoiding costly full-feedback datasets, but still526

depends on rich historical logs and omits explicit query–model interaction modeling.527

Immediate routing decisions can be achieved by exploring training-free or heuristic-based routing,528

aimed to reduce overhead by avoiding model training altogether. Eagle [15] and Universal Model529

Routing [6] use ranking systems or unsupervised clustering to guide routing decisions. These530

methods are appealing for their simplicity and low cost, but often lack the granularity needed to531

capture nuanced differences in model behavior, especially for complex or ambiguous queries. From532

another angle, LLM-BLENDER [4] ensembles multiple LLMs by ranking and fusing their generated533

outputs using a pairwise ranking module and a generative fusion module. While effective, this534

post-generation approach requires outputs from all candidate models, in contrast to our pre-generation535

routing perspective, which selects a single model before inference.536

Across these diverse approaches, a common limitation emerges: most methods treat the query and537

model as independent entities, relying on either query-only features or model-agnostic heuristics.538

In contrast, our approach explicitly models the interaction between query and model embeddings,539

allowing the router to reason about how a specific query might perform on a specific model. By540

learning to predict both quality and cost in a unified framework, our method supports flexible,541

domain-agnostic routing that adapts to new models and tasks with minimal supervision.542

B RouterBench Dataset543

1. The dataset contains at most 1 response per model for each user prompt. However, the same544

model can answer the same question with multiple different responses.545

2. Analysis on the dataset in the paper [2] shows that most of the answers that can be answered546

by an expensive model, can also be answered by smaller models as well. So, a cost-efficient547

router should learn to discern when a query can be routed to a smaller model.548

3. For all proprietary models, we calculate the cost of input and output results based on their549

API pricing, and Together AI for open-source model.550

4. Performance is not quite precise. Most of the queries have binary performance, since they551

have ground-truth and others have response quality in {0, 0.1, 0.25, 0.5, 0.75, 1}.552

5. There are many multi-choice prompts (around 27k prompts out of 36k prompts are multiple553

choice.).554

6. For the datasets MMLU, HellaSwag, GSM8K, ARC Challenge, and Winogrande, responses555

are evaluated using exact match method, while for MBPP, MT-Bench, and RAG, GPT556

evaluates responses, further are normalized to unit scale.557
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7. Cost is in the order of 10(−5) mostly.558

Our train-validation-test split is 75%:5%:20% on complete data and further, did analysis on domain-559

wise data.560

C Method Details561

Predictors. We primarily explored 2 architectural variants:562

1. Regression-Based Predictors: Linear regressor learns the best fit regression line for each
model with query as input and performance/cost as output. Although interpretable and
computationally efficient, they are limited to capture linear relationships only.

QX1 = S ∈ Rn×q QX2 = C ∈ Rn×q

2. Neural Network Predictors: Fully connected networks (2-layer and 3-layer MLP) learn563

mapping from query to all the model’s performance/cost predictions. f(q; θ) = S ∈ Rm564

and g(q; θ) = C ∈ Rm. Note that, unlike regression-based predictors, predictions for565

different language models share parameters here.566

Model Representations Augmentation (represented as Reg-emb, 2FCN-emb and 3FCN-emb567

in H) In this improvement, we augment the respective model representation along with the query568

embeddings as context to the above predictors. De-coupling creation of model representations from569

training allows us to dynamically add/remove models from the pool during the inference time.570

Given a query embedding q ∈ Rdq and a model embedding m ∈ Rdm , the input is formed as571

x = [q;m] and outputs a scalar value s/c ∈ R of performance/cost for this model.572

User prompt Embeddings. We employ DistilBERT embeddings (dim=768) of user prompts and573

further normalize them before attention computation.574

LLM Representations. We compute these fixed-size model embeddings to best capture "latent575

expertise" of the models across different domains. We firstly cluster a large set of queries (training576

set) using K-Means and pick 20% of prompts as representative prompts from each cluster uniformly577

random. Given C clusters, a model embedding Im ∈ RC encodes the mean performance per cluster.578

This is a training-free approach, inspired by Universal Routing [6]. As mentioned in this paper, we579

take the large set of prompts for clustering, rather than using a small set of representative prompts is580

that it could lead to overfitting.581

Our hypothesis is by incorporating model embeddings, the router gains a richer understanding of582

model-specific capabilities, enabling improved query-model matching and accurate quality prediction,583

especially for diverse and complex queries.584

Training and Test Details. We trained all the predictors in the predictor-based routing framework585

with MSE (Mean Squared Error) loss, using Adam optimizer and CoineAnnealingLR scheduler.586

Particularly, we trained Attention-based performance predictor with 1e− 3 learning rate for 1000587

epochs, 1024 batch size and 1e− 5 weight decay. Similarly, we trained attention-based cost predictor588

with 1e− 4 learning rate for 1000 epochs, 1024 batch size and 1e− 7 weight decay, while mapping589

the inputs to an internal dimension of 20. With train-validation-test splits being 75%, 5% and 20%590

respectively, we chose these hyper-parameters with the best train and validation loss.591

592

For creating LLM representations, we divided the trainset user prompts into 20 clusters, obtained593

from elbow test. Thus, the LLM embeddings are 20-dimensional, while prompt embeddings are594

768-dimensional.595

596

LLM Blender Implementation We implemented the LLM Blender baseline using the open-source597

PairRM ranker provided by the LLM-Blender [5] framework. For each prompt in the RouterBench598

dataset, we collected responses from all candidate models in the pool and generated all possible599

response pairs. The PairRM ranker was used to perform pairwise comparisons of these responses,600
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assigning a win to the preferred response in each pair. The model with the highest total number of601

wins was selected as the routed model for that prompt. This method does not involve any additional602

training and was applied only to the test set for evaluation. Since all model outputs are required for603

comparison, the total cost for this method is computed as the sum of all candidate models’ inference604

costs per sample.605

D Proposed Reward Functions’ Analysis606

(a) R1 = s(q, r)− 1
λ
c(q, r) (b) R2 = s(q, r)exp(− 1

λ
c(q, r))

Figure 5: Distribution of queries routed to each model in LLM pool 1 by oracle routers with our
proposed reward functions

Figure 6: λ-sensitivity

The oracle routers we defined in sec-607

tion 2 are ideal routers. As it can be608

seen in the above plot, these routers609

not only attain the best performance-610

cost trade-off, on par with oracle611

router in RouterBench but also route612

most of the queries to a lower cost613

model, while achieving this trade-off.614

Maximum number of queries routed615

to GPT-4 with either of the baselines616

is 20%, thus verifying that employing617

these reward functions is an appropri-618

ate approach for cost-efficient LLM619

router.620

E λ-Sensitivity621

of Reward functions622

In order to gauge the robustness of623

reward functions, we perform sensi-624

tivity analysis of the reward functions625

with respect to user’s willingness to626

pay (λ), that is how abruptly the per-627

formance/inference cost varies with λ. We define λ-sensitivity with respect to performance as the628

weighted average of the change in performance over the log scale difference in user parameter (λ),629

formulated as:630

Similarly, with the cost. This metric expresses how fast the performance changes with minor variations631

in λ, indicating instability and inconsistency of the oracle router, in turn the instability of the reward632

function.633
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λ− sensitivityperf =
log (λ2/λ1)(s2 − s1) + log (λ3/λ2)(s3 − s2) + log (λ4/λ3)(s4 − s3)

(log (λ4/λ1))

F LLM Pools634

We conducted experiments on the following LLM pools:635

LLM pool 1: Mistral 7B Chat, WizardLM 13B V1.2, Mistral 8x7B Chat, Code Llama Instruct 34B636

Chat, GPT 4637

LLM Pool 2: WizardLM 13B V1.2, Code Llama Instruct 34B Chat, Yi 34B Chat, Claude Instant V1,638

Claude V2639

LLM Pool 3: Mistral 7B Chat, Mistral 8x7B Chat, Code Llama Instruct 34B Chat, Yi 34B Chat,640

GPT 4641

LLM Pool 4: Llama 2 70B, Claude V1, Claude V2, GPT-4642

643

G Detailed Comparison Tables: Across Predictor Models and Domains644

H Predictor-based LLM Routing Framework645

We conducted an ablation study by varying predictors in the predictor-based routing framework. We646

observe that the router with attention module as both performance and cost predictors yields the best647

AIQ score and maximum performance.648

H.1 Rewards: R1649

Cost Predictor
Oracle R1 Reg 2-FCN 3-FCN Reg-emb 2-FCN-emb 3-FCN-emb Attn

Quality
Predictors

Oracle R1 0.85639 0.85442 0.85637 0.85638 0.85771 0.85572 0.85512 0.85830
Reg 0.72045 0.71810 0.72090 0.72122 0.70643 0.72013 0.72007 0.71881

2-FCN 0.66528 0.66505 0.66563 0.64657 0.65330 0.66604 0.66637 0.66628
3-FCN 0.67217 0.67438 0.67415 0.65023 0.66863 0.67370 0.68394 0.67145

Reg-emb 0.72144 0.72313 0.72225 0.72100 0.25780 0.72127 0.72099 0.72190
2-FCN-emb 0.69368 0.69317 0.69382 0.69399 0.67951 0.69501 0.69417 0.69308
3-FCN-emb 0.68270 0.68211 0.68247 0.68332 0.67491 0.68427 0.68359 0.68361

Attn 0.72540 0.72485 0.72485 0.72426 0.71490 0.72365 0.72396 0.72644

Table 3: AIQ scores

Cost Predictor
Oracle R1 Reg 2-FCN 3-FCN Reg-emb 2-FCN-emb 3-FCN-emb Attn

Quality
Predictors

Oracle R1 0.86430 0.86430 0.86430 0.86430 0.86430 0.86430 0.86430 0.86430
Reg 0.77338 0.77338 0.77338 0.77338 0.77338 0.77338 0.77338 0.77338

2-FCN 0.72036 0.72036 0.72036 0.72039 0.72000 0.72036 0.72036 0.72050
3-FCN 0.73552 0.73562 0.73564 0.73504 0.73581 0.73575 0.76401 0.73601

Reg-emb 0.78337 0.78337 0.78337 0.78337 0.78337 0.78337 0.78337 0.78337
2-FCN-emb 0.76811 0.76799 0.76799 0.76799 0.76787 0.76794 0.76812 0.76812
3-FCN-emb 0.76389 0.76402 0.76402 0.76389 0.76420 0.76375 0.76415 0.76389

Attn 0.78082 0.78094 0.78082 0.78091 0.78082 0.78082 0.78082 0.78082

Table 4: Maximum performance achieved
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H.2 Rewards: R2650

Cost Predictor
Oracle R2 Reg 2-FCN 3-FCN Reg-emb 2-FCN-emb 3-FCN-enb Attn

Quality
Predictors

Oracle R2 0.84275 0.84518 0.84361 0.84318 0.85961 0.85378 0.85307 0.85564
Reg 0.72122 0.71833 0.72129 0.72146 0.70525 0.72133 0.72127 0.71949

2-FCN 0.66427 0.66404 0.66444 0.66348 0.65120 0.66484 0.66517 0.66545
3-FCN 0.66970 0.67162 0.67050 0.67037 0.66983 0.67180 0.66887 0.66857

Reg-emb 0.72229 0.72244 0.72274 0.72249 0.70136 0.72258 0.72249 0.71932
2-FCN-emb 0.69053 0.68990 0.69038 0.69093 0.67823 0.69197 0.69011 0.68990
3-FCN-emb 0.68282 0.68314 0.68347 0.68429 0.67701 0.68465 0.68447 0.68388

Attn-eval 0.72433 0.72340 0.72430 0.72476 0.71189 0.72307 0.72328 0.72737

Table 5: AIQ scores

Cost Predictor
Oracle R2 Reg 2-FCN 3-FCN Reg-emb 2-FCN-emb 3-FCN-enb Attn

Quality
Predictors

Oracle R2 0.86430 0.86430 0.86430 0.86430 0.86430 0.86430 0.86430 0.86430
Reg 0.77338 0.77338 0.77338 0.77338 0.77338 0.77338 0.77338 0.77338

2-FCN 0.72036 0.72036 0.72036 0.72022 0.72000 0.72036 0.72036 0.72050
3-FCN 0.73526 0.73565 0.73526 0.73578 0.73594 0.73604 0.73530 0.73604

Reg-emb 0.78337 0.78337 0.78337 0.78337 0.78337 0.78337 0.78337 0.78337
2-FCN-emb 0.76824 0.76812 0.76812 0.76812 0.76800 0.76807 0.76825 0.76825
3-FCN-emb 0.76389 0.76402 0.76401 0.76402 0.76425 0.76376 0.76415 0.76402

Attn-eval 0.78082 0.78082 0.78082 0.78082 0.78082 0.78082 0.78082 0.78082

Table 6: Maximum performance achieved

I Domain-wise and Dataset-wise results651

Figures 7–8 present cost-quality curves for each benchmark task and domain, including MMLU,652

HellaSwag, GSM8K, ARC Challenge, Winogrande, MBPP, and MT-Bench on LLM pool 1. Across653

most domains, Attention Router consistently matches or exceeds the performance of traditional654

predictors at lower cost, demonstrating robust generalization. For complex tasks such as ARC655

Challenge and MBPP, Attention Router achieves the highest performance at a fraction of the cost656

compared to baselines. In domains with high diversity (e.g., MMLU Professional Law, Moral657

Scenarios), our method maintains strong cost–quality trade-offs, validating its adaptability.658
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I.1 Dataset-wise results659

I.1.1 Rewards: R1660

(a) MMLU (b) Hellaswag (c) GSM8K

(d) Arc Challenge (e) Winograde (f) MBPP

(g) MT Bench

Figure 7: Dataset-wise results of the predictor-based routers using R1 = s(q, r)− 1
λc(q, r) rewards
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I.1.2 Rewards: R2661

(a) MMLU (b) Hellaswag (c) GSM8K

(d) Arc Challenge (e) Winograde (f) MBPP

(g) MT Bench

Figure 8: Dataset-wise results of the predictor-based routers using R2 = s(q, r) exp (− 1
λc(q, r))

rewards
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I.2 Domain-wise results662

I.2.1 Rewards: R1663

(a) Hellaswag (b) GSM8K (c) MMLU Professional Law

(d) Arc Challenge (e) Winograde (f) MMLU Moral Scenarios

(g) MMLU Miscellaneous

Figure 9: Domain-wise results of the predictor-based routers using R1 = s(q, r)− 1
λc(q, r) rewards
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I.2.2 Rewards: R2664

(a) Hellaswag (b) GSM8K (c) MMLU Professional Law

(d) Arc Challenge (e) Winograde (f) MMLU Moral Scenarios

(g) MMLU Miscellaneous

Figure 10: Domain-wise results of the predictor-based routers using R2 = s(q, r) exp (− 1
λc(q, r))

rewards

J Compute Resources665

We implemented our proposed method in PyTorch and conducted experiments on either a single666

NVIDIA A40 or a single NVIDIA A100 Tensor Core GPU. Our models consume at most 1GB667

memory. While the training period of predictors for the framework is upto 30 minutes, inference time668

for predictors is around 5-10 minutes, varying with batch size, trainset size and the architecture.669

K Limitations670

Our work does not include direct experimental comparisons with recent multi-LLM routing methods671

on RouterBench, such as Universal Model Routing. Future work should benchmark our approach672

against these contemporary baselines for a more robust evaluation. Moreover, our experiments are673

conducted on a static dataset with fixed LLM pool and tasks from RouterBench. There is a degree674

of uncertainty with the same LLM responses for the same query, so there is a scope of making it675

dynamic, and modeling performance and inference cost with a degree of uncertainty. Finally, the676

method relies on LLM representations, and results vary based on the quality and quantity of the data.677
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