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Abstract

We investigate the extent to which offline demon-
stration data can improve online learning. It is
natural to expect some improvement, but the ques-
tion is how, and by how much? We show that
the degree of improvement must depend on the
quality of the demonstration data. To generate
portable insights, we focus on Thompson sam-
pling (TS) applied to a multi-armed bandit as a
prototypical online learning algorithm and model.
The demonstration data is generated by an expert
with a given competence level, a notion we in-
troduce. We propose an informed TS algorithm
that utilizes the demonstration data in a coher-
ent way through Bayes’ rule and derive a prior-
dependent Bayesian regret bound. This offers
insight into how pretraining can greatly improve
online performance and how the degree of im-
provement increases with the expert’s competence
level. We also develop a practical, approximate
informed TS algorithm through Bayesian boot-
strapping and show substantial empirical regret
reduction through experiments.

1. Introduction
A modern paradigm for developing intelligent agents in-
volves pretraining on large quantities of existing data fol-
lowed by learning from real-time interactions. For instance,
to produce a chatbot, one can pretrain a large language
model on text gathered from the internet and subsequently
improve behavior through learning from interactions with
humans (Ziegler et al., 2019; Ouyang et al., 2022). With
such an approach, the preexisting text is treated as offline
demonstration data that conditions a reinforcement learning
agent before it engages in online learning.
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It is natural to expect the offline demonstration data to im-
prove performance of the online learning agent. However,
the degree of improvement must depend on the quality of
the demonstration data. If the data is produced by a com-
petent expert, it ought to improve the agent’s performance
more so than if not. We study using the demonstration data
to enhance the performance of an online learning agent in
terms of regret minimization, formulating a notion of com-
petence and an approach to learning from the demonstration
data in a manner that accounts for this.

As a prototypical model for online learning, we consider
multi-armed bandits that offer a simple context for under-
standing the role of offline data. We focus on Thompson
sampling (TS) (Thompson, 1933) which is a popular online
learning algorithm, owing to its effectiveness across a wide
range of environments and its scalability through the use of
approximation methods such as epistemic neural networks
(Osband et al., 2021). Moreover, TS offers a coherent way
to use the demonstration data by simply following Bayes’
rule. In our setting, pretraining amounts to conditioning
the distribution used by TS as it initiates online learning.
Note that a goal of this paper is to yield insights on how to
leverage the demonstration data to improve online learning,
and what the potential gains may be. Thus, we use the proto-
typical setting of a multi-armed bandit and a simple model
for the data generation that is mathematically convenient
and widely-used in machine learning.

Contributions Our contribution is three-fold:

(i) We study how the quality of offline demonstration data
can improve online learning and propose an informed TS al-
gorithm that naturally makes use of the offline data through
an informative prior. We show that the algorithm’s online
learning performance improves significantly with the quality
of demonstrations as measured by a notion of the expert’s
competence level that we introduce.

(ii) We establish a prior-dependent Bayesian regret bound
that offers insight into how pretraining reduces regret and
how this reduction depends on the expert’s competence level.
Previous works (Russo & Van Roy, 2016; Zhang, 2022; Hao
& Lattimore, 2022) mostly focus on prior-free Bayesian
regret bounds and thus cannot characterize the quality of of-
fline data. Our technique extends the information-theoretic
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regret decomposition to characterize how an informative
prior can reduce both the information ratio and the entropy
of the distribution of the optimal arm.

(iii) We propose a practical algorithm that approximates
informed TS via Bayesian bootstrapping. Through experi-
ments, we show that a partially-informed TS algorithm that
uses the offline demonstration data naively (i.e., assuming
the expert to be naive in that it takes actions uniformly ran-
domly) can only reduce the cumulative regret marginally.
However, the informed TS algorithm informed by the offline
demonstration data and the competence level of the expert,
can achieve substantial regret reduction.

Related Work. There is a rich body of literature on learn-
ing algorithms for bandits (see Russo et al. (2018); Latti-
more & Szepesvári (2020) for a detailed review). Almost all
of this literature assumes that the learning agent starts from
scratch but this may lead to a long initial learning stage. In
fact, offline data is available for many applications, such as
training a large language model (Ouyang et al., 2022).

There are some previous attempts that leverage offline data
to warm-start an online learning algorithm. For instance,
Shivaswamy & Joachims (2012) analyzed a warm start UCB
algorithm for the K-armed bandit and Zhang et al. (2019)
investigated warm-starting contextual bandits by combining
offline supervised feedback that is generated by an uni-
formly random policy. Banerjee et al. (2022) proposed a
meta-algorithm that uses historical data as needed to im-
prove the computation and storage. However, none of these
algorithms take the quality of offline data into consideration
and thus show little regret reduction.

In the context of reinforcement learning (RL), there are
several recent works (Rashidinejad et al., 2021; Xie et al.,
2021; Song et al., 2022; Wagenmaker & Pacchiano, 2022)
that bridge offline and online RL. However, all of them focus
on policy optimization rather than regret minimization. And
they require different versions of concentrability coefficient
conditions that are hard to be satisfied in practice. The
importance of the competence level of the expert was first
highlighted by Beliaev et al. (2022) for imitation learning
and is modeled through an ϵ-greedy policy. However, their
goal is very different from ours since there is no online
interaction there.

Offline data can also be viewed as a special form of side
information and some other forms of side information are
studied for online learning. Degenne et al. (2018) assumed
the side information as observations of other arms while
Cutkosky et al. (2022) considered some hints about the
optimal action for linear bandits.

2. Problem Setting
To offer a coherent formulation – that is, one that conforms
with standard axioms of statistical decision theory – we
model all unknown quantities as random variables defined
with respect to a common probability space (Ω,F,P). For a
set S, we denote |S| as its cardinality. For positive integer
N , let [N ] := {1, 2, . . . , N}. The K ×K identity matrix is
IK .

We consider a stochastic K-armed linear bandit with ac-
tion set A = {a1, a2, . . . , aK} ⊆ Rd. The environment is
identified by a random vector θ ∈ Rd with prior distribu-
tion ν0(·) = P(θ ∈ ·). The agent begins with an offline
demonstration dataset D0 = {(Ān, R̄n)}Nn=1 consisting of
action-reward pairs. Then, at each time t ∈ [T ], the agent
chooses an action At ∈ A and receives a reward

Rt = ⟨At, θ⟩+ ηt ,

where ⟨·, ·⟩ is the vector inner product and (ηt)
T
t=1 is a se-

quence of independent standard Gaussian random variables.
The experience thus far is recorded in the online history
Ht = {(Aτ , Rτ )}tτ=1 with Dt = (D0,Ht−1) denoting the
entire dataset at time t. We write Pt(·) = P(·|Dt) as the
posterior measure where P is the probability measure over
θ and the history and Et(·) = E(·|Dt).

A (learning) policy π = (πt)t∈N is a sequence of deter-
ministic functions where πt(·|Dt) specifies a probability
distribution over A conditioned on the dataset Dt. A station-
ary policy is an element of the probability simplex that does
not depend on history. Let A∗ = argmaxa∈A θ⊤a and we
define the Bayesian regret of a policy π as

BRT (π) := E

[
T∑

t=1

⟨A∗, θ⟩ −
T∑

t=1

Rt

]
,

where the expectation is over the environment θ, the interac-
tion sequence induced by the policy and environment and
the offline demonstration data D0.

2.1. Competence

Each action Ān in the offline demonstration dataset is gen-
erated by an expert and the expert’s expertise level is char-
acterized by a notion of competence.

In particular, the expert’s competence is parameterized by
values λ ≥ 0 and β ≥ 0, which represent knowledgeability
and deliberateness. The expert’s knowledge takes the form
of a vector ϑ, which is distributed as N (θ, Id/λ

2) condi-
tioned on θ, and actions are selected according to an expert
policy,

ϕβ,λ(Ān = a|ϑ) =
exp

(
βa⊤ϑ

)∑
b∈A exp (βb⊤ϑ)

. (2.1)
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If λ or β is finite, the expert policy above takes subop-
timal actions. One source of suboptimality stems from
the agent’s knowledgeability λ, which induces error in the
agent’s knowledge of θ. The other is due to deliberateness β,
which drives the agent to choose actions that fail to optimize
ϑ⊤a. Together, this knowledgeability and deliberateness
determine what we refer to as the agent’s competence.

The form of the expert policy is simple, mathematically
convenient and widely used in reinforcement learning. The
particular form we use is also expressive as we now note.
Remark 2.1. For multi-armed bandits where the actions
are the basis vectors, ϕβ,λ(Ān = ·|ϑ) is a random variable
supported on the whole probability simplex. In other words,
if one views β and ϑ as the parameters that parameterize
the policy, the softmax policies with structure as in Eq. (2.1)
is enough to realize any stationary policy.
Remark 2.2. Beliaev et al. (2022) consider an ϵ-greedy
expert policy (simplified from a MDP model): for β ∈ [0, 1]

πβ(Ān = a|θ) = βI

(
a = argmax

a∈[K]

a⊤θ

)
+ (1− β)/K ,

where I(·) is the indicator function. However, they assume
that the expert has perfect knowledge of the environment,
e.g., the knowledgeability parameter λ = ∞, which is not
realistic in practice.

In general we expect that the insights developed for the spe-
cific model in Equation (2.1) will generalise to alternative
models with similar qualitative properties.

3. Informed Thompson Sampling
We introduce the informed Thompson Sampling (iTS) algo-
rithm that uses the offline demonstration data in a coherent
way. The details of the iTS algorithm are:

1. It constructs an informative prior by the use of offline
dataset D0 and Bayes’ rule, and which satisfies

P(θ ∈ ·|D0) ∝ P(D0|θ ∈ ·)ν0(·)

∝ ν0(·)
N∏

n=1

P(Ān|θ ∈ ·)︸ ︷︷ ︸
action likelihood

P(R̄n|Ān, θ ∈ ·)︸ ︷︷ ︸
reward likelihood

,
(3.1)

where ν0(·) is the initial prior for θ.

2. The algorithm then uses the informative prior to start
learning and taking actions in the usual way: At time t,
obtain a sample θ̃t from the current posterior distribu-
tion P(θ ∈ ·|Dt) and choose an arm

At = argmax
a∈A

a⊤θ̃t .

Obtain reward Rt and update the posterior distribution
P(θ ∈ ·|Dt).

Due to the action likelihood term, drawing samples from the
exact posterior distribution P(θ ∈ ·|Dt) is hard even though
we have a conjugate initial prior for θ. In Section 5, we
propose an approximate-TS algorithm based on Bayesian
bootstrapping.

Remark 3.1. It is worth emphasizing here that the actions
in the offline dataset also carry information about the en-
vironment through the action likelihood term P(Ān|θ ∈ ·)
which can incorporate any information about the generative
model of the policy used to generate the offline dataset, and
thus greatly improve the informativeness of the prior.

4. An Information-Theoretic Analysis
We now present an information-theoretic regret analysis of
the informed TS algorithm. In particular, we demonstrate
the role of the competence level though a prior-dependent
Bayesian regret bound.

In the literature, there are two ways to prove Bayesian regret
bounds. The first is to introduce confidence sets such that the
Bayesian regret bounds of TS match the best possible worst-
case regret bounds of the UCB algorithm (Russo & Van Roy,
2014; Zhang, 2022). However, it is unclear how to use prior
information or offline datasets to construct confidence sets
in a principled way. There are some exceptions that attempt
to show the effect of the prior distribution (Bubeck & Liu,
2013; Kveton et al., 2021; Simchowitz et al., 2021) but all
rely on conjugate priors that do not hold for our setting.

The second is to decompose the Bayesian regret into an
information ratio term and an entropy term and bound them
using tools from information theory (Russo & Van Roy,
2016). Next we show that existing analysis is not sufficient
to fully characterize the prior effect.

4.1. Why Existing Analysis Is Not Sufficient

We reproduce the key step of existing information-theoretic
analysis (Russo & Van Roy, 2016). Define the notion of
information ratio:

Γt =
(Et [⟨A∗, θ⟩ −Rt])

2

It(A∗; (At, Rt))
,

where It is the conditional mutual information1. Russo &
Van Roy (2016) bounded the Bayesian regret of the TS
algorithm as follows:

BRT (π
TS) ≤

√
Γ∗H(A∗)T ,

where Γt ≤ Γ∗ almost surely for any t ∈ [T ] and H(·) is
the Shannon entropy. On the one hand, the effect of the
prior distribution can be partially characterized through its

1It(X;Y ) = Et[DKL(Pt,X|Y ||Pt,X)]

3



Leveraging Demonstrations to Improve Online Learning: Quality Matters

entropy. But this can only lead to logarithmic improvement
since H(A∗) is always bounded by log(K).

On the other hand, the upper bound on the information ratio
in Russo & Van Roy (2016) is prior-independent. To see this,
using the probability matching property of the TS algorithm
and Corollary 1 in Russo & Van Roy (2016),

(Et[⟨A∗, θ⟩ −Rt])
2 =

(∑
a∈A

Pt(A
∗ = a)∆t(a)

)2

≤ 2|A|
∑
a∈A

Pt(A
∗ = a)2∆2

t (a)

≤ |A|It (A∗; (At, Rt)) ,

(4.1)

where the first inequality follows from the Cauchy–Schwarz
inequality and ∆t(a) = Et[⟨a, θ⟩|A∗ = a] − Et[⟨a, θ⟩].
However, the use of Cauchy–Schwarz inequality over the
whole action set A is agnostic to the distribution of A∗ and
thus illuminates the effect of a prior. As far as we know,
all the existing upper bound analysis of information ratio
(Tossou et al., 2017; Lattimore & Szepesvári, 2019; Hao
et al., 2021; Hao & Lattimore, 2022) are prior-independent.

4.2. A Novel Regret Decomposition

We now introduce a novel information-theoretic regret de-
composition such that the Bayesian regret bound can reflect
the effect of the prior distribution. Our proof template is
general and can be used even when a more general form
of the expert policy (than in Eq. (2.1)) is used. Further, the
proof technique can also be extended for other algorithms
beyond TS, such as information-directed sampling (Russo
& Van Roy, 2014).

Definition 4.1. Consider a random set U ⊆ A which is
measurable with respect to the offline dataset D0. For any
0 ≤ ε ≤ 1, we call U as (1 − ε)-informative if it contains
the optimal action A∗ with probability at least 1− ε:

P (A∗ ∈ U) ≥ 1− ε . (4.2)

It is easy to see the full action set A is (1− ε)-informative
for any ε. The goal is to find a U whose expected cardinality
is much smaller than |A|.

Given such a U , we can decompose the Bayesian regret
based on whether A∗ belongs to U or not:

BRT (π
TS) =E

[
T∑

t=1

∑
a∈U

Pt (A
∗ = a)∆t(a)

]

+ E

[
T∑

t=1

∑
a/∈U

Pt (A
∗ = a)∆t(a)

]
.

(4.3)

Both terms can be bounded in terms of the expected cardi-
nality of U and ε as we show in the following lemmas.

Lemma 4.2. Let U be an (1− ε)-informative set defined in
Eq. (4.2). Then, the following holds

E

[
T∑

t=1

∑
a∈U

Pt (A
∗ = a)∆t(a)

]
≤
√

TE[|U|] (log (E[|U|]) + ε log (K/ε)) .

(4.4)

The proof is available in Appendix C and the key step is
to use Cauchy–Schwarz inequality on a potentially much
smaller set U rather than A. Eq. (4.4) sheds light on how
the regret upper bound depends on E[|U|]. In particular,
E[|U|] is the upper bound for the information ratio while
log (E[|U|])+ε log (K/ε) is the upper bound for the entropy.
When |U| ≪ |A|, the upper bound on the information ratio
is much smaller than the bound in Eq. (4.1).
Lemma 4.3. Let U be an (1 − ε)-informative set de-
fined in Eq. (4.2) and suppose the expected reward range
E[max a⊤θ − min a⊤θ] is bounded by C1. Then, the fol-
lowing holds

E

[
T∑

t=1

∑
a/∈U

Pt (A
∗ = a)∆t(a)

]
≤ C1Tε .

The proof is available in Appendix B. This is an additive
term that captures the regret when the informative set fails
to contain the optimal action. This term is always negligible
since in most cases ε decays exponentially fast.

Combining Lemmas 4.2 and 4.3 together, we have the fol-
lowing theorem.
Theorem 4.4. For any (1 − ε)-informative set U , the
Bayesian regret of TS algorithm can be upper bounded as

BRT (π
TS)

≤
√
TE[|U|] (log (E[|U|]) + ε log (K/ε)) + C1Tε .

If such a U is given to the algorithm (not limited to TS)
as a prior knowledge, we can easily achieve the bound in
Theorem 4.4, e.g., running standard UCB on U directly.
In contrast, TS does not need to know U and can adapt to
different U automatically. Thus, for TS, the introduction of
U is for analysis only rather than used by the algorithm.
Remark 4.5. Of course, the Bayesian regret bound of TS
cannot exceed O(

√
T |A| log(|A|)) by using the standard

prior-free analysis (Russo & Van Roy, 2016).

Next, we use this result to bound the regret for the iTS algo-
rithm for Gaussian bandits by finding such an informative
set.

4.3. Prior-Dependent Regret Bound For Informed-TS

Consider a K-armed bandit and assume the prior distribu-
tion ν0(·) = N (0, IK). We define UA (that is the set U we
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choose in Section 4.2) as a set that contains non-duplicated
actions appearing in {Ā1, . . . , ĀN} at least once and UA

has at most K different actions.

Let us first denote α1 = Kmin{log(Tβ)/β, 1} and α2 =
exp(β

√
2 log(TK)/λ). We further denote

f1 =
3

T
+

1− 1

α2(1 + α1 +
log(T )

log(1/α1)
+K/(Tβ))

N

,

f2 = min

{
α1 + 1 + α2

KN

Tβ
+

1

T
,K

}
.

Lemma 4.6. If K ≥ log2(T ), then the set UA is (1− f1)-
informative and E[|UA|] ≤ f2 .

The proof can be found in Appendix C. Here, α1 is the
price for deliberateness and goes to 0 as the deliberateness
level β increases. α2 is the price the agent pays for the
imperfect knowledge of the true environment θ and goes
to 1 as the knowledgeability λ tends to infinity. f1 is the
probability that UA fails to capture the optimal action and
decays exponentially fast as the data size N increases. Note
that K ≥ log2(T ) is a technical condition that we hope to
relax in the future.

Since θ ∼ N (0, IK), we have

E
[
max

a
⟨a, θ⟩ −min

a
⟨a, θ⟩

]
≤ 2
√
2 log(K) , (4.5)

where the proof of this claim is available in Appendix E.
Combining Theorem 4.4, Lemma 4.6 and Eq. (4.5) together,
we obtain the final regret bound for the informed TS algo-
rithm, the main theoretical result of this paper.
Theorem 4.7. The Bayesian regret of the iTS algorithm is
bounded as

BRT (π
i-TS) ≤ 2

√
2 log(K)Tf1 + 4

√
2 log(K)︸ ︷︷ ︸

remainder term

+
√
Tf2 (log(f2) + f1 log (K/f1))︸ ︷︷ ︸

main term

.
(4.6)

For the main term, as the deliberateness β increases, the
information ratio part (f2) first drops polynomially until 1
and then the entropy part (log(f2) + f1 log (K/f1)) drops
further until log(1) = 0. This implies we must sharpen both
the information ratio term and entropy term. Overall, as the
competence parameters β, λ of an expert go to infinity, the
main term of the Bayesian regret bound goes to 0. Thus,
our regret bound Eq. (4.6) can fully characterizes the role
of competence.

5. Bayesian Bootstrapping
The posterior update in Eq. (3.1) is computationally chal-
lenging due to the loss of conjugacy in the P(Ān|θ) term

while using the Bayes’ rule, which has a sum of exponen-
tials term in the denominator. Thus, we adapt the existing
approximate-TS approach based on Bayesian bootstrapping
(Osband et al., 2019; Lu & Van Roy, 2017). The key idea
is to perturb the loss function for the maximum a posterior
(MAP) estimate and use the point estimate as a surrogate
for the exact posterior sample.

5.1. The Loss Function and Perturbation

We now introduce a loss function whose optimization we
show yields the MAP estimate of the model parameters.
Suppose ν0(·) = N (0,Σ0). With a bit of notational ambi-
guity, we view θ and ϑ as parameters rather than random
variables in this subsection. We first derive the loss function
for the MAP estimate in Lemma 5.1.

Lemma 5.1. At time t, the MAP estimate for θ, ϑ is equiva-
lent to solving the following optimization problem:

argmin
θ,ϑ

L1(θ, ϑ) + L2(θ, ϑ) + L3(θ, ϑ) ,

where L1(θ, ϑ) :=

− 2

N∑
n=1

(
βϑT Ān − log

(∑
b∈A

exp
(
βϑT b

)))
,

is the negative log-likelihood contributed by the offline ac-
tions and L2(θ, ϑ) :=

N∑
n=1

(
R̄n − θT Ān

)2
+

t∑
τ=1

(
Rτ − θTAτ

)2
,

is the negative log-likelihood contributed by the rewards
and L3(θ, ϑ) :=

λ2∥ϑ− θ∥22 + θ⊤Σ−1
0 θ ,

is the log-prior function.

The proof is available in Appendix D. Note that L1(θ, ϑ)
serves a role similar to the imitation learning loss (Ross
et al., 2011) since it regularizes the online agent to follow the
expert’s action and the amount of regularization is guided
by the competence level. While there are multiple heuristic
choices for the imitation learning loss in literature, ours
are derived in a principled way following Bayes’ rule and
combined with online learning.

Remark 5.2. When λ is small, the competence level of the
expert is low such that the demonstration data is of low-
quality. In this case, the online learning agent should not
be following the offline action. Fortunately, informed TS
can understand this automatically through Bayes’ rule. In
particular, small λ imposes little regularization on ∥ϑ −
θ∥2 such that estimating θ is independent of the action
likelihood.
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Now, we will perturb the loss function. As is standard in
the literature (Lu & Van Roy, 2017; Osband et al., 2018;
Dwaracherla et al., 2022; Qin et al., 2022), the Gaussian
rewards are perturbed by additive Gaussian noise while
the offline actions are perturbed by multiplicative random
weights. Moreover, the log-prior terms are perturbed by
random samples from the prior distribution. Therefore, we
denote a set of perturbations as follows and resample all the
perturbations at each time:

• Action perturbation. Let wn
i.i.d∼ exp(1) be a sequence

of Bayesian bootstrap weights. The corresponding
perturbed loss function is L̃1(θ, ϑ) :=

−2

N∑
n=1

wn

(
βϑT Ān − log

(∑
b∈A

exp
(
βϑT b

)))
.

• Reward perturbation. Let ξ1n, ξ
2
τ

i.i.d∼ N (0, 1). The
corresponding perturbed loss function is L̃2(θ, ϑ) :=

N∑
n=1

(
R̄n + ξ1n − θT Ān

)2
+

t∑
τ=1

(
Rτ + ξ2τ − θTAτ

)2
.

• Prior function perturbation. Let θ̃0 ∼ N (0,Σ0) and
ϑ̃ ∼ N (0, Id/λ). The corresponding perturbed loss
function is L̃3(θ, ϑ) :=

λ2∥ϑ− θ − ϑ̃∥22 + (θ − θ̃0)
⊤Σ−1

0 (θ − θ̃0) .

At each time t, let (θ̂, ϑ̂) be the solution of

min
θ,ϑ

L̃1(θ, ϑ) + L̃2(θ, ϑ) + L̃3(θ, ϑ) , (5.1)

and use θ̂ as a surrogate for posterior sampling in the stan-
dard TS algorithm. Since the perturbed loss function in
Eq. (5.1) is convex, we can solve it by use of standard
convex optimization solvers such as CVXPY (Diamond &
Boyd, 2016).
Remark 5.3. 1. We would like to mention perturbation-
based methods such as Bayesian bootstrapping lead to one
kind of approximate-TS algorithms. There are other choices
such as MCMC, Laplace approximation or variational in-
ference for sampling from an approximate posterior. For
a detailed empirical comparison, we refer the reader to
Osband et al. (2022).

2. While the algorithm as presented above assumes the
offline dataset comes from a single expert, it can easily be
extended where it comes from multiple experts with different
competence parameters (βj , λj), j = 1, · · · , J , with corre-
sponding (ϑj) parameters, and dataset sizes Nj . Namely,
there will be J similar terms in the loss function L̃1, one for
each expert. Similarly, the first term in the loss function L̃3

will be replaced by J identical terms, one for each expert.

5.2. Estimating Competence Level

Bayesian bootstrapping requires an input for the compe-
tence level. In practice, this is often not available and can
be estimated only from the offline data. We provide two
methods to estimate the deliberateness parameter, β:

1) The first method is based on maximum likelihood estima-
tion (MLE). Similar idea has been proposed to estimate the
expertise level in imitation learning (Beliaev et al., 2022).
Specifically, we optimize β over the following negative
log-likelihood of the offline data:

−
N∑

n=1

(
βĀ⊤

n ϑ̂
LS − log

(∑
b∈A

exp
(
βb⊤ϑ̂LS

)))
,

where ϑ̂LS is the regularized least square estimate using D0.

2) The second method is to simply look at the entropy of
the empirical distribution of the action in the offline dataset.
Suppose the empirical distribution of {Ān}Nn=1 is µA. Then
we use c0/H(µA) as an estimation for β, where c0 > 0 is
a hyperparameter. The intuition is that for smaller β, the
offline actions tend to be more uniform and thus the entropy
will be large. This is an unsupervised approach and agnostic
to specific offline data generation process.

The knowledgeability λ is not quite ‘estimable’ because for
a single environment, even though we know the true envi-
ronment θ and the expert’s knowledge ϑ, we only have one
pair of observations. Thus, the variance of the estimation for
λ could be infinite. However, exact estimation of λ is not
often necessary and we show that our algorithm is robust to
misspecified λ through experiments in Section 6.2.

We summarize the full (Bayesian bootstrapped) approximate
iTS algorithm in Algorithm 1.

Algorithm 1 Approximate iTS
1: Input: time horizon T , action set A, parameter λ0,

offline demonstration data D0;
2: Obtain β̂ through either MLE or entropy method de-

scribed in Section 5.2.
3: for t = 1, . . . , T do
4: Sample a set of perturbations {wn, ξ

1
n, ξ

2
τ , θ̃0, ϑ̃} ac-

cording to Section 5.1.
5: Solve Eq. (5.1) with competence level (β̂, λ0) and

denote the solution as (θ̂t, ϑ̂t).
6: Take action At = argmaxa∈A a⊤θ̂t and receive Rt.
7: end for

6. Empirical Results
We empirically investigate the role of offline demonstration
data in terms of regret reduction. We compare the (approxi-
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Figure 1. The role of deliberateness β with different knowledge-
ability λ.

mate) informed TS algorithm with two baseline algorithms:

◦ Uninformed TS: An algorithm that uses the standard linear
Gaussian TS (Russo et al., 2018) and does not use the offline
demonstration data D0;

◦ Partially-informed TS: An algorithm that uses the offline
demonstration data D0 to update the initial prior but as-
sumes the expert is naive, i.e., β = 0 and hence the action
likelihood term P(Ān|θ ∈ ·) is a constant, e.g.,

P(θ ∈ ·|D0) ∝ ν0(·)
N∏

n=1

P(R̄n|Ān, θ ∈ ·) .

Note that this algorithm can use conjugacy in updating the
posterior distribution, and hence is computationally simpler.

The environment draws a model θ from the prior distribu-
tion N (0, Id) and provides a noisy ϑ ∼ N (θ, Id/λ

2) to
the expert. The expert then generates demonstration data
following Eq. (2.1) to obtain a dataset of size N . Each al-
gorithm is run for a horizon T = 1000 and we compute the
average cumulative regret over 100 independent runs for
each algorithm.

6.1. Role of Competence

We first demonstrate the role of the expert’s competence
level (deliberatness β and knowledability λ). Consider a
Gaussian bandit with K = 5 independent arms and a lin-
ear Gaussian bandit (K = 20, d = 5) whose actions are
sampled from a d-dimensional unit sphere. The offline
demonstration datasize is fixed at N = 10. Consider two
scenarios: (i) Fix 1/λ and vary β; and (ii) Fix β and vary
1/λ. The results are shown in Figures 1 and 2.

In Figure 1, for both values of 1/λ = 0 and 0.1, partially-

informed TS only has a marginal regret reduction and its
performance is nearly independent of the quality of the
offline data. In contrast, informed TS enjoys a significant
regret reduction that varies as β, the deliberateness level
of the expert increases. In Figure 2, we see that as λ, the
knowledgeability of the expert decreases, the amount of
regret reduction of informed TS decreases as well. Those
empirical results support our main argument that the amount
of regret reduction achieved by Algorithm 1 by use of offline
data depends on the quality of demonstrations.

Figure 2. The role of knowledgeability λ with deliberateness β =
5.

6.2. Robustness to Model Misspecifications

Although the loss function in Lemma 5.1 is derived from a
softmax expert policy (Eq. (2.1)), we would like to test if
the proposed algorithm is robust to the following types of
model misspecifications:

1) Expert policy used to genetrate offline data. While the
algorithm assumes Eq. (2.1) as its generative model, we gen-
erate the dataset by a different ϵ-greedy policy introduced
in Remark 2.2: for β ∈ [0, 1],

ϕβ,λ(Ān = a|ϑ) = βI

(
a = argmax

a∈[K]

a⊤ϑ

)
+(1−β)/K ,

where the expert’s knowledge still takes the form of a vector
ϑ ∼ N (θ, Id/λ

2) conditioned on θ. From Figure 3, we can
see that although the parametric form of the expert policy is
misspecified, the informed TS algorithm still significantly
outperforms the two baseline algorithms.

2) Misspecified competence level. First, we generate the
offline data with the true knowledgeability parameter λ =
0.1 but the algorithm uses a misspecified λ ranging from
0 to 1. Second, we generate the offline data with the true
deliberateness parameter β = 10 but the algorithm uses
a misspecified β ranging from 1 to 20. Figure 4 shows
that although the performance of informed TS decreases as
the degree of misspecification increases, our algorithm still
significantly outperforms the two baseline algorithms.

7
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Figure 3. Misspecified expert policy for linear bandits.

Figure 4. Misspecified λ and β.

6.3. Unknown Competence Level

We evaluate the empirical performance of the competence
level estimation methods introduced in Section 5.2. We
still consider a linear Gaussian bandit with 1/λ = 0. We
compare entropy-based method and MLE based method for
informed TS with two baselines: one is to plug-in true β for
informed TS; another one is the uninformed TS. As shown
in Figure 5, although the performance degrades when we
estimate β, our methods are still significantly outperforming
the uninformed TS baseline. MLE does not perform well
for a large β since it will suffer from unbalanced offline data
when computing the regularised least square estimate.

Figure 5. Comparing different methods for estimating β. True β
means informed TS with known β. The red horizontal dashed line
represents uninformed TS baseline.

6.4. Evaluating the Approximation Quality

Bayesian boostrapping is introduced because it can be com-
putationally challenging to obtain samples from the exact

Figure 6. Evaluating the approximation quality using grid TS.

posterior distribution. That immediately raises the question
about how good such an approximation is. To evaluate this,
we consider the d = 2 case where we can compute a nearly
exact posterior distribution by a brute-force method that
relies on discretization of the parameter space. We call the
algorithm as Grid-TS. The results are shown in Figure 6.
We see that the regret of iTS is very close to that of Grid-TS
(which works with a near exact posterior distribution). Thus
the approximation quality of the Bayesian bootstrapping
method is reasonably good.

7. Conclusions and Future Work
In this paper, we have investigated how offline demonstra-
tions can be used to improve online learning performance.
It is natural to expect that use of offline dataset will result
in better online learning performance. The question is how,
and by how much? Our experimental work shows that if the
offline dataset is used in a naive manner, it results in only
a marginal regret reduction. However, when the dataset is
used by the learning agent in a more “informed manner”,
i.e., it accounts for varying levels of an expert’s competence,
a notion we introduce, the reduction in cumulative regret can
be substantial: the higher the quality of the demonstration,
the more the reduction.

The goal of this paper is to yield insights on how to use
the offline data to improve online learning. To that end, we
have used a prototypical model of online learning - finite
multi-armed bandits, and assumed a simple and mathemat-
ically convenient generative model for the expert policy.
However, we note that the potential to generalize to more
sophisticated settings and models exists. This includes lin-
ear bandits, MDPs, and more general generative models of
expert policies. We will explore such directions in future
work, and hope that it will inspire other researchers to ex-
plore further development of this very interesting and new
research direction.
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A. Proof of Lemma 4.2
We first define an information ratio with respect to a set U :

Γt(U) =
(∑

a∈U Pt (A
∗ = a)∆t(a)

)2
It(A∗; (At, Rt))

.

Applying Cauchy–Schwarz inequality, we have

E

[
T∑

t=1

∑
a∈U

Pt(A
∗ = a)∆t(a)

]
= E

[
T∑

t=1

∑
a∈U Pt(A

∗ = a)∆t(a)√
It(A∗; (At, Rt))

√
It(A∗; (At, Rt))

]

≤

√√√√E

[
T∑

t=1

(∑
a∈U Pt(A∗ = a)∆t(a)

)2
It(A∗; (At, Rt))

]
T∑

t=1

E [It(A∗; (At, Rt))] .

Using the chain rule of mutual information,

T∑
t=1

E [It(A∗; (At, Rt))] = I(A∗;DT ) ≤ H(A∗) .

Then we have

E

[
T∑

t=1

∑
a∈U

Pt(A
∗ = a)∆t(a)

]
≤

√√√√ T∑
t=1

E[Γt(U)]H(A∗) . (A.1)

For the information ratio E[Γt(U)], applying Cauchy–Schwarz inequality over the set U and following the step in Eq. (4.1),(∑
a∈U

Pt(A
∗ = a)∆t(a)

)2

≤ |U| It(A
∗; (At, Rt))

2
,

which implies E[Γt(U)] ≤ E[|U|] for any t ∈ [T ]. For the entropy part H(A∗), by the definition of Shannon entropy,

H (A∗) = E [H(P(A∗ ∈ ·|U))]

= E

[
−
∑
a∈U

P(A∗ = a) log(P(A∗ = a))−
∑
a/∈U

P(A∗ = a) log(P(A∗ = a))

]
.

(A.2)

• The first term can be bounded by the uniform bound on the entropy of a probability distribution:

E

[
−
∑
a∈U

P(A∗ = a) log(P(A∗ = a))

]
≤ E [log (|U|)] ≤ log (E[|U|]) . (A.3)

where the second inequality uses Jenson’s inequality.

• For the second term, we use the following fact and the definition of U in Eq. (4.2):

E

[
−
∑
a/∈U

P(A∗ = a) log(P(A∗ = a))

]

=E

[
ε
∑
a/∈U

P(A∗ = a)

ε
log

(
ε

P(A∗ = a)

)]
− E

[∑
a/∈U

P(A∗ = a) log(ε)

]

≤E [ε log (K − |U|)] + E

[∑
a/∈U

P(A∗ = a)

]
log(1/ε)

≤ε log(K) + ε log(1/ε) = ε log(K/ε) .

(A.4)
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Putting Eqs. (A.2)-(A.4) together,
H(A∗) ≤ log (E[|U|]) + ε log (K/ε) .

Plugging the above bounds into Eq. (A.1),

E

[
T∑

t=1

∑
a∈U

Pt(A
∗ = a)∆t(a)

]
≤
√

TE[|U|] (log (E[|U|]) + ε log (K/ε)) .

We now reach the conclusion.

B. Proof of Lemma 4.3
By the definition of ∆t(a),

E

[
T∑

t=1

∑
a/∈U

Pt (A
∗ = a)∆t(a)

]
= E

[
T∑

t=1

∑
a/∈U

Pt (A
∗ = a) (Et[⟨a, θ⟩|A∗ = a]− Et[⟨a, θ⟩])

]
.

First, we note that ∑
a/∈U

Pt(A
∗ = a)Et [⟨a, θ⟩|A∗ = a] ≤

∑
a∈A

Pt(A
∗ = a)Et [⟨a, θ⟩|A∗ = a]

= Et [⟨A∗, θ⟩] = Et

[
max

a
⟨a, θ⟩

]
.

Therefore,

E

[
T∑

t=1

∑
a/∈U

Pt (A
∗ = a)∆t(a)

]
≤

T∑
t=1

E

[∑
a/∈U

Pt(A
∗ = a)Et

[
max

a
⟨a, θ⟩ −min

a
⟨a, θ⟩

]]
.

By Cauchy-Schwarz inequality,

E

[∑
a/∈U

Pt(A
∗ = a)Et

[
max

a
⟨a, θ⟩ −min

a
⟨a, θ⟩

]]
≤

√√√√√E

(∑
a/∈U

Pt(A∗ = a)

)2
E

[(
Et

[
max

a
⟨a, θ⟩ −min

a
⟨a, θ⟩

])2]

≤

√√√√(E[∑
a/∈U

Pt(A∗ = a)

])2 (
E
[
Et

[
max

a
⟨a, θ⟩ −min

a
⟨a, θ⟩

]])2
= E

[∑
a/∈U

Pt(A
∗ = a)

]
E
[
Et

[
max

a
⟨a, θ⟩ −min

a
⟨a, θ⟩

]]
where we use Jenson’s inequality for the second inequality. According to the tower property of conditional expectation, we
have

E
[
Et

[
max

a
⟨a, θ⟩ −min

a
⟨a, θ⟩

]]
= E

[
max

a
⟨a, θ⟩ −min

a
⟨a, θ⟩

]
,

and

E

[∑
a/∈U

Pt(A
∗ = a)

]
= E

[∑
a/∈U

E [I (A∗ = a) |Dt]

]

= E

[∑
a/∈U

I (A∗ = a)

]
= P(A∗ /∈ U) .

When E [maxa⟨a, θ⟩ −mina⟨a, θ⟩] is bounded by C1, we reach the conclusion.

12



Leveraging Demonstrations to Improve Online Learning: Quality Matters

C. Proof of Lemma 4.6
We split the proof of Lemma 4.6 into two parts: prove UA is (1− f1)-informative and prove E[|UA|] ≤ f2.

C.1. Prove UA is (1− f1)-informative

Based on the assumption of the offline data generating process, we know that conditioned on ϑ, Ān is independent of Ān′

for any n ̸= n′. This implies

P (A∗ /∈ UA) = P
(
Ān ̸= A∗,∀n ∈ [N ]

)
= P

(
N⋂

n=1

{
Ān ̸= A∗})

= E

[
P

(
N⋂

n=1

{
Ān ̸= A∗} ∣∣∣θ, ϑ)] = E

[
N∏

n=1

P(Ān ̸= A∗∣∣θ, ϑ)]

= E

[
N∏

n=1

(
1− P

(
Ān = A∗

∣∣∣θ, ϑ))] ,

(C.1)

where A∗ is a function of θ and thus a random variable as well. According to the definition of the softmax expert policy in
Eq. (2.1),

P(Ān = A∗|θ, ϑ) = exp(βϑ⊤A∗)∑
b∈A exp(βϑ⊤b)

=
1∑

b∈A exp(−β⟨A∗ − b, ϑ⟩)

=

(∑
b∈A

exp (β⟨A∗ − b, θ − ϑ⟩ − β⟨A∗ − b, θ⟩)

)−1

≥

(∑
b∈A

exp (β∥A∗ − b∥1∥ϑ− θ∥∞ − β⟨A∗ − b, θ⟩)

)−1

.

For multi-armed bandits, ∥A∗ − b∥1 ≤ 1 almost surely for any b ∈ A so

P(Ān = A∗|θ, ϑ) ≥

(∑
b∈A

exp (β∥ϑ− θ∥∞ − β⟨A∗ − b, θ⟩)

)−1

.

Since ϑ− θ ∼ N(0, IK/λ2), using standard Hoeffding’s bound (Vershynin, 2010) implies

P (∥ϑ− θ∥∞ ≥ t) ≤ K exp

(
− t2λ2

2

)
.

Set t =
√

2 log(TK)/λ and define an event E1 := {∥ϑ−θ∥∞ ≤
√
2 log(TK)/λ} such that P(Ec

1) ≤ 1/T . We decompose
Eq. (C.1) according to E1:

P (A∗ /∈ UA) ≤ E

[
N∏

n=1

(
1− P

(
Ān = A∗

∣∣∣θ, ϑ)) I(E1)]+ P(Ec
1)

≤ E

 N∏
n=1

1−

(
exp

(
β
√

2 log(TK)

λ

)∑
b∈A

exp (−β⟨A∗ − b, θ⟩)

)−1
+

1

T
.

(C.2)

Let us define a set
B = {a : ⟨A∗ − a, θ⟩ ≤ ∆} , (C.3)

where ∆ will be chosen later. Then we can further decompose Eq. (C.2) as

P (A∗ /∈ UA)

≤ E

 N∏
n=1

1−

(
exp

(
β
√
2 log(TK)

λ

)(∑
b∈B

exp (−β⟨A∗ − b, θ⟩) +
∑
b/∈B

exp (−β⟨A∗ − b, θ⟩)

))−1
+

1

T
.
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For b /∈ B, we have exp(−β⟨A∗ − b, θ⟩) ≤ exp(−β∆). For b ∈ B, we have exp(−β⟨A∗ − b, θ⟩) ≤ exp(−β0) = 1.
Putting the above together, we can have∑

b∈B

exp(−β⟨A∗ − b, θ⟩) +
∑
b/∈B

exp(−β⟨A∗ − b, θ⟩) ≤ |B|+ (K − |B|) exp(−β∆) ≤ |B|+K exp(−β∆) , (C.4)

where |B| =
∑

b I(⟨A∗ − b, θ⟩ ≤ ∆) is a random variable. Putting Eqs. (C.2)-(C.4) together implies

P (A∗ /∈ UA) ≤ E


1−

exp
(
−β
√
2 log(TK)/λ

)
|B|+K exp(−β∆)

N
+

1

T

=

K−1∑
k=0

P (|B| − 1 = k)

1−
exp

(
−β
√
2 log(TK)/λ

)
k +K exp(−β∆)

N

+
1

T

=

K−1∑
k=0

∑
a∈A

P (|B| − 1 = k|A∗ = a)P (A∗ = a)

1−
exp

(
−β
√
2 log(TK)/λ

)
k +K exp(−β∆)

N

+
1

T
,

(C.5)

where we use the change-of-variables formula for the push-forward measure for the first equation.

Next we study the distribution of |B| − 1 conditional on A∗. Without loss of generality, we first consider the conditional
distribution with conditioning on A∗ = a1:

P (|B| − 1 = k|A∗ = a1) = P

(∑
a∈A

I (⟨A∗ − a, θ⟩ ≤ ∆)− 1 = k
∣∣∣A∗ = a1

)

=
1

P (A∗ = a1)
P

(∑
a∈A

I (⟨A∗ − a, θ⟩ ≤ ∆)− 1 = k,A∗ = a1

)

=
1

P (A∗ = a1)
P

(∑
a∈A

I (θa ≥ θ1 −∆)− 1 = k,
⋂
a∈A

{θ1 ≥ θa}

)

=
1

P (A∗ = a1)

∫
R

(
K − 1

k

)[∫ θ1

θ1−∆

dρ(θ)

]k [∫ θ1−∆

−∞
dρ(θ)

]K−1−k

dρ(θ1) ,

(C.6)

where ρ(·) is the univariate Gaussian distribution and θa = a⊤θ for any a ∈ A. By defining

F (θ1) =

∫ θ1

−∞
(2π)−1/2 exp(−x2/2) dx ,

we have ∫ θ1

θ1−∆

dρ(θ)

F (θ1)
+

∫ θ1−∆

∞

dρ(θ)

F (θ1)
= 1 .

We further define

q(θ1) =

∫ θ1

θ1−∆

dρ(θ)

F (θ1)
. (C.7)

For a fixed θ1, let Xθ1 ∼ Binomial(K − 1, q(θ1)). Together with Eq. (C.6),

P (|B| − 1 = k|A∗ = a1) =

∫
R

P(Xθ1 = k)
F (θ1)

K−1

P(A∗ = a1)
dρ(θ1) =

∫
R

P(Xθ1 = k) dµ(θ1) , (C.8)

where we denote

dµ(θ1) =
F (θ1)

K−1

P(A∗ = a1)
dρ(θ1) .
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Thus, |B| − 1 follows a mixture of binomial distribution. Plugging Eq. (C.8) into Eq. (C.5),

P (A∗ /∈ UA) ≤
K−1∑
k=0

∑
a∈A

∫
R

P(Xθa = k) dµ(θa)P (A∗ = a)

1−
exp

(
−β
√
2 log(TK)/λ

)
k +K exp(−β∆)

N

+
1

T

=
∑
a∈A

∫
R

K−1∑
k=0

P(Xθa = k)

1−
exp

(
−β
√
2 log(TK)/λ

)
k +K exp(−β∆)

N

dµ(θa)P (A∗ = a) +
1

T

=
∑
a∈A

∫
R

E


1−

exp
(
−β
√

2 log(TK)/λ
)

1 +Xθa +K exp(−β∆)

N ∣∣∣θa
 dµ(θa)P (A∗ = a) +

1

T

=

∫
R

E


1−

exp
(
−β
√
2 log(TK)/λ

)
1 +Xθ1 +K exp(−β∆)

N ∣∣∣θ1
dµ(θ1) +

1

T
,

where the last equation is due to P(A∗ = a) = 1/K for any a ∈ A.

For fixed θ1, using the Stirling’s approximation for binomial tail bound,

P
(
Xθ1 ≥ (K − 1)q(θ1) +

log(T )

log(1/((K − 1)q(θ1)))

∣∣∣θ1) ≤ 1

T
.

Define an event

E2 =

{
Xθ1 ≤ (K − 1)q(θ1) +

log(T )

log(1/((K − 1)q(θ1)))

}
,

such that P(Ec
2 |θ1) ≤ 1/T. We decompose the above based on E2:

P (A∗ /∈ UA) ≤
∫
R

E


1−

exp
(
−β
√
2 log(TK)/λ

)
1 +Xθ1 +K exp(−β∆)

N

I(E1)
∣∣∣θ1
dµ(θ1) +

2

T

≤
∫
R

E


1−

exp
(
−β
√
2 log(TK)/λ

)
1 + (K − 1)q(θ1) +

log(T )
log(1/((K−1)q(θ1)))

+K exp(−β∆)

N

I(E1)
∣∣∣θ1
dµ(θ1) +

2

T
,

(C.9)

where the expectation is with respect to θ1 under measure µ(·). It remains to derive an upper bound q(θ1) which is defined
in Eq. (C.7).

• First, we have

P (θ1 ≤ x|A∗ = a1) =
P (θ1 ≤ x,A∗ = a1)

P (A∗ = a1)

=
P
(
θ1 ≤ x,

⋂
a̸=a1

{θ1 ≥ θa}
)

P (A∗ = a1)

=

∫ x

−∞
∏

a̸=a1

∫ θ1
−∞ dρ(θa) dρ(θ1)

P (A∗ = a1)

=

∫ x

−∞ F (θ1)
K−1 dρ(θ1)

P (A∗ = a1)
=

∫ x

−∞
dµ(θ1) .

Define another event E3 = {F (θ1) ≥ 1/2}. Using the assumption K ≥ log2(T ),

P (θ1 ≤ 0|A∗ = a1) = P
(
max

a
θa ≤ 0

)
= 2−K ≤ 1

T
.
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Thus, we have P(Ec
3) ≤ 1/T under the measure µ.

• Second, we have ∫ θ1

θ1−∆

dρ(θ) ≤ ∆
1√
2π

exp

(
− (θ1 −∆)2

2

)
≤ ∆√

2π
.

Note that from the definition of q(θ1) in Eq. (C.7), q(θ1) cannot exceed 1. Therefore, under event E3, q(θ1) is upper bounded
by min(2∆/

√
2π, 1) ≤ min(∆, 1). We decompose Eq. (C.9) based on E3,

P (A∗ /∈ UA) ≤
∫
R

E


1−

exp
(
−β
√
2 log(TK)/λ

)
1 +Kmin(∆, 1) + log(T )

log(1/((K−1)min(∆,1))) +K exp(−β∆)

N

I(E3)
∣∣∣θ1
 dµ(θ1) +

3

T

≤

1−
exp

(
−β
√
2 log(TK)/λ

)
1 +Kmin(∆, 1) + log(T )

log(1/((K−1)min(∆,1))) +K exp(−β∆)

N

+
3

T
.

(C.10)

With the choice of ∆ = log(Tβ)/β, we have

P (A∗ /∈ UA) ≤

1−
exp

(
−β
√
2 log(TK)/λ

)
1 +Kmin(log(Tβ)/β, 1) + log(T )

log(1/((K−1)min(log(Tβ)/β,1))) +K/(Tβ)

N

+
3

T
.

This ends the proof.

C.2. Prove E[|UA|] ≤ f2

We first observe that

E[|UA|] = E

[∑
a∈A

I(a ∈ UA)

]
= E

[∑
a∈B

I(a ∈ UA) +
∑
a/∈B

I(a ∈ UA)

]

≤ E[|B|] + E

[∑
a∈A

I (a ∈ UA, a /∈ B)

]
,

(C.11)

where B is defined in Eq. (C.3). For the second term in Eq. (C.11),

E

[∑
a∈A

I (a ∈ UA, a /∈ B)

]
=
∑
a∈A

P (a ∈ UA, a /∈ B)

= E

[∑
a∈A

P
(
a ∈ UA, a /∈ B

∣∣∣θ, ϑ)]

≤ E

[
N∑

n=1

∑
a∈A

P
(
Ān = a, ⟨A∗ − a, θ⟩ ≥ ∆

∣∣∣θ, ϑ)]

= E

[
N∑

n=1

∑
a∈A

P
(
Ān = a, ⟨A∗ − a, θ − ϑ⟩+ ⟨A∗ − a, ϑ⟩ ≥ ∆

∣∣∣θ, ϑ)]

≤ E

[
N∑

n=1

∑
a∈A

P
(
Ān = a, ∥A∗ − a∥1∥θ − ϑ∥∞ + ⟨A∗ − a, ϑ⟩ ≥ ∆

∣∣∣θ, ϑ)] .
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Similar to the proof in Appendix C.1, we decompose the above based on E1:

E

[∑
a∈A

I (a ∈ UA, a /∈ B)

]
= E

[
N∑

n=1

∑
a∈A

P
(
Ān = a, ⟨A∗ − a, θ − ϑ⟩+ ⟨A∗ − a, ϑ⟩ ≥ ∆

∣∣∣θ, ϑ) I(E1)]+ P(Ec
1)

≤ E

[
N∑

n=1

∑
a∈A

P
(
Ān = a, ⟨A∗ − a, ϑ⟩ ≥ ∆−

√
2 log(TK)/λ

∣∣∣θ, ϑ) I(E1)]+ 1

T

≤ NE

 ∑
a∈A,⟨A∗−a,ϑ⟩≥∆−

√
2 log(TK)/λ

exp(β⟨a, ϑ⟩)∑
b∈A exp(β⟨b, ϑ⟩)

+
1

T

= NE

 ∑
a∈A,⟨A∗−a,ϑ⟩≥∆−

√
2 log(TK)/λ

1∑
b∈A exp(β⟨b− a, ϑ⟩)

+
1

T

≤ NE

 ∑
a∈A,⟨A∗−a,ϑ⟩≥∆−

√
2 log(TK)/λ

1

exp(β⟨A∗ − a, ϑ⟩)

+
1

T

≤ NE

 ∑
a∈A,⟨A∗−a,ϑ⟩≥∆−

√
2 log(TK)/λ

1

exp(β(∆−
√
2 log(TK)/λ))

+
1

T

≤ NK exp
(
−β(∆−

√
2 log(TK)/λ)

)
+

1

T
.

(C.12)

Combining Eqs. (C.11)-(C.12) together,

E[|UA|] ≤ E[|B|] +NK exp
(
−β(∆−

√
2 log(TK)/λ)

)
+

1

T
. (C.13)

Now we start to bound E[|B|]. By the definition,

E [|B| − 1] =
∑
a∈A

E [|B| − 1|A∗ = a]P(A∗ = a)

=
∑
a∈A

K−1∑
k=0

kP (|B| − 1 = k|A∗ = a)P(A∗ = a) .

Using Eq. (C.8),

E [|B| − 1] =
∑
a∈A

K−1∑
k=0

k

∫
R

P(Xθa = k) dµ(θa)P(A∗ = a)

=
∑
a∈A

∫
R

K−1∑
k=0

kP(Xθa = k) dµ(θa)P(A∗ = a) =
∑
a∈A

∫
R

E[Xθa ] dµ(θa)P(A∗ = a)

=
∑
a∈A

∫
R

(K − 1)q(θa) dµ(θa)P(A∗ = a) .

Bounding q(θa) in a similar way, it implies

E [|B| − 1] ≤
∑
a∈A

2∆(K − 1)√
2π

∫
R

exp

(
− (θa −∆)2

2

)
dµ(θa)P(A∗ = a)

≤ 2√
2π

(K − 1)∆ ≤ (K − 1)∆ .
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Note that |B| − 1 is at most K − 1 such that

E [|B| − 1] ≤ (K − 1)min(∆, 1) ≤ Kmin(∆, 1) .

Together with Eq. (C.13), we can show that

E[|UA|] ≤ Kmin(∆, 1) + 1 +NK exp
(
−β(∆−

√
2 log(TK)/λ)

)
+

1

T
. (C.14)

With the choice of ∆ = log(Tβ)/β, we have

E[|UA|] ≤ Kmin

(
log(Tβ)

β
, 1

)
+ 1 +

NK

Tβ
exp

(
β
√
2 log(TK)/λ

)
+

1

T
.

This ends the proof.

D. Proof of Lemma 5.1
At time t, to obtain the MAP estimate, we can solve the following optimization problem:

argmax
θ,ϑ

logP (Dt|θ, ϑ)︸ ︷︷ ︸
log-likelihood function

+ log f(θ, ϑ)︸ ︷︷ ︸
log-prior function

,

where the log-prior function has the form

log f(θ, ϑ) = log f(ϑ|θ) + log f(θ)

=− d

2
log(2π/λ2)− λ2

2
∥ϑ− θ∥22 −

1

2
log(det(2πΣ0))−

1

2
θ⊤Σ−1

0 θ ,
(D.1)

and the log-likelihood function can be defined in three steps:

• First, we write this as sum of two terms, one involving the offline dataset D0 and the other involving the online data Ht:

logP (Dt|θ, ϑ) = logP (D0|θ, ϑ) + logP (Ht|D0, θ, ϑ) .

• Second, we decompose the log-likelihood function for the offline dataset D0 into a sum of action likelihood and reward
likelihood functions:

logP (D0|θ, ϑ) =
N∑

n=1

(
logP

(
Ān|θ, ϑ

)
+ logP

(
R̄n|Ān, θ, ϑ

))
=

N∑
n=1

(
βϑT Ān − log

(∑
b∈A

exp
(
βϑT b

)))
− 1

2

N∑
n=1

(
R̄n − θT Ān

)2 − N

2
log(2π) ,

(D.2)

where the second equation follows Eq. (2.1) and Gaussian noise assumption.

• Third, as per the TS algorithm, At is independent of θ conditioned on Ut−1, which implies

logP (Ht|D0, θ, ϑ) =

t∑
τ=1

logP (Aτ |Dτ−1) +

t∑
τ=1

logP (Rτ |Aτ , θ, ϑ)

= −1

2

t∑
τ=1

(
Rτ − θTAτ

)2 − t

2
log(2π) + const.

(D.3)

Putting Eqs. (D.1)-(D.3) together, our loss function to obtain a MAP estimate can be simplified to

L(θ, ϑ) = −
N∑

n=1

(
βϑT Ān − log

(∑
b∈A

exp
(
βϑT b

)))

+
1

2

N∑
n=1

(
R̄n − θT Ān

)2
+

1

2

t∑
τ=1

(
Rτ − θTAτ

)2
+

λ2

2
∥ϑ− θ∥22 +

1

2
θ⊤Σ−1

0 θ .

This ends the proof.
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E. Proof of Claim 4.5
We just need to prove an upper bound for E[maxk Xk] where Xk

i.i.d∼ N (0, 1). By the Jenson’s inequality,

exp

(
tE
[
max

k
Xk

])
≤ E

[
exp

(
tmax

k
Xk

)]
= E

[
max

k
exp (tXk)

]
≤

K∑
k=1

E [exp (tXk)] = K exp(t2/2) ,

where the last equality follows from the definition of the Gaussian moment generating function. This implies

E
[
max

k
Xk

]
≤ log(K)

t
+

t

2
.

Letting t =
√
2 log(K), we have

E[max
k

Xk] ≤
√

2 log(K) .

This ends the proof.
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