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ABSTRACT
The challenge of bias in visual question answering (VQA) has gained
considerable attention in contemporary research. Various intricate
bias dependencies, such as modalities and data imbalances, can
cause semantic ambiguities to generate shifts in the feature space
of VQA instances. This phenomenon is referred to as “VQA Hallu-
cinations”. Such distortions can cause hallucination distributions
that deviate significantly from the true data, resulting in the model
producing factually incorrect predictions. To address this challenge,
we propose a robust Multi-Space Co-debias Learning (MSCD) ap-
proach for combating VQA hallucinations, which effectively miti-
gates bias-induced instance and distribution shifts in multi-space
under a unified paradigm. Specifically, we design bias-aware and
prior-aware debias constraints by utilizing the angle and angle
margin of the spherical space to construct bias-prior-instance con-
straints, thereby refining the manifold representation of instance
de-bias and distribution de-dependence. Moreover, we leverage the
inherent overfitting characteristics of Euclidean space to introduce
bias components from biased examples and modal counterexample
injection, further assisting in multi-space robust learning. By inte-
grating homeomorphic instances in different spaces, MSCD could
enhance the comprehension of structural relationships between
semantics and answer classes, yielding robust representations that
are not solely reliant on training priors. In this way, our co-debias
paradigm generates more robust representations that effectively
mitigate biases to combat hallucinations. Extensive experiments
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on multiple benchmark datasets consistently demonstrate that the
proposed MSCD method outperforms state-of-the-art baselines.
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1 INTRODUCTION
The visual question answering (VQA) task aims to build an agent
proficient in collaborative reasoning, leveraging question reasoning
and image semantics for making informed predictions. Previous
methods have shown significant performances [1, 2, 37], which
typically train VQA models on training data and test on benchmark
datasets with similar distributions. Regrettably, contemporary re-
search reveals a significant challenge: many methods experience a
notable decrease inmodel generalization performancewhen the test
data deviates from the training distribution. Indeed, some studies
attempt to address biases inmodality (language, vision) and data dis-
tribution. Through the exploration of these biases [5, 11, 18–21, 30],
it becomes evident that biases in distribution cause the model to
learn idiosyncratic biases closely linked to specific modalities and
data labels, rather than focusing on the holistic semantics of the
vision-question instance. This phenomenon is termed “VQA hal-
lucination” problem, as shown in Figure 1. It can be observed that
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Figure 1: Illustration of the VQAHallucinations: given a ques-
tion type ("Howmany..."), we display the answer distributions
for the ground-truth answers from the train and test set. The
model suffers from factual hallucinations [17, 27]. An in-
triguing example of this phenomenon is the emergence of
an improbable "2" distribution within VQA-CP v2 dataset [1].

these biases can cause instances and distribution shifts [24, 33, 51]
in the feature space to produce hallucination distributions.

To further investigate the relationship among biases, instance
and distribution shifts, and VQA hallucination, we visualize the
feature space divided by question types in Figure 2. In conventional
learning methods, semantic ambiguities in instance and distribution
shifts become apparent. For instance, considering the question
type “What time. . . ”: certain features that should predict answers
like “morning” or “night” (which have fewer occurrences in the
training) are incorrectly clustered with “afternoon” in the feature
space. These shifts negatively affect the out-of-distribution (OOD)
robustness performance of the model.

In the literature, mainstream VQA methods mainly focus on lan-
guage priors and can currently be categorized into three types: en-
semble model-based, data augmentation-based models, and feature
space-based models. These approaches encompass the following
components: introducing an ensemble bias model [5, 10, 11, 20, 21]
to identify and mitigate biases inherent in each modality or dataset,
employing manual annotations or data augmentation techniques [7,
8, 31] to mitigate language priors, and utilizing models that focus
on fine-grained feature space learning [4, 18, 22] to address biases
based on the frequency or distribution of instances in the feature
space. While these methods have shown promise in bolstering ro-
bustness, their approach of solely targeting partial biases without
considering intrinsic patterns has led to suboptimal performance.

This work rethinks the relationship between biases, instance and
distribution shifts, and hallucination, and attempts to understand
“Why do traditional visual question answering methods produce
hallucination problems on OOD data”. Given the characteristics
of feature space, methods relying on Cross-Entropy (CE) loss face
challenges in accurately delineating decision boundaries [4, 13, 18,
36, 52] within the feature space, where the span of features for
each class needs to be proportional to the corresponding number
of instances. In scenarios where the distributions of train and test
sets are similar, the model can effectively discern the separability of
each instance. However, training in a biased environment leads the

model to prioritize fitting the dominant majority answer class while
overlooking the minority answer class outside the distribution. This
runs counter to the original intention of visual question answering
to understand vision-question clues and reason about answers based
on semantics. Consequently, instances from the minority class in
the test set may experience a shift, leading to a distribution shift.
In such cases, the model fails to attend to the semantics of the
instance itself and resorts to making arbitrary predictions. This
work explains the hallucination phenomenon from the instance
and distribution shift caused by biases.

Building upon this conceptual framework, our objective is to
mitigate the phenomenon of hallucinations, stemming from modal
shortcuts and imbalanced dataset distributions. Leveraging the in-
trinsic patterns and shared sample structures, we aim to unlock
the optimal de-hallucination potential of vision-question instances
through a multi-space homeomorphism perspective. Simultane-
ously, we intend to construct bias examples and modal counterex-
amples to further refine bias learning and counteract biases more
effectively. As illustrated in Figure 3, our proposed Multi-Space Co-
Debias (MSCD) method initiates from a Spherical space comprised
of angles, employing bias-aware and prior-aware debias constraints.
This approach explicitly calibrates instances to generate discrimina-
tive manifold representations, while alleviating prior distribution
dependence and improving robustness to combat hallucinations
caused by instance and distribution shifts. Furthermore, we har-
ness the fitting characteristics of Euclidean space (utilizing softmax
CE loss) to introduce biases components from bias examples and
modal-counterexamples, aiding the model in robust learning. The
primary contributions of our work can be summarized as follows:

• This paper introduces a novel multi-space co-debias learning
to address the issue of VQA hallucination stemming from
biases. It tackles the problem by Spherical and Euclidean
spaces co-debias learning into a unified framework.

• Two novel bias-aware and prior-aware debias constraints
are designed for spherical debias learning and explicitly con-
struct constraints to calibrate instance shift and distribution
shift, thereby alleviating VQA hallucinations.

• A well-designed multi-space co-debias paradigm is proposed
by deploying a two-stage strategy of Euclidean space, assist-
ing spherical debias learning to expose prior correlations
and modality-semantics interplay.

• Extensive experiments on two biased benchmark datasets
and a balanced dataset demonstrate the effectiveness of the
proposed MSCD method to combat VQA hallucination and
achieve state-of-the-art performance.

2 RELATEDWORK
2.1 Robustness Methods of VQA Tasks
Although performance in the VQA task has approached human-
level performance, susceptibility to VQA hallucinations persists,
resulting in insufficient robustness. The introduction of the new
benchmark dataset VQA v2 [16], complementing VQA v1 [3], in-
cludes question-image pairs with similar semantics and diverse
answers. The emergence of bias datasets such as VQA-CP v1, VQA-
CP v2 [1] , which use different protocols for VQA datasets, provides
benchmarks for debias methods. Notably, the answers to the 𝑡𝑟𝑎𝑖𝑛
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Figure 2: Illustration of robust VQA learning paradigm. The general VQA learning process fits the prior in training, which cannot
distinguish mixed bias instances well, compromising the robustness of the model out-of-distribution. Under the multi-space
robust learning paradigm, the model can better bridge the instance-semantic feature space for real reasoning.

set and 𝑡𝑒𝑠𝑡 set are inversely distributed, making it convincing to
evaluate the model against the hallucination problem. Previous
research predominantly addresses shortcut biases originating from
modalities (question or image) and imbalance biases within datasets.
Existing research on robustness primarily focuses on various meth-
ods to mitigate bias, including addressing modality shortcut bias
[19, 34, 38, 45], dataset bias [7, 28, 31, 50], and comprehensive bias
mitigation strategies [4, 18, 20, 21, 25]. We summarize and discuss
these works as follows:

Methods that addressing modality interplay: Collaborative
reasoning between visual and textual cues is pivotal for fostering
robust learning in visual question answering [19, 20, 22, 34, 38, 45].
Recent literature delves into this issue by examining theoretical
frameworks such as causal inference [39] and confounding factors
[44]. Discuss with the instance, the PW-VQA [45] delves into the
confounding effect arising from the interplay of vision and language
through a causal lens, shedding light on potential biases in both
modalities. Similarly, CVIV [38] employs IVar to amplify visual
features, enabling the model to pinpoint essential visual cues. These
methods offer valuable insights into the collider bias phenomenon
within the realm of vision-language interaction.

Methods to balance dataset bias: Existing robust learning
frameworks attempt to capture specific dataset biases through an-
notations. The CSS-based methods, as represented by [7, 28, 31],
generates a plethora of counterfactual samples to rectify data bias.
This is achieved by strategically masking key objects in images or
words in questions. Additionally, certain studies adopt strategies
that don’t rely on extensive annotation. The D-VQA [50] employs
negative samples and branch detection modules to tackle bias both
at the feature and sample levels. These methods explore the effec-
tiveness of changing and adapting when distribution priors change.

Methods that comprehensive bias mitigation: Given the
elusive and intricate nature of bias, the development of compre-
hensive debias methods has been paramount. These approaches
[10, 20–22, 25] have yielded promising results, showcasing their
potential to mitigate bias effectively. The GGE [20] and GGD [21]
framework employ a greedy training strategy on both the biased

and base models. This approach systematically infuses bias infor-
mation to aid the model in bias mitigation. The Ensemble-based
models represented by GenB [10] alleviate the bias in the basic
model by training a bias model.

Different from the above methods, we seek to co-debias con-
straints on the homeomorphism of multi-spaces to combat halluci-
nations. Inspired by [4, 18, 22, 43, 47], we solve the inherent pattern
of hallucinations from the root by exploring a new multi-feature
space paradigm. That is, this poor out-of-distribution performance
is caused by instance shift and distribution shift during training.
Considering the geometric characteristics of VQA data, we propose
a unified perspective that utilizes Euclidean space and Spherical
space co-debias to solve the VQA hallucination problem.

2.2 Spherical Space Learning
By harnessing the capabilities of Spherical space learning to bol-
ster instance discrimination and robustness, many works have
adopted the normalization of embeddings to the unit hypersphere
[23, 35, 41, 42, 55, 56]. Spherical space learning involves construct-
ing an angular space through a regularized classification function,
thereby establishing more rational decision boundaries. Among
these notable recent works, A-Softmax [35] was developed to refine
discriminative face embeddings, enhancing feature discriminability
by directly connecting with hypersphere manifolds. HSME [23]
focuses on identifying visible thermal human bodies by leveraging
hypersphere manifolds and employing metric learning to attain
distinct and robust feature representations. Recently, inspiring re-
search in visual question answering has emerged. AdaVQA [18]
pioneered the application of angular space to tackle the language
prior problem via feature space learning, effectively mitigating bias.
RMLVQA [4] proposed a methodology utilizing adaptive margin
loss to improve robustness to bias, taking into account answer dif-
ficulty and frequency. Different from these approaches, this work
employs instance and distribution shifts to mitigate correlations
among deep representations distributed on the hypersphere. This
strategy enhances the instance discriminability and unbinds it from
the prior distribution, ultimately alleviating the VQA hallucinations
caused by instance shift and distribution shift.
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Figure 3: Our robust VQA framework is built on a multi-space co-debias learning framework for combating VQA hallucinations.
A multi-space co-debias learning is built through the instance fusion module and the angle margin module, and the robustness
representation is obtained by co-debias the purified Spherical space and Euclidean space.

3 METHODOLOGY
3.1 Problem Formulation
Following previous research [1, 4, 18], the VQA task essentially
acts as a multi-label classification problem. Without loss of gener-
ality, given a batch of data samples, D = {(V𝑖 ,Q𝑖 ) ,A𝑖 }𝑁𝑖=1, where
(V𝑖 ,Q𝑖 ) is the 𝑖-th image-question pairs of samples with the corre-
sponding ground-truth answerA𝑖 , and 𝑁 is the number of samples.
We need to optimize the mapping function Fvqa : V × Q → R to
get a joint representation R. The VQA base model embeds the two
features for fusion to obtain a joint representation:

R𝑖 = Fvqa (V𝑖 ,Q𝑖 ;𝜃𝑚) = 𝑓𝜃
(
𝑒𝑣 (V𝑖 ) , 𝑒𝑞 (Q𝑖 )

)
, (1)

where R𝑖 denotes the joint representation of the 𝑖-th instance, 𝑓𝜃 (·)
is the joint network with parameters 𝜃𝑚 , 𝑒𝑣 (·) is pretrained image
encoder, and 𝑒𝑞 (·) is pretrained question encoder. As such, the
objective function is depicted as:

Â = argmax𝑝 (A𝑘 | R𝑖 ;𝜃𝑐 ) , (2)
where 𝜃𝑐 represents the parameters of the answer classifier, and
A𝑘 denotes the 𝑘-th answer in the answer set |A|. Note that each
instance probably has multiple correct answers, hence the optimiza-
tion objective of training the model can be written as:

LVQA
(
Â𝑖 ,A

)
=− 1

𝐷

𝐷∑︁
𝑖=1

|A |∑︁
𝑘=1

S(𝑖,𝑘 ) log (𝑝 (A𝑘 | A𝑖 )) , (3)

where S(𝑖,𝑘 ) is the score of the 𝑖-th instance corresponding to the
𝑘-th answer of the answer candidates. Through training, our goal is
to optimize a network Fvqa (𝜃 ) that maximizes OOD performance:

max
𝑚,𝜃𝑚,𝜃𝑐

(
𝜀𝑂𝑂𝐷

(
Fvqa (V𝑖 ,Q𝑖 ;𝜃𝑚, 𝜃𝑐 )

) )
. (4)

Among them, 𝜀𝑂𝑂𝐷 represents robustness evaluation on OOD data.

3.2 Multi-Space Representation Mapping
As mentioned before, the MSCD is combined to calibrate instances
and distribution, thereby achieving VQA robustness in distribution
imbalance. In the following, different spaces have the same sample
structure, and we first introduce the loss function for robust multi-
space co-debias learning.

Euclidean Feature Space: Euclidean space represents the most
common zero-curvature manifold [12]. In feature space, the two
points can be represented on the plane. The commonly used cross-
entropy (CE) loss separates features of different classes by maximiz-
ing the posterior probability of the ground truth class, but suffers
from insufficient class discriminability [18, 35, 41]. The 𝐸 (·) model
can be trained by optimizing the CE loss as follows:

LCE =
1
𝑁

|A |∑︁
𝑖=1

− log 𝑃𝑖 =
1
𝑁

|A |∑︁
𝑖=1

− log
𝑒
W𝑇

𝑎𝑖
R𝑖 + 𝑏𝑖∑𝐶

𝑗=1 𝑒
W𝑇

𝑗
R𝑖 + 𝑏 𝑗

, (5)

where 𝑃𝑖 denotes the posterior probability of the 𝑖-th instance rep-
resentation 𝑅𝑖 when classified under label 𝑎𝑖 . The 𝑏𝑖 and 𝑏 𝑗 refer
to the weight biases for answer classes 𝑖 and 𝑗 . Here, 𝑁 represents
the total number of instances and 𝐶 signifies the number of classes.

Spherical Feature Space: To optimize the instance represen-
tation space, many studies [35, 52, 57] have been conducted to en-
hance intra-class compactness and inter-class separation, making
the representation more discriminative and the angular representa-
tions located on the unit sphere space a more reliable classification
metric. Following the previous setting [4, 18], through instance
representation regularization, the answer representations of visual
question instances can be converted from Euclidean space to angu-
lar space, forming a spherical space. Specifically, we initialize the
angle margin by utilizing 𝐿2-normalization of the weight vectorW𝑖

and the joint representation R𝑖 to ensure that the posterior proba-
bility is determined by the angle 𝜃𝑖 . Let 𝜃𝑖 be the angle between R𝑖

and W𝑖 . Therefore, the logits for each instance are transformed as:
𝑓𝑖 = W⊤

i R𝑖 = ∥Wi∥ ∥R𝑖 ∥ cos𝜃𝑖 = 𝑠 (cos𝜃𝑖 ) , (6)
where the instance representationR𝑖

(
∥𝑾𝑖 ∥ = 1, ∥𝑹𝑖 ∥ = 1, 𝑏𝑖, 𝑗 = 0

)
is thus distributed on a hypersphere with a radius 𝑠 . This makes
the normalized loss as:

LSPH =
1
𝑁

|A |∑︁
𝑖=1

− log ©« 𝑒𝑠 cos(𝜃𝑎𝑖 ,𝑖 )∑𝐶
𝑗=1 𝑒

𝑠 cos(𝜃 𝑗,𝑖 )
ª®¬ . (7)

Although we can learn features with angular boundaries through
sphere loss, these representations are still not necessarily discrimi-
native [18, 35, 42].
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Figure 4: Illustration of predictions in Spherical space. We
have simplified the categories for readability.

3.3 Spherical Debias Learning
Under the supervision of Spherical learning, instances have geo-
metrically interpretable representations. Different from previous
work, we do not modify the loss function [4, 18, 35, 52].

Angle Margin Module (AMM): In VQA, for the predictions
of any image-question instances, the classification result depends
on the angle 𝜃 , as shown in Figure 4(a). Giving a motivating VQA
binary-class example as a case, regarding the posterior probability
𝑃𝑖 (determined by cosine distance) of the predicted feature of the
𝑖-th instance, the final result only depends on the angles 𝜃1 and 𝜃2
and the maximum value of cosine distance 𝑃𝑖 can be obtained as
the classification result, and it is extended to VQA multi-class task.
Therefore, by mapping these representations onto a hypersphere
manifold and distinguishing them by angle. Further, following the
previous settings [4, 18], an adaptive angle margin𝑚𝑖 is introduced
to effectively change the classification decision through the angle
margin, as shown in Figure 4(b). It is formalized as follows:

𝐿SPH−M =

|A |∑︁
𝑖=1

−𝑎𝑖 log
exp (𝑠 cos (𝜃𝑖 +𝑚[𝑖]))∑ |A |

𝑗=1 exp
(
𝑠 cos

(
𝜃 𝑗 +𝑚[ 𝑗]

) ) , (8)

where𝑚[𝑖] is the adaptive instance angle margin. Adding angle
margin (𝜃𝑖 +𝑚[𝑖]) to the manifold representations enables the
model to distinguish between frequent/rare instances. However,
the feature space changes dynamically. The feature space of fre-
quently occurring instances is narrower than the original feature
space. Subtle biases will further the instances shift, causing the
feature space of the class space of frequent instances to become
more crowded, and the model has hidden dangers of invisible hal-
lucinations. To address this limitation, this work further constructs
a Spherical debias learning method to eliminate biases.

Bias-Aware Debias Constraint (BDC): In the Spherical space,
adding the angle margins module can help the model learn instance-
specific to improve instance discriminability. In fact, the existence of
biased instances still damages the effectiveness of semantic learning
of instances. Inspired by [9, 15, 48], we explicitly construct bias-
aware debias constraints, which prompt the learned instances to fur-
ther alleviate the impact of biased instances and focus on the learn-
ing of image-question semantics. Intuitively, TheM𝑖 = 𝑠 cos (𝜃𝑖 )
representation without margins is more likely to contain biased
information, as shown in Figure 4(a). Simultaneously, we introduce
prior which R𝑎

𝑖
= 𝑒𝑎 (A𝑖 ) from the corresponding answer prior,

which is further transformedM𝑎
𝑖
into angle space:

M𝑎
𝑖 =

W𝑎
i
 ∥R𝑎

𝑖 ∥ cos𝜃
𝑎
𝑖 = 𝑠

(
cos𝜃𝑎𝑖

)
. (9)

This work further optimizes the learned manifold representation
M𝑚

𝑖
. Specifically, the goal of BDC is to bring the manifold repre-

sentation M𝑚
𝑖

as close as possible to the prior M𝑎
𝑖
while pushing

away from the biasedM𝑖 .
Inspired by [14, 53], we consider generalizing the maximization

formula of state entropy to construct bias-aware debias constraint
form as follows:

𝐿BDC = log
𝑒𝜅 ⟨z𝑖 ,z𝑎 ⟩

𝑒𝜅 ⟨z𝑖 ,z𝑎 ⟩ + ∑
𝑘≠𝑖 𝑒

𝜅 ⟨z𝑖 ,z𝑏 ⟩

= 𝜅 ⟨z𝑖 , z𝑎⟩ − log

(
𝑒𝜅 ⟨z𝑖 ,z𝑎 ⟩ +

∑︁
𝑘≠𝑖

𝑒𝜅 ⟨z𝑖 ,z𝑏 ⟩
)
,

(10)

where 𝑧𝑖 represents an representation of an data instance 𝑥𝑖 , which
produces unit-norm, i.e. ∥𝑧𝑖 ∥2 = 1. The ⟨z𝑖 , z𝑎⟩ represents the
positive pair and the negative pair ⟨z𝑖 , z𝑏⟩ is the same. Themethod is
to instantiate the weighting spherical density function constructed
by the von Mises-Fisher distribution [14] with 𝜅 > 0. Inspired by the
above, we aim to render the manifold representation located on the
hypersphere S𝑑 . For a given pair of pointsM1 andM2∈ S𝑑 , we
employ cosine similarity to compute the angle between manifold
representationsM1 andM2:

dist(M1,M2) = cos𝜃1,2, (11)
where 𝜃1,2 is the angle between the manifold representation M1
andM2. Hence, the instance decision boundary ofM𝑚

𝑖
for prior

𝑎 and biases 𝑖 is 𝜃𝑖+𝑚[𝑖 ],𝑎 > 𝜃𝑖+𝑚[𝑖 ],𝑖 , where 𝑎 and 𝑖 are indexes
to positive and negative instances, respectively. This is essentially
consistent with the prior that the data is distributed on the manifold:

𝐿BDC = log
𝑒 (cos(𝜃𝑖+𝑚 [𝑖 ],𝑎)/𝜏)

𝑒 (cos(𝜃𝑖+𝑚 [𝑖 ],𝑎)/𝜏) + ∑𝑛
𝑗≠𝑖 𝑒

(cos(𝜃𝑖+𝑚 [𝑖 ],𝑖 )/𝜏)
. (12)

In this loss function, the decision boundary of M𝑚
𝑖

concerning
the biases and priors is defined by 𝜃𝑖+𝑚[𝑖 ],𝑖 and 𝜃𝑖+𝑚[𝑖 ],𝑎 . This
effectively drives M𝑚

𝑖
closer to the region corresponding to the

correct class 𝜃𝑖+𝑚[𝑖 ],𝑎 . Therefore, this helps calibrate instance shifts
caused by bias. In the ideal case, manifold instances are distributed
on the unit sphere following instance semantics.

Prior-Aware Debias Constraint (PDC): As mentioned before,
BDC effectively calibrates instance shift by leveraging bias-aware
constraint in spherical space. We rethink our BDC method, which
relies on prior conditions in training, potentially resulting in “Hallu-
cination distribution” problems under distribution shift. In a biased
training environment, the predicted answers will be similar to the
distribution in the training set [18, 21, 33]. In fact, these manifold
representations should be semantic correlations between instances
and classes rather than fitting training distributions.

Therefore, We focus on mitigating prior dependence and opti-
mizing the manifold representations by perceiving the distribution
from the prior within the mini-batch. The relationship between
the prior and manifold representation is reflected in the Kullback-
Leibler divergence [54] 𝐷 (·∥·) of the probability distribution:

𝐷
(
𝑝𝑎𝑖 ∥𝑝

𝑚
𝑖

)
=

𝑁∑︁
𝑖=1

𝑃
(
𝑠
(
cos𝜃𝑎𝑖

) )
log

𝑃

(
𝑠

(
cos𝜃𝑎

𝑖

))
𝑃 (𝑠 cos (𝜃𝑖 +𝑚[𝑖])) , (13)

where 𝑝𝑎
𝑖
and 𝑝𝑚

𝑖
are the probability distributions in a mini-batch,

respectively. Previous studies reduce distribution dependence by
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Table 1: To verify the effectiveness of the combat hallucinations, experimental results on the VQA-CP v2 test set and VQA-CP
v1 set with artificially change the prior and comparisons with state-of-the-art methods are presented.

Datasets VQA-CP v2 VQA-CP v1

Methods Overall-CP Y/N-CP Num-CP Others-CP Overall-CP Y/N-CP Num-CP Others-CP

UpDn [2] CVPR’18 39.74 42.27 11.93 46.05 37.96 42.79 12.41 42.53
AdvReg [40] NeurIPS’18 41.17 65.49 15.48 35.48 43.43 74.16 12.44 25.32
RUBi [5] NeurIPS’19 44.23 67.05 17.48 39.61 50.90 80.83 13.84 36.02
LMH [11] EMNLP’19 52.45 69.81 44.46 45.54 55.27 76.47 26.66 45.68
GGE-iter [20] ICCV’21 57.12 87.35 26.16 49.77 59.82 85.52 28.93 46.67
AdaVQA [18] IJCAI’21 54.67 72.47 53.81 45.58 61.20 91.17 41.34 39.38
COB [25] WACV’23 57.53 88.36 28.81 49.27 60.98 87.41 32.02 46.34
PWVQA [45] TMM’24 59.06 88.26 52.89 45.45 - - - -
GENB [10] CVPR’23 59.15 88.03 40.05 49.25 62.74 86.18 43.85 47.03
GGD [21] TPAMI’23 59.37 88.23 38.11 49.82 - - - -
CVIV [38] TMM’24 60.08 88.85 40.77 50.30 - - - -
RMLVQA [4] CVPR’23 60.41 89.98 45.96 48.74 63.52 91.24 38.55 45.52

MSCD Ours 62.29 88.28 55.45 50.54 65.60 90.49 50.51 46.91

manually adding annotations [7, 28, 31], which adds more addi-
tional costs. To make the predictions generated by the manifold
representation statistically close to being independent of the prior,
forcing it to focus on the semantics, using probability distribution
estimation [26, 29, 54] is more general and more conducive to gen-
eralization. Therefore, we propose a prior-aware debias constraint
to address this issue. The formulation between instance and prior
is as follows in Spherical space:

LPDC =
1
2𝑁

2𝑁∑︁
𝑖=1

(
𝐷

(
𝒑𝑚𝑖 ∥𝒑𝑎𝑗

)
+ 𝐷

(
𝒑𝑎𝑗 ∥𝒑

𝑚
𝑖

))
, (14)

where 𝑁 is the number of prior and manifold representations in a
mini-batch. In contrast, for an initialized spherical space, spherical
constraints can force the model to learn semantic representations
by reducing distribution dependence and bias effects.

3.4 Euclidean Debias Learning
Considering the synergistic properties of multi-space, for each in-
stance, a homeomorphism can be established between Spherical
space and Euclidean space. Since different spaces share joint repre-
sentations, we can further combat the hallucination problem caused
by bias through intrinsic connections. Inspired by [4, 32, 46, 49],
we use overfitting characteristics to perform robust learning.

Stage I: Bias-Examples Injection (BEI): Following the previ-
ous setting [4], the bias-examples injection component is a classifier
appended to the features R𝑖 trained using the standard CE loss.

LBEI = −
∑︁

Â∼|A |
𝑓 (Â) log 𝑓 (Â), (15)

where Â represents the biased prediction of the joint representation
R𝑖 . TheBEI combinedwithBDC can cluster instances in the feature
space based on the source of bias to capture the complete semantic
structure information while reducing instance offset.

Stage II:Modal-Counterexamples Injection (MCI):However,
since bias comes from training data, too much BEI may exacerbate
distribution dependence to cause adverse effects. To balance the
pros and cons, inspired by [31, 50], we extend the Euclidean space
to generate more modal counterexamples for training. Specifically,
we construct vision counterexamples (V−

𝑖
, Q𝑖 , Â) and questions

counterexamples (V𝑖 , Q−
𝑖
, Â) for each instance by randomly gener-

ating and selecting in a mini-batch. Intuitively, in VQA, a question
can only be answered if the question and image correspond. When
provided with a counterexample instance as input, the VQA model
fails to provide the correct answer by minimizing the loss.

LMCI = 𝑓
(
𝑃

(
A | V−

𝑖 ,Q𝑖

) )
[𝑖] + 𝑓

(
𝑃

(
A | V𝑖 ,Q−

𝑖

) )
[𝑖], (16)

where 𝑓 (·) represents the softmax function and 𝑖 is the index of
ground-truth answer A𝑖 in the answer set |A|. Minimizing 𝐿MCI
will encourage the prediction distribution to be far away from the
true answer distribution of the bias due to the lack of supporting
visual or question information. The MCI combined with PDC can
encourage the model to focus more on the overall semantics of the
instance, rather than based on the specific prior shortcut.

LEDL = L𝐵𝐸𝐼 +W(epoch) · LMCI, (17)
where LEDL combines the CE loss of the training bias and modal
counterexample injection components. The W(epoch) sets the pe-
riod after the epoch from 0 to 1.

3.5 Ensemble Co-Bias Methods
Finally, we combine these components in a multi-space co-debias
framework that can systematically work as a whole and mutually
benefit from each other by integrating logits from the spaces to
achieve robust representation learning and prior reduction. There-
fore, the weighted sum of the four regularization losses and the
basic VQA classification loss constitutes the total loss:

LTotal = LSPH−M + 𝜆1LBDC + 𝜆2LPDC + 𝜆3LEDL, (18)
where 𝜆1, 𝜆2 and 𝜆3 are the hyperparameter settings of different
components respectively.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metric
The hallucination problem within the robust VQA task is chal-
lenging, and models that cleverly exploit biases or shortcuts may
generate predictions that influence human decisions. Therefore, we
select the VQA-CP v1 and VQA-CP v2 [1] datasets as benchmarks
to evaluate the performance under changed prior conditions. All
experiments adopt the standard evaluation metric [3].
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Figure 5: In the figures (A)-(D) above, the answers embedded in the VQA cp v2 test set are compared with the baseline under
different question types. The figure below is a visualization of the mitigation of the hallucination distribution.

4.2 Baselines and Implementation Details
To verify the efficiency and generalization of our proposed model
across two sets of biased VQA datasets, we select the most relevant
works (Biases Mitigation Methods) for comparison. More baselines
details will be introduced in the supplementary materials.

We implemented our MSCD framework in PyTorch with a single
RTX 3090 GPU, and used the AdamW optimizer with weight decay
0.001. The learning rate is set to 0.001. The batch size 𝐵 is set to 512.
The values of all hyperparameters including 𝜆1, 𝜆2, 𝜆3 in MSCD are
set to 5.0, 1.0 and 5.0, respectively.

4.3 Experimental Results
As shown in Table 1, Our method achieves the highest overall ac-
curacy, significantly outperforming all state-of-the-art baselines,
across two VQA-CP benchmark datasets. These two datasets are
specially designed to assess the ability to address the VQA hal-
lucination problem, and the comparison results demonstrate the
effectiveness of our method in effectively tackling these challenges.
We observe that MSCD achieves gains of at least 1.88% and 2.25%
respectively against the state-of-the-art methods. It is worth noting
that the MSCD method achieves state-of-the-art performance on
𝑁𝑢𝑚 and 𝑂𝑡ℎ𝑒𝑟 , which have more demanding inference require-
ments. On VQA-CP v2, 𝑁𝑢𝑚 is significantly improved by 9.54%,
which is exactly what this work wants to see. Due to the presence of
hallucinations, simpler type problems such as 𝑌𝑒𝑠/𝑁𝑜 correlations
are easily distinguished by bias. By simply and directly reducing
bias, the performance of 𝑌𝑒𝑠/𝑁𝑜 may be improved, but it will also
weaken the model’s reasoning ability to a certain extent.

4.4 Ablation Study
For the multi-space co-debias method, the debias effect and coop-
eration of each component should be guaranteed in Table 2. To
demonstrate the performance of each component in our MSCD

Table 2: Ablation studies on the different settings of tasks.

Methods AMM BDC PDC EDL Overall-CP

Baseline - - - - 58.26
w/ Spherical AMM ✓ - - - 60.55
w/ Spherical BDC ✓ ✓ - - 61.08
w/ Spherical PDC ✓ - ✓ - 60.86
w/ Sph-debias ✓ ✓ ✓ - 61.70

Co-debias (Ours) ✓ ✓ ✓ ✓ 62.29

framework, 1) Baseline: This general UpDn architecture is used as
a baseline model [2]. 2) Baseline w/ Spherical AMM: We train the
frequency-instance margin model to initially construct the sphere
space [4]. 3) Baseline w/ Spherical BDC: Based on the model,
we built BDC and achieved an Overall-CP performance improve-
ment of 0.53%. It reflects the superiority of BDC in alleviating
instance offsets and effectively calibrate the offset instances to im-
prove robustness. 4) Baseline w/ Spherical PDC: Achieved an
Overall-CP performance improvement of 0.31%, showing an im-
provement in robustness against dependence on prior distributions,
and the effect of motivating the model to pay attention to semantics
is positive. 5) Baseline w/ Sph-debias: Combined with BDC and
PDC constraints based on spherical space provides a more positive
contribution to reduce instance offset and distribution offset to
achieve better performance. 6) Baseline w/ co-debias: Based on
the optimal performance of co-debias, we conclude that co-debias in
different spaces can further improve the robustness to combat VQA
hallucinations. Therefore, the above experimental results primarily
prove the superiorities of the multi-space co-debias learning.

In order to further verify the superiority of our paradigm, we
introduce bias branch [20] and impose BDC and PDC constraints
on Euclidean embedding and Euclidean prior embedding. Following
the same setting and architecture, the results all have different
degrees of decline compared to multi-space co-debias learning.
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Table 3: Effectiveness of multi-space co-debias learning (The
∗ refers to BDC and PDC in Euclidean space) and Parameter
Experiment of MCI epoch setting.

(A) Methods Overall Yes/No Num Other
BDC∗ 60.19 89.14 45.77 49.59

Euc-debias (BDC+PDC)∗ 60.69 89.96 48.83 47.96
(BDC+PDC+EDL)∗ 60.59 88.92 46.95 49.48

BDC 61.08 89.84 47.17 49.81
Co-debias (BDC+PDC) 61.70 88.41 53.71 49.88

(BDC+PDC+EDL) 62.29 88.28 55.45 50.54
(B) Epoch Setting Overall Yes/No Num Other

3 61.90 88.63 54.89 49.82
5 62.02 88.57 55.12 50.01

MCI 8 62.29 88.28 55.45 50.54
10 62.07 88.52 55.07 50.13
15 61.96 88.51 55.00 49.96

Table 4: Role of 𝜆2 in the training stage PDC of Sph-debias.

𝜆2 Overall-CP Y/N-CP Num-CP Others-CP

-1 49.35 68.58 18.64 47.70
-0.1 58.15 89.17 48.63 33.56
0.1 60.73 89.36 49.78 48.73
0.5 60.83 89.24 50.71 48.73
1 61.70 88.41 53.71 49.88

4.5 Parameter Sensitivity
We verify the two most important hyperparameters in the model,
The first one is about the 𝜆2 setting in PDC, which represents the
correlation between the learned manifold embedding and the prior
distribution. As shown in Table 4, the unbalanced learning process
will bias the learned feature representation towards biased data,
and when 𝜆2 in PDC is a negative number, the model performance
will drop sharply. This is mainly because when 𝜆2 is negative, the
distribution represented by the manifold depends more on the prior.
When 𝜆2 is positive, especially when it is 1, the model explicitly
learns semantics that focuses on the correlation between instances
and classes. The second one is about the setting of 𝐸𝑝𝑜𝑐ℎ inMCI.
This parameter controls the timing of modal counterexample injec-
tion. As illustrated in Table 3 (B), we quantitatively study the impact
of 𝐸𝑝𝑜𝑐ℎ epochs of MCI. This phenomenon can be attributed to
the fact that after Spherical debias learning, the high-confidence
model can improve the model’s sensitivity to semantics by further
learning error semantics, thereby reducing its reliance on training
priors. When 𝐸𝑝𝑜𝑐ℎ exceeds 8, performance will decrease slightly.
A too late priming period will inevitably weaken the positive impact
of differential learning and thus produce suboptimal results.

4.6 Visualization Results
Featured Space Visualization: As shown in Figure 5, we visualize
the feature distribution of each instance for two question types
[6]. It can be noticed that the instances learned by our model in
different question types are more closely related to the answer
class to which they belong, making it simpler to distinguish the
answer class corresponding to each instance. This reduces instance
shift and mitigates VQA hallucinations. In addition, we focus on
visualizing the answer distribution of question types in Figure 6. The
training set and test set distributions for these types are noticeably
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Figure 6: Illustration of combating VQA hallucinations. We
visualized the distribution of answers. the MSCD shows con-
sistent improvements to Baseline and RMLVQA [4], effec-
tively alleviating the hallucinations distribution problem.
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Figure 7: Visualization analysis of ourmethod. Two examples
were chosen to show the robustness of the MSCD.

different. Our method effectively mitigates VQA hallucinations,
which is the focus of this article. In contrast, our MSCD method
achieves satisfactory hallucination mitigation effects through the
multi-space co-debiasing learning paradigm.

Attention Region Visualization: From the result analysis in
Figure 7, due to the influence of biases, baseline failed to find the
target object mentioned in the problem in the image, resulting in
erroneous predictions. Taking the "plane" picture as an example,
the model will naturally generate an illusive answer to "yes" instead
of paying attention to the overall semantics of the question and
answer. In contrast, our MSCD demonstrates the ability to mitigate
hallucinations and enable the modality to focus on semantics to
accurately locate the target object with a high degree of confidence,
thereby giving precise answers to the questions posed.

5 CONCLUSION
This paper establishes a novel robust visual question answering
paradigm (MSCD), which simultaneously utilizes multi-space co-
debiasing in a unified framework to combat VQA hallucinations. We
construct bias-aware and prior-aware constraints in spherical space
to improve robustness by alleviating bias effects and distribution
dependence, encouraging the model to focus on the semantics of
instances. Switching to the space homeomorphism perspective, we
employ bias example and modal counterexample learning strategies
through the over-fitting characteristics of Euclidean space to further
assist robust learning. Experiments conducted on three widely used
datasets demonstrate the encouraging performance of our approach
compared to existing state-of-the-art methods.
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