
Finite-Time Synchronization Control for
Quaternion-Valued Memristive Neural Networks by

Halanay Inequality
1st Jing Ping

School of Mathematics
China University of Mining and Technology

Xuzhou, Jiangsu, China
pingjing@cumt.edu.cn

2nd Song Zhu
School of Mathematics, JCAM

China University of Mining and Technology
Xuzhou, Jiangsu, China
songzhu@cumt.edu.cn

Abstract—This paper investigates the finite-time synchroniza-
tion (FTS) of quaternion-valued memristive neural networks
(QVMNNs) with mixed time delays. Utilizing the Halanay in-
equality, the analysis of the FTS issue involves two crucial steps:
the convergence of the error system from the initial state to
the unit ball, and subsequently from the unit ball to the origin.
This approach not only obviates the necessity for constructing
intricate Lyapunov functionals but also simplifies the treatment of
delay terms. Furthermore, to streamline the theoretical derivation
process, the considered QVMNNs are addressed without any
decomposition by introducing the 1-norm, 2-norm, and ∞-
norm of quaternions. Based on these considerations, a series of
algebraic criteria for FTS is formulated, alongside estimates of
synchronization time under different initial conditions. Finally,
numerical simulations are presented to validate the effectiveness
of the theoretical findings and demonstrate the application of
QVMNNs in secure communication.

Index Terms—Finite-time synchronization (FTS), Halanay
inequality, quaternion-valued memristive neural networks
(QVMNNs), non-decomposition

I. INTRODUCTION

Memristive neural networks (MNNs) are a special type
of neural networks (NNs) based on memristors. Since the
resistance of the memristors varies depending on the current
and voltage in the circuit [1]–[3], the memristor is known as an
electronic component with memory. This unique characteristic
provides memristors with distinct advantages for information
storage and computation [4], [5]. Due to the high efficiency
in pattern recognition, cognitive computing, and simulating
human neural systems [6]–[8], there have been a plethora of
impressive accomplishments in the realm of MNNs research
[9]–[11].

Through the extension of imaginary numbers, quaternions
were initially introduced by Hamilton in the 19th century as a
means of providing more precise representation of rotational
changes in 3-D space. Generally, a quaternion x can be
represented as x = xR + xI i + xJj + xKk, where i, j and
k are imaginary units that adhere to Hamilton rules: i2 =
j2 = k2 = −1, ij=−ji=k, jk=−kj=i, ki=−ik=j. Until now,
the quaternions have been proven to be invaluable in various
domains, including computer graphics and robotic control. The

introduction of quaternions into NNs has led to the emergence
of a new type of NNs, known as quaternion-valued NNs
(QVNNs). QVNNs boast unparalleled potential in processing
intricate data sets and excelling in multi-classification tasks
compared to real-valued and complex-valued counterparts
[12]–[15]. Despite these advantages, the research pertaining to
QVNNs has not been comprehensive owing to the intricate and
non-commutative nature of quaternion algebra. Several schol-
ars have employed decomposition method to study QVNNs:
dividing the considered QVNNs into four real-valued or two
complex-valued NNs in accordance with Hamilton rules. For
example, by splitting QVNNs into four real-valued NNs,
[15] delves into the issues of quasi-synchronization and Hopf
bifurcation of fractional-order QVNNs, [16] addresses the
issue of global exponential stability. Whilst this methodology
facilitates the transmutation of quaternions into real num-
bers, it is concomitantly accompanied by incurrence of aug-
mented computational intricacy. Therefore, non-decomposition
method has gained favor among scholars in recent years [17]–
[19]. For instance, by treating the quaternion-valued system as
undivided entity without decomposition, [18] investigates the
global Mittag-Leffler stability of fractional-order QVMNNs,
and [19] studies the dissipativity of QVNNs.

The dynamic behaviors, exemplified by stability and syn-
chronization, are critically important for practical applications
[20]–[23]. Specifically, the synchronization of networks has
found extensive employment not only in communication and
power systems, but also in numerous other systems [24], [25].
Over the past few years, research in the area of synchronization
issues related to MNNs has experienced rapid growth, leading
to a noteworthy amount of scholarly attention [26]–[29].
Nonetheless, quasi-synchronization, asymptotic synchroniza-
tion and exponential synchronization can only guarantee that
the states of error system can be reduced to a very small range
or achieved synchronization within an infinite period of time.
Furthermore, the strive to advance precision, efficiency and
practical applicability has brought the subject of finite-time
synchronization (FTS) control to the forefront of academic
investigation [30]–[33]. By applying an appropriate controller,



[31] proposes some sufficient criteria for FTS of coupled
MNNs. In [32], a novel analysis method is introduced to
investigate FTS of inertial MNNs with mixed time delays. [33]
studies the FTS issues of impulsive MNNs under stabilizing,
inactive, and destabilizing impulses.

Time delay is a prevalent occurrence, which may have a
negative impact during the process of achieving the desired
system states. Therefore, it is imperative to take into account
the effects of mixed time delays when analyzing the dynamic
behaviors of NNs. For the purpose of addressing these issues,
the Lyapunov functional method is an important tool, which
exhibits superiority for treating delayed terms, such as [34]–
[36]. It is noteworthy that the differentiability of time delays
is typically assumed for the Lyapunov functional method.
Furthermore, some scholars choose to design controllers that
contain time delays [37], [38], and some make the additional
hypothesis that the activation function is bounded [39]. No-
tably, Halanay inequalities are employed as novel and effective
tools for studying asymptotic stability or synchronization
issues of delayed systems [40], [41], owing to their ability
to provide more precise analysis outcomes in certain cases.
Nevertheless, their potential value in addressing FTS issue has
been overlooked.

Driven by the aforementioned discussions, this paper is
dedicated to investigating the FTS control of QVMNNs with
mixed time delays via Halanay inequality. The principal contri-
butions can be summarized as follows: 1) Distinct differential
inequalities are established for regions outside and inside the
unit ball, respectively, by applying the Halanay inequality
and finite-time stability theory. This approach facilitates the
handling of delay terms. Moreover, in comparison to prior
studies [35], [36] and [42], this approach removes the re-
quirements for differentiability and τ̇(t) < 1, as well as
the need for constructing complex Lyapunov functionals. 2)
The controller designed in this paper solely encompasses
linear and sign function expressions, devoid of time delay
terms. Contrasting with the controller in [42], it demonstrates
simplicity, ease of manipulation, and obviates switching. 3)
Based on the improved 1-norm, 2-norm, and ∞-norm of
quaternion, a series of algebraic criteria for achieving FTS of
QVMNNs is proposed without any decomposition. Compared
with some previous results [15] and [16], this method can
avoid the complex operation of the decomposition method,
enrich the theories of applying non-decomposition method to
study QVNNs, and provide more choices of control gains for
achieving FTS of QVMNNs.

The paper is structured as follows. In Section II, the
considered QVMNNs models and the relevant preliminary
information are introduced. The FTS criteria for QVMNNs
under 1-norm, 2-norm, and ∞-norm are shown in Section
III. To show the effectiveness of these criteria, numerical
simulations are presented in Section IV. Finally, the main work
is reviewed and summarized in Section V.

Notations. R represents the set of real numbers, Q is the s-
pace of quaternion numbers and Qn denotes all n-dimensional
quaternions. ϑ = ϑR+ϑI i+ϑJj+ϑKk(ϑR, ϑI , ϑJ , ϑK ∈ R)

denotes a quaternion number, in which i, j, k are imaginary
units of quaternions. The conjugate of quaternion ϑ is repre-
sented by ϑ∗ = ϑR−ϑI i−ϑJj−ϑKk, and the sign function
is denoted as sign(ϑ) = sign(ϑR) + sign(ϑI)i + sign(ϑJ)j +
sign(ϑK)k. For ϑ ∈ Q and ε = (ε1, ε2, · · · , εn)T ∈ Qn,
denote |ϑ|1 =

∑
%=R,I,J,K |ϑ%|, ‖ε‖1 =

∑n
i=1 |εi|1, |ϑ|2 =

(
∑
%=R,I,J,K |ϑ%|2)

1
2 , ‖ε‖2 =

(∑n
i=1 |εi|22

) 1
2 , and ‖ε‖∞ =

maxi{|εi|1}. C([−τ , 0],Q) denotes a continuous mapping
from [−τ , 0] to Q, D+V (ε(t)) represents the upper right Dini
derivative of V (ε(t)).

II. PRELIMINARIES

Consider the following QVMNN, which incorporates both
discrete and distributed time delays:

ṗr(t) =− arpr(t) +

n∑
l=1

brl(pl(t))fl(pl(t))

+

n∑
l=1

crl(pl(t))fl(pl(t− τ(t)))

+

n∑
l=1

drl(pl(t))

∫ t

t−τ
fl(pl(s))ds, (1)

r, l = 1, 2, · · · , n, where pr(t) ∈ Q represents the s-
tate variable of the neuron, ar > 0 is the self-inhibition,
fl(pl(·)) ∈ Q is the activation function, τ and τ(t) represent
the bounded distributed and discrete time delay, respectively.
Denote τ = max{τ, τ(t)}, and the initial condition pr(s) =
ϕr(s) ∈ C([−τ , 0],Q). brl(pl(t)), crl(pl(t)) and drl(pl(t))
are memristors synaptic connection weights which satisfy

brl(pl(t)) =

{
b̂rl, |pl(t)|1 ≤ κl,
b̌rl, |pl(t)|1 > κl,

crl(pl(t)) =

{
ĉrl, |pl(t)|1 ≤ κl,
črl, |pl(t)|1 > κl,

drl(pl(t)) =

{
d̂rl, |pl(t)|1 ≤ κl,
ďrl, |pl(t)|1 > κl,

where b̂rl, b̌rl, ĉrl, črl, d̂rl, ďrl ∈ Q, κl are the switching jump
constants. For k = 1, 2, denote |b̃rl|k = max{|b̂rl|k, |b̌rl|k},
|c̃rl|k = max{|ĉrl|k, |črl|k}, |d̃rl|k = max{|d̂rl|k, |ďrl|k}.

The corresponding response QVMNN can be described by

q̇r(t) =− arqr(t) +

n∑
l=1

brl(ql(t))fl(ql(t))

+

n∑
l=1

crl(ql(t))fl(ql(t− τ(t)))

+

n∑
l=1

drl(ql(t))

∫ t

t−τ
fl(ql(s))ds+ ur(t), (2)

where qr(t) ∈ Q denotes the state variable, ur(t) is a
controller to be designed later. Denote the initial condition
of the response system as qr(s) = ψr(s) ∈ C([−τ , 0],Q).



Now, identify the synchronization error as εr(t) = qr(t)−
pr(t). Let ε(t) = (ε1(t), ε2(t), · · · , εn(t))T , the error system
can be given by

ε̇r(t) =− arεr(t) +

n∑
l=1

brl(ql(t))gl(εl(t)) +

n∑
l=1

(
brl(ql(t))

− brl(pl(t))
)
fl(pl(t)) +

n∑
l=1

crl(ql(t))gl(εl(t− τ(t)))

+

n∑
l=1

(
crl(ql(t))− crl(pl(t))

)
fl(pl(t− τ(t)))

+

n∑
l=1

drl(ql(t))

∫ t

t−τ
gl(εl(s))ds+

n∑
l=1

(
drl(ql(t))

− drl(pl(t))
) ∫ t

t−τ
fl(pl(s))ds+ ur(t), (3)

where gl(εl(t)) = fl(ql(t)) − fl(pl(t)), denote the initial
condition as εr(s) = ψr(s) − ϕr(s) ∈ C([−τ , 0],Q). Design
the controller as

ur(t) = −γrεr(t)− ωrsign(εr(t)), (4)

in which γr and ωr are positive constants. To streamline the
analysis of FTS for QVMNNs, certain essential assumptions
are proposed.

Assumption 1. For k = 1, 2, and l = 1, 2, · · · , n, there
exist constants ηl > 0 fulfilling

|fl(ql(t))− fl(pl(t))|k ≤ ηl|ql(t)− pl(t)|k.

Assumption 2. For k = 1, 2, and l = 1, 2, · · · , n,
|fl(ql(t))|k is bounded. That is, there exist constants ml > 0
fulfilling

|fl(ql(t))|k ≤ ml.

Definition 1. [42] The error system (3) is called to be
globally stable to $ ($ ≥ 0) finite-timely if there exists
T (ε(0)) ≥ 0 fulfilling limt→T (ε(0)) ‖ε(t)‖ = $, and for all
t ≥ T (ε(0)), ‖ε(t)‖ ≤ $. Especially, system (3) is globally
stable to origin finite-timely if $ = 0.

Lemma 1. [42] For k = 1, 2, u, v ∈ Q, these formulas are
satisfied.

(1)u∗sign(u) + sign∗(u)u = 2|u|1,
(2)sign∗(u)sign(u) = |sign(u)|1,
(3)|uv|k ≤ |u|k · |v|k,
(4)u∗v + v∗u ≤ 2|u|k · |v|k, |u|2 ≤ |u|1.

Remark 1. By introducing these inequalities, the FTS of
QVMNNs is analyzed by non-decomposition method, which
help to avoid complex operations involved in the decomposi-
tion method and enriches the theoretical framework of non-
decomposition methods for QVNNs.

Lemma 2. [43] For V (ε(t)) : [t0 − τ ,+∞)→ [0,+∞), if
there exist α > β > 0 such that

D+V (ε(t)) ≤ −αV (ε(t)) + βṼ (ε(t)),

then for t ≥ t0, the following inequality hold

V (ε(t)) ≤ Ṽ (ε(t0))e−δ(t−t0),

where Ṽ (ε(t)) = supt−τ≤s≤t V (ε(s)), δ > 0 and satisfies
δ = α− βeδτ .

Lemma 3. [44] The response QVMNN (2) is finite-time
synchronized with QVMNN (1), if for error system (3),
there exists a regular, positive definite and radially unbounded
function V (ε(t)) satisfying

D+V (ε(t)) ≤ −ζV µ(ε(t))− ξ,

where ζ > 0, ξ ≥ 0, and 0 < µ ≤ 1. Specially,
(1) if ξ = 0 and 0 < µ < 1, the synchronization time can be
inferred by

T (ε(0)) ≤ V 1−µ(ε(0))

ζ(1− µ)
;

(2) if ξ > 0 and µ = 1, the synchronization time can be
inferred by

T (ε(0)) ≤ 1

ζ
ln
(
1 +

ζ

ξ
V (ε(0))

)
.

III. MAIN RESULTS

This section presents a set of sufficient criteria for FTS
control of QVMNNs, by constructing Lyapunov functions by
distinct norm forms. The analysis of FTS entails the error
system converging from its initial state to the unit ball within
a finite time, followed by subsequent convergence from the
unit ball to the origin finite-timely. For conciseness, denote

zr,k =

n∑
l=1

ηl
(
|b̃rl|k + |c̃rl|k + τ |d̃rl|k

)
,

∆r,k =

n∑
l=1

ml

(
|b̂rl − b̌rl|k + |ĉrl − črl|k + τ |d̂rl − ďrl|k

)
,

Ξr,k =

n∑
l=1

ηl
(
|c̃rl|k + τ |d̃rl|k

)
,

ir,k = ηr

n∑
l=1

|b̃lr|k,

where r = 1, 2, · · · , n, k = 1, 2.

Theorem 1. Suppose that Assumptions 1 and 2 hold, the
response QVMNN (2) can be synchronized with QVMNN (1)
within a finite time, if the controller (4) fulfills the following
inequalities

γr + ar > max

{
η

2

n∑
r=1

(
|c̃r·|2 + τ |d̃r·|2

)
+

1

2

(
zr,2 + ir,2

)
,

1

2

n∑
l=1

(
ηl|b̃rl|2 + ηr|b̃lr|2

)}
, (5)

ωr ≥ ∆r,2 + Ξr,2 + ε, (6)



where ε > 0, |c̃r·|2 = maxl{|c̃rl|2}, |d̃r·|2 = maxl{|d̃rl|2},
η = maxr{ηr}. Moreover, it can be achieved within time

T =


1

ε
‖ε(0)‖2, if sup

−τ≤s≤0
‖ε(s)‖2 ≤ 1,

1

δ
ln

(
sup

−τ≤s≤0
‖ε(s)‖2

)
+ τ +

1

ε
, otherwise,

where δ can be solved by δ = α − βeδτ ,
αr = 2(ar + γr) − zr,2 − ir,2, α = minr{αr}, and
β = η

∑n
r=1(|c̃r·|2 + τ |d̃r·|2).

Proof. Construct the Lyapunov function as

V (ε(t)) =
1

2

n∑
r=1

ε∗r(t)εr(t).

Analysing the Dini derivative of V (ε(t)) yields that

D+V (ε(t))

=
1

2

n∑
r=1

ε∗r(t)ε̇r(t) + ε̇∗r(t)εr(t)

=
1

2

n∑
r=1

(
ε∗r(t)(−ar)εr(t) + ε∗r(t)(−ar)∗εr(t)

)
+

1

2

n∑
r=1

(
ε∗r(t)

n∑
l=1

brl(ql(t))gl(εl(t)) +
( n∑
l=1

brl(ql(t))

× gl(εl(t))
)∗
εr(t)

)
+

1

2

n∑
r=1

(
ε∗r(t)

n∑
l=1

(
brl(ql(t))

− brl(pl(t))
)
fl(pl(t)) +

( n∑
l=1

(brl(ql(t))− brl(pl(t)))

× fl(pl(t))
)∗
εr(t)

)
+

1

2

n∑
r=1

(
ε∗r(t)

n∑
l=1

crl(ql(t))

× gl(εl(t− τ(t))) +
( n∑
l=1

crl(ql(t))gl(εl(t− τ(t)))
)∗

× εr(t)
)

+
1

2

n∑
r=1

(
ε∗r(t)

n∑
l=1

(
crl(ql(t))− crl(pl(t))

)
× fl(pl(t− τ(t))) +

( n∑
l=1

(crl(ql(t))− crl(pl(t)))

× fl(pl(t− τ(t)))
)∗
εr(t)

)
+

1

2

n∑
r=1

(
ε∗r(t)

n∑
l=1

drl(ql(t))

×
∫ t

t−τ
gl(εl(s))ds+

( n∑
l=1

drl(ql(t))

∫ t

t−τ
gl(εl(s))ds

)∗
× εr(t)

)
+

1

2

n∑
r=1

(
ε∗r(t)

n∑
l=1

(
drl(ql(t))− drl(pl(t))

)
×
∫ t

t−τ
fl(pl(s))ds+

( n∑
l=1

(drl(ql(t))− drl(pl(t)))

×
∫ t

t−τ
fl(pl(s))ds

)∗
εl(t)

)
+

1

2

n∑
r=1

(
ε∗r(t)(−γr)

× εr(t) + ε∗r(t)(−γr)∗εr(t)
)

+
1

2

n∑
r=1

(
ε∗r(t)(−ωr)

× sign(εr(t)) + sign∗(εr(t))(−ωr)∗εr(t)
)
.

From Lemma 1, it is obvious to see

1

2

n∑
r=1

(
ε∗r(t)(−ar)εr(t) + ε∗r(t)(−ar)∗εr(t)

)
+

1

2

n∑
r=1

(
ε∗r(t)(−γr)εr(t) + ε∗r(t)(−γr)∗εr(t)

)
= −

n∑
r=1

(ar + γr)ε
∗
r(t)εr(t).

Besides, under the Assumption 1 and Assumption 2, we have

1

2

n∑
r=1

(
ε∗r(t)

n∑
l=1

brl(ql(t))gl(εl(t))

+
( n∑
l=1

brl(ql(t))gl(εl(t))
)∗
εr(t)

)
≤ 1

2

n∑
r=1

n∑
l=1

|b̃rl|2ηl
(
|εr(t)|22 + |εl(t)|22

)
=

1

2

n∑
r=1

n∑
l=1

(
ηl|b̃rl|2 + ηr|b̃lr|2

)
|εr(t)|22,

and

1

2

n∑
r=1

(
ε∗r(t)

n∑
l=1

crl(ql(t))gl(εl(t− τ(t)))

+
( n∑
l=1

crl(ql(t))gl(εl(t− τ(t)))
)∗
εr(t)

)
+

1

2

n∑
r=1

(
ε∗r(t)

n∑
l=1

drl(ql(t))

∫ t

t−τ
gl(εl(s))ds

+
( n∑
l=1

drl(ql(t))

∫ t

t−τ
gl(εl(s))ds

)∗
εr(t)

)
≤

n∑
r=1

|εr(t)|2
n∑
l=1

|c̃rl|2ηl|εl(t− τ(t))|2

+

n∑
r=1

|εr(t)|2
n∑
l=1

|d̃rl|2
∫ t

t−τ
ηl|εl(s)|2ds

≤ 1

2

n∑
r=1

n∑
l=1

ηl

(
|c̃rl|2 + τ |d̃rl|2

)
|εr(t)|22

+
1

2
η

n∑
r=1

(
|c̃r·|2 + τ |d̃r·|2

)
sup

t−τ≤s≤t
‖ε(s)‖22.

Then, combining with the above analysis yields that

D+V (ε(t))

≤−
n∑
r=1

(
ar + γr

)
|εr(t)|22 +

n∑
r=1

n∑
l=1

ml

(
|b̂rl − b̌rl|2

+ |ĉrl − črl|2 + τ |d̂rl − ďrl|2
)
|εr(t)|2



+
1

2

n∑
r=1

n∑
l=1

(
ηl|b̃rl|2 + ηr|b̃lr|2

)
|εr(t)|22

+
1

2

n∑
r=1

n∑
l=1

ηl

(
|c̃rl|2 + τ |d̃rl|2

)
|εr(t)|22

+
1

2
η

n∑
r=1

(
|c̃r·|2 + τ |d̃r·|2

)
sup

t−τ≤s≤t
‖ε(s)‖22

−
n∑
r=1

ωr|εr(t)|2

≤−
n∑
r=1

(
ar + γr −

1

2
zr,2 −

1

2
ir,2

)
|εr(t)|22

+
1

2
η

n∑
r=1

(
|c̃r·|2 + τ |d̃r·|2

)
sup

t−τ≤s≤t
‖ε(s)‖22

−
n∑
r=1

(
ωr −∆r,2

)
|εr(t)|2.

Denote αr = 2(ar + γr) − zr,2 − ir,2, α = minr{αr}, and
β = η

∑n
r=1(|c̃r·|2 + τ |d̃r·|2). Suppose the initial condition

satisfies sup−τ≤s≤0 ‖ε(s)‖2 > 1, then under the conditions
(5) and (6), we have

D+V (ε(t)) ≤− αV (ε(t)) + βṼ (ε(t)), (7)

where Ṽ (ε(t)) = supt−τ≤s≤t V (ε(s)). Based on Lemma 2,
V (ε(t)) satisfies the inequality V (ε(t)) ≤ Ṽ (ε(0))e−δt, where
δ = α − βeδτ . Furthermore, it is obvious from (7) that there
must exist an instant t1 ≤ 1

δ ln(2Ṽ (ε(0))) such that ‖ε(s)‖2 ≤
1 when t1 ≤ s ≤ t1 + τ . Thus, the error system (3) can be
stable to 1 within time

T1 ≤
1

δ
ln
(
2Ṽ (ε(0))

)
+ τ .

Next, it can be proved that under the conditions (5) and (6),
supt−τ≤s≤t ‖ε(s)‖2 < 1 is fulfilled after T1. Combined with
‖ε(t)‖2 < 1, t ∈ (T1 − τ , T1), it follows that ‖ε(t)‖2 < 1 is
satisfied for t > T1. Otherwise, there exists an instant t

′
=

inf{t > T1|‖ε(t)‖2 = 1}, and there is T1 ≤ t̂ < t
′
< ∞,

such that D+‖ε(t)‖2 > 0, for t ∈ (t̂, t
′
). On the other hand,

as condition supt−τ≤s≤t ‖ε(s)‖2 < 1, t ∈ (t̂, t
′
) holds, by

computing the Dini derivative of V (ε(t)), we derive that

D+V (ε(t))

≤−
n∑
r=1

(
ar + γr

)
|εr(t)|22 +

1

2

n∑
r=1

n∑
l=1

(
ηl|b̃rl|2 + ηr|b̃lr|2

)
× |εr(t)|22 −

n∑
r=1

(
ωr −

n∑
l=1

ml

(
|b̂rl − b̌rl|2 + |ĉrl − črl|2

+ τ |d̂rl − ďrl|2
))
|εr(t)|2 +

n∑
r=1

n∑
l=1

|c̃rl|2ηl|εl(t− τ(t))|2

× |εr(t)|2 +

n∑
r=1

n∑
l=1

|d̃rl|2τηl|εr(t)|2 sup
t−τ≤s≤t

|εl(s)|2

≤−
n∑
r=1

(
ar + γr −

1

2

n∑
l=1

(
ηl|b̃rl|2 + ηr|b̃lr|2

))
|εr(t)|22

−
n∑
r=1

(
ωr −∆r,2 − Ξr,2

)
|εr(t)|2.

It can be derived from the conditions (5) and (6) that

D+V (ε(t)) ≤− ε
n∑
r=1

|εr(t)|2 ≤ −
√

2εV
1
2 (ε(t)),

it contradicts the hypothesis. Thus, supt−τ≤s≤t ‖ε(s)‖2 < 1 is
always satisfied after T1. Furthermore, from the above analysis
and Lemma 3, the error system (3) can be stable from 1 to 0
within time

T2 ≤
2V

1
2 (ε(T1))√

2ε
≤ 1

ε
.

Thus, if the initial condition sup−τ≤s≤0 ‖ε(s)‖2 < 1, the
response QVMNN (2) can synchronize with QVMNN (1)
within a period of no more than T2, to be more specific, it
can be estimated by ‖ε(0)‖2ε . If the initial value is larger than
1, the total synchronization time is estimated by T = T1 +T2.

Remark 2. Obviously, this paper constructs Lyapunov
functions in simple norm forms, instead of the complicated
Lyapunov functionals constructed in [35], [36], and [42].
Notably, the constraint τ̇(t) < 1 is eliminated.

Theorem 1 establishes criteria for achieving FTS of consid-
ered QVMNNs under the simple controller (4). Specifically,
the Lyapunov function is formed by 2-norm. Subsequently,
this approach is proved to be also effective in 1-norm and
∞-norm forms.

Theorem 2. Assuming that Assumptions 1 and 2 are met,
QVMNNs (1) and (2) can be synchronized within a finite time,
if the controller (4) satisfies the following inequalities

γr + ar > ir,1 + η

n∑
r=1

(
|c̃r·|1 + τ |d̃r·|1

)
, (8)

ωr ≥
n∑
r=1

(
∆r,1 + Ξr,1

)
+ ξ, (9)

where ξ is a positive constant. Moreover, it can be achieved
within time

T =


1

ζ
ln
(

1 +
ζ

ξ
‖ε(0)‖1

)
, if sup

−τ≤s≤0
‖ε(s)‖1 ≤ 1,

1

δ
ln sup
−τ≤s≤0

‖ε(s)‖1 + τ +
1

ζ
ln
(

1 +
ζ

ξ

)
, otherwise,

where ζ = η
∑n
r=1

(
|c̃r·|1 + τ |d̃r·|1

)
, δ = α − βeδτ , α =

minr{αr}, αr = ar + γr − ir,1, and β = η
∑n
r=1

(
|c̃r·|1 +

τ |d̃r·|1
)
.

Proof. Applying the 1-norm of quaternions, consider the
Lyapunov function as

W (ε(t)) =
1

2

n∑
r=1

(
sign∗(εr(t))εr(t) + ε∗r(t)sign(εr(t))

)
.



Supposed the initial condition fulfills sup−τ≤s≤0 ‖ε(s)‖1 ≥ 1,
then the Dini derivative W (ε(t)) is calculated as

D+W (ε(t))

=
1

2

n∑
r=1

(
sign∗(εr(t))ε̇r(t) + ε̇∗r(t)sign(εr(t))

)
≤−

n∑
r=1

ar|εr(t)|1 +

n∑
r=1

n∑
l=1

ml

(
|b̂rl − b̌rl|1 + |ĉrl − črl|1

+ τ |d̂rl − ďrl|1
)

+

n∑
r=1

n∑
l=1

|b̃rl|1ηl|εl(t)|1 +

n∑
r=1

n∑
l=1

|c̃rl|1

× ηl|εl(t− τ(t))|1 +

n∑
r=1

n∑
l=1

|d̃rl|1
∫ t

t−τ
ηl|εl(s)|1ds

−
n∑
r=1

γr|εr(t)|1 − ωmin

n∑
r=1

|sign(εr(t))|1

≤−
n∑
r=1

(
ar + γr − ir,1

)
|εr(t)|1

+ η

n∑
r=1

(
|c̃r·|1 + τ |d̃r·|1

)
sup

t−τ≤s≤t
‖ε(s)‖1

−
(
ωmin −

n∑
r=1

∆r,1

)
,

where ωmin = minr{ωr}. Let α = minr{αr}, αr = ar+γr−
ir,1, and β = η

∑n
r=1

(
|c̃r·|1 + τ |d̃r·|1

)
. Then the following

inequality can be obtained under conditions (8) and (9)

D+W (ε(t)) ≤ −αW (ε(t)) + βW̃ (ε(t)),

where W̃ (ε(0)) = sup−τ≤s≤0W (ε(s)). From Lemma 2, it
has W (ε(t)) ≤ W̃ (ε(0))e−δt, where δ = α − βeδτ . Similar
to the analysis in Theorem 1, there must exist an instant t1 ≤
1
δ ln W̃ (ε(0)), such that W (ε(s)) ≤ 1 when s ∈ [t1, t1 + τ ].
Thus, if the initial value is larger than 1, the error system (3)
can be stable to 1 within time T1 ≤ 1

δ ln W̃ (ε(0)) + τ .
Similarly, supt−τ≤s≤t ‖ε(s)‖1 < 1 always holds after T1,

and under the conditions (8) and (9), the Dini derivative of
W (ε(t)) satisfies

D+W (ε(t))

≤−
n∑
r=1

(ar + γr)|εr(t)|1 +

n∑
r=1

n∑
l=1

|b̃lr|1ηr|εr(t)|1

+

n∑
r=1

n∑
l=1

ml

(
|b̂rl − b̌rl|1 + |ĉrl − črl|1 + τ |d̂rl − ďrl|1

)
+

n∑
r=1

n∑
l=1

ηl|c̃rl|1 +

n∑
r=1

n∑
l=1

|d̃rl|1τηl sup
t−τ≤s≤t

|εl(s)|1

− ωmin

n∑
r=1

|sign(εr(t))|1

≤−
n∑
r=1

(
ar + γr − ir,1

)
|εr(t)|1

− ωmin +

n∑
r=1

(
∆r,1 + Ξr,1

)
≤− ζW (ε(t))− ξ.

By Lemma 3, it can be concluded that after time T1, the error
system (3) can globally stable to origin within time

T2 ≤
1

ζ
ln
(
1 +

ζ

ξ
W (ε(T1))

)
≤ 1

ζ
ln(1 +

ζ

ξ
).

Consequently, if sup−τ≤s≤0 ‖ε(s)‖1 > 1, the drive-
response QVMNNs can realize FTS within T = T1 + T2.
Otherwise, the synchronization can be realized within 1

ζ ln(1+
ζ
ξ ‖ε(0)‖1).

Incorporating the improved ∞-norm enables to extend the
previous conclusions and arrive at the subsequent outcome.

Theorem 3. Supposing Assumptions 1 and 2 are fulfilled,
the response QVMNN (2) can be synchronized with QVMNN
(1) finite-timely, if the controller (4) fulfills the following
inequalities

γr + ar > max
r

{ n∑
l=1

ηl(|c̃rl|1 + τ |d̃rl|1)
}

+

n∑
l=1

ηl|b̃rl|1,

(10)
ωr ≥ ∆r,1 + Ξr,1 + ξ, (11)

where ξ > 0. Moreover, it can be achieved within time

T =


1

ζ
ln
(
1 +

ζ

ξ
‖ε(0)‖∞

)
, if sup

−τ≤s≤0
‖ε(s)‖∞ ≤ 1,

1

δ
ln sup
−τ≤s≤0

‖ε(s)‖∞ + τ +
1

ζ
ln
(
1 +

ζ

ξ

)
, otherwise,

where ζ = maxr
{∑n

l=1 ηl(|c̃rl|1 + τ |d̃rl|1)
}

, δ = α− βeδτ ,
α = mini{αi}, αi = ai + γi −

∑n
l=1 ηl|b̃il|1, and β =

maxi{βi}, βi =
∑n
l=1 ηl(|c̃il|1 + τ |d̃il|1).

Proof. Construct the following Lyapunov function

Z(ε(t)) = ‖ε(t)‖∞,

obviously, there exists an index i ∈ {1, 2, · · · , n} such that
Z(ε(t)) = |εi(t)|1. Similarly, calculating the Dini derivative
of Z(ε(t)) yields that

D+Z(ε(t))

=
1

2

(
sign∗(εi(t))ε̇i(t) + ε̇∗i (t)sign(εi(t))

)
≤− ai|εi(t)|1 +

n∑
l=1

|b̃il|1ηl|εl(t)|1 +

n∑
l=1

|b̂il − b̌il|1ml

+

n∑
l=1

|c̃il|1ηl|εl(t− τ(t))|1 +

n∑
l=1

|ĉil − čil|1ml

+

n∑
l=1

τ |d̃il|1ηl sup
t−τ≤s≤t

|εl(s)|1 +

n∑
l=1

τ |d̂il − ďil|1ml

− γi|εi(t)|1 − ωi|sign(εi(t))|1

≤−
(
ai + γi −

n∑
l=1

ηl|b̃il|1
)
‖ε(t)‖∞ +

n∑
l=1

ηl
(
|c̃il|1 + τ



× |d̃il|1
)

sup
t−τ≤s≤t

‖ε(s)‖∞ −
(
ωi −∆i,1

)
.

Similarly, denote αi = ai+γi−
∑n
l=1 ηl|b̃il|1, α = mini{αi}

and βi =
∑n
l=1 ηl(|c̃il|1 + τ |d̃il|1), β = maxi{βi}. Then,

it follows from (10), (11) and Lemma 2 that Z(ε(t)) ≤
Z̃(ε(0))e−δt, where δ = α − βeδτ . Therefore, there exists
an instant t1 ≤ 1

δ ln Z̃(ε(0)), such that Z(ε(s)) ≤ 1 when
s ∈ [t1, t1 + τ ]. So the error system (3) can be stable to 1
within the period T1 ≤ 1

δ ln Z̃(ε(0)) + τ .
After time T1, the Dini derivative of Z(ε(t)) fulfills

D+Z(ε(t))

≤−
(
ai + γi −

n∑
l=1

ηl|b̃il|1
)
‖ε(t)‖∞ − ωi + ∆i,1 + Ξi,1,

if conditions (10) and (11) are hold. Then from Lemma 3,
the synchronization error can converge to zero within T2 ≤
1
ζ ln(1 + ζ

ξ ), where ζ = maxr
{∑n

l=1 ηl(|c̃rl|1 + τ |d̃rl|1)
}

.
Combing the above analysis, if the initial condition satisfies
sup−τ≤s≤0 ‖ε(s)‖∞ > 1, the QVMNN (2) can synchronize
with QVMNN (1) within T = T1 + T2.

Remark 3. By applying ∞-norm in the construction of
Lyapunov function, some algebraic criteria are derived to
guarantee FTS of QVMNNs. In contrast to existing research
that employ non-decomposition methods by 1-norm or 2-norm,
this paper explores three distinct quaternion norms, providing
a wider selection of control gains for FTS analysis.

Remark 4. In some studies for FTS of delayed MNNs,
scholars designed controllers which contain the expression
for time delays [37], [38]. However, it can be challenging
to accurately predict or obtain such information in practical
applications. It is worth pointing out that the controller (4)
contains only linear and sign function terms. By applying
it, Theorems 1-3 provide a set of algebraic criteria for FTS.
Compared to the controller in [42], this controller is easier to
operate and does not require switching.

IV. NUMERICAL SIMULATIONS

This section will provide numerical simulations to illustrate
the effectiveness of the theoretical results and the application
to secure communication.

Example 1. Consider the following 2-D drive-response
QVMNNs (1) and (2), where a1 = a2 = 1.2, fl(pl(t)) =
0.5 tanh(pRl (t)) + 0.5 tanh(pIl (t))i + 0.5 tanh(pJl (t))j +
0.5 tanh(pKl (t))k, for l = 1, 2, τ(t) = | sin(t)|, τ = 0.1,
b̂22 = b̌22 = 1.5 − 1.2i + 0.5j + 1.1k, d̂22 = ď22 =
0.2 + 1.3i + j − 1.2k,

b11(p1(t)) =

{
1.7− 1.3i − 1.6j − 1.1k, |p1(t)|1 ≤ 2,

1.8− 1.6i − 1.3j − 1.3k, |p1(t)|1 > 2,

b12(p2(t)) =

{
−0.5 + 1.2i − 1.9j + 1.5k, |p2(t)|1 ≤ 2,

−0.6 + 1.5i − 1.7j + 1.3k, |p2(t)|1 > 2,

b21(p1(t)) =

{
1.0 + 0.1i − 1.9j + 1.3k, |p1(t)|1 ≤ 2,

0.8− 0.1i − 1.7j + 1.3k, |p1(t)|1 > 2,

c11(p1(t)) =

{
−0.3 + 0.4i + 1.6j + 1.3k, |p1(t)|1 ≤ 2,

−0.2 + 0.3i + 2.0j + 1.3k, |p1(t)|1 > 2,

c12(p2(t)) =

{
1.3− 0.5i − 0.9j + 1.5k, |p2(t)|1 ≤ 2,

1.3− 0.5i − 1.3j + 1.4k, |p2(t)|1 > 2,

c21(p1(t)) =

{
1.3− 0.4i − 1.5j + 1.2k, |p1(t)|1 ≤ 2,

1.3− 0.5i − 1.3j + 1.4k, |p1(t)|1 > 2,

c22(p2(t)) =

{
−1.2 + 0.8i + 1.4j + 1.5k, |p2(t)|1 ≤ 2,

−1.2 + 0.8i + 1.6j + 1.3k, |p2(t)|1 > 2,

d11(p1(t)) =

{
0.5 + 1.3i + 1.1j + 0.2k, |p1(t)|1 ≤ 2,

0.4 + 1.3i + 1.0j + 0.2k, |p1(t)|1 > 2,

d12(p2(t)) =

{
−0.8 + 1.1i − 0.2j + 1.3k, |p2(t)|1 ≤ 2,

−1.1 + 1.1i − 0.2j + 1.1k, |p2(t)|1 > 2,

d21(p1(t)) =

{
−0.1 + 1.2i − 1.0j + 1.3k, |p1(t)|1 ≤ 2,

−0.1 + 1.1i − 1.2j + 1.1k, |p1(t)|1 > 2.
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Fig. 1. The trajectories of error system states without controller.
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Fig. 2. The trajectories of error system states under the conditions in Theorem
1 by 2-norm.

Set p1(s) = − cos(s) + (1− cos(s))i + cos(s)j − sin(s)k,
p2(s) = − sin(s) − cos(s)i + 0.5 sin(s)j + (1 − sin(s))k,
q1(s) = sin(s2) + sin(s2)i + sin(1− s)j − sin(s2)k, q2(s) =
sin(1−s)−sin(s)i+0.6 sin(s)j+sin(s)k, where s ∈ [−1, 0].
It is demonstrated in Fig. 1 that the considered systems can
not achieve FTS without controller.

Calculate |b̃11|1 = 6, |b̃12|1 = 5.1, |b̃21|1 = 3.3, |b̃22|1 =
4.3, |c̃11|1 = 3.8, |c̃12|1 = 4.5, |c̃21|1 = 4.5, |c̃22|1 = 4.9,
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Fig. 3. The trajectories of error system states under the conditions in Theorem
2 by 1-norm.
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Fig. 4. The trajectories of error system states under the conditions in Theorem
3 by ∞-norm.

|d̃11|1 = 3.1, |d̃12|1 = 3.5, |d̃21|1 = 3.6, |d̃22|1 = 3.7, |b̃11|2 =
3.03, |b̃12|2 = 2.75, |b̃21|2 = 2.51, |b̃22|2 = 2.27, |c̃11|2 =
2.41, |c̃12|2 = 2.36, |c̃21|2 = 2.36, |c̃22|2 = 2.52, |d̃11|2 =
1.79, |d̃12|2 = 1.92, |d̃21|2 = 2.03, |d̃22|2 = 2.04, and select
ε = 0.5, γ1 = 5.12, γ2 = 4.77, ω1 = 4.9, ω2 = 4.2. Therefore,
conditions (5) and (6) in Theorem 1 are fulfilled, and the total
synchronization time can be estimated as 6.10s. In Fig. 2,
the corresponding trajectories of error system (3) are shown,
which indicate the achievement of the FTS under 2-norm.

Under the same initial conditions, let ξ = 0.5, γ1 = 12.3,
γ2 = 12.4, ω1 = ω2 = 18.9. Then, it can be concluded that
the conditions (8) and (9) are met, by Theorem 2, the FTS of
QVMNNs (1) and (2) can be attained within 5.64s, as depicted
in Fig. 3.

Select ξ = 0.5, γ1 = 15.2, γ2 = 13.4, ω1 = 10.9, and
ω2 = 8.9. Then, the synchronization time can be inferred as
3.59s. Fig. 4 shows the applicability of Theorem 3.

Remark 5. In this example, the time-varying delay is se-
lected as τ(t) = | sin(t)|, which fails to satisfy differentiability
and τ̇(t) < 1. The simulation results indicate that the obtained
theories are applicable to more general discrete time delays.

Example 2. To show the application of QVMNNs in secure
communication, consider the following drive QVMNN with
adaptive tracking signal

ṗr(t) =− arpr(t) +

2∑
l=1

brl(pl(t))fl(pl(t))

+

2∑
l=1

crl(pl(t))fl(pl(t− τ(t)))

+

2∑
l=1

drl(pl(t))

∫ t

t−τ
fl(pl(s))ds+ κr(χr(t)− σr(t)),

σ̇r(t) =κr(χr(t)− σr(t)), (12)

r = 1, 2, where κr > 0, χr(t), σr(t) ∈ Q are the plaintext
signal and the adaptive tracking signal, respectively. The other
parameters are consistent with those in Example 1.

In this secure communication scheme, the sender encrypts
the plaintext signal using the state information of the drive
system (12) according to ρr(t) = χr(t) + pr(t). The sender
securely deletes the initial system values to prevent disclosure
and transmits the system parameters, including κr along with
the ciphertext to the receiver. Upon receiving this information,
the receiver constructs the response system as follows:

q̇r(t) =− arqr(t) +

2∑
l=1

brl(ql(t))fl(ql(t))

+

2∑
l=1

crl(ql(t))fl(ql(t− τ(t)))

+

2∑
l=1

drl(ql(t))

∫ t

t−τ
fl(ql(s))ds+ ur(t)

+ κr(ρr(t)− qr(t)− %r(t)),
%̇r(t) =κr(ρr(t)− qr(t)− %r(t)), (13)

r = 1, 2, where %r(t) is the adaptive tracking signal. The
receiver decrypts the ciphertext using ρ̂r(t) = ρr(t) − qr(t),
Successful synchronization implies ρ̂r(t) = χr(t), ensuring
the recovered plaintext matches the original. Figure 5 illus-
trates the secure communication scheme based on QVMNNs
(12) and (13).

Fig. 5. The secure communication scheme.

Define ε̌r(t) = qr(t) − pr(t), and ε̂r(t) = %r(t) − σr(t),
then

˙̌εr(t) =Rr(t)− κr(ε̌r(t) + ε̂r(t)),

˙̂εr(t) =− κr(ε̌r(t) + ε̂r(t)),



where Rr equals to the right side of (3) for n = 2. Let
V̂ (t) = 1

2

∑2
r=1 ε̌

∗
r(t)ε̌r(t) + ε̂∗r(t)ε̂r(t). Under the conditions

of Theorem 1, it is straightforward to verify D+V (t) ≤ 0,
indicating that the drive-response systems (12) and (13) can
achieve synchronization, allowing the receiver to obtain the
recovered plaintext.

Selecting κ1 = κ2 = 1, χ1(t) = 0.2 sin(t) + 0.7 cos(t) +
(3 sin(t)− 1.5 cos(t))i + (sin(0.8t) + 0.3 cos(t))j + (sin(t) +
cos(t))k, χ2(t) = sin(1.2t) − 0.5 cos(t) + 0.9 sin(t)i +
(sin(2t) − 0.2 cos(t))j + (sin(1.5t) − cos(t))k, σ1(s) =
σ2(s) = %1(s) = %2(s) = 0, s ∈ [−1, 0]. and using the initial
conditions and parameters from Example 1, Figures 6 and
7 illustrate the plaintext, ciphertext, and recovered plaintext
signals.
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Fig. 6. Secure communication (a) Plaintext χ1(t). (b) Ciphertext ρ1(t). (c)
Recovered plaintext ρ̂1(t).

V. CONCLUSIONS

This paper explores the FTS control of QVMNNs with
discrete and distributed time delays by Halanay inequality. For
the error system, distinct differential inequalities are formulat-
ed to accommodate states inside and outside the unit ball.
By employing the Halanay inequality and finite-time stability
theory, algebraic criteria are established to achieve FTS of the
QVMNNs under the influence of a controller composed solely
of linear and sign function terms. Notably, the introduction
of 1-norm, 2-norm, and ∞-norm of quaternion facilitates the
construction of Lyapunov functions using simple norm forms,
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Fig. 7. Secure communication (a) Plaintext χ2(t). (b) Ciphertext ρ2(t). (c)
Recovered plaintext ρ̂2(t).

thereby enabling the analysis of QVMNNs through a non-
decomposition method. Besides, estimates of the synchroniza-
tion time are provided for different initial conditions. Given
that the robustness of systems is critical when coping with
uncertainty and unforeseen circumstances, our future research
will endeavor to study the robustness of QVMNNs with mixed
time delays.
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