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ABSTRACT

To define a steepest descent method over a neural network, we need to choose a
norm for each layer, a way to aggregate these norms across layers, and whether to
use normalization. We systematically explore different alternatives for aggregat-
ing norms across layers, both formalizing existing combinations of Adam and the
recently proposed Muon as a type of non-Euclidean gradient descent, and deriv-
ing new variants of the Muon optimizer. Through a comprehensive experimental
evaluation of the optimizers within our framework, we find that Muon is sensitive
to the choice of learning rate, whereas a new variant we call MuonMax is signif-
icantly more robust. We then show how to combine any Non-Euclidean gradient
method with model based momentum (known as Momo). The new Momo vari-
ants of Muon are significantly more robust to hyperparameter tuning, and often
achieve a better validation score. Thus for new tasks, where the optimal hyper-
parameters are not known, we advocate for using Momo in combination with
MuonMax to save on costly hyperparameter tuning.
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Figure 1: Learning rate sweep for training GPT2-Large (774M params) on SlimPajama with 1B
tokens. Left: Final validation loss for various learning rates. MuonAdam and Scion require precise
tuning, whereas our MuonAdam-Momo and MuonMax-Momo achieve low loss for a significantly
wider range of learning rates. Right: Training loss (with tuned LRs) for the last 40% of steps.

1 INTRODUCTION

The recently proposed Muon optimizer (Jordan et al., 2024b) has generated increasing interest due
to its efficiency for training language models (Pethick et al., 2025; Liu et al., 2025). This algorithm
was initially introduced (Bernstein & Newhouse, 2024a; Jordan et al., 2024b) and often interpreted
(Pethick et al., 2025; Kovalev, 2025; Fan et al., 2025) as steepest descent with respect to the spectral
norm for each weight matrix in a neural network.

However, this interpretation does not entirely apply for practical implementations of Muon. In prac-
tice, Muon is used side-by-side with another optimizer, where hidden weight matrices are trained
with Muon, and all other parameters by Adam (Jordan et al., 2024b; Liu et al., 2025; Jordan et al.,
2024a) or SignDescent (Pethick et al., 2025). We will refer to this combination as MuonAdam
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throughout, see Algorithm 1 in the appendix. Furthermore, for the weight matrices only the normal-
ized version of Muon has been explored in practice.

Here we aim to strengthen the theoretical foundation of MuonAdam and develop new optimizers by
systematically investigating different design choices which have not been explored. We introduce a
framework for steepest descent on the entire space of network parameters, which involves a choice
of norm for each layer, a product norm to aggregate norms across layers, and whether to normalize
updates. This framework encompasses MuonAdam and other variations, which provides a more
principled interpretation of these algorithms as genuine steepest descent on the entire space of net-
work parameters, and also opens a design space for previously unexplored Muon-type algorithms.

One such unexplored variant is what we call MuonMax, that arises from a new product norm and
does not use update normalization. The updates of MuonMax depend on the nuclear norm of the
momentum from every weight matrix, which is slightly less efficient per-step than Muon. To make
MuonMax more efficient, we introduce a stale approximation of these nuclear norms, which can be
implemented with near-identical memory and 5% additional wall-clock time per step as Muon.

Now that we can frame MuonAdam and other variants as a type of steepest descent, we can import
other tools used for steepest descent gradient methods. One such tool is Momo (Schaipp et al.,
2024), an adaptive step size based on model truncation (Asi & Duchi, 2019b) that increases robust-
ness to learning rate tuning. We extend the Momo step size to general steepest descent for arbitrary
norms and subsequently apply it to the algorithms in our framework.

We perform a systematic evaluation of many algorithms in our framework for training GPT mod-
els with up to 774M parameters for language modeling on the FineWeb (Penedo et al., 2024) and
SlimPajama (Soboleva et al., 2023) datasets with up to 6B tokens. We find that MuonMax-Momo
consistently matches or outperforms MuonAdam and Scion (Pethick et al., 2025) while enjoying a
much larger range of competitive learning rates, meaning that MuonMax-Momo is much less sen-
sitive to tuning. We also observe that Momo increases tuning robustness for all variations and that
our stale nuclear norm approximation causes negligible change in performance, while decreasing
wall-clock time per iteration. Our contributions are:

1. Formalizing MuonAdam. We introduce a steepest descent framework that encompasses
the practical implementation of Muon (with Adam used for a subset of parameters),
demonstrating that even these side-by-side optimizers can be interpreted as steepest de-
scent with respect to certain norms on the space of all network parameters. This solidifies
the theoretical foundation for practical variants of Muon, and sheds light on unexplored
aspects of Muon’s design. Our framework also includes Scion and other existing variants.

2. Defining non-Euclidean Momo. We show how to incorporate the adaptive step size Momo
with any steepest descent algorithm, which we find significantly increases robustness to the
learning rate tuning.

3. MuonMax: New practical, robust variant of Muon. We propose a new optimizer,
MuonMax, which arises within our framework from a novel product norm. With a stale ap-
proximation of the nuclear norm of each layer’s momentum, MuonMax has near-identical
memory cost and 5% additional wall-clock time per iteration compared to Muon.

4. Systematic Evaluation. We perform a comprehensive evaluation of optimizers in our
framework for language modeling. MuonMax-Momo consistently matches or outperforms
Muon and other baselines while widening the range of competitive step size choices by
several orders of magnitude.

Notation. We use ⟨·, ·⟩ to denote the Euclidean inner product on Rd or on products of the form
Rd1 × . . .×Rdn naturally by viewing elements of Rd1 × . . .×Rdn as elements of Rd1+...+dn . Note
that for matrices, which can also be viewed as elements of Rmn, this inner product is consistent with
the trace inner product, since Tr(ATB) = ⟨vec(A), vec(B)⟩.

2 RELATED WORK

Muon. The use of Spectral descent, that is steepest descent with respect to the spectral norm, on
deep neural networks dates back to Carlson et al. (2015a;b). Muon is the combination of spectral

2
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descent with momentum (Bernstein & Newhouse, 2024a), and a carefully crafted polynomial algo-
rithm for computing the polar factor (Jordan et al., 2024b). Recent work has designed an optimal
such polynomial algorithm for the polar factor called PolarExpress (Amsel et al., 2025), which we
use in our Muon implementation. Pethick et al. (2025) introduced Scion, which uses SignSGD
with momentum (instead of Adam) to train non-matrix parameters. Liu et al. (2025) scaled Muon
to train a 16B parameter language model with 5.7T tokens. Several works have developed theory
of Muon’s convergence (Li & Hong, 2025; Kovalev, 2025; Riabinin et al., 2025) and implicit bias
(Tsilivis et al., 2025; Fan et al., 2025).

Most similar to ours is the line of work developing the modular norm (Bernstein & Newhouse,
2024a; Large et al., 2024; Bernstein & Newhouse, 2024b). This line of work also argues that we
should perform steepest descent on the entire space of network parameters, instead of separately
at each layer, and focuses on steepest descent with respect to a particular norm called the modular
norm. This norm enables Lipschitz continuity of the neural network with respect to both weights and
inputs. In this work, we take an orthogonal approach, where we develop a general theory of steepest
descent on product spaces, and numerically investigate many possible norms on these spaces. We
are not aware of any existing evaluation of steepest descent with respect to the modular norm.

Model Truncation. Gradient descent can be viewed as using the local linearization of the loss as
a model of the loss itself. If we know a lower bound of the loss, for instance most loss functions are
positive, then we can improve this linear model by truncating the model at this lower bound (Asi &
Duchi, 2019a). Follow-up work emphasizes the importance of such model choices in stochastic op-
timization (Asi & Duchi, 2019b), and extends the framework to minibatch settings (Asi et al., 2020).
Using model truncation often leads to methods that are more stable and easier to tune (Loizou et al.,
2021; Davis & Drusvyatskiy, 2019; Meng & Gower, 2023; Schaipp et al., 2023). Recently Schaipp
et al. (2024) showed how to combine momentum with model truncation. Furthermore, Chen et al.
(2022) combine parameter-free coin betting methods with truncated models.

3 STEEPEST DESCENT ON NEURAL NETWORKS

Let F : Rd → R be the loss function, and ∥·∥ be any norm on Rd. We define the Linear Minimization
Oracle (LMO) and the dual norm as

LMO∥·∥(v) = argmin
∥u∥=1

⟨u,v⟩, and ∥v∥∗ = max
∥u∥=1

⟨u,v⟩, (1)

respectively. When the norm is clear from context, we will omit the subscript and write LMO.
Throughout we denote the stochastic gradient at step t by gt, and the momentum buffer mt which is
an exponential moving average of stochastic gradients, i.e. mt = βmt−1+(1−β)gt for β ∈ [0, 1).

3.1 CONSTRAINED VS REGULARIZED STEEPEST DESCENT

For a single weight matrix, the Muon update is often motivated as the LMO (Pethick et al., 2025)
with respect to the spectral norm. The following proposition shows that for a general norm, updating
in the direction of LMO(mt) is equivalent to minimizing a first-order Taylor approximation of F
around wt, with a constraint on the update’s norm and approximating∇F (wt) ≈mt.

Proposition 3.1. [Constrained Steepest Descent] The CSD update is given by

wt+1 = argmin
∥w−wt∥≤η

{F (wt) + ⟨mt,w −wt⟩} = wt + η LMO(mt). (2)

The ball constraint above ensures that we only use the Taylor approximation close to its center wt,
but another natural choice is to use regularization instead of a constraint as follows.

Proposition 3.2. [Regularized Steepest Descent] The RSD update is given by

wt+1 = argmin
w

{
F (wt) + ⟨mt,w −wt⟩+ 1

2η ∥w −wt∥2
}

= wt + η∥mt∥∗LMO(mt)

(3)

3
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In the case without momentum (i.e. β = 0), both of these algorithms have appeared throughout
the literature under the name steepest descent, but the recent line of work around Muon (Jordan
et al., 2024b; Bernstein & Newhouse, 2024b; Pethick et al., 2025; Liu et al., 2025) has mostly
focused on the constrained variant. To the best of our knowledge, the only work which considered
the regularized variant over the space of all parameters was Bernstein & Newhouse (2024a). Lau
et al. (2025) also use the regularized interpretation of Muon on a per layer basis instead of the entire
product space.

Notice that CSD and RSD have the same update direction, but with regularization the update mag-
nitude is multiplied by the dual norm of the momentum. Therefore, the primal norm of the update
∥wt+1 −wt∥ is η for CSD and η∥mt∥∗ for RSD. Intuitively, CSD enforces a normalized update.

3.2 PRODUCT NORMS

To describe steepest descent, we first need a norm over the space of all network parameters (Bern-
stein & Newhouse, 2024a). Instead of flattening all parameters into a single vector, we consider the
Cartesian product W = (w1,w2, . . . ,wn) of network parameters (where each wi could be a flat-
tened weight matrix, a bias vector, etc). We assign a norm ∥ · ∥(i) for parameter wi, then aggregate
these norms into a single norm on the product space. Two natural examples of product norms are

∥W ∥∞ := max1≤i≤n ∥wi∥(i), and ∥W ∥2 :=
√∑n

i=1 ∥wi∥2(i). (4)

Computing the steepest descent direction with respect to a product norm requires: the linear min-
imization oracle (LMO) and the dual norm of the product norm. As we show next, both can be
expressed in terms of the underlying per-parameter norms and the norm used to aggregate them.

Lemma 3.3. [LMO and Dual of Product Norms] For each i ∈ [n], let gi be a norm on Rdi , and
let f be a norm on Rn, and denote their dual norms as gi,∗ and f∗, respectively. Then the product
norm h : Rd1 × . . .× Rdn → R defined by

h(w1, . . . ,wn) = f
(
g1(w

1), . . . , gn(w
n)
)

(5)

is indeed a norm, and its LMO and dual norm are given by

LMOh(w
1, . . . ,wn) = (ϕ1LMOg1(w

1), . . . , ϕnLMOgn(w
n)) (6)

h∗(w
1, . . . ,wn) = f∗(g1,∗(w

1), . . . , gn,∗(w
n)), (7)

where (ϕ1, . . . , ϕn) := −LMOf (g1,∗(w
1), . . . , gn,∗(w

n)).

We can now compute steepest descent updates (both constrained and regularized) with respect to
the product norms ∥ · ∥∞, ∥ · ∥2, or any other product norm by plugging the LMO and dual of each
product norm into the steepest descent definitions (Equation 2 and Equation 3).

Denoting by mi
t the momentum buffer of parameter i, the updates for each parameter wi are:

CSD w.r.t. ∥ · ∥∞: wi
t+1 = wi

t + η LMO∥·∥(i)
(mi

t) (8)

RSD w.r.t. ∥ · ∥∞: wi
t+1 = wi

t + η
( n∑

j=1

∥mj
t∥(j),∗

)
LMO∥·∥(i)

(mi
t) (9)

CSD w.r.t. ∥ · ∥2: wi
t+1 = wi

t + η
∥mi

t∥(i),∗√∑n
j=1 ∥mj

t∥2
(j),∗

LMO∥·∥(i)
(mi

t) (10)

RSD w.r.t. ∥ · ∥2: wi
t+1 = wi

t + η ∥mi
t∥(i),∗LMO∥·∥(i)

(mi
t) (11)

For the methods above, the update direction for each parameter wi
t is always the LMO of mi

t,
regardless of the choice of product norm. However, the magnitude ϕi of each parameter’s update
is determined by the product norm and the dual norms of each parameter’s momentum. Therefore,
different choices of the product norm amount to different parameter-wise learning rates.

4
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3.3 INCORPORATING ADAM

Now we show how to represent the hybrid MuonAdam method as a steepest descent method. For
parameters θ, the Adam update, where all vector operations are element-wise1, is given by

θt+1 = θt − η mt√
vt+ϵ , and vt+1 = β2vt + (1− β2)g

2
t (12)

Adam can be interpreted as steepest descent in two different ways.

Proposition 3.4. The t-th update of Adam is the CSD with step size η with respect to the norm:

∥θ∥ada∞ :=
∥∥Diag

(√vt+ϵ
|mt|

)
θ
∥∥
∞ (13)

Proposition 3.5. The t-th update of Adam is the RSD with step size η with respect to the norm:

∥θ∥ada2 :=
√〈

Diag(
√
vt + ϵ)θ,θ

〉
=
∥∥Diag

(√√
vt + ϵ

)
θ
∥∥
2

(14)

Thus Adam can be interpreted as either an adaptive trust-region sign descent (Balles & Hennig,
2018; Orvieto & Gower, 2025) or preconditioned gradient descent (Schaipp et al., 2024). A distinc-
tive feature of these forms of steepest descent is that the norm changes over iterations.

3.4 THE WHOLE FRAMEWORK

For a given neural network, we partition the parameters as W = (W 1, . . . ,WL,θ), where
W 1, . . . ,WL are the hidden weight matrices and θ contains the remaining parameters flattened
into a single vector. MuonAdam applies LMO updates w.r.t. the spectral norm for the hidden
weight matrices, and uses Adam for the remainder of the parameters, with two separate learning
rates for these side-by-side optimizers, shown in Algorithm 1 (Appendix A).

Proposition 3.6. MuonAdam (Algorithm 1) is exactly CSD with step size ηm with respect to

∥W ∥muon = max

(
max
ℓ∈[L]

∥W ℓ∥2→2,
ηm

ηb
∥θ∥ada∞

)
. (15)

The coefficient ηm/ηb effectively allows for the use of different learning rates for hidden weight ma-
trices compared to all other parameters; this is a crucial feature of Muon’s speedrun implementation
(Jordan et al., 2024b) and of other variations (Pethick et al., 2025; Liu et al., 2025).

Proposition 3.6 shows the precise sense in which MuonAdam is a steepest descent algorithm: it is
constrained steepest descent with respect to a particular product norm that aggregates the spectral
norm of each hidden weight matrix and an adaptive ℓ∞ norm for all other parameters. This still
leaves several other valid choices within our general steepest descent framework to explore: whether
to use constrained or regularized steepest descent, which product norm to use (∥ · ∥∞, ∥ · ∥2), and
which norm to assign to the non-matrix parameters (∥ · ∥ada∞, ∥ · ∥ada2, ∥ · ∥∞).

These three factors yield a design space for Muon-type optimization algorithms, all of which are
founded on the principle of steepest descent, and most of which are unexplored. Among these algo-
rithms are several existing variations of Muon, including Scion (Pethick et al., 2025) and PolarGrad
(Lau et al., 2025) (see Appendix A.1 for the full statements).
Stale dual norms. Many of the updates we have presented so far require calculating dual norms of
the momentum buffers (e.g. Equation 9 through Equation 11). If that norm is the spectral norm, this
amounts to computing the nuclear norm of the momentum, which may appear costly, but actually
the dual norm is easy to compute once we have computed the LMO, since ∥v∥∗ = ⟨−LMO(v),v⟩.
However, in the case that updates are not separable across parameters, computing the dual norms of
each momentum buffer in this way requires either additional memory (to store the layer-wise LMOs)
or additional time (to compute the LMOs twice). To see why, consider the example of RSD with
the ∥ · ∥∞ product norm (Equation 9), and assume for simplicity that all parameters are assigned the

1We omit the bias correction since this bias can be removed by correctly initializing the momentum
buffers Schaipp et al. (2024). In any case it has little effect on performance (Orvieto & Gower, 2025).
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spectral norm. For each layer i, the update W i
t+1 = W i

t − η
(∑L

j=1 ∥M
j
t ∥nuc

)
polar(M i

t ) cannot

be executed until ∥M j
t ∥nuc = ⟨polar(M j

t ),M
j
t ⟩ has been computed for every layer j. Crucially,

the polar factors are used twice here: once to compute dual norms, and again to update weights. So,
we can either store the polar factors for reuse (extra memory), or compute them twice (extra time);
these options are sketched in the first two columns below.

Extra Memory

d = 0
lmos = {}
for i in range(1, L+1):

lmos[i] = -polar(M[i])
d -= lmos[i].dot(M[i])

for i in range(1, L+1):
W[i] += eta * d * lmos[i]

Extra Time

d = 0
for i in range(1, L+1):

lmo = -polar(M[i])
d -= lmo.dot(M[i])

for i in range(1, L+1):
lmo = polar(M[i])
W[i] += eta * d * lmo

Stale Norms

new_d = 0
for i in range(1, L+1):

lmo = -polar(M[i])
new_d -= lmo.dot(M[i])
W[i] += eta * old_d * lmo

old_d = new_d

The first option requires additional memory proportional to the size of the network, while the second
option doubles the wall-clock time needed to compute polar factors. As an efficient approximation,
we propose to reuse momentum dual norms from the previous step (shown in the third column),
which can be implemented without storing or recomputing polar factors, and only requires a single
additional scalar of memory for each layer. We found in our experiments that using these “stale”
dual norms had near negligible effect on performance. Informally, we expect this approximation to
work on the grounds that the momentum doesn’t change too drastically in a single step, since

mt −mt−1 = βmt−1 + (1− β)gt −mt−1 = (1− β)(gt −mt−1) (16)

has small magnitude when β is close to 1.
A New Product Norm. Our proposed algorithm MuonMax is regularized steepest descent with
respect to the following norm:

∥W ∥MM :=
√(

maxℓ∈[L] ∥W ℓ∥2→2

)2
+ ηm

ηb
∥θ∥2ada2 (17)

This norm comes from assigning ∥ · ∥ada2 to the non-matrix parameters, spectral norm to the ma-
trix parameters, then aggregating both using the standard ∥ · ∥2 Euclidean norm. We denote the
corresponding product norm as ∥ · ∥hyb, defined in Equation 127 of Appendix C.

4 MODEL TRUNCATION

Beyond a more solid theoretical footing for Muon-type algorithms, our steepest descent framework
also offers practical benefits: techniques designed for SGD (or normalized SGD) can now be easily
adapted for Muon-type algorithms by generalizing to arbitrary norms. In this section, we generalize
Momo (Schaipp et al., 2024) for steepest descent with respect to arbitrary norms.

Recall that both variations of steepest descent are motivated by locally minimizing a first-order Tay-
lor approximation of the loss around the current iterate. Momo makes use of model truncation (Asi
& Duchi, 2019b), which leverages knowledge of a loss lower bound F∗ to construct a better approx-
imation of the loss which is more accurate than a Taylor approximation. In Momo, this model also
incorporates information from the history of gradients and losses through momentum.

Denote ρi,t = (1 − β)βt−i, so that mt =
∑t

i=0 ρi,tgi, and denote by Ft(wt) the minibatch loss
at step t. Then for each t, we can build a model of the loss around wt as a weighted average of
first-order Taylor approximations centered at each iterate wi:

F (w) ≈
∑t

i=0 ρt,i (Fi(wi) + ⟨gi,w −wi⟩) (18)

=
∑t

i=0 ρt,i (Fi(wi) + ⟨gi,wt −wi⟩) +
∑t

i=0 ρt,i⟨gi,w −wt⟩ (19)

= F̃t + ⟨mt,w −wt⟩, (20)

where on the last line we denoted F̃t :=
∑t

i=0 ρt,i (Fi(wi) + ⟨gi,wt −wi⟩). Since F (w) ≥ F∗
for all w, we can improve our model by truncating, or clipping, it at F∗:

F (w) ≈ max
(
F̃t + ⟨mt,w −wt⟩, F∗

)
.

6
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Our truncated steepest descent methods, shown below, arise from minimizing this truncated model
either with a norm ball constraint or with squared norm regularization.

Proposition 4.1. [Constrained Momo] The ball constrained truncated model update is given by

wt+1 = argmin
∥w−wt∥≤η

{
max

(
F̃t + ⟨mt,w −wt⟩, F∗

)}
(21)

= wt +min
(
η, F̃t−F∗

∥mt∥∗

)
LMO(mt) (22)

The argmin above can have multiple solutions: we take the one that has minimal distance to wt.

Proposition 4.2. [Regularized Momo] The regularized truncated model update is given by

wt+1 = argmin
w

{
max

(
F̃t + ⟨mt,w −wt⟩, F∗

)
+ 1

2η∥w −wt∥2
}

(23)

= wt +min
(
η, F̃t−F∗

∥mt∥2
∗

)
∥mt∥∗LMO(mt) (24)

The term F̃t relies on the history of previous gradients and losses, but it can be computed with a
single scalar running average. Pseudocode for both Momo variations is shown in Algorithm 2.

Now that we have shown how to use Momo with respect to any norm, we can immediately com-
bine Momo with any steepest descent algorithm in our framework, including MuonAdam. For
example, our proposed algorithm MuonMax-Momo (Algorithm 3 in Appendix B) can be written as
Regularized Momo w.r.t. ∥ · ∥MM (defined in Equation 17) with stale dual norm approximations.

Proposition 4.3. [MuonMax-Momo] Regularized Momo with respect to the norm ∥ · ∥MM as
defined in equation 17 has the following closed form:

dt =

√(∑L
ℓ=1 ∥M ℓ

t ∥nuc

)2
+ ηb

ηm

∥∥∥ mθ
t√√
vθ
t+ϵ

∥∥∥2
2

W ℓ
t+1 = W ℓ

t −min
{
ηm, F̃t−F∗

d2
t

}(∑L
j=1 ∥M

j
t ∥nuc

)
polar(M ℓ

t )

θt+1 = θt −min
{
ηb,

ηb

ηm

F̃t−F∗
d2
t

}
mθ

t√
vθ
t+ϵ

.

(25)

The update in Proposition 4.3 matches that of Algorithm 3 except for the use of stale dual norms.

5 EXPERIMENTS

Here we provide a comprehensive evaluation of optimizers arising from our steepest descent frame-
work for training language models. We start by tuning and evaluating 36 optimizer variations aris-
ing from different choices of normalization, product norm, norm for the non-matrix parameters, and
whether to use model truncation. For this initial phase of evaluating all variations, we use 1B tokens
from the FineWeb dataset to train a GPT2-Small model with 124M params (Section 5.1). We take
the four best performing methods (MuonAdam, Scion, MuonAdam-Momo, MuonMax-Momo)
and evaluate them for a GPT2-Large model with 774M params on the SlimPajama dataset (Section
5.2), first by thoroughly tuning all four algorithms with 1B tokens, then running a final evaluation
of Muon and MuonMax-Momo with 6B tokens. Finally, in Section 5.3 we perform two ablation
studies: we examine the sensitivity of Momo variants to the choice of the loss lower bound F∗, and
we evaluate the effect of stale nuclear norm approximations on final loss and wall-clock time.

5.1 FINEWEB DATASET

To identify the strongest methods within our framework, we thoroughly tune and evaluate 36 vari-
ations that arise from mixing and matching settings for the following design choices: constrained
vs regularized steepest descent, product norm (∥ · ∥∞, ∥ · ∥2, ∥ · ∥hyb), norm for parameters besides
hidden weight matrices (∥ · ∥∞, ∥ · ∥ada∞, ∥ · ∥ada2), and whether to apply model truncation.
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Figure 2: Final validation loss with varying learning rates on FineWeb1B (left) and SlimPajama6B
(right). Our MuonAdam-Momo and MuonMax-Momo have wider basins than MuonAdam and
Scion, indicating increased robustness to learning rate tuning.

Setup. For all variations, we run one epoch of training with 1B tokens from the FineWeb dataset
(Penedo et al., 2024), using the GPT-2 Small architecture (124M params) from modded-nanogpt
(Jordan et al., 2024a). Each algorithm in our framework has two learning rates: ηm for the hidden
weight matrices (which we call the Muon learning rate) and ηb for everything else (which we call
the base learning rate). Due to the computational cost of performing a double grid search, we opt
to tune with an iterated grid search; for each algorithm, we fix ηb while tuning ηm, then fix ηm at
the tuned value while tuning ηb. See Appendix C for a complete specification of the tuning protocol
and other implementation details. For all Momo variations, we set the lower bound F∗ = 3.2, and
conduct a sensitivity analysis of this hyperparameter in Section 5.3.

Results. The final loss for each variation is shown in Tables 2 and 3 of Appendix D.
For the best performing variations (MuonAdam, Scion, MuonAdam-Momo, and MuonMax-
Momo), we additionally evaluate the sensitivity to learning rate tuning by running each algo-
rithm with LRs (ρηm, ρηb), where (ηm, ηb) are the previously tuned LRs and ρ varies over
{0.03, 0.1, 0.3, 1, 3, 10, 30, 100}, with three random seeds each (Figure 2a). Table 4 in Appendix
D gives the mean and standard deviation of final validation loss for each algorithm with tuned LRs.
For these runs, MuonAdam-Momo and MuonMax-Momo use stale nuclear norms.

In Figure 2a, we see that MuonAdam and MuonAdam-Momo achieve the smallest loss among
all variations, though MuonAdam is much more sensitive to the learning rate. Both MuonAdam-
Momo and MuonMax-Momo enjoy a much wider range of competitive learning rates compared
with MuonAdam and Scion; for this search range, the proportion of LRs yielding loss less than
3.65 is 25% for MuonAdam and Scion, 50% for MuonMax-Momo, and 62.5% for MuonAdam-
Momo. Also, Table 4 (Appendix D) shows that both of our Momo methods achieve a smaller
variation in loss across random seeds compared with MuonAdam and Scion.

5.2 SLIMPAJAMA DATASET

Having identified MuonAdam, Scion, MuonAdam-Momo, and MuonMax-Momo as the strongest
variations, we evaluate these methods for training the GPT2-Large architecture (774M params) using
the SlimPajama dataset (Soboleva et al., 2023). We first evaluate all four algorithms for one epoch
with 1B tokens, then evaluate MuonAdam and MuonMax-Momo for one epoch with 6B tokens.

Setup. Most aspects of training are the same as in Section 5.1, the main difference being the tuning
protocol. To tune the two learning rates ηm and ηb, we run a double grid search for each algorithm,
varying ηm ∈ {1e-4, 1e-3, 1e-2, 1e-1} and ηb ∈ {1e-5, 1e-4, 1e-3, 1e-2} for a total of 16 settings
per algorithm. For the Momo variants, we set the lower bound F∗ = 2.8 when training with 1B
tokens and F∗ = 2.0 when training with 6B tokens. We did not tune F∗, and based on the sensitivity
analysis in Section 5.3, we expect that this hyperparameter does not have a large effect on final
performance for tuned learning rates.
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Figure 3: Sensitivity to loss lower bound F∗ for model truncation (Fineweb1B).

MuonAdam MuonMax MuonAdam-Momo Scion-Momo MuonMax-Momo

Original 3.604 (1×) 3.791 (1.09×) 3.551 (1.10×) 3.592 (1.08×) 3.576 (1.11×)
Stale - 3.768 (1.04×) 3.554 (1.04×) 3.590 (1.02×) 3.580 (1.05×)

Table 1: Effect of stale nuclear norm approximation on final loss and wall-clock time per-iteration
compared to MuonAdam, which has no stale variant because it does not involve nuclear norms.

Results. Figure 1 shows the final loss of each method with LRs (ρηm, ρηb), where (ηm, ηb) are
tuned LRs and ρ ∈ {1e-2, 1e-1, 1, 1e1, 1e2, 1e3}. The sensitivity of each method with respect to
both learning rates is shown for the full 2D grid in Figure 9 of Appendix D. We see in Figure 1
that MuonMax-Momo achieves the lowest loss of all methods, and that both Momo variations are
extremely robust to the choice of learning rates. Both MuonAdam and Scion have quite narrow
sensitivity curves, that is, shifting the optimal learning rates by a factor of 10 in either direction
creates a large increase in final loss. In comparison, the final loss of MuonMax-Momo remains
between 3.13 and 3.24 even as ηm varies over five orders of magnitude from 1e-3 to 10.

We see similar robustness of MuonMax-Momo when scaling up to 6B tokens. Due to the cost
of re-tuning learning rates, we reuse the ratio ηm/ηb of the tuned learning rates from 1B training,
and vary ηm ∈ {1e-4, 1e-3, 1e-2, 1e-1} for MuonAdam and MuonMax-Momo. Figure 2b shows
that MuonMax-Momo achieves a lower loss than MuonAdam for every setting in this range, and
generally exhibits less variation in the loss as the learning rates are shifted from their optimal values.

5.3 ABLATIONS

To probe the behavior of our proposed methods, we perform two ablation studies: (1) we evaluate
how the choice of loss lower bound F∗ affects the final validation loss of MuonAdam-Momo and
MuonMax-Momo; (2) we evaluate the effect of using stale nuclear norm approximations on the
final validation loss and wall-clock time per iteration for several methods in our framework. In this
section, we use the same setup as in Section 5.1 (GPT2-Small, FineWeb dataset, 1B tokens).

Sensitivity Analysis of F∗. Figure 3 shows the final loss of MuonAdam-Momo and MuonMax-
Momo with various ηm, as the loss lower bound F∗ varies over {0, 1.6, 2.4, 2.8, 3.2}. We see
that the choice of F∗ makes the biggest difference when ηm is larger than the optimal value.
For MuonAdam-Momo, the final loss is nearly identical for all values of F∗ when ηm ≤ 0.1.
MuonMax-Momo is somewhat more sensitive to the choice of F∗, but even the aggressive lower
bound of F∗ = 0.0 achieves 3.61 loss compared to the 3.58 optimum achieved with F∗ = 3.2.

Effect of Stale Approximation. Table 1 shows the final validation loss and per-step wall-clock
times of four methods (with tuned LRs) with and without stale nuclear norm approximations. We
see that in all cases, the stale approximation increases the loss by at most 0.004, while sometimes
even decreasing it. We therefore conclude that this approximation does not noticeably affect the
final loss for these tuned algorithms, although it does afford a speedup; for MuonMax-Momo, the
additional wall-clock time compared to MuonAdam is reduced from 11% to 5%.
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REPRODUCIBILITY STATEMENT

All of the code we used for our experiments is included in the supplementary material. This includes
code to download and process data, run training, and make plots. See README.md in the supple-
mentary material for instructions on running our code. On a conceptual level, all of our proposed
methods are derived in full detail, and can in principle be implemented from scratch in PyTorch
without any additional knowledge outside of the paper. Full pseudocode for our proposed method
is given in Algorithm 3, and any of the other methods we discuss in this paper can be derived from
Propositions 3.1, 3.2, 4.1, 4.2, Lemma 3.3, and the specifications in Table 2.
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A PROOFS FROM SECTION 3

In what follows, for a norm denoted by a subscript such as ∥ · ∥∞, we will sometimes replace
LMO∥·∥∞ with LMO∞.

Proposition 3.1. [Constrained Steepest Descent] The CSD update is given by

wt+1 = argmin
∥w−wt∥≤η

{F (wt) + ⟨mt,w −wt⟩} = wt + η LMO(mt). (2)

Proof of Proposition 3.1. Denoting r = ∥w−wt∥ and ∆ = (w−wt)/∥w−wt∥, we can change
variables in the optimization problem from Equation 2, yielding wt+1 = wt + rt∆t, where

(rt,∆t) = argmin
r∈[0,η],∥∆∥=1

{r⟨mt,∆⟩} , (26)

which can be separated into

∆t = argmin
∥∆∥=1

⟨mt,∆⟩ = LMO(mt), (27)

and

rt = argmin
r∈[0,η]

{r⟨mt,∆t⟩} = argmin
r∈[0,η]

{r⟨mt, LMO(mt)⟩} = argmin
r∈[0,η]

{−r∥mt∥∗} = η, (28)

so wt+1 = wt + ηLMO(mt).

Proposition 3.2. [Regularized Steepest Descent] The RSD update is given by

wt+1 = argmin
w

{
F (wt) + ⟨mt,w −wt⟩+ 1

2η ∥w −wt∥2
}

= wt + η∥mt∥∗LMO(mt)

(3)

Proof of Proposition 3.2. For the optimization problem from Equation 3, we use the same change
of variables as in the proof of Proposition 3.1: r = ∥w − wt∥ and ∆ = (w − wt)/∥w − wt∥.
Therefore wt+1 = wt + rt∆t, where

(rt,∆t) = argmin
r≥0,∥∆∥=1

{
r⟨mt,∆⟩+ r2

2η

}
, (29)

which can be separated into

∆t = argmin
∥∆∥=1

⟨mt,∆⟩ = LMO(mt), (30)

and

rt = argmin
r≥0

{
r⟨mt,∆t⟩+ r2

2η

}
(31)

= argmin
r≥0

{
r⟨mt, LMO(mt)⟩+ r2

2η

}
(32)

= argmin
r≥0

{
−r∥mt∥∗ + r2

2η

}
(33)

= η∥mt∥∗, (34)

so that wt+1 = wt + η∥mt∥∗LMO(mt).

Lemma 3.3. [LMO and Dual of Product Norms] For each i ∈ [n], let gi be a norm on Rdi , and
let f be a norm on Rn, and denote their dual norms as gi,∗ and f∗, respectively. Then the product
norm h : Rd1 × . . .× Rdn → R defined by

h(w1, . . . ,wn) = f
(
g1(w

1), . . . , gn(w
n)
)

(5)
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is indeed a norm, and its LMO and dual norm are given by

LMOh(w
1, . . . ,wn) = (ϕ1LMOg1(w

1), . . . , ϕnLMOgn(w
n)) (6)

h∗(w
1, . . . ,wn) = f∗(g1,∗(w

1), . . . , gn,∗(w
n)), (7)

where (ϕ1, . . . , ϕn) := −LMOf (g1,∗(w
1), . . . , gn,∗(w

n)).

Proof of Lemma 3.3. To show that h is a norm, we only need to show that

1. h(w1, . . . ,wn) ≥ 0 for all w1, . . . ,wn,

2. h(w1, . . . ,wn) = 0 if and only if (w1 . . . ,wn) = 0,

3. h(λw1, . . . , λwn) = |λ|h(w1, . . . ,wn) for all λ ∈ R,w1, . . . ,wn,

4. h(w1 + v1, . . . ,wn + vn) ≤ h(w1, . . . ,wn) + h(v1, . . . ,vn) for all w1,v1, . . . ,wn,vn.

All of these properties hold immediately from the definition of h = f ◦ (g1, . . . , gn) together with
repeated applications of the norm properties of f and g1, . . . , gn.

From the definition of the dual norm,

h∗(w1, . . . ,wn) = max

{
n∑

i=1

⟨wi,vi⟩

∣∣∣∣∣ h(v1, . . . ,vn) = 1

}
(35)

= max

{
n∑

i=1

⟨wi,vi⟩

∣∣∣∣∣ f(g1(v1), . . . , gn(vn)) = 1

}
. (36)

We use a change of variables ui = vi/gi(vi) and ri = gi(vi), which separates the update direction
ui (with unit norm) from the update norm ri. So Equation 36 is equivalent to

h∗(w1, . . . ,wn) = max

{
n∑

i=1

ri⟨wi,ui⟩

∣∣∣∣∣ f(r1, . . . , rn) = 1

}
(37)

Note that the condition f(r1, . . . , rn) = 1 does not involve ui, so each term ri⟨wi,ui⟩ is maximized
when

ui = argmax
gi(zi)=1

⟨wi, zi⟩ = −LMOgi(wi), (38)

with maximum value ⟨wi,ui⟩ = gi,∗(wi). Using this in Equation 37 gives

h∗(w1, . . . ,wn) = max

{
n∑

i=1

rigi,∗(wi)

∣∣∣∣∣ f(r1, . . . , rn) = 1

}
. (39)

Denoting r = (r1, . . . , rn) and s = (g1,∗(w1), . . . , gn,∗(wn)), this is equivalent to

h∗(w1, . . . ,wn) = max {⟨r, s⟩ | f(r) = 1} (40)
= f∗(s), (41)

which gives us the dual norm h∗.

To obtain LMOh, we only need to look at the value of the variables which achieved the maximum
in the above derivation:

ui = −LMOgi(wi), and r = LMOf (g1,∗(w1), . . . , gn,∗(wn)) (42)

so that
vi = riLMOf (g1,∗(w1), . . . , gn,∗(wn)) (43)

maximizes
∑n

i=1⟨wi,vi⟩ subject to h(v1, . . . ,vn) = 1. Note that LMOh(w1, . . . ,wn) is exactly
the minimizer of

∑n
i=1⟨wi,vi⟩ subject to the same norm constraint; since

∑n
i=1⟨wi,vi⟩ is linear in

vi, the minimizer is the negative of the maximizer. Therefore

LMOh(w1, . . . ,wn) = −(r1LMOg1(w1), . . . , rnLMOgn(wn)). (44)
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The following lemma will be useful later for quickly computing duals and LMOs of various norms.

Lemma A.1. For any norm ∥ · ∥ on Rd full rank matrix D ∈ Rd×d, the norm defined by ∥v∥D =
∥Dv∥ has

LMO∥·∥D
(v) = D−1LMO∥·∥(D

−Tv), (45)

∥v∥D,∗ =
∥∥D−Tv

∥∥
∗ . (46)

Proof. The fact that ∥ · ∥D is a norm follows immediately from the norm properties of ∥ · ∥ together
with the fact that D is full rank. For the dual norm,

∥v∥D,∗ = max
∥u∥D=1

⟨v,u⟩ = max
∥Du∥=1

⟨v,u⟩ (47)

and a change of variables z = Du yields

∥v∥D,∗ = max
∥z∥=1

⟨v,D−1z⟩ = max
∥z∥=1

⟨D−Tv, z⟩ =
∥∥D−Tv

∥∥
∗ . (48)

For the LMO, we can look at the value of the variables that maximize the inner product in the above:

z = argmax
∥z∥=1

⟨D−Tv, z⟩ = −LMO∥·∥(D
−Tv). (49)

Returning to the u variable then gives

u = D−1z = −D−1LMO∥·∥(D
−Tv)

which maximizes ⟨v,u⟩ subject to ∥u∥D = 1. Since ⟨v,u⟩ is linear in u, the minimizer of ⟨v,u⟩
under the norm constraint ∥u∥D = 1 is exactly the negative of the maximizer under the same
constraint. So

LMO∥·∥D
(v) = argmin

∥u∥D=1

⟨v,u⟩ = D−1LMO∥·∥(D
−Tv) (50)

Proposition 3.4. The t-th update of Adam is the CSD with step size η with respect to the norm:

∥θ∥ada∞ :=
∥∥Diag

(√vt+ϵ
|mt|

)
θ
∥∥
∞ (13)

Proof of Proposition 3.4. Let D = Diag
(√

vt+ϵ
|mt|

)
, so that ∥θ∥ada∞ = ∥Dθ∥∞. Then by Proposi-

tion 3.1, one step of CSD w.r.t. ∥ · ∥ada∞ is given by

θt+1 = θt + ηLMOada∞(mt) (51)
(i)
= θt + ηD−1LMO∞(D−Tmt) (52)
(ii)
= θt − ηD−1 sign(D−Tmt) (53)

= θt − ηDiag
(

|mt|√
vt+ϵ

)
sign

(
Diag

(
|mt|√
vt+ϵ

)
mt

)
(54)

= θt − η |mt|√
vt+ϵ ⊙ sign(mt) (55)

= θt − η mt√
vt+ϵ , (56)

where (i) uses Lemma A.1 and (ii) uses LMO∞(v) = − sign(v).

Proposition 3.5. The t-th update of Adam is the RSD with step size η with respect to the norm:

∥θ∥ada2 :=
√〈

Diag(
√
vt + ϵ)θ,θ

〉
=
∥∥Diag

(√√
vt + ϵ

)
θ
∥∥
2

(14)
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Algorithm 1 MuonAdam: where W 1, . . . ,WL are the weight matrices,
and θ are all other parameters flattened into a vector.

Inputs: W 1
0 , . . . ,W

L
0 ,θ0, learning rates ηb, ηm, EMA parameters β, β1, β2

1 for t = 0, 1, . . . , T − 1 do
2 (G1

t , . . . ,G
L
t , g

θ
t )← backward(W 1

t , . . .W
L
t ,θt)

3 for ℓ = 1, . . . , L do
4 M ℓ

t = βM ℓ
t−1 + (1− β)Gℓ

t

5 W ℓ
t+1 ←W ℓ

t − ηmpolar(M ℓ
t )

6 end for
7 mθ

t = β1m
θ
t−1 + (1− β1)g

θ
t

8 vθ
t = β2v

θ
t−1 + (1− β2)g

θ
t ⊙ gθ

t

9 θt+1 = θt − ηb
mθ

t√
vθ
t+ϵ

10 end for

Proof of Proposition 3.5. Let D = Diag
(√√

vt + ϵ
)
, so that ∥θ∥ada2 = ∥Dθ∥2. Then by Propo-

sition 3.2, one step of RSD w.r.t. ∥ · ∥ada2 is given by

θt+1 = θt + η∥mt∥ada2,∗LMOada2(mt) (57)
(i)
= θt + η∥D−Tmt∥2,∗D−1LMO2(D

−Tmt) (58)
(ii)
= θt − η∥D−Tmt∥2D−1 D−Tmt

∥D−Tmt∥2
(59)

= θt − ηD−1D−Tmt (60)

= θt − ηDiag
(

1√
vt+ϵ

)
mt (61)

= θt − η mt√
vt+ϵ , (62)

where (i) uses Lemma A.1 and (ii) uses LMO2(v) = −v/∥v∥2.

For reference, we include the pseudocode for MuonAdam (Muon side-by-side with Adam) in
Algorithm 1.

Proposition 3.6. MuonAdam (Algorithm 1) is exactly CSD with step size ηm with respect to

∥W ∥muon = max

(
max
ℓ∈[L]

∥W ℓ∥2→2,
ηm

ηb
∥θ∥ada∞

)
. (15)

Proof of Proposition 3.6. By Proposition 3.1, one step of CSD w.r.t. ∥ · ∥muon can be written as

Wt+1 = Wt + ηmLMOmuon(Mt), (63)

where Mt is the momentum buffer for all network parameters, i.e. it is the concatenation of the
momentum buffers of each parameter:

Mt = (M1
t , . . . ,M

L
t ,mθ

t ). (64)

Denote λ = ηb/ηm. To compute the LMO term, we can rewrite ∥W ∥muon as

∥W ∥muon = max
(
∥W 1∥2→2, . . . ∥WL∥2→2,

1
λ∥θ∥ada∞

)
, (65)

so that ∥ · ∥muon can be written as the composition (as in Lemma 3.3)

∥W ∥muon = f(g1(W
1), . . . gL(W

L), gL+1(θ)), (66)

with gi(M) = ∥M∥2→2 for i ∈ [L], gL+1(θ) = ∥θ∥ada∞, and f(v) = ∥Dv∥∞, where D =
Diag(1, . . . , 1, 1/λ) ∈ R(L+1)×(L+1). Therefore, by Lemma 3.3, the update in Equation 63 is
equivalent to

W ℓ
t+1 = W ℓ

t + ηmϕℓLMO2→2(M
ℓ
t )

θt+1 = θt + ηmϕL+1LMOada∞(mθ
t ),

(67)
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where ϕ = −LMOf (∥M1
t ∥nuc, . . . , ∥ML

t ∥nuc, ∥mθ
t ∥ada∞,∗). We know LMO2→2(M) =

−polar(M), and we proved in Proposition 3.4 that

LMOada∞(v) = − |mθ
t |√

vθ
t+ϵ

sign(v), (68)

so the LMO terms in Equation 67 can be simplified as

W ℓ
t+1 = W ℓ

t − ηmϕℓpolar(M ℓ
t )

θt+1 = θt − ηmϕL+1
mθ

t√
vθ
t +ϵ

.
(69)

To simplify ϕ, we use Lemma A.1. Denoting u = (∥M1
t ∥nuc, . . . , ∥ML

t ∥nuc, ∥mθ
t ∥ada∞,∗), we

have
ϕ = −LMOf (u) = −D−1LMO∞(D−Tu) = D−1 sign(D−Tu) = D−11, (70)

so that ϕℓ = 1 for ℓ ∈ [L] and ϕL+1 = λ = ηb/ηm. Plugging back to Equation 69 gives

W ℓ
t+1 = W ℓ

t − ηmpolar(M ℓ
t )

θt+1 = θt − ηa
mθ

t√
vθ
t+ϵ

,
(71)

which is exactly the update from Algorithm 1.

A.1 RECOVERING EXISTING ALGORITHMS

Propositions A.2 and A.3 below show how Scion (Pethick et al., 2025) and PolarGrad (Lau et al.,
2025) are both instances of our steepest descent framework. All notation in this section follows that
of Section 3.

Throughout our paper, Scion refers to the following algorithm:

W ℓ
t+1 = W ℓ

t − ηmpolar(M ℓ
t )

θt+1 = θt − ηbsign(mθ
t ).

(72)

This update differs slightly from the algorithm proposed by Pethick et al. (2025) in that for each
parameter matrix W of shape dout × din, we omit a coefficient of

√
dout/din from the update. This

corresponds to assigning to each weight matrix the spectral norm ∥ · ∥2→2 rather than the RMS to
RMS operator norm used by Pethick et al. (2025). Indeed, the motivation of the RMS to RMS norm
is to allow for hyperparameter transfer across architecture sizes, but in our work we focus on LR
sensitivity for a fixed architecture, so for simplicity we did not employ this RMS scaling. However,
we could easily recover the RMS variant by replacing the spectral norm ∥ · ∥2→2 with the RMS to
RMS operator norm.

Proposition A.2. Scion is exactly CSD with step size ηm with respect to

∥W ∥scion = max

(
max
1≤ℓ≤L

∥W ℓ∥2→2,
ηm

ηb
∥θ∥∞

)
. (73)

Note that the same conclusion was already reached by Pethick et al. (2025), that is, they already
described Scion in terms of a norm on the space of all parameters (see their Equation (6)). We
include Proposition A.2 to specify how Scion is a special case of our framework.

Proof. The proof is very similar to that of Proposition 3.6, since Muon-Adam differs from Scion
only in that Adam is used for non-matrix parameters instead of sign SGD with momentum.

By Proposition 3.1, one step of CSD w.r.t. ∥ · ∥scion can be written as

Wt+1 = Wt + ηmLMOscion(Mt), (74)

where Mt is the momentum buffer for all network parameters, i.e. it is the concatenation of the
momentum buffers of each parameter:

Mt = (M1
t , . . . ,M

L
t ,mθ

t ). (75)
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Denote λ = ηb/ηm. To compute the LMO term, we can rewrite ∥W ∥scion as

∥W ∥scion = max
(
∥W 1∥2→2, . . . ∥WL∥2→2,

1
λ∥θ∥∞

)
, (76)

so that ∥ · ∥scion can be written as the composition (as in Lemma 3.3)

∥W ∥scion = f(g1(W
1), . . . gL(W

L), gL+1(θ)), (77)

with gi(M) = ∥M∥2→2 for i ∈ [L], gL+1(θ) = ∥θ∥∞, and f(v) = ∥Dv∥∞, where D =
Diag(1, . . . , 1, 1/λ) ∈ R(L+1)×(L+1). Therefore, by Lemma 3.3, the update in Equation 74 is
equivalent to

W ℓ
t+1 = W ℓ

t + ηmϕℓLMO2→2(M
ℓ
t )

θt+1 = θt + ηmϕL+1LMO∞(mθ
t ),

(78)

where ϕ = −LMOf (∥M1
t ∥nuc, . . . , ∥ML

t ∥nuc, ∥mθ
t ∥ada∞,∗). We know LMO2→2(M) =

−polar(M) and LMO∞(v) = −sign(v), so the LMO terms in Equation 78 can be simplified as

W ℓ
t+1 = W ℓ

t − ηmϕℓpolar(M ℓ
t )

θt+1 = θt − ηmϕL+1sign(mθ
t ).

(79)

To simplify ϕ, we use Lemma A.1. Denoting u = (∥M1
t ∥nuc, . . . , ∥ML

t ∥nuc, ∥mθ
t ∥1), we have

ϕ = −LMOf (u) = −D−1LMO∞(D−Tu) = D−1 sign(D−Tu) = D−11, (80)

so that ϕℓ = 1 for ℓ ∈ [L] and ϕL+1 = λ = ηb/ηm. Plugging back to Equation 79 gives

W ℓ
t+1 = W ℓ

t − ηmpolar(M ℓ
t )

θt+1 = θt − ηasign(mθ
t ),

(81)

which is exactly the update from Scion (Equation 72).

Throughout our paper, PolarGrad refers to the following algorithm:

W ℓ
t+1 = W ℓ

t − ηs∥M ℓ
t ∥nucpolar(M ℓ

t )

θt+1 = θt − ηb
mθ

t√
vθ
t + ϵ

.
(82)

Lau et al. (2025) use the name ”PolarGrad” to refer to a class of matrix-aware optimization methods,
whereas we use it to refer to the specific method called ”Vanilla PolarGrad” by Lau et al. (2025) (see
their Equation (8)), with Adam used for non-matrix parameters.

Proposition A.3. PolarGrad is exactly CSD with step size ηm with respect to

∥W ∥PG =

√√√√ L∑
ℓ=1

∥W ℓ∥22→2 +
ηm
ηb
∥θ∥2ada2. (83)

Proof. Denote λ = ηb/ηm. Notice that ∥ · ∥PG can be written as a composition (as in Lemma 3.3)
as:

∥W ∥PG = f(g1(W
1), . . . , gL(W

L), gL+1(θ)), (84)

with gi(M) = ∥M∥2→2 for i ≤ L, gL+1(θ) = ∥θ∥ada2/
√
λ, and f(v) = ∥v∥2. Therefore, ∥ · ∥PG

uses the ℓ2 norm as the product norm, so Equation 11 implies that the update can be rewritten as

W ℓ
t+1 = W ℓ

t + ηm∥M ℓ
t ∥nucLMO2→2(M

ℓ
t )

θt+1 = θt + ληm∥mθ
t ∥ada2,∗LMOada2(m

θ
t ).

(85)

The update to W ℓ
t can be simplified by plugging in LMO2→2(M) = −polar(M), and the update

to θt can be simplified by plugging in the definition of λ and the dual and LMO of ∥ · ∥ada2 from
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Proposition 3.5. This yields that Equation 85 is equivalent to

W ℓ
t+1 = W ℓ

t − ηm∥M ℓ
t ∥nucpolar(M ℓ

t )

θt+1 = θt − ηb
mθ

t√
vθ
t + ϵ

,
(86)

which is exactly PolarGrad (Equation 82).

B PROOFS FROM SECTION 4

Proposition 4.1. [Constrained Momo] The ball constrained truncated model update is given by

wt+1 = argmin
∥w−wt∥≤η

{
max

(
F̃t + ⟨mt,w −wt⟩, F∗

)}
(21)

= wt +min
(
η, F̃t−F∗

∥mt∥∗

)
LMO(mt) (22)

Proof of Proposition 4.1. Similar to the proofs of Proposition 3.1 and 3.2, we change variables to
parameterize the magnitude r = ∥w−wt∥ and direction ∆ = (w−wt)/∥w−wt∥ of the update.
So wt+1 = wt + rt∆t, where

(rt,∆t) = argmin
r∈[0,η],∥∆∥=1

{
max

(
F̃t + r⟨mt,∆⟩, F∗

)}
. (87)

Since max
(
F̃t + r⟨mt,∆⟩, F∗

)
is monotonic in ⟨mt,∆⟩,

∆t = argmin
∥∆∥=1

⟨mt,∆⟩ = LMO(mt), (88)

so

rt = argmin
r∈[0,η]

{
max

(
F̃t − r⟨mt,∆t⟩, F∗

)}
= argmin

r∈[0,η]

{
max

(
F̃t − r∥mt∥∗, F∗

)}
. (89)

Note that max
(
F̃t − r∥mt∥∗, F∗

)
can have multiple minimizing values of r ∈ [0, η]. If η ≤

(F̃t − F∗)/∥mt∥∗, then the minimizer r = η is unique. If η ≥ (F̃t − F∗)/∥mt∥∗, then any r

with (F̃t − F∗)/∥mt∥∗ ≤ r ≤ η achieves the minimum F∗. In this case, we choose the value that
minimizes the norm of the update, i.e. rt = (F̃t−F∗)/∥mt∥∗. These two cases are summarized as:

rt = min
(
η, F̃t−F∗

∥mt∥∗

)
, (90)

so
wt+1 = wt +min

(
η, F̃t−F∗

∥mt∥∗

)
LMO(mt). (91)

Proposition 4.2. [Regularized Momo] The regularized truncated model update is given by

wt+1 = argmin
w

{
max

(
F̃t + ⟨mt,w −wt⟩, F∗

)
+ 1

2η∥w −wt∥2
}

(23)

= wt +min
(
η, F̃t−F∗

∥mt∥2
∗

)
∥mt∥∗LMO(mt) (24)

Proof of Proposition 4.2. Similar to the proofs of Proposition 3.1 and 3.2, we perform a change of
variables to parameterize the magnitude r = ∥w −wt∥ and direction ∆ = (w −wt)/∥w −wt∥
of the update. So wt+1 = wt + rt∆t, where

(rt,∆t) = argmin
r≥0,∥∆∥=1

{
max

(
F̃t + r⟨mt,∆⟩, F∗

)
+ r2

2η

}
. (92)
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Note that max
(
F̃t + r⟨mt,∆⟩, F∗

)
+ r2

2η is monotonic in ⟨mt,∆⟩, so

∆t = argmin
∥∆∥=1

{⟨mt,∆⟩} = LMO(mt), (93)

and

rt = argmin
r≥0

{
max

(
F̃t + r⟨mt,∆t⟩, F∗

)
+ r2

2η

}
(94)

= argmin
r≥0

{
max

(
F̃t − r∥mt∥∗, F∗

)
+ r2

2η

}
. (95)

Denote f(r) = max
(
F̃t − r∥mt∥∗, F∗

)
+ r2

2η . Then f can be written piecewise as

f(r) =

{
F̃t − r∥mt∥∗ + r2

2η r ≤ F̃t−F∗
∥mt∥∗

F∗ +
r2

2η r ≥ F̃t−F∗
∥mt∥∗

. (96)

Note that f is increasing for r ≥ (F̃t − F∗)/∥mt∥∗, so its minimizer is the minimizer of F̃t −
r∥mt∥∗ + r2

2η for r ≤ (F̃t − F∗)/∥mt∥∗. So

rt = min
(
η∥mt∥∗, F̃t−F∗

∥mt∥∗

)
, (97)

therefore
wt+1 = wt +

(
η, F̃t−F∗

∥mt∥2
∗

)
∥mt∥∗LMO(mt). (98)

Note that this value of wt+1 is the unique minimizer of

max
(
F̃t + ⟨mt,w −wt⟩, F∗

)
+ 1

2η∥w −wt∥2, (99)

since this function is strongly convex (sum of a convex function and a strongly convex function),
and therefore has a unique minimizer.

The pseudocode for Constrained Momo and Regularized Momo are shown in Algorithm 2. To see
why this algorithm correctly computes F̃t, note that

F̃t =

t∑
i=0

ρt,i (Fi(wi) + ⟨gi,wt −wi⟩) (100)

=
t∑

i=0

ρt,i (Fi(wi)− ⟨gi,wi⟩) +
t∑

i=0

ρt,i⟨gi,wt⟩ (101)

=

t∑
i=0

ρt,i (Fi(wi)− ⟨gi,wi⟩) + ⟨mt,wt⟩. (102)

So denoting f̃t =
∑t

i=0 ρt,i (Fi(wi)− ⟨gi,wi⟩), we have F̃t = f̃t + ⟨mt,wt⟩, and

f̃t = βf̃t−1 + (1− β) (Ft(wt)− ⟨gt,wt⟩) , (103)

so that f̃t is given by the running average used in Algorithm 2.

Now we derive the closed-form update for our proposed algorithm MuonMax-Momo. Algorithm
3 has the pseudocode for the algorithm, and Proposition 4.3 proves that this procedure implements
Regularized Momo with respect to ∥ · ∥MM. Note that Algorithm 3 shows the pseudocode with stale
nuclear norm approximations, while Proposition 4.3 considers the vanilla version.

It should be noted that, if we set β = 0, the stepsize scaling
∑L

ℓ=1 ∥Gℓ
t∥nuc for the matrix layers in

Algorithm 3 was previously mentioned by Bernstein & Newhouse (2024a) (see their Proposition 5).
However, we are not aware of any existing implementation or evaluation of this stepsize scaling, and
we found in our experiments that this sort of scaling (without model truncation) is not competitive
with Muon.
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Algorithm 2 Momo (Constrained or Regularized)
Inputs: w0, learning rate η, momentum β, loss lower bound F∗

1 for t = 0, 1, . . . , T − 1 do
2 gt ← backward(wt)
3 mt = βmt−1 + (1− β)gt
4 f̃t = βf̃t−1 + (1− β) (Ft(wt)− ⟨gt,wt⟩)
5 F̃t = f̃t + ⟨mt,wt⟩
6 if Constrained then
7 wt+1 = wt +min

(
η, F̃t−F∗

∥mt∥∗

)
LMO(mt)

8 else
9 wt+1 = wt +min

(
η, F̃t−F∗

∥mt∥2
∗

)
∥mt∥∗LMO(mt)

10 end if
11 end for

Algorithm 3 MuonMax-Momo
Inputs: W 1

0 , . . . ,W
L
0 ,θ0, learning rates ηm, ηb, EMA parameters β, β2, loss lower bound F∗

Defaults: ηm = ηb = 0.01, β = β2 = 0.95

1 for t = 0, 1, . . . , T − 1 do

2 (G1
t , . . . ,G

L
t , g

θ
t )← backward(W 1

t , . . .W
L
t ,θt)

3 for ℓ = 1, . . . , L do
4 M ℓ

t = βM ℓ
t−1 + (1− β)Gℓ

t
5 end for
6 mθ

t = βmθ
t−1 + (1− β)gθ

t

7 vθ
t = β2v

θ
t−1 + (1− β2)g

θ
t ⊙ gθ

t

8 f̃t = βf̃t−1 + (1− β)
(
Ft(Wt)−

∑L
ℓ=1⟨Gℓ

t,W
ℓ
t ⟩ − ⟨gθ

t , θt⟩
)

9 F̃t = f̃t +
∑L

ℓ=1⟨M ℓ
t ,W

ℓ
t ⟩+ ⟨mθ

t ,θt⟩

10 dt =

√(∑L
ℓ=1 d

ℓ
t−1

)2
+ ηb

ηm

∥∥ mθ
t√

vθ
t+ϵ

∥∥2
2

11 for ℓ = 1, . . . , L do
12 P ← polar(M ℓ

t )

13 W ℓ
t+1 ←W ℓ

t −min
(
ηm, F̃t−F∗

d2
t

)(∑L
j=1 d

ℓ
t−1

)
P

14 dℓt ← ⟨P ,M ℓ
t ⟩

15 end for
16 θt+1 = θt −min

(
ηb,

ηb

ηm

F̃t−F∗
d2
t

)
mθ

t√
vθ
t+ϵ

17 end for

Update momentum.

Update internal truncation variables.

Update parameters.
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Proposition 4.3. [MuonMax-Momo] Regularized Momo with respect to the norm ∥ · ∥MM as
defined in equation 17 has the following closed form:

dt =

√(∑L
ℓ=1 ∥M ℓ

t ∥nuc

)2
+ ηb

ηm

∥∥∥ mθ
t√√
vθ
t+ϵ

∥∥∥2
2

W ℓ
t+1 = W ℓ

t −min
{
ηm, F̃t−F∗

d2
t

}(∑L
j=1 ∥M

j
t ∥nuc

)
polar(M ℓ

t )

θt+1 = θt −min
{
ηb,

ηb

ηm

F̃t−F∗
d2
t

}
mθ

t√
vθ
t+ϵ

.

(25)

Proof of Proposition 4.3. The proof structure is largely similar to that of Proposition 3.6. By Propo-
sition 4.2, one step of Regularized Momo w.r.t. ∥ · ∥MM can be written as

Wt+1 = Wt +min
(
ηm, F̃t−F∗

∥Mt∥2
MM,∗

)
∥Mt∥MM,∗LMOMM(Mt), (104)

where Mt is the momentum buffer for all network parameters, i.e. it is the concatenation of the
momentum buffers of each parameter:

Mt = (M1
t , . . . ,M

L
t ,mθ

t ). (105)

Comparing Equation 104 with Equation 25, we have to prove that dt = ∥Mt∥MM,∗ and compute
∥Mt∥MM,∗LMOMM(Mt). To do this, we write ∥ · ∥MM with repeated compositions of norms whose
dual and LMO we already know. Denoting λ = ηb/ηm and

f(z1, z2) =
√

z21 + 1
λz

2
2 (106)

g1(W1, . . . ,WL) = max
ℓ∈[L]

∥Wℓ∥2→2 (107)

g2(θ) = ∥θ∥ada2, (108)

we can write ∥ · ∥MM as a composition in the notation of Lemma 3.3 as

∥W ∥MM = f(g1(W1, . . . ,WL), g2(θ)). (109)

Further denoting D = diag(1, 1/
√
λ), we can write f(z1, z2) = ∥D(z1, z2)

T ∥2. We can now use
Lemma 3.3 to compute the dual of ∥ · ∥MM,∗ as

∥W ∥MM,∗ = f∗(g1,∗(W1, . . . ,WL), g2,∗(θ)) (110)
(i)
=
√
g21,∗(W1, . . . ,WL) + λg22,∗(θ) (111)

(ii)
=

√√√√g21,∗(W1, . . . ,WL) + λ

∥∥∥∥∥ θ√√
vθ
t+ϵ

∥∥∥∥∥
2

(112)

(iii)
=

√√√√( L∑
ℓ=1

∥Wℓ∥nuc

)2

+ λ

∥∥∥∥∥ θ√√
vθ
t+ϵ

∥∥∥∥∥
2

(113)

where (i) uses Lemma A.1 to plug in the dual of f , (ii) plugs in the dual of ∥ · ∥ada2 which we
computed in the proof of Proposition 3.5, and (iii) uses Lemma 3.3 to compute the dual of g1, which
itself is a composition g1 = ℓ∞ ◦ (∥ · ∥2→2, . . . , ∥ · ∥2→2). This confirms that dt = ∥Mt∥MM,∗, so

Wt+1 = Wt +min
(
ηm, F̃t−F∗

d2
t

)
dtLMOMM(Mt), (114)

To compute the LMO of ∥ · ∥MM, we again use Lemma 3.3. Denoting (ϕ1, ϕ2) =
−LMOf (g1,∗(W1, . . . ,WL), g2,∗(θ)), Lemma 3.3 implies

LMOMM(W ) = (ϕ1LMOg1(W1, . . . ,WL), ϕ2LMOg2(θ)) (115)
(i)
= (−ϕ1(polar(W1), . . . , polar(WL)), ϕ2LMOg2(θ)) (116)

(ii)
= −

(
ϕ1(polar(W1), . . . , polar(WL)), ϕ2

θ√
vt+ϵ

/∥∥∥∥ θ√√
vt+ϵ

∥∥∥∥
2

)
, (117)
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where (i) uses Lemma 3.3 to compute the LMO of g1, which again is the composition g1 = ℓ∞ ◦
(∥ · ∥2→2, . . . , ∥ · ∥2→2), and (iii) uses Lemma A.1 to plug in the dual norm of g2 = ∥ · ∥ada2. The
ϕ terms can be simplified as

(ϕ1, ϕ2) = −LMOf (g1,∗(W1, . . . ,WL), g2,∗(θ)) (118)

(i)
= −LMOf

(
L∑

ℓ=1

∥Wℓ∥nuc,

∥∥∥∥ θ√√
vt+ϵ

∥∥∥∥
2

)
(119)

(ii)
= −D−1LMO2

(
L∑

ℓ=1

∥Wℓ∥nuc,
√
λ

∥∥∥∥ θ√√
vt+ϵ

∥∥∥∥
2

)
(120)

= 1
dt
D−1

(
L∑

ℓ=1

∥Wℓ∥nuc,
√
λ

∥∥∥∥ θ√√
vt+ϵ

∥∥∥∥
2

)
(121)

= 1
dt

(
L∑

ℓ=1

∥Wℓ∥nuc, λ

∥∥∥∥ θ√√
vt+ϵ

∥∥∥∥
2

)
, (122)

where (i) plugs in the previously computed duals g1,∗ and g2,∗, and (ii) uses Lemma A.1 to plug in
the LMO of f . Plugging the values of (ϕ1, ϕ2) into Equation 117 yields

LMOMM(W ) = − 1
dt

((
L∑

ℓ=1

∥Wℓ∥nuc

)
(polar(W1), . . . , polar(WL)), λ

θ√
vt+ϵ

)
, (123)

and finally, plugging this back into Equation 114 yields

W ℓ
t+1 = Wt −min

(
ηm, F̃t−F∗

d2
t

)( L∑
i=1

∥Wi∥nuc

)
polar(M ℓ

t ) (124)

θt+1 = θt −min
(
ηm, F̃t−F∗

d2
t

)
λ

mθ
t√

vθ
t+ϵ

= θt −min
(
ηb,

ηb

ηm

F̃t−F∗
d2
t

)
mθ

t√
vθ
t+ϵ

, (125)

which is exactly the update in Equation 25.

C EXPERIMENTAL DETAILS

Setup We did not use weight decay or Nesterov momentum, as we found both to have very small
effects on final loss. All methods use a warmup-stable-decay learning rate schedule, where the
learning rate is linearly warmed up for the first 5% of steps, held constant until halfway through
training, then linearly decayed to 10% of the warmed up value. We use a context length of 1024 and
a batch size of 512. Rather than the Newton-Schulz iterations of the original Muon implementation,
we use the PolarExpress algorithm (Amsel et al., 2025) to compute approximate polar factors. In
this implementation, the weights and gradients are computed in float32, whereas the polar factor is
computed in bfloat16 by the PolarExpress (Amsel et al., 2025).

Tuning Protocol For the experiments with FineWeb data in Section 5.1, we tune 36 variations
of steepest descent using an iterated grid search to for the two learning rates ηm and ηb. For the
18 variations without model truncation, we first fix the base learning rate at an intermediate value
ηb =1e-3, then tune the Muon learning rate with grid search over ηm ∈ {1e-3, 1e-2, 1e-1, 1}. Some
algorithms diverged with ηb =1e-3, and for these algorithms we instead used ηb =1e-6 and searched
over ηm ∈ {1e-6, 1e-5, 1e-4, 1e-3}. For those algorithms that used ηb =1e-6 for the first phase,
we instead search over ηb ∈ {1e-7, 1e-6, 1e-5, 1e-4} in the second phase. Finally, for all of these
grid searches, we extend the search space individually for each algorithm until the best LR is not a
boundary point of the search space. The resulting tuned LRs are shown in Table 2.

For the 18 variations with model truncation, rather than entirely retuning all algorithms, we reuse the
tuned LR ratio ηm/ηb and do a single grid search where ηm and ηb scale together. More specifically,
we run each algorithm with LRs (ρηm, ρηb), where (ηm, ηb) are the LRs tuned for each algorithm
without truncation, and the scaling factor ρ ranges over ρ ∈ {0.3, 1, 3, 10, 30, 100}. We found that
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Table 2: Final validation losses for all variations without model truncation.

(SD type, Product Norm, Backup Norm) Muon LR Other LR Final Loss Name

(Regularized, ∥ · ∥∞, ∥ · ∥∞) 1e-3 1e-5 3.783 -
(Constrained, ∥ · ∥∞, ∥ · ∥∞) 1e-2 1e-3 3.599 Scion
(Regularized, ∥ · ∥2, ∥ · ∥∞) 1e-1 1e-6 4.179 -
(Constrained, ∥ · ∥2, ∥ · ∥∞) 1e-1 1e-2 3.712 -
(Regularized, ∥ · ∥hyb, ∥ · ∥∞) 1e-3 1e-5 3.826 -
(Constrained, ∥ · ∥hyb, ∥ · ∥∞) 1e-2 1e-3 3.610 -
(Regularized, ∥ · ∥∞, ∥ · ∥ada∞) 1e-3 1e-5 3.859 -
(Constrained, ∥ · ∥∞, ∥ · ∥ada∞) 1e-2 1e-3 3.604 Muon
(Regularized, ∥ · ∥2, ∥ · ∥ada∞) 1e-1 1e-4 4.229 -
(Constrained, ∥ · ∥2, ∥ · ∥ada∞) 1e-1 1e-2 3.748 -
(Regularized, ∥ · ∥hyb, ∥ · ∥ada∞) 1e-3 1e-4 3.917 -
(Constrained, ∥ · ∥hyb, ∥ · ∥ada∞) 1e-2 1e-2 3.628 -
(Regularized, ∥ · ∥∞, ∥ · ∥ada2) 1e-3 1e-4 3.757 -
(Constrained, ∥ · ∥∞, ∥ · ∥ada2) 1e-2 1e-3 3.701 -
(Regularized, ∥ · ∥2, ∥ · ∥ada2) 1e-1 1e-3 4.049 PolarGrad
(Constrained, ∥ · ∥2, ∥ · ∥ada2) 1e-1 1e-2 3.664 -
(Regularized, ∥ · ∥hyb, ∥ · ∥ada2) 1e-3 1e-3 3.791 MuonMax
(Constrained, ∥ · ∥hyb, ∥ · ∥ada2) 1e-2 1e-2 3.585 -

the best value of ρ for each algorithm was always at least 1 and at most 30. The resulting tuned LRs
are shown in Table 3.

Hybrid Norm Definition Recall that Muon-Max is defined as regularized steepest descent with
respect to the following norm:

∥W ∥MM =
√(

maxℓ∈[L] ∥W ℓ∥2→2

)2
+ ηm

ηb
∥θ∥2ada2. (126)

This norm fits into our framework by assigning the spectral norm to each weight matrix Wℓ, assign-
ing ∥·∥ada2 to the remaining parameters, and aggregating norms for all parameters with the following
”hybrid” product norm:

∥(v1, . . . , vL, vL+1)∥hyb =

√(
max
ℓ∈[L]

vℓ
)2

+ ηm

ηb
v2L+1. (127)

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 FINEWEB

The final validation loss reached by all 36 of our evaluated methods is shown in Tables 2 and 3. Each
method is denoted as a 3-tuple of settings from our steepest descent framework: regularized vs con-
strained steepest descent, product norm, and norm for parameters besides hidden weight matrices.

For the methods without model truncation (Table 2), we see that the RSD methods struggle generally
lag behind the CSD methods, likely due to a lack of update normalization. For the CSD methods,
Muon and Scion are among the best variations, though the best performing method is actually
(Constrained, ∥ · ∥hyb, ∥ · ∥ada2) (we will return to discuss this method shortly).

For the methods with model truncation (Table 3), we see that both CSD and RSD methods are
competitive, meaning that in general model truncation helped RSD methods more than CSD methods
(at least in terms of final loss with tuned LRs). Muon-Momo has the lowest loss at 3.551 and Scion-
Momo is again among the best performers, but actually many methods achieve losses very close
to 3.551. Again, we see that (Constrained, ∥ · ∥hyb, ∥ · ∥ada2) achieves a very low loss, only being
outperformed by Muon-Momo.

The method (Constrained, ∥ · ∥hyb, ∥ · ∥ada2) is quite similar to our proposed method Muon-Max,
the only difference being the use of a normalized update. While this method does achieve a lower
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Table 3: Final validation losses for all variations with model truncation.

(SD type, Product Norm, Backup Norm) Muon LR Other LR Final Loss Name

(Regularized, ∥ · ∥∞, ∥ · ∥∞) 1e-2 1e-4 3.627 -
(Constrained, ∥ · ∥∞, ∥ · ∥∞) 1e-2 1e-3 3.592 Scion-Momo
(Regularized, ∥ · ∥2, ∥ · ∥∞) 1 1e-5 3.728 -
(Constrained, ∥ · ∥2, ∥ · ∥∞) 1e-1 1e-2 3.843 -
(Regularized, ∥ · ∥hyb, ∥ · ∥∞) 1e-2 1e-4 3.628 -
(Constrained, ∥ · ∥hyb, ∥ · ∥∞) 3e-2 3e-3 3.604 -
(Regularized, ∥ · ∥∞, ∥ · ∥ada∞) 3e-2 3e-4 3.578 -
(Constrained, ∥ · ∥∞, ∥ · ∥ada∞) 3e-2 3e-3 3.551 Muon-Momo
(Regularized, ∥ · ∥2, ∥ · ∥ada∞) 1 1e-3 3.719 -
(Constrained, ∥ · ∥2, ∥ · ∥ada∞) 1e-1 1e-2 3.737 -
(Regularized, ∥ · ∥hyb, ∥ · ∥ada∞) 3e-2 3e-3 3.584 -
(Constrained, ∥ · ∥hyb, ∥ · ∥ada∞) 3e-2 3e-2 3.607 -
(Regularized, ∥ · ∥∞, ∥ · ∥ada2) 3e-3 3e-4 3.662 -
(Constrained, ∥ · ∥∞, ∥ · ∥ada2) 1e-2 1e-3 3.701 -
(Regularized, ∥ · ∥2, ∥ · ∥ada2) 3 3e-2 3.613 PolarGrad-Momo
(Constrained, ∥ · ∥2, ∥ · ∥ada2) 3e-1 3e-2 3.602 -
(Regularized, ∥ · ∥hyb, ∥ · ∥ada2) 1e-2 1e-2 3.576 MuonMax-Momo
(Constrained, ∥ · ∥hyb, ∥ · ∥ada2) 3e-2 3e-2 3.553 -
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Figure 4: Training loss for the last 40% of training for FineWeb1B (left) and SlimPajama6B (right).

loss after tuning than MuonMax, we found that this method was not as robust to learning rate
tuning. So this method was bested by MuonAdam-Momo in terms of final loss, and it was bested
by MuonMax-Momo in terms of learning rate sensitivity, and for this reason we did not perform
further evaluations with this method.

We include loss curves for the last 40% of training for the best variations (with tuned learning
rates) in Figure 4a, and the final losses reached by the best variations (over three seeds) in Table
4. Also, Figure 5 shows a comparison of MuonAdam, Scion, MuonMax against their truncated
counterparts.

Table 4: Validation loss for FineWeb1B with tuned LRs (mean ± std over three seeds).

MuonAdam Scion MuonAdam-Momo MuonMax-Momo

3.5592± 0.0014 3.5947± 0.0031 3.5546± 0.0004 3.5779± 0.0007
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Figure 5: Effect of model truncation on final validation loss. Note that for these runs, we did not use
stale nuclear norm approximations in order to isolate the effect of model truncation.

Table 5: Hyperparameter information for additional baselines. For all baselines, we tune the learning
rate over 10−5+i/4 for i ∈ {0, . . . , 15} once with weight decay on, and again with weight decay off.
For each baseline, we set the weight decay coefficient λ according to the default value for that
algorithm, listed below.

Tuned LR (λ = 0) Tuned LR (λ > 0) Alg-specific parameters

AdamW η = 1e-3 η = 1e-3 (λ = 0.01) β1 = 0.95, β2 = 0.95
Lion η = 5.6e-5 η = 5.6e-5 (λ = 0.01) β1 = 0.95, β2 = 0.98
Adan η = 1.8e-3 η = 1e-3 (λ = 0.02) β1 = 0.02, β2 = 0.08, β3 = 0.01

Sophia η = 5.6e-5 η = 5.6e-5 (λ = 0.2)
β1 = 0.965, β2 = 0.99, ρ = 0.05,

Hessian estimator: GNB

D.1.1 ADDITIONAL BASELINES

Here we evaluate four additional baselines (AdamW, Lion, Adan, Sophia) for the GPT2-
Small/FineWeb1B setting. We use the same hyperparameters as outlined in Section C, such as
batch size, learning rate schedule, random seeds, etc. For a fair comparison with the Muon-type
algorithms from the main paper, we allow the same computational budget for hyperparameter tun-
ing. In particular, since the Muon-type algorithms have two learning rates that were tuned over four
possible values each, we tune the learning rate of our additional baselines over 16 values. We also
evaluate each additional base both with and without weight decay. For weight decay coefficients
and algorithm-specific hyperparameters, we use each baseline’s default settings as reported in their
respective papers. The complete search range and tuned values for each algorithm are shown in
Table 5.

The losses for each additional baseline are shown in Figure 6. The most important feature to notice
is that none of these baselines reach as low a loss as the baselines from the main paper: from Figure
2a, all of MuonAdam, Scion, MuonAdam-Momo, and MuonMax-Momo achieve less than 3.6
loss with a tuned LR and less than 3.75 loss with multiple LRs in the grid. All of the additional
baselines except for AdamW never get below 4.0 validation loss, and AdamW at its best reaches
only 3.759. Note also that each of the four baselines were run with and without weight decay,
which did not make a significant difference. This means that each baseline was allowed a total of
32 hyperparameter configurations, which is significantly more than the Muon-type algorithms from
Figure 2a. We conclude that AdamW is the only additional baseline that is competitive with the
aforementioned Muon-type algorithms, though it is still decisively outperformed.

D.1.2 ADDITIONAL METRICS

We further quantify the efficiency and learning rate sensitivity of each method in Table 6. Efficiency
is measured in terms of token throughput, time per training step, time and tokens to reach a target
loss, and the ”width” of the basin of the LR sensitivity curves. We define the LR basin width as
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Figure 6: Loss for additional baselines when training GPT2-Small on FineWeb1B. Top row shows
results with weight decay, bottom row without weight decay. Left: Validation loss for a sweep over
learning rates. Right: Training loss curves for each baseline with tuned learning rate.

follows: for a learning rate sweep of a particular method, let ℓ be the loss achieved by the best learn-
ing rate, and let η0 (respectively η1) be the smallest (respectively largest) learning rate in the grid
that achieves less than 1.2ℓ loss. The LR basin width is then defined as log10(η1/η0). Essentially,
the basin width quantifies the orders of magnitude by which the learning rate can vary while still
achieving a reasonable loss of 1.2 times the optimum. For throughput and time per step, we average
over all learning rates, while for time-to-target, tokens-to-target, and perplexity we choose the best
value over all learning rates. Similar metrics for our GPT2-Large/SlimPajama experiments are given
in Tables 7 and 8 in Section D.2.1.

From Tables 6, 7, 8, we see that the best perplexity is always achieved by either MuonAdam-Momo
or MuonMax-Momo, and these two algorithms significantly outperform all baselines in terms of
learning rate sensitivity as quantified by the LR basin width. Compared to MuonAdam, our two
proposed algorithms take about 5% more time per step for GPT2-Small and 1.5% to 3% more for
GPT2-Large. Also, with tuned LRs, our two proposed algorithms reach the target loss with as many
or fewer tokens than all other baselines. The time to target loss of our algorithms with tuned LRs
is sometimes better, sometimes worse than MuonAdam, but the gap is never more than 5% for
MuonMax-Momo and 10% for MuonAdam-Momo. These results reinforce our finding that our
proposed algorithms are significantly more robust to learning rate tuning than baselines, with similar
or improved performance after tuning and only a modest increase in wall-clock time.

D.1.3 VARYING BATCH SIZE

In this section, we perform learning rate sweeps for MuonAdam, Scion, MuonAdam-Momo,
and MuonMax-Momo with varying batch sizes. We evaluate these algorithms on the GPT2-
Small/FineWeb1B setup detailed in Sections 5.1 and C. Previously we used a batch size of 512;
in this section, we vary the batch size over {128, 256, 512, 1024, 2048} while keeping all other set-
tings the same. Note that we reuse the tuned LR ratio ηm/ηb as detailed in Section C.
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Table 6: Additional metrics for GPT2-Small/FineWeb1B, including the additional baselines from
Section D.1.1. The target loss for this setting is 3.8, which we chose to be small enough to discrim-
inate between the best methods and large enough to include AdamW.

Best
Perplexity

Throughput
(tok/s)

Time per
step (s)

Time to
target loss (s)

Tokens to
target loss

LR Basin
W idth

MuonAdam 33.21 938K 0.559 503.31 458M 1.523
Scion 34.40 948K 0.554 631.51 548M 1.477
MuonAdam-Momo 33.14 894K 0.587 566.82 458M 2.523
MuonMax-Momo 33.95 892K 0.588 530.04 458M 3.523
AdamW 40.99 990K 0.530 840.61 787M 1.000
Lion 92.11 996K 0.527 - - 1.000
Adan 66.46 957K 0.548 - - 0.750
Sophia 59.48 974K 0.539 - - 1.250

For each batch size, the final validation loss reached by each algorithm with varying learning rate
is shown in Figure 7. Overall, we find the results with different batch size to be largely consistent
with our previous results. For all batch sizes, both MuonAdam-Momo and MuonMax-Momo
have a wider range of competitive learning rates than MuonAdam and Scion, and for all batch
sizes greater than 512, both MuonAdam-Momo and MuonMax-Momo outperform the baselines
for every learning rate we tried.

D.1.4 QWEN2MOE MODEL

We also compared the best performing methods MuonAdam, Scion, MuonMax-Momo and
MuonAdam-Momo, when training a Mixture of Experts type model. We trained two Qwen2-MoE
variants on the FineWeb dataset. The small variant has hidden size 256, 12 decoder layers, 4 atten-
tion heads with 64-d head size, 8 experts per layer, top–2 routing, per-expert FFN width 1280, and
shared expert width 1536. The medium variant has hidden size 768, 16 decoder layers, 12 attention
heads with 64-d head size, 4 experts per layer, top-2 routing, per-expert FFN width 4096, and shared
expert width 4096. Both variants use tied embeddings, context length 1024, and micro-batch size
32 (global batch size 512 sequences).

These configurations emphasize MoE capacity while keeping active parameters per token modest
for rapid ablation, following prior sparse expert designs (Shazeer et al., 2017; Fedus et al., 2021; Du
et al., 2022). Qwen2-MoE architectural choices and implementation details are taken from the offi-
cial Qwen2 repository (Team, 2024). No intermediate validation was performed (only end-of-epoch
loss) to minimize overhead.

For the two Momo methods we use F ∗ = 3.2 without tuning or trying other values. This turned out
to be far from the loss achieved by this small MoE model.

The final loss for each algorithm across a range of learning rates is shown in Figure 8. Indeed,
again we found MuonMax-Momo to be the most stable method; for the small variant, MuonMax-
Momo achieves the lowest loss for every learning rate we tried. The best loss over all learning rates
achieved by each method is given in the following table.

Qwen2-MoE Small Qwen2-MoE Medium
MuonAdam 5.2072 4.8995
Scion 5.2156 4.7504
MuonAdam-Momo 5.1975 4.8184
MuonMax-Momo 5.2017 4.6561

D.2 SLIMPAJAMA

Figure 9 shows a 2D visualization of final validation losses for Muon, Scion, MuonAdam-Momo,
and MuonMax-Momo as the two learning rates vary. We find MuonMax-Momo to be most stable
to changes in the learning rates, with both Muon and Scion suffering high losses when the base LR
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(a) Batch size 128.
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(b) Batch size 256.
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(c) Batch size 512.
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(d) Batch size 1024.
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(e) Batch size 2048.

Figure 7: Learning rate sensitivity for GPT2-Small/FineWeb1B with varying batch sizes.
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Figure 8: Final loss of Qwen2-MoE for FineWeb1B. Left: Small architecture with 1B tokens. Right:
Medium architecture with 10B tokens.
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Figure 9: 2D learning rate sensitivity for SlimPajama1B.

Table 7: Additional metrics for GPT2-Large/SlimPajama1B. The target loss for this setting is 3.3.

Best
Perplexity

Throughput
(tok/s)

Time per
step (s)

Time to
target loss (s)

Tokens to
target loss

LR Basin
W idth

MuonAdam 25.40 126K 4.138 3172.77 389M 1.000
Scion 26.69 127K 4.114 3164.58 389M 1.000
MuonAdam-Momo 25.51 125K 4.164 2237.39 275M 4.000
MuonMax-Momo 24.84 125K 4.178 2309.51 275M 5.000

ηb is large. Interestingly, Muon-Momo has the highest loss when the Muon LR ηm is small and the
base LR ηb is large.

We also include loss curves for the last 40% of training for MuonAdam and MuonMax-Momo
(with tuned learning rates) in Figure 4b.

D.2.1 ADDITIONAL METRICS

Similarly to Section D.1.2, here we include additional metrics to quantify efficiency and LR ro-
bustness for our SlimPajama experiments. The definition of each metric is the same as Section
D.1.2, here we only change the target loss to 3.3 for GPT2-Large/SlimPajama1B and 3.0 for GPT2-
Large/SlimPajama6B. The results are shown in Tables 7 and 8, and are largely similar to those of
Table 6. See Section D.1.2 for a discussion of Tables 6, 7, and 8 together.
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Table 8: Additional metrics for GPT2-Large/SlimPajama6B. The target loss for this setting is 3.0.

Best
Perplexity

Throughput
(tok/s)

Time per
step (s)

Time to
target loss (s)

Tokens to
target loss

LR Basin
W idth

MuonAdam 17.29 127K 4.124 4309.90 531M 1.000
MuonMax-Momo 17.21 123K 4.239 4308.02 531M 2.000
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Figure 10: CIFAR-10 with ResNet20. Note that the x-axis shows the base learning rate ηb, while
the Muon learning rate ηm is set according to the tuned ratio ηm/ηb.

D.3 IMAGE CLASSIFICATION

In order to benchmark our proposed algorithms in a variety of settings, here we evaluate our pro-
posed algorithms and baselines for image classification tasks. We evaluate SGD-M (SGD with
momentum), AdamW, MuonAdam, Scion, MuonAdam-Momo, and MuonMax-Momo, first for
training a ResNet20 (He et al., 2016) on CIFAR-10, then for a ResNet110 on CIFAR-100.

Setup All methods use a batch size of 128 and cross entropy loss. We train for 50 epochs with
ResNet20/CIFAR-10 and 100 epochs with ResNet110/CIFAR-100. We use a constant learning rate
schedule and we do not use weight decay. For SGD-M we set the momentum to 0.9. For AdamW,
MuonAdam, MuonAdam-Momo, and MuonMax-Momo, we set β1 = β2 = 0.95. We use stan-
dard data augmentation for CIFAR: normalization, random horizontal flipping, and random crop-
ping. For Muon-type algorithms, we assign the spectral norm to weights of convolutional layers
except for the first convolution in the network. We interpret each convolutional filter as a matrix by
flattening all dimensions after the first two, following an early implementation of Muon for image
classification (Jordan, 2024).

For the algorithms with two learning rates, i.e. the Muon-type algorithms, we tune the
ratio between learning rates with a double grid search. The base LR ηb is tuned over
{1e-5, 1e-4, 1e-3, 1e-2}, and the Muon LR ηm is tuned over {1e-4, 1e-3, 1e-2, 1e-1}. To bench-
mark the learning rate sensitivity with a 1D sweep, we then fix the ratio ηm/ηb and vary ηb over
{1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1}. For SGD-M and AdamW, we sweep the learning rate over
{1e-3, 1e-2, 1e-1, 1, 10} and {1e-5, 1e-4, 1e-3, 1e-2, 1e-1}, respectively. For the final sweep, we run
three random seeds for each algorithm/LR.

Results The final training losses and validation accuracies for CIFAR-10 and CIFAR-100 are
shown in Figures 10 and 11, respectively. The plots show the mean plus/minus one standard de-
viation across three seeds.

For CIFAR-10, MuonMax-Momo achieves the lowest training loss for every learning rate and the
highest validation accuracy for nearly every learning rate. Here, MuonMax-Momo has achieved
the best of both worlds: it reaches the strongest performance with a tuned learning rate and the
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Figure 11: CIFAR-100 with ResNet110. Note that the x-axis shows the base learning rate ηb, while
the Muon learning rate ηm is set according to the tuned ratio ηm/ηb.

widest basin across learning rates. Interestingly, while MuonAdam-Momo achieves nearly the
best training loss for a tuned learning rate, its basin is much thinner than that of MuonMax-Momo.
MuonAdam and Scion are competitive in terms of validation accuracy, while SGD-M and AdamW
lag behind in terms of both training loss and validation accuracy.

For CIFAR-100, all algorithms appear more sensitive to the choice of learning rate, and MuonMax-
Momo again achieves the lowest loss and highest validation accuracy with a tuned learning rate.
Again, MuonAdam-Momo is more sensitive than MuonMax-Momo, and the ranking of the re-
maining baselines is similar to CIFAR-10.
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