

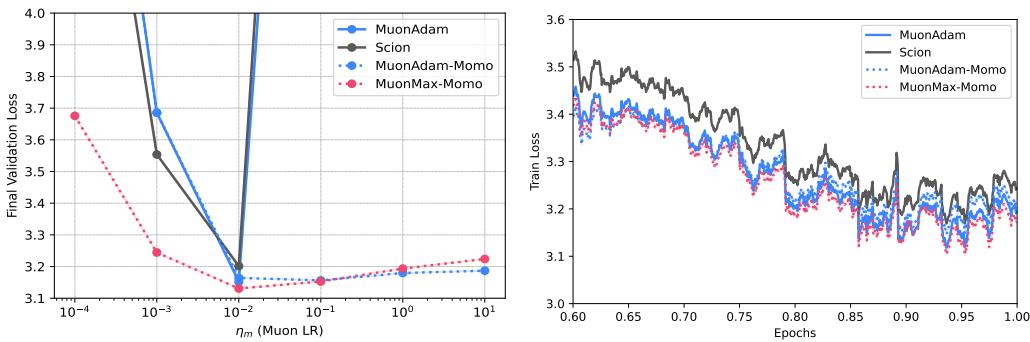
AN EXPLORATION OF NON-EUCLIDEAN GRADIENT DESCENT: Muon AND ITS MANY VARIANTS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 To define a steepest descent method over a neural network, we need to choose a
 012 norm for each layer, a way to aggregate these norms across layers, and whether to
 013 use normalization. We systematically explore different alternatives for aggregat-
 014 ing norms across layers, both formalizing existing combinations of Adam and the
 015 recently proposed Muon as a type of non-Euclidean gradient descent, and deriv-
 016 ing new variants of the Muon optimizer. Through a comprehensive experimental
 017 evaluation of the optimizers within our framework, we find that Muon is sensitive
 018 to the choice of learning rate, whereas a new variant we call MuonMax is signif-
 019 icantly more robust. We then show how to combine any Non-Euclidean gradient
 020 method with model based momentum (known as Momo). The new Momo vari-
 021 ants of Muon are significantly more robust to hyperparameter tuning, and often
 022 achieve a better validation score. Thus for new tasks, where the optimal hyper-
 023 parameters are not known, we advocate for using Momo in combination with
 024 MuonMax to save on costly hyperparameter tuning.



038 Figure 1: Learning rate sweep for training GPT2-Large (774M params) on SlimPajama with 1B
 039 tokens. **Left:** Final validation loss for various learning rates. MuonAdam and Scion require precise
 040 tuning, whereas our MuonAdam-Momo and MuonMax-Momo achieve low loss for a significantly
 041 wider range of learning rates. **Right:** Training loss (with tuned LRs) for the last 40% of steps.

1 INTRODUCTION

046 The recently proposed Muon optimizer (Jordan et al., 2024b) has generated increasing interest due
 047 to its efficiency for training language models (Pethick et al., 2025; Liu et al., 2025). This algorithm
 048 was initially introduced (Bernstein & Newhouse, 2024a; Jordan et al., 2024b) and often interpreted
 049 (Pethick et al., 2025; Kovalev, 2025; Fan et al., 2025) as steepest descent with respect to the spectral
 050 norm for each weight matrix in a neural network.

051 However, this interpretation does not entirely apply for practical implementations of Muon. In prac-
 052 tice, Muon is used side-by-side with another optimizer, where hidden weight matrices are trained
 053 with Muon, and all other parameters by Adam (Jordan et al., 2024b; Liu et al., 2025; Jordan et al.,
 2024a) or SignDescent (Pethick et al., 2025). We will refer to this combination as MuonAdam

throughout, see Algorithm 1 in the appendix. Furthermore, for the weight matrices only the normalized version of Muon has been explored in practice.

Here we aim to strengthen the theoretical foundation of MuonAdam and develop new optimizers by systematically investigating different design choices which have not been explored. We introduce a framework for steepest descent on the entire space of network parameters, which involves a choice of norm for each layer, a *product norm* to aggregate norms across layers, and whether to normalize updates. This framework encompasses MuonAdam and other variations, which provides a more principled interpretation of these algorithms as genuine steepest descent on the entire space of network parameters, and also opens a design space for previously unexplored Muon-type algorithms.

One such unexplored variant is what we call MuonMax, that arises from a new product norm and does not use update normalization. The updates of MuonMax depend on the nuclear norm of the momentum from every weight matrix, which is slightly less efficient per-step than Muon. To make MuonMax more efficient, we introduce a stale approximation of these nuclear norms, which can be implemented with near-identical memory and 5% additional wall-clock time per step as Muon.

Now that we can frame MuonAdam and other variants as a type of steepest descent, we can import other tools used for steepest descent gradient methods. One such tool is Momo (Schaipp et al., 2024), an adaptive step size based on model truncation (Asi & Duchi, 2019b) that increases robustness to learning rate tuning. We extend the Momo step size to general steepest descent for arbitrary norms and subsequently apply it to the algorithms in our framework.

We perform a systematic evaluation of many algorithms in our framework for training GPT models with up to 774M parameters for language modeling on the FineWeb (Penedo et al., 2024) and SlimPajama (Soboleva et al., 2023) datasets with up to 6B tokens. We find that MuonMax-Momo consistently matches or outperforms MuonAdam and Scion (Pethick et al., 2025) while enjoying a much larger range of competitive learning rates, meaning that MuonMax-Momo is much less sensitive to tuning. We also observe that Momo increases tuning robustness for all variations and that our stale nuclear norm approximation causes negligible change in performance, while decreasing wall-clock time per iteration. Our contributions are:

1. **Formalizing** MuonAdam. We introduce a steepest descent framework that encompasses the practical implementation of Muon (with Adam used for a subset of parameters), demonstrating that even these side-by-side optimizers can be interpreted as steepest descent with respect to certain norms on the space of *all* network parameters. This solidifies the theoretical foundation for practical variants of Muon, and sheds light on unexplored aspects of Muon’s design. Our framework also includes Scion and other existing variants.
2. **Defining non-Euclidean** Momo. We show how to incorporate the adaptive step size Momo with any steepest descent algorithm, which we find significantly increases robustness to the learning rate tuning.
3. **MuonMax: New practical, robust variant of Muon.** We propose a new optimizer, MuonMax, which arises within our framework from a novel product norm. With a stale approximation of the nuclear norm of each layer’s momentum, MuonMax has near-identical memory cost and 5% additional wall-clock time per iteration compared to Muon.
4. **Systematic Evaluation.** We perform a comprehensive evaluation of optimizers in our framework for language modeling. MuonMax-Momo consistently matches or outperforms Muon and other baselines while widening the range of competitive step size choices by several orders of magnitude.

Notation. We use $\langle \cdot, \cdot \rangle$ to denote the Euclidean inner product on \mathbb{R}^d or on products of the form $\mathbb{R}^{d_1} \times \dots \times \mathbb{R}^{d_n}$ naturally by viewing elements of $\mathbb{R}^{d_1} \times \dots \times \mathbb{R}^{d_n}$ as elements of $\mathbb{R}^{d_1 + \dots + d_n}$. Note that for matrices, which can also be viewed as elements of \mathbb{R}^{mn} , this inner product is consistent with the trace inner product, since $\text{Tr}(\mathbf{A}^T \mathbf{B}) = \langle \text{vec}(\mathbf{A}), \text{vec}(\mathbf{B}) \rangle$.

2 RELATED WORK

Muon. The use of *Spectral descent*, that is steepest descent with respect to the spectral norm, on deep neural networks dates back to Carlson et al. (2015a;b). Muon is the combination of spectral

descent with momentum (Bernstein & Newhouse, 2024a), and a carefully crafted polynomial algorithm for computing the polar factor (Jordan et al., 2024b). Recent work has designed an optimal such polynomial algorithm for the polar factor called PolarExpress (Amsel et al., 2025), which we use in our Muon implementation. Pethick et al. (2025) introduced Scion, which uses SignSGD with momentum (instead of Adam) to train non-matrix parameters. Liu et al. (2025) scaled Muon to train a 16B parameter language model with 5.7T tokens. Several works have developed theory of Muon’s convergence (Li & Hong, 2025; Kovalev, 2025; Riabinin et al., 2025) and implicit bias (Tsilivis et al., 2025; Fan et al., 2025).

Most similar to ours is the line of work developing the modular norm (Bernstein & Newhouse, 2024a; Large et al., 2024; Bernstein & Newhouse, 2024b). This line of work also argues that we should perform steepest descent on the entire space of network parameters, instead of separately at each layer, and focuses on steepest descent with respect to a particular norm called the modular norm. This norm enables Lipschitz continuity of the neural network with respect to both weights and inputs. In this work, we take an orthogonal approach, where we develop a general theory of steepest descent on product spaces, and numerically investigate many possible norms on these spaces. We are not aware of any existing evaluation of steepest descent with respect to the modular norm.

Model Truncation. Gradient descent can be viewed as using the local linearization of the loss as a *model* of the loss itself. If we know a lower bound of the loss, for instance most loss functions are positive, then we can improve this linear model by *truncating* the model at this lower bound (Asi & Duchi, 2019a). Follow-up work emphasizes the importance of such model choices in stochastic optimization (Asi & Duchi, 2019b), and extends the framework to minibatch settings (Asi et al., 2020). Using model truncation often leads to methods that are more stable and easier to tune (Loizou et al., 2021; Davis & Drusvyatskiy, 2019; Meng & Gower, 2023; Schaipp et al., 2023). Recently Schaipp et al. (2024) showed how to combine momentum with model truncation. Furthermore, Chen et al. (2022) combine parameter-free coin betting methods with truncated models.

3 STEEPEST DESCENT ON NEURAL NETWORKS

Let $F : \mathbb{R}^d \rightarrow \mathbb{R}$ be the loss function, and $\|\cdot\|$ be any norm on \mathbb{R}^d . We define the *Linear Minimization Oracle* (LMO) and the *dual norm* as

$$\text{LMO}_{\|\cdot\|}(\mathbf{v}) = \arg \min_{\|\mathbf{u}\|=1} \langle \mathbf{u}, \mathbf{v} \rangle, \quad \text{and} \quad \|\mathbf{v}\|_* = \max_{\|\mathbf{u}\|=1} \langle \mathbf{u}, \mathbf{v} \rangle, \quad (1)$$

respectively. When the norm is clear from context, we will omit the subscript and write LMO. Throughout we denote the stochastic gradient at step t by \mathbf{g}_t , and the momentum buffer \mathbf{m}_t which is an exponential moving average of stochastic gradients, i.e. $\mathbf{m}_t = \beta \mathbf{m}_{t-1} + (1-\beta) \mathbf{g}_t$ for $\beta \in [0, 1)$.

3.1 CONSTRAINED VS REGULARIZED STEEPEST DESCENT

For a single weight matrix, the Muon update is often motivated as the LMO (Pethick et al., 2025) with respect to the spectral norm. The following proposition shows that for a general norm, updating in the direction of $\text{LMO}(\mathbf{m}_t)$ is equivalent to minimizing a first-order Taylor approximation of F around \mathbf{w}_t , with a constraint on the update’s norm and approximating $\nabla F(\mathbf{w}_t) \approx \mathbf{m}_t$.

Proposition 3.1. [Constrained Steepest Descent] The CSD update is given by

$$\mathbf{w}_{t+1} = \arg \min_{\|\mathbf{w}-\mathbf{w}_t\| \leq \eta} \{F(\mathbf{w}_t) + \langle \mathbf{m}_t, \mathbf{w} - \mathbf{w}_t \rangle\} = \mathbf{w}_t + \eta \text{LMO}(\mathbf{m}_t). \quad (2)$$

The ball constraint above ensures that we only use the Taylor approximation close to its center \mathbf{w}_t , but another natural choice is to use regularization instead of a constraint as follows.

Proposition 3.2. [Regularized Steepest Descent] The RSD update is given by

$$\mathbf{w}_{t+1} = \arg \min_{\mathbf{w}} \left\{ F(\mathbf{w}_t) + \langle \mathbf{m}_t, \mathbf{w} - \mathbf{w}_t \rangle + \frac{1}{2\eta} \|\mathbf{w} - \mathbf{w}_t\|^2 \right\} = \mathbf{w}_t + \eta \|\mathbf{m}_t\|_* \text{LMO}(\mathbf{m}_t) \quad (3)$$

162 In the case without momentum (i.e. $\beta = 0$), both of these algorithms have appeared throughout
 163 the literature under the name steepest descent, but the recent line of work around Muon (Jordan
 164 et al., 2024b; Bernstein & Newhouse, 2024b; Pethick et al., 2025; Liu et al., 2025) has mostly
 165 focused on the constrained variant. To the best of our knowledge, the only work which considered
 166 the regularized variant over the space of all parameters was Bernstein & Newhouse (2024a). Lau
 167 et al. (2025) also use the regularized interpretation of Muon on a per layer basis instead of the entire
 168 product space.

169 Notice that CSD and RSD have the same update direction, but with regularization the update mag-
 170 nitude is multiplied by the dual norm of the momentum. Therefore, the primal norm of the update
 171 $\|\mathbf{w}_{t+1} - \mathbf{w}_t\|$ is η for CSD and $\eta\|\mathbf{m}_t\|_*$ for RSD. Intuitively, CSD enforces a *normalized update*.
 172

173

174 3.2 PRODUCT NORMS

175

177 To describe steepest descent, we first need a norm over the space of *all* network parameters (Bern-
 178 stein & Newhouse, 2024a). Instead of flattening all parameters into a single vector, we consider the
 179 Cartesian product $\mathbf{W} = (\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^n)$ of network parameters (where each \mathbf{w}^i could be a flat-
 180 tened weight matrix, a bias vector, etc). We assign a norm $\|\cdot\|_{(i)}$ for parameter \mathbf{w}^i , then aggregate
 181 these norms into a single norm on the product space. Two natural examples of product norms are

$$182 \|\mathbf{W}\|_\infty := \max_{1 \leq i \leq n} \|\mathbf{w}^i\|_{(i)}, \quad \text{and} \quad \|\mathbf{W}\|_2 := \sqrt{\sum_{i=1}^n \|\mathbf{w}^i\|_{(i)}^2}. \quad (4)$$

184 Computing the steepest descent direction with respect to a product norm requires: the linear min-
 185 imization oracle (LMO) and the dual norm of the product norm. As we show next, both can be
 186 expressed in terms of the underlying per-parameter norms and the norm used to aggregate them.

187

188 **Lemma 3.3.** [LMO and Dual of Product Norms] For each $i \in [n]$, let g_i be a norm on \mathbb{R}^{d_i} , and
 189 let f be a norm on \mathbb{R}^n , and denote their dual norms as $g_{i,*}$ and f_* , respectively. Then the product
 190 norm $h : \mathbb{R}^{d_1} \times \dots \times \mathbb{R}^{d_n} \rightarrow \mathbb{R}$ defined by

$$191 h(\mathbf{w}^1, \dots, \mathbf{w}^n) = f(g_1(\mathbf{w}^1), \dots, g_n(\mathbf{w}^n)) \quad (5)$$

192

is indeed a norm, and its LMO and dual norm are given by

$$194 \text{LMO}_h(\mathbf{w}^1, \dots, \mathbf{w}^n) = (\phi_1 \text{LMO}_{g_1}(\mathbf{w}^1), \dots, \phi_n \text{LMO}_{g_n}(\mathbf{w}^n)) \quad (6)$$

$$195 h_*(\mathbf{w}^1, \dots, \mathbf{w}^n) = f_*(g_{1,*}(\mathbf{w}^1), \dots, g_{n,*}(\mathbf{w}^n)), \quad (7)$$

196 where $(\phi_1, \dots, \phi_n) := -\text{LMO}_f(g_{1,*}(\mathbf{w}^1), \dots, g_{n,*}(\mathbf{w}^n))$.
 197

198

199

200 We can now compute steepest descent updates (both constrained and regularized) with respect to
 201 the product norms $\|\cdot\|_\infty$, $\|\cdot\|_2$, or any other product norm by plugging the LMO and dual of each
 202 product norm into the steepest descent definitions (Equation 2 and Equation 3).

203

Denoting by \mathbf{m}_t^i the momentum buffer of parameter i , the updates for each parameter \mathbf{w}^i are:

$$204 \text{CSD w.r.t. } \|\cdot\|_\infty: \quad \mathbf{w}_{t+1}^i = \mathbf{w}_t^i + \eta \text{LMO}_{\|\cdot\|_{(i)}}(\mathbf{m}_t^i) \quad (8)$$

$$206 \text{RSD w.r.t. } \|\cdot\|_\infty: \quad \mathbf{w}_{t+1}^i = \mathbf{w}_t^i + \eta \left(\sum_{j=1}^n \|\mathbf{m}_t^j\|_{(j),*} \right) \text{LMO}_{\|\cdot\|_{(i)}}(\mathbf{m}_t^i) \quad (9)$$

$$209 \text{CSD w.r.t. } \|\cdot\|_2: \quad \mathbf{w}_{t+1}^i = \mathbf{w}_t^i + \eta \frac{\|\mathbf{m}_t^i\|_{(i),*}}{\sqrt{\sum_{j=1}^n \|\mathbf{m}_t^j\|_{(j),*}^2}} \text{LMO}_{\|\cdot\|_{(i)}}(\mathbf{m}_t^i) \quad (10)$$

$$211 \text{RSD w.r.t. } \|\cdot\|_2: \quad \mathbf{w}_{t+1}^i = \mathbf{w}_t^i + \eta \|\mathbf{m}_t^i\|_{(i),*} \text{LMO}_{\|\cdot\|_{(i)}}(\mathbf{m}_t^i) \quad (11)$$

212

213

For the methods above, the update direction for each parameter \mathbf{w}_t^i is always the LMO of \mathbf{m}_t^i ,
 regardless of the choice of product norm. However, the magnitude ϕ_i of each parameter's update
 is determined by the product norm and the dual norms of each parameter's momentum. Therefore,
 different choices of the product norm amount to different *parameter-wise learning rates*.

216 3.3 INCORPORATING ADAM
217218 Now we show how to represent the hybrid MuonAdam method as a steepest descent method. For
219 parameters θ , the Adam update, where all vector operations are element-wise¹, is given by
220

221
$$\theta_{t+1} = \theta_t - \eta \frac{m_t}{\sqrt{v_t + \epsilon}}, \quad \text{and} \quad v_{t+1} = \beta_2 v_t + (1 - \beta_2) g_t^2 \quad (12)$$

222 Adam can be interpreted as steepest descent in two different ways.
223224 **Proposition 3.4.** The t -th update of Adam is the CSD with step size η with respect to the norm:
225

226
$$\|\theta\|_{\text{ada}\infty} := \left\| \text{Diag}\left(\frac{\sqrt{v_t + \epsilon}}{|m_t|}\right) \theta \right\|_\infty \quad (13)$$

227 **Proposition 3.5.** The t -th update of Adam is the RSD with step size η with respect to the norm:
228

229
$$\|\theta\|_{\text{ada}2} := \sqrt{\langle \text{Diag}(\sqrt{v_t} + \epsilon) \theta, \theta \rangle} = \left\| \text{Diag}(\sqrt{\sqrt{v_t} + \epsilon}) \theta \right\|_2 \quad (14)$$

230 Thus Adam can be interpreted as either an adaptive trust-region sign descent (Balles & Hennig,
231 2018; Orvieto & Gower, 2025) or preconditioned gradient descent (Schaipp et al., 2024). A distinctive
232 feature of these forms of steepest descent is that the norm changes over iterations.
233234 3.4 THE WHOLE FRAMEWORK
235236 For a given neural network, we partition the parameters as $\mathbf{W} = (\mathbf{W}^1, \dots, \mathbf{W}^L, \theta)$, where
237 $\mathbf{W}^1, \dots, \mathbf{W}^L$ are the hidden weight matrices and θ contains the remaining parameters flattened
238 into a single vector. MuonAdam applies LMO updates w.r.t. the spectral norm for the hidden
239 weight matrices, and uses Adam for the remainder of the parameters, with two separate learning
240 rates for these side-by-side optimizers, shown in Algorithm 1 (Appendix A).
241242 **Proposition 3.6.** MuonAdam (Algorithm 1) is exactly CSD with step size η_m with respect to
243

244
$$\|\mathbf{W}\|_{\text{muon}} = \max \left(\max_{\ell \in [L]} \|\mathbf{W}^\ell\|_{2 \rightarrow 2}, \frac{\eta_m}{\eta_b} \|\theta\|_{\text{ada}\infty} \right). \quad (15)$$

245 The coefficient η_m/η_b effectively allows for the use of different learning rates for hidden weight
246 matrices compared to all other parameters; this is a crucial feature of Muon’s speedrun implementation
247 (Jordan et al., 2024b) and of other variations (Pethick et al., 2025; Liu et al., 2025).
248249 Proposition 3.6 shows the precise sense in which MuonAdam is a steepest descent algorithm: it is
250 constrained steepest descent with respect to a particular product norm that aggregates the spectral
251 norm of each hidden weight matrix and an adaptive ℓ_∞ norm for all other parameters. This still
252 leaves several other valid choices within our general steepest descent framework to explore: whether
253 to use constrained or regularized steepest descent, which product norm to use ($\|\cdot\|_\infty, \|\cdot\|_2$), and
254 which norm to assign to the non-matrix parameters ($\|\cdot\|_{\text{ada}\infty}, \|\cdot\|_{\text{ada}2}, \|\cdot\|_\infty$).
255256 These three factors yield a design space for Muon-type optimization algorithms, all of which are
257 founded on the principle of steepest descent, and most of which are unexplored. Among these algo-
258 rithms are several existing variations of Muon, including Scion (Pethick et al., 2025) and PolarGrad
259 (Lau et al., 2025) (see Appendix A.1 for the full statements).
260261 **Stale dual norms.** Many of the updates we have presented so far require calculating dual norms of
262 the momentum buffers (e.g. Equation 9 through Equation 11). If that norm is the spectral norm, this
263 amounts to computing the nuclear norm of the momentum, which may appear costly, but actually
264 the dual norm is easy to compute once we have computed the LMO, since $\|\mathbf{v}\|_* = \langle -\text{LMO}(\mathbf{v}), \mathbf{v} \rangle$.
265 However, in the case that updates are not separable across parameters, computing the dual norms of
266 each momentum buffer in this way requires either additional memory (to store the layer-wise LMOs)
267 or additional time (to compute the LMOs twice). To see why, consider the example of RSD with
268 the $\|\cdot\|_\infty$ product norm (Equation 9), and assume for simplicity that all parameters are assigned the
269

1We omit the bias correction since this bias can be removed by correctly initializing the momentum buffers Schaipp et al. (2024). In any case it has little effect on performance (Orvieto & Gower, 2025).

270 spectral norm. For each layer i , the update $\mathbf{W}_{t+1}^i = \mathbf{W}_t^i - \eta \left(\sum_{j=1}^L \|\mathbf{M}_t^j\|_{\text{nuc}} \right) \text{polar}(\mathbf{M}_t^i)$ cannot
 271 be executed until $\|\mathbf{M}_t^j\|_{\text{nuc}} = \langle \text{polar}(\mathbf{M}_t^j), \mathbf{M}_t^j \rangle$ has been computed for every layer j . Crucially,
 272 the polar factors are used twice here: once to compute dual norms, and again to update weights. So,
 273 we can either store the polar factors for reuse (extra memory), or compute them twice (extra time);
 274 these options are sketched in the first two columns below.
 275

276 Extra Memory	277 Extra Time	278 Stale Norms
<pre> 277 d = 0 278 lmos = {} 279 for i in range(1, L+1): 280 lmos[i] = -polar(M[i]) 281 d -= lmos[i].dot(M[i]) 282 283 for i in range(1, L+1): 284 W[i] += eta * d * lmos[i] </pre>	<pre> d = 0 for i in range(1, L+1): lmo = -polar(M[i]) d -= lmo.dot(M[i]) for i in range(1, L+1): lmo = polar(M[i]) W[i] += eta * d * lmo </pre>	<pre> new_d = 0 for i in range(1, L+1): lmo = -polar(M[i]) new_d -= lmo.dot(M[i]) W[i] += eta * old_d * lmo old_d = new_d </pre>

285 The first option requires additional memory proportional to the size of the network, while the second
 286 option doubles the wall-clock time needed to compute polar factors. As an efficient approximation,
 287 we propose to reuse momentum dual norms from the previous step (shown in the third column),
 288 which can be implemented without storing or recomputing polar factors, and only requires a single
 289 additional scalar of memory for each layer. We found in our experiments that using these “stale”
 290 dual norms had near negligible effect on performance. Informally, we expect this approximation to
 291 work on the grounds that the momentum doesn’t change too drastically in a single step, since

$$292 \mathbf{m}_t - \mathbf{m}_{t-1} = \beta \mathbf{m}_{t-1} + (1 - \beta) \mathbf{g}_t - \mathbf{m}_{t-1} = (1 - \beta)(\mathbf{g}_t - \mathbf{m}_{t-1}) \quad (16)$$

293 has small magnitude when β is close to 1.

294 **A New Product Norm.** Our proposed algorithm MuonMax is regularized steepest descent with
 295 respect to the following norm:

$$297 \|\mathbf{W}\|_{\text{MM}} := \sqrt{\left(\max_{\ell \in [L]} \|\mathbf{W}^\ell\|_{2 \rightarrow 2} \right)^2 + \frac{\eta_m}{\eta_b} \|\boldsymbol{\theta}\|_{\text{ada2}}^2} \quad (17)$$

298 This norm comes from assigning $\|\cdot\|_{\text{ada2}}$ to the non-matrix parameters, spectral norm to the
 299 matrix parameters, then aggregating both using the standard $\|\cdot\|_2$ Euclidean norm. We denote the
 300 corresponding product norm as $\|\cdot\|_{\text{hyb}}$, defined in Equation 127 of Appendix C.
 301

302 4 MODEL TRUNCATION

304 Beyond a more solid theoretical footing for Muon-type algorithms, our steepest descent framework
 305 also offers practical benefits: techniques designed for SGD (or normalized SGD) can now be easily
 306 adapted for Muon-type algorithms by generalizing to arbitrary norms. In this section, we generalize
 307 Momo (Schaipp et al., 2024) for steepest descent with respect to arbitrary norms.

308 Recall that both variations of steepest descent are motivated by locally minimizing a first-order Tay-
 309 lor approximation of the loss around the current iterate. Momo makes use of *model truncation* (Asi
 310 & Duchi, 2019b), which leverages knowledge of a loss lower bound F_* to construct a better approx-
 311 imation of the loss which is more accurate than a Taylor approximation. In Momo, this model also
 312 incorporates information from the history of gradients and losses through momentum.

313 Denote $\rho_{i,t} = (1 - \beta)\beta^{t-i}$, so that $\mathbf{m}_t = \sum_{i=0}^t \rho_{i,t} \mathbf{g}_i$, and denote by $F_t(\mathbf{w}_t)$ the minibatch loss
 314 at step t . Then for each t , we can build a model of the loss around \mathbf{w}_t as a weighted average of
 315 first-order Taylor approximations centered at each iterate \mathbf{w}_i :

$$316 F(\mathbf{w}) \approx \sum_{i=0}^t \rho_{t,i} (F_i(\mathbf{w}_i) + \langle \mathbf{g}_i, \mathbf{w} - \mathbf{w}_i \rangle) \quad (18)$$

$$318 = \sum_{i=0}^t \rho_{t,i} (F_i(\mathbf{w}_i) + \langle \mathbf{g}_i, \mathbf{w}_t - \mathbf{w}_i \rangle) + \sum_{i=0}^t \rho_{t,i} \langle \mathbf{g}_i, \mathbf{w} - \mathbf{w}_t \rangle \quad (19)$$

$$319 = \tilde{F}_t + \langle \mathbf{m}_t, \mathbf{w} - \mathbf{w}_t \rangle, \quad (20)$$

321 where on the last line we denoted $\tilde{F}_t := \sum_{i=0}^t \rho_{t,i} (F_i(\mathbf{w}_i) + \langle \mathbf{g}_i, \mathbf{w}_t - \mathbf{w}_i \rangle)$. Since $F(\mathbf{w}) \geq F_*$
 322 for all \mathbf{w} , we can improve our model by truncating, or clipping, it at F_* :

$$323 F(\mathbf{w}) \approx \max \left(\tilde{F}_t + \langle \mathbf{m}_t, \mathbf{w} - \mathbf{w}_t \rangle, F_* \right).$$

324 Our truncated steepest descent methods, shown below, arise from minimizing this truncated model
 325 either with a norm ball constraint or with squared norm regularization.
 326

327 **Proposition 4.1.** [Constrained Momo] The ball constrained truncated model update is given by
 328

$$\mathbf{w}_{t+1} = \arg \min_{\|\mathbf{w} - \mathbf{w}_t\| \leq \eta} \left\{ \max \left(\tilde{F}_t + \langle \mathbf{m}_t, \mathbf{w} - \mathbf{w}_t \rangle, F_* \right) \right\} \quad (21)$$

$$= \mathbf{w}_t + \min \left(\eta, \frac{\tilde{F}_t - F_*}{\|\mathbf{m}_t\|_*} \right) \text{LMO}(\mathbf{m}_t) \quad (22)$$

333 The arg min above can have multiple solutions: we take the one that has minimal distance to \mathbf{w}_t .
 334

335 **Proposition 4.2.** [Regularized Momo] The regularized truncated model update is given by
 336

$$\mathbf{w}_{t+1} = \arg \min_{\mathbf{w}} \left\{ \max \left(\tilde{F}_t + \langle \mathbf{m}_t, \mathbf{w} - \mathbf{w}_t \rangle, F_* \right) + \frac{1}{2\eta} \|\mathbf{w} - \mathbf{w}_t\|^2 \right\} \quad (23)$$

$$= \mathbf{w}_t + \min \left(\eta, \frac{\tilde{F}_t - F_*}{\|\mathbf{m}_t\|_*^2} \right) \|\mathbf{m}_t\|_* \text{LMO}(\mathbf{m}_t) \quad (24)$$

341 The term \tilde{F}_t relies on the history of previous gradients and losses, but it can be computed with a
 342 single scalar running average. Pseudocode for both Momo variations is shown in Algorithm 2.
 343

344 Now that we have shown how to use Momo with respect to any norm, we can immediately com-
 345 bine Momo with any steepest descent algorithm in our framework, including MuonAdam. For
 346 example, our proposed algorithm MuonMax-Momo (Algorithm 3 in Appendix B) can be written as
 347 Regularized Momo w.r.t. $\|\cdot\|_{\text{MM}}$ (defined in Equation 17) with stale dual norm approximations.

348 **Proposition 4.3.** [MuonMax-Momo] Regularized Momo with respect to the norm $\|\cdot\|_{\text{MM}}$ as
 349 defined in equation 17 has the following closed form:
 350

$$\begin{aligned} d_t &= \sqrt{\left(\sum_{\ell=1}^L \|\mathbf{M}_t^\ell\|_{\text{nuc}} \right)^2 + \frac{\eta_b}{\eta_m} \left\| \frac{\mathbf{m}_t^\theta}{\sqrt{\sqrt{\mathbf{v}_t^\theta} + \epsilon}} \right\|_2^2} \\ \mathbf{W}_{t+1}^\ell &= \mathbf{W}_t^\ell - \min \left\{ \eta_m, \frac{\tilde{F}_t - F_*}{d_t^2} \right\} \left(\sum_{j=1}^L \|\mathbf{M}_t^j\|_{\text{nuc}} \right) \text{polar}(\mathbf{M}_t^\ell) \quad (25) \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t - \min \left\{ \eta_b, \frac{\eta_b}{\eta_m} \frac{\tilde{F}_t - F_*}{d_t^2} \right\} \frac{\mathbf{m}_t^\theta}{\sqrt{\mathbf{v}_t^\theta + \epsilon}}. \end{aligned}$$

358 The update in Proposition 4.3 matches that of Algorithm 3 except for the use of stale dual norms.
 359

360 5 EXPERIMENTS

362 Here we provide a comprehensive evaluation of optimizers arising from our steepest descent frame-
 363 work for training language models. We start by tuning and evaluating 36 optimizer variations aris-
 364 ing from different choices of normalization, product norm, norm for the non-matrix parameters, and
 365 whether to use model truncation. For this initial phase of evaluating all variations, we use 1B tokens
 366 from the FineWeb dataset to train a GPT2-Small model with 124M params (Section 5.1). We take
 367 the four best performing methods (MuonAdam, Scion, MuonAdam-Momo, MuonMax-Momo)
 368 and evaluate them for a GPT2-Large model with 774M params on the SlimPajama dataset (Section
 369 5.2), first by thoroughly tuning all four algorithms with 1B tokens, then running a final evaluation
 370 of Muon and MuonMax-Momo with 6B tokens. Finally, in Section 5.3 we perform two ablation
 371 studies: we examine the sensitivity of Momo variants to the choice of the loss lower bound F_* , and
 372 we evaluate the effect of stale nuclear norm approximations on final loss and wall-clock time.
 373

374 5.1 FINEWEB DATASET

375 To identify the strongest methods within our framework, we thoroughly tune and evaluate 36 vari-
 376 ations that arise from mixing and matching settings for the following design choices: constrained
 377 vs regularized steepest descent, product norm ($\|\cdot\|_\infty, \|\cdot\|_2, \|\cdot\|_{\text{hyb}}$), norm for parameters besides
 hidden weight matrices ($\|\cdot\|_\infty, \|\cdot\|_{\text{ada}\infty}, \|\cdot\|_{\text{ada}2}$), and whether to apply model truncation.

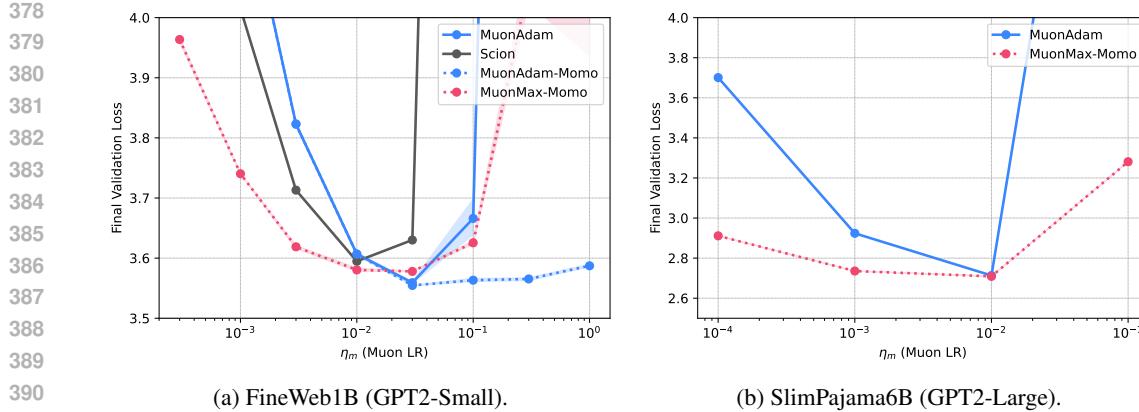


Figure 2: Final validation loss with varying learning rates on FineWeb1B (left) and SlimPajama6B (right). Our MuonAdam-Momo and MuonMax-Momo have wider basins than MuonAdam and Scion, indicating increased robustness to learning rate tuning.

Setup. For all variations, we run one epoch of training with 1B tokens from the FineWeb dataset (Penedo et al., 2024), using the GPT-2 Small architecture (124M params) from modded-nanopt (Jordan et al., 2024a). Each algorithm in our framework has two learning rates: η_m for the hidden weight matrices (which we call the Muon learning rate) and η_b for everything else (which we call the base learning rate). Due to the computational cost of performing a double grid search, we opt to tune with an iterated grid search; for each algorithm, we fix η_b while tuning η_m , then fix η_m at the tuned value while tuning η_b . See Appendix C for a complete specification of the tuning protocol and other implementation details. For all Momo variations, we set the lower bound $F_* = 3.2$, and conduct a sensitivity analysis of this hyperparameter in Section 5.3.

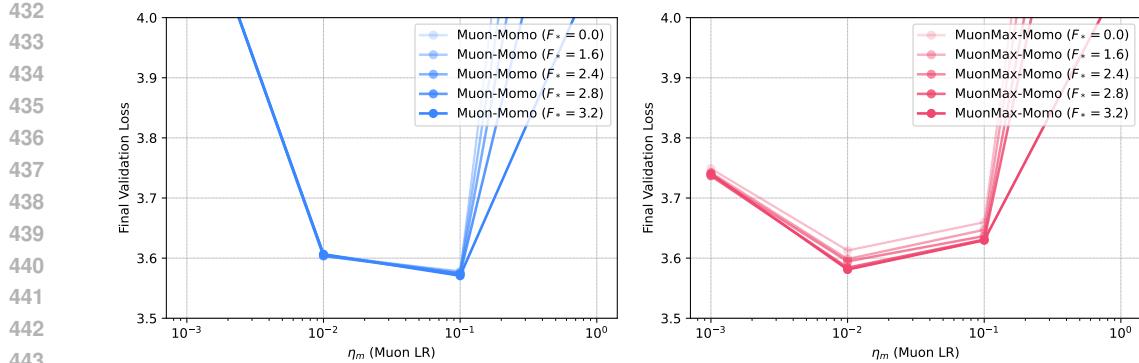
Results. The final loss for each variation is shown in Tables 2 and 3 of Appendix D. For the best performing variations (MuonAdam, Scion, MuonAdam-Momo, and MuonMax-Momo), we additionally evaluate the sensitivity to learning rate tuning by running each algorithm with LRs $(\rho\eta_m, \rho\eta_b)$, where (η_m, η_b) are the previously tuned LRs and ρ varies over $\{0.03, 0.1, 0.3, 1, 3, 10, 30, 100\}$, with three random seeds each (Figure 2a). Table 4 in Appendix D gives the mean and standard deviation of final validation loss for each algorithm with tuned LRs. For these runs, MuonAdam-Momo and MuonMax-Momo use stale nuclear norms.

In Figure 2a, we see that MuonAdam and MuonAdam-Momo achieve the smallest loss among all variations, though MuonAdam is much more sensitive to the learning rate. Both MuonAdam-Momo and MuonMax-Momo enjoy a much wider range of competitive learning rates compared with MuonAdam and Scion; for this search range, the proportion of LRs yielding loss less than 3.65 is 25% for MuonAdam and Scion, 50% for MuonMax-Momo, and 62.5% for MuonAdam-Momo. Also, Table 4 (Appendix D) shows that both of our Momo methods achieve a smaller variation in loss across random seeds compared with MuonAdam and Scion.

5.2 SLIMPAJAMA DATASET

Having identified MuonAdam, Scion, MuonAdam-Momo, and MuonMax-Momo as the strongest variations, we evaluate these methods for training the GPT2-Large architecture (774M params) using the SlimPajama dataset (Soboleva et al., 2023). We first evaluate all four algorithms for one epoch with 1B tokens, then evaluate MuonAdam and MuonMax-Momo for one epoch with 6B tokens.

Setup. Most aspects of training are the same as in Section 5.1, the main difference being the tuning protocol. To tune the two learning rates η_m and η_b , we run a double grid search for each algorithm, varying $\eta_m \in \{1e-4, 1e-3, 1e-2, 1e-1\}$ and $\eta_b \in \{1e-5, 1e-4, 1e-3, 1e-2\}$ for a total of 16 settings per algorithm. For the Momo variants, we set the lower bound $F_* = 2.8$ when training with 1B tokens and $F_* = 2.0$ when training with 6B tokens. We did not tune F_* , and based on the sensitivity analysis in Section 5.3, we expect that this hyperparameter does not have a large effect on final performance for tuned learning rates.

Figure 3: Sensitivity to loss lower bound F_* for model truncation (Fineweb1B).

	MuonAdam	MuonMax	MuonAdam-Momo	Scion-Momo	MuonMax-Momo
Original	3.604 (1 \times)	3.791 (1.09 \times)	3.551 (1.10 \times)	3.592 (1.08 \times)	3.576 (1.11 \times)
Stale	-	3.768 (1.04 \times)	3.554 (1.04 \times)	3.590 (1.02 \times)	3.580 (1.05 \times)

Table 1: Effect of stale nuclear norm approximation on final loss and wall-clock time per-iteration compared to MuonAdam, which has no stale variant because it does not involve nuclear norms.

Results. Figure 1 shows the final loss of each method with LRs $(\rho\eta_m, \rho\eta_b)$, where (η_m, η_b) are tuned LRs and $\rho \in \{1e-2, 1e-1, 1, 1e1, 1e2, 1e3\}$. The sensitivity of each method with respect to both learning rates is shown for the full 2D grid in Figure 9 of Appendix D. We see in Figure 1 that MuonMax-Momo achieves the lowest loss of all methods, and that both Momo variations are extremely robust to the choice of learning rates. Both MuonAdam and Scion have quite narrow sensitivity curves, that is, shifting the optimal learning rates by a factor of 10 in either direction creates a large increase in final loss. In comparison, the final loss of MuonMax-Momo remains between 3.13 and 3.24 even as η_m varies over five orders of magnitude from 1e-3 to 10.

We see similar robustness of MuonMax-Momo when scaling up to 6B tokens. Due to the cost of re-tuning learning rates, we reuse the ratio η_m/η_b of the tuned learning rates from 1B training, and vary $\eta_m \in \{1e-4, 1e-3, 1e-2, 1e-1\}$ for MuonAdam and MuonMax-Momo. Figure 2b shows that MuonMax-Momo achieves a lower loss than MuonAdam for every setting in this range, and generally exhibits less variation in the loss as the learning rates are shifted from their optimal values.

5.3 ABLATIONS

To probe the behavior of our proposed methods, we perform two ablation studies: (1) we evaluate how the choice of loss lower bound F_* affects the final validation loss of MuonAdam-Momo and MuonMax-Momo; (2) we evaluate the effect of using stale nuclear norm approximations on the final validation loss and wall-clock time per iteration for several methods in our framework. In this section, we use the same setup as in Section 5.1 (GPT2-Small, FineWeb dataset, 1B tokens).

Sensitivity Analysis of F_* . Figure 3 shows the final loss of MuonAdam-Momo and MuonMax-Momo with various η_m , as the loss lower bound F_* varies over $\{0, 1.6, 2.4, 2.8, 3.2\}$. We see that the choice of F_* makes the biggest difference when η_m is larger than the optimal value. For MuonAdam-Momo, the final loss is nearly identical for all values of F_* when $\eta_m \leq 0.1$. MuonMax-Momo is somewhat more sensitive to the choice of F_* , but even the aggressive lower bound of $F_* = 0.0$ achieves 3.61 loss compared to the 3.58 optimum achieved with $F_* = 3.2$.

Effect of Stale Approximation. Table 1 shows the final validation loss and per-step wall-clock times of four methods (with tuned LRs) with and without stale nuclear norm approximations. We see that in all cases, the stale approximation increases the loss by at most 0.004, while sometimes even decreasing it. We therefore conclude that this approximation does not noticeably affect the final loss for these tuned algorithms, although it does afford a speedup; for MuonMax-Momo, the additional wall-clock time compared to MuonAdam is reduced from 11% to 5%.

486

REPRODUCIBILITY STATEMENT

487

488 All of the code we used for our experiments is included in the supplementary material. This includes
 489 code to download and process data, run training, and make plots. See README.md in the supple-
 490 mentary material for instructions on running our code. On a conceptual level, all of our proposed
 491 methods are derived in full detail, and can in principle be implemented from scratch in PyTorch
 492 without any additional knowledge outside of the paper. Full pseudocode for our proposed method
 493 is given in Algorithm 3, and any of the other methods we discuss in this paper can be derived from
 494 Propositions 3.1, 3.2, 4.1, 4.2, Lemma 3.3, and the specifications in Table 2.

495

496

REFERENCES

497

498

499

500

Noah Amsel, David Persson, Christopher Musco, and Robert M Gower. The polar express:
 Optimal matrix sign methods and their application to the muon algorithm. *arXiv preprint arXiv:2505.16932*, 2025.

501

502

503

Hilal Asi and John C. Duchi. Stochastic (approximate) proximal point methods: convergence,
 optimality, and adaptivity. *SIAM J. Optim.*, 29(3):2257–2290, 2019a. ISSN 1052-6234. doi:
 10.1137/18M1230323.

504

505

506

507

Hilal Asi and John C. Duchi. The importance of better models in stochastic optimization. *Proceedings of the National Academy of Sciences*, 116(46):22924–22930, 2019b. doi: 10.1073/pnas.1908018116. URL <https://www.pnas.org/doi/10.1073/pnas.1908018116>.

508

509

510

511

Hilal Asi, Karan Chadha, Gary Cheng, and John C. Duchi. Minibatch stochastic
 approximate proximal point methods. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/fa2246fa0fdf0d3e270c86767b77ba1b-Abstract.html>.

512

513

514

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
 gradients. In *International Conference on Machine Learning*, pp. 404–413. PMLR, 2018.

515

516

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology, 2024a. URL
<https://arxiv.org/abs/2409.20325>.

517

518

519

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. *arXiv preprint arXiv:2410.21265*, 2024b.

520

521

522

523

524

David Carlson, Volkan Cevher, and Lawrence Carin. Stochastic Spectral Descent for Restricted
 Boltzmann Machines. In Guy Lebanon and S. V. N. Vishwanathan (eds.), *Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics*, volume 38 of *Proceedings of Machine Learning Research*, pp. 111–119, San Diego, California, USA, 09–12 May 2015a. PMLR. URL <https://proceedings.mlr.press/v38/carlson15.html>.

525

526

527

528

529

David E Carlson, Edo Collins, Ya-Ping Hsieh, Lawrence Carin, and Volkan Cevher. Precondi-
 tioned spectral descent for deep learning. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 28. Curran As-
 sociates, Inc., 2015b. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/f50a6c02a3fc5a3a5d4d9391f05f3efc-Paper.pdf.

530

531

532

533

534

535

Keyi Chen, Ashok Cutkosky, and Francesco Orabona. Implicit parameter-free online learning
 with truncated linear models. In Sanjoy Dasgupta and Nika Haghtalab (eds.), *Proceedings of The 33rd International Conference on Algorithmic Learning Theory*, volume 167 of *Proceedings of Machine Learning Research*, pp. 148–175. PMLR, 29 Mar–01 Apr 2022. URL
<https://proceedings.mlr.press/v167/chen22a.html>.

536

537

538

539

Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly convex
 functions. *SIAM J. Optim.*, 29(1):207–239, 2019. ISSN 1052-6234. doi: 10.1137/18M1178244.

Nan Du et al. Glam: Efficient scaling of language models with mixture-of-experts. *arXiv preprint arXiv:2112.06905*, 2022.

540 Chen Fan, Mark Schmidt, and Christos Thrampoulidis. Implicit bias of spectral descent and muon
 541 on multiclass separable data. *arXiv preprint arXiv:2502.04664*, 2025.

542

543 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
 544 models with simple and efficient sparsity. *arXiv preprint arXiv:2101.03961*, 2021.

545

546 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
 547 tion. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 548 770–778, 2016.

549

550 Keller Jordan. cifar10-airbench, 2024. URL <https://github.com/KellerJordan/cifar10-airbench>.

551

552 Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado, You Ji-
 553 acheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt: Speedrunning
 554 the nanogpt baseline, 2024a. URL <https://github.com/KellerJordan/modded-nanogpt>.

555

556 Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
 557 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL <https://kellerjordan.github.io/posts/muon/>.

558

559 Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-euclidean
 560 trust-region optimization. *arXiv preprint arXiv:2503.12645*, 2025.

561

562 Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
 563 optimization in the modular norm. *Advances in Neural Information Processing Systems*, 37:
 564 73501–73548, 2024.

565

566 Tim Tsz-Kit Lau, Qi Long, and Weijie Su. Polargrad: A class of matrix-gradient optimizers from a
 567 unifying preconditioning perspective. *arXiv preprint arXiv:2505.21799*, 2025.

568

569 Jiaxiang Li and Mingyi Hong. A note on the convergence of muon. *arXiv preprint
 570 arXiv:2502.02900*, 2025.

571

572 Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
 573 Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. *arXiv preprint
 574 arXiv:2502.16982*, 2025.

575

576 Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic Polyak
 577 step-size for SGD: An adaptive learning rate for fast convergence. In Arindam Banerjee and Kenji
 578 Fukumizu (eds.), *Proceedings of The 24th International Conference on Artificial Intelligence and
 579 Statistics*, volume 130 of *Proceedings of Machine Learning Research*, pp. 1306–1314. PMLR,
 580 13–15 Apr 2021. URL <https://proceedings.mlr.press/v130/loizou21a.html>.

581

582 Si Yi Meng and Robert M. Gower. A model-based method for minimizing CVaR and beyond.
 583 In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
 584 Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*,
 585 volume 202 of *Proceedings of Machine Learning Research*, pp. 24436–24456. PMLR, 23–29 Jul
 586 2023. URL <https://proceedings.mlr.press/v202/meng23a.html>.

587

588 Antonio Orvieto and Robert M. Gower. In search of adam’s secret sauce. In *Advances in Neural
 589 Information Processing Systems*, 2025.

590

591 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
 592 Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
 593 at scale. *Advances in Neural Information Processing Systems*, 37:30811–30849, 2024.

594

595 Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
 596 Volkan Cevher. Training deep learning models with norm-constrained lmos. *arXiv preprint
 597 arXiv:2502.07529*, 2025.

598

599 Artem Riabinin, Egor Shulgin, Kaja Gruntkowska, and Peter Richtárik. Gluon: Making muon &
 600 scion great again!(bridging theory and practice of lmo-based optimizers for llms). *arXiv preprint
 601 arXiv:2505.13416*, 2025.

594 Fabian Schaipp, Robert M. Gower, and Michael Ulbrich. A stochastic proximal Polyak step
595 size. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=jWr41htaB3>. Reproducibility Certification.
596

597 Fabian Schaipp, Ruben Ohana, Michael Eickenberg, Aaron Defazio, and Robert M Gower. Momo:
598 momentum models for adaptive learning rates. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 43542–43570, 2024.
599

600 Noam Shazeer et al. Outrageously large neural networks: The sparsely-gated mixture-of-experts
601 layer. *arXiv preprint arXiv:1701.06538*, 2017.
602

603 Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
604 SlimPajama: A 627B token cleaned and deduplicated version of RedPajama. <https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama>, 2023.
605 URL <https://huggingface.co/datasets/cerebras/SlimPajama-627B>.
606

607 Qwen Team. Qwen2 and qwen2-moe models. GitHub repository, 2024. URL <https://github.com/QwenLM>.
608

609 Nikolaos Tsilivis, Gal Vardi, and Julia Kempe. Flavors of margin: Implicit bias of steepest de-
610 scent in homogeneous neural networks. In *The Thirteenth International Conference on Learning
611 Representations*, 2025. URL <https://openreview.net/forum?id=BEpaPHD19r>.
612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648	CONTENTS	
649		
650		
651	1 Introduction	1
652		
653	2 Related Work	2
654		
655	3 Steepest Descent on Neural Networks	3
656	3.1 Constrained vs Regularized Steepest Descent	3
657		
658	3.2 Product Norms	4
659		
660	3.3 Incorporating Adam	5
661		
662	3.4 The Whole Framework	5
663		
664	4 Model Truncation	6
665		
666	5 Experiments	7
667	5.1 FineWeb Dataset	7
668		
669	5.2 SlimPajama Dataset	8
670		
671	5.3 Ablations	9
672		
673	A Proofs from Section 3	14
674		
675	A.1 Recovering Existing Algorithms	18
676		
677	B Proofs from Section 4	20
678		
679	C Experimental Details	24
680		
681	D Additional Experimental Results	25
682		
683	D.1 FineWeb	25
684		
685	D.1.1 Additional Baselines	27
686		
687	D.1.2 Additional Metrics	27
688		
689	D.1.3 Varying Batch Size	28
690		
691	D.1.4 Qwen2Moe model	29
692		
693	D.2 SlimPajama	29
694		
695	D.2.1 Additional Metrics	31
696		
697	D.3 Image Classification	32
698		
699		
700		
701		

702 A PROOFS FROM SECTION 3
703704 In what follows, for a norm denoted by a subscript such as $\|\cdot\|_\infty$, we will sometimes replace
705 $\text{LMO}_{\|\cdot\|_\infty}$ with LMO_∞ .
706707 **Proposition 3.1.** [Constrained Steepest Descent] The CSD update is given by
708

709
$$\mathbf{w}_{t+1} = \arg \min_{\|\mathbf{w} - \mathbf{w}_t\| \leq \eta} \{F(\mathbf{w}_t) + \langle \mathbf{m}_t, \mathbf{w} - \mathbf{w}_t \rangle\} = \mathbf{w}_t + \eta \text{LMO}(\mathbf{m}_t). \quad (2)$$

710

711 *Proof of Proposition 3.1.* Denoting $r = \|\mathbf{w} - \mathbf{w}_t\|$ and $\Delta = (\mathbf{w} - \mathbf{w}_t)/\|\mathbf{w} - \mathbf{w}_t\|$, we can change
712 variables in the optimization problem from Equation 2, yielding $\mathbf{w}_{t+1} = \mathbf{w}_t + r_t \Delta_t$, where
713

714
$$(r_t, \Delta_t) = \arg \min_{r \in [0, \eta], \|\Delta\|=1} \{r \langle \mathbf{m}_t, \Delta \rangle\}, \quad (26)$$

715

716 which can be separated into
717

718
$$\Delta_t = \arg \min_{\|\Delta\|=1} \langle \mathbf{m}_t, \Delta \rangle = \text{LMO}(\mathbf{m}_t), \quad (27)$$

719 and
720

721
$$r_t = \arg \min_{r \in [0, \eta]} \{r \langle \mathbf{m}_t, \Delta_t \rangle\} = \arg \min_{r \in [0, \eta]} \{r \langle \mathbf{m}_t, \text{LMO}(\mathbf{m}_t) \rangle\} = \arg \min_{r \in [0, \eta]} \{-r \|\mathbf{m}_t\|_*\} = \eta, \quad (28)$$

722

723 so $\mathbf{w}_{t+1} = \mathbf{w}_t + \eta \text{LMO}(\mathbf{m}_t)$. \square
724725 **Proposition 3.2.** [Regularized Steepest Descent] The RSD update is given by
726

727
$$\mathbf{w}_{t+1} = \arg \min_{\mathbf{w}} \left\{ F(\mathbf{w}_t) + \langle \mathbf{m}_t, \mathbf{w} - \mathbf{w}_t \rangle + \frac{1}{2\eta} \|\mathbf{w} - \mathbf{w}_t\|^2 \right\} = \mathbf{w}_t + \eta \|\mathbf{m}_t\|_* \text{LMO}(\mathbf{m}_t) \quad (3)$$

728
729

730 *Proof of Proposition 3.2.* For the optimization problem from Equation 3, we use the same change
731 of variables as in the proof of Proposition 3.1: $r = \|\mathbf{w} - \mathbf{w}_t\|$ and $\Delta = (\mathbf{w} - \mathbf{w}_t)/\|\mathbf{w} - \mathbf{w}_t\|$.
732 Therefore $\mathbf{w}_{t+1} = \mathbf{w}_t + r_t \Delta_t$, where
733

734
$$(r_t, \Delta_t) = \arg \min_{r \geq 0, \|\Delta\|=1} \left\{ r \langle \mathbf{m}_t, \Delta \rangle + \frac{r^2}{2\eta} \right\}, \quad (29)$$

735

736 which can be separated into
737

738
$$\Delta_t = \arg \min_{\|\Delta\|=1} \langle \mathbf{m}_t, \Delta \rangle = \text{LMO}(\mathbf{m}_t), \quad (30)$$

739

740 and
741

742
$$r_t = \arg \min_{r \geq 0} \left\{ r \langle \mathbf{m}_t, \Delta_t \rangle + \frac{r^2}{2\eta} \right\} \quad (31)$$

743

744
$$= \arg \min_{r \geq 0} \left\{ r \langle \mathbf{m}_t, \text{LMO}(\mathbf{m}_t) \rangle + \frac{r^2}{2\eta} \right\} \quad (32)$$

745

746
$$= \arg \min_{r \geq 0} \left\{ -r \|\mathbf{m}_t\|_* + \frac{r^2}{2\eta} \right\} \quad (33)$$

747

748
$$= \eta \|\mathbf{m}_t\|_*, \quad (34)$$

749

750 so that $\mathbf{w}_{t+1} = \mathbf{w}_t + \eta \|\mathbf{m}_t\|_* \text{LMO}(\mathbf{m}_t)$. \square 751 **Lemma 3.3.** [LMO and Dual of Product Norms] For each $i \in [n]$, let g_i be a norm on \mathbb{R}^{d_i} , and
752 let f be a norm on \mathbb{R}^n , and denote their dual norms as $g_{i,*}$ and f_* , respectively. Then the product
753 norm $h : \mathbb{R}^{d_1} \times \dots \times \mathbb{R}^{d_n} \rightarrow \mathbb{R}$ defined by

754
$$h(\mathbf{w}^1, \dots, \mathbf{w}^n) = f(g_1(\mathbf{w}^1), \dots, g_n(\mathbf{w}^n)) \quad (5)$$

755

756 is indeed a norm, and its LMO and dual norm are given by
 757

$$\text{LMO}_h(\mathbf{w}^1, \dots, \mathbf{w}^n) = (\phi_1 \text{LMO}_{g_1}(\mathbf{w}^1), \dots, \phi_n \text{LMO}_{g_n}(\mathbf{w}^n)) \quad (6)$$

$$h_*(\mathbf{w}^1, \dots, \mathbf{w}^n) = f_*(g_{1,*}(\mathbf{w}^1), \dots, g_{n,*}(\mathbf{w}^n)), \quad (7)$$

760 where $(\phi_1, \dots, \phi_n) := -\text{LMO}_f(g_{1,*}(\mathbf{w}^1), \dots, g_{n,*}(\mathbf{w}^n))$.
 761

763 *Proof of Lemma 3.3.* To show that h is a norm, we only need to show that
 764

- 765 1. $h(\mathbf{w}_1, \dots, \mathbf{w}_n) \geq 0$ for all $\mathbf{w}_1, \dots, \mathbf{w}_n$,
- 766 2. $h(\mathbf{w}_1, \dots, \mathbf{w}_n) = 0$ if and only if $(\mathbf{w}_1, \dots, \mathbf{w}_n) = \mathbf{0}$,
- 767 3. $h(\lambda \mathbf{w}_1, \dots, \lambda \mathbf{w}_n) = |\lambda| h(\mathbf{w}_1, \dots, \mathbf{w}_n)$ for all $\lambda \in \mathbb{R}$, $\mathbf{w}_1, \dots, \mathbf{w}_n$,
- 768 4. $h(\mathbf{w}_1 + \mathbf{v}_1, \dots, \mathbf{w}_n + \mathbf{v}_n) \leq h(\mathbf{w}_1, \dots, \mathbf{w}_n) + h(\mathbf{v}_1, \dots, \mathbf{v}_n)$ for all $\mathbf{w}_1, \mathbf{v}_1, \dots, \mathbf{w}_n, \mathbf{v}_n$.
 771

772 All of these properties hold immediately from the definition of $h = f \circ (g_1, \dots, g_n)$ together with
 773 repeated applications of the norm properties of f and g_1, \dots, g_n .
 774

775 From the definition of the dual norm,

$$776 h_*(\mathbf{w}_1, \dots, \mathbf{w}_n) = \max \left\{ \sum_{i=1}^n \langle \mathbf{w}_i, \mathbf{v}_i \rangle \mid h(\mathbf{v}_1, \dots, \mathbf{v}_n) = 1 \right\} \quad (35)$$

$$777 = \max \left\{ \sum_{i=1}^n \langle \mathbf{w}_i, \mathbf{v}_i \rangle \mid f(g_1(\mathbf{v}_1), \dots, g_n(\mathbf{v}_n)) = 1 \right\}. \quad (36)$$

782 We use a change of variables $\mathbf{u}_i = \mathbf{v}_i / g_i(\mathbf{v}_i)$ and $r_i = g_i(\mathbf{v}_i)$, which separates the update direction
 783 \mathbf{u}_i (with unit norm) from the update norm r_i . So Equation 36 is equivalent to

$$784 h_*(\mathbf{w}_1, \dots, \mathbf{w}_n) = \max \left\{ \sum_{i=1}^n r_i \langle \mathbf{w}_i, \mathbf{u}_i \rangle \mid f(r_1, \dots, r_n) = 1 \right\} \quad (37)$$

787 Note that the condition $f(r_1, \dots, r_n) = 1$ does not involve \mathbf{u}_i , so each term $r_i \langle \mathbf{w}_i, \mathbf{u}_i \rangle$ is maximized
 788 when

$$789 \mathbf{u}_i = \arg \max_{g_i(\mathbf{z}_i)=1} \langle \mathbf{w}_i, \mathbf{z}_i \rangle = -\text{LMO}_{g_i}(\mathbf{w}_i), \quad (38)$$

791 with maximum value $\langle \mathbf{w}_i, \mathbf{u}_i \rangle = g_{i,*}(\mathbf{w}_i)$. Using this in Equation 37 gives

$$792 h_*(\mathbf{w}_1, \dots, \mathbf{w}_n) = \max \left\{ \sum_{i=1}^n r_i g_{i,*}(\mathbf{w}_i) \mid f(r_1, \dots, r_n) = 1 \right\}. \quad (39)$$

795 Denoting $\mathbf{r} = (r_1, \dots, r_n)$ and $\mathbf{s} = (g_{1,*}(\mathbf{w}_1), \dots, g_{n,*}(\mathbf{w}_n))$, this is equivalent to
 796

$$797 h_*(\mathbf{w}_1, \dots, \mathbf{w}_n) = \max \{ \langle \mathbf{r}, \mathbf{s} \rangle \mid f(\mathbf{r}) = 1 \} \quad (40)$$

$$798 = f_*(\mathbf{s}), \quad (41)$$

799 which gives us the dual norm h_* .
 800

801 To obtain LMO_h , we only need to look at the value of the variables which achieved the maximum
 802 in the above derivation:

$$803 \mathbf{u}_i = -\text{LMO}_{g_i}(\mathbf{w}_i), \quad \text{and} \quad \mathbf{r} = \text{LMO}_f(g_{1,*}(\mathbf{w}_1), \dots, g_{n,*}(\mathbf{w}_n)) \quad (42)$$

804 so that

$$805 \mathbf{v}_i = r_i \text{LMO}_f(g_{1,*}(\mathbf{w}_1), \dots, g_{n,*}(\mathbf{w}_n)) \quad (43)$$

806 maximizes $\sum_{i=1}^n \langle \mathbf{w}_i, \mathbf{v}_i \rangle$ subject to $h(\mathbf{v}_1, \dots, \mathbf{v}_n) = 1$. Note that $\text{LMO}_h(\mathbf{w}_1, \dots, \mathbf{w}_n)$ is exactly
 807 the minimizer of $\sum_{i=1}^n \langle \mathbf{w}_i, \mathbf{v}_i \rangle$ subject to the same norm constraint; since $\sum_{i=1}^n \langle \mathbf{w}_i, \mathbf{v}_i \rangle$ is linear in
 808 \mathbf{v}_i , the minimizer is the negative of the maximizer. Therefore
 809

$$810 \text{LMO}_h(\mathbf{w}_1, \dots, \mathbf{w}_n) = -(r_1 \text{LMO}_{g_1}(\mathbf{w}_1), \dots, r_n \text{LMO}_{g_n}(\mathbf{w}_n)). \quad (44)$$

810
811

□

812
813

The following lemma will be useful later for quickly computing duals and LMOs of various norms.

814
815
816**Lemma A.1.** For any norm $\|\cdot\|$ on \mathbb{R}^d full rank matrix $\mathbf{D} \in \mathbb{R}^{d \times d}$, the norm defined by $\|\mathbf{v}\|_{\mathbf{D}} = \|\mathbf{D}\mathbf{v}\|$ has

817
$$\text{LMO}_{\|\cdot\|_{\mathbf{D}}}(\mathbf{v}) = \mathbf{D}^{-1} \text{LMO}_{\|\cdot\|}(\mathbf{D}^{-T} \mathbf{v}), \quad (45)$$

818
$$\|\mathbf{v}\|_{\mathbf{D},*} = \|\mathbf{D}^{-T} \mathbf{v}\|_*. \quad (46)$$

820

821
822*Proof.* The fact that $\|\cdot\|_{\mathbf{D}}$ is a norm follows immediately from the norm properties of $\|\cdot\|$ together with the fact that \mathbf{D} is full rank. For the dual norm,823
824

$$\|\mathbf{v}\|_{\mathbf{D},*} = \max_{\|\mathbf{u}\|_{\mathbf{D}}=1} \langle \mathbf{v}, \mathbf{u} \rangle = \max_{\|\mathbf{D}\mathbf{u}\|=1} \langle \mathbf{v}, \mathbf{u} \rangle \quad (47)$$

825

and a change of variables $\mathbf{z} = \mathbf{D}\mathbf{u}$ yields826
827

$$\|\mathbf{v}\|_{\mathbf{D},*} = \max_{\|\mathbf{z}\|=1} \langle \mathbf{v}, \mathbf{D}^{-1}\mathbf{z} \rangle = \max_{\|\mathbf{z}\|=1} \langle \mathbf{D}^{-T}\mathbf{v}, \mathbf{z} \rangle = \|\mathbf{D}^{-T}\mathbf{v}\|_*. \quad (48)$$

828
829

For the LMO, we can look at the value of the variables that maximize the inner product in the above:

830
831

$$\mathbf{z} = \arg \max_{\|\mathbf{z}\|=1} \langle \mathbf{D}^{-T}\mathbf{v}, \mathbf{z} \rangle = -\text{LMO}_{\|\cdot\|}(\mathbf{D}^{-T}\mathbf{v}). \quad (49)$$

832

Returning to the \mathbf{u} variable then gives833
834

$$\mathbf{u} = \mathbf{D}^{-1}\mathbf{z} = -\mathbf{D}^{-1}\text{LMO}_{\|\cdot\|}(\mathbf{D}^{-T}\mathbf{v})$$

835
836
837which maximizes $\langle \mathbf{v}, \mathbf{u} \rangle$ subject to $\|\mathbf{u}\|_{\mathbf{D}} = 1$. Since $\langle \mathbf{v}, \mathbf{u} \rangle$ is linear in \mathbf{u} , the minimizer of $\langle \mathbf{v}, \mathbf{u} \rangle$ under the norm constraint $\|\mathbf{u}\|_{\mathbf{D}} = 1$ is exactly the negative of the maximizer under the same constraint. So838
839

$$\text{LMO}_{\|\cdot\|_{\mathbf{D}}}(\mathbf{v}) = \arg \min_{\|\mathbf{u}\|_{\mathbf{D}}=1} \langle \mathbf{v}, \mathbf{u} \rangle = \mathbf{D}^{-1} \text{LMO}_{\|\cdot\|}(\mathbf{D}^{-T}\mathbf{v}) \quad (50)$$

□

840

841

Proposition 3.4. The t -th update of Adam is the CSD with step size η with respect to the norm:843
844

$$\|\boldsymbol{\theta}\|_{\text{ada}\infty} := \left\| \text{Diag}\left(\frac{\sqrt{\mathbf{v}_t} + \epsilon}{|\mathbf{m}_t|}\right) \boldsymbol{\theta} \right\|_{\infty} \quad (13)$$

845

Proof of Proposition 3.4. Let $\mathbf{D} = \text{Diag}\left(\frac{\sqrt{\mathbf{v}_t} + \epsilon}{|\mathbf{m}_t|}\right)$, so that $\|\boldsymbol{\theta}\|_{\text{ada}\infty} = \|\mathbf{D}\boldsymbol{\theta}\|_{\infty}$. Then by Proposition 3.1, one step of CSD w.r.t. $\|\cdot\|_{\text{ada}\infty}$ is given by

846

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \eta \text{LMO}_{\text{ada}\infty}(\mathbf{m}_t) \quad (51)$$

847

$$\stackrel{(i)}{=} \boldsymbol{\theta}_t + \eta \mathbf{D}^{-1} \text{LMO}_{\infty}(\mathbf{D}^{-T} \mathbf{m}_t) \quad (52)$$

848

$$\stackrel{(ii)}{=} \boldsymbol{\theta}_t - \eta \mathbf{D}^{-1} \text{sign}(\mathbf{D}^{-T} \mathbf{m}_t) \quad (53)$$

849

$$= \boldsymbol{\theta}_t - \eta \text{Diag}\left(\frac{|\mathbf{m}_t|}{\sqrt{\mathbf{v}_t} + \epsilon}\right) \text{sign}\left(\text{Diag}\left(\frac{|\mathbf{m}_t|}{\sqrt{\mathbf{v}_t} + \epsilon}\right) \mathbf{m}_t\right) \quad (54)$$

850

$$= \boldsymbol{\theta}_t - \eta \frac{|\mathbf{m}_t|}{\sqrt{\mathbf{v}_t} + \epsilon} \odot \text{sign}(\mathbf{m}_t) \quad (55)$$

851

$$= \boldsymbol{\theta}_t - \eta \frac{\mathbf{m}_t}{\sqrt{\mathbf{v}_t} + \epsilon}, \quad (56)$$

852

where (i) uses Lemma A.1 and (ii) uses $\text{LMO}_{\infty}(\mathbf{v}) = -\text{sign}(\mathbf{v})$.

□

853

854

Proposition 3.5. The t -th update of Adam is the RSD with step size η with respect to the norm:

855

856

$$\|\boldsymbol{\theta}\|_{\text{ada}2} := \sqrt{\langle \text{Diag}(\sqrt{\mathbf{v}_t} + \epsilon) \boldsymbol{\theta}, \boldsymbol{\theta} \rangle} = \left\| \text{Diag}(\sqrt{\sqrt{\mathbf{v}_t} + \epsilon}) \boldsymbol{\theta} \right\|_2 \quad (14)$$

857

864 **Algorithm 1** MuonAdam: where $\mathbf{W}^1, \dots, \mathbf{W}^L$ are the weight matrices,
 865 and $\boldsymbol{\theta}$ are all other parameters flattened into a vector.
 866
 867 **Inputs:** $\mathbf{W}_0^1, \dots, \mathbf{W}_0^L, \boldsymbol{\theta}_0$, learning rates η_b, η_m , EMA parameters β, β_1, β_2
 868 1 **for** $t = 0, 1, \dots, T-1$ **do**
 869 2 $(\mathbf{G}_t^1, \dots, \mathbf{G}_t^L, \mathbf{g}_t^\theta) \leftarrow \text{backward}(\mathbf{W}_t^1, \dots, \mathbf{W}_t^L, \boldsymbol{\theta}_t)$
 870 3 **for** $\ell = 1, \dots, L$ **do**
 871 4 $\mathbf{M}_t^\ell = \beta \mathbf{M}_{t-1}^\ell + (1 - \beta) \mathbf{G}_t^\ell$
 872 5 $\mathbf{W}_{t+1}^\ell \leftarrow \mathbf{W}_t^\ell - \eta_m \text{polar}(\mathbf{M}_t^\ell)$
 873 6 **end for**
 874 7 $\mathbf{m}_t^\theta = \beta_1 \mathbf{m}_{t-1}^\theta + (1 - \beta_1) \mathbf{g}_t^\theta$
 875 8 $\mathbf{v}_t^\theta = \beta_2 \mathbf{v}_{t-1}^\theta + (1 - \beta_2) \mathbf{g}_t^\theta \odot \mathbf{g}_t^\theta$
 876 9 $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta_b \frac{\mathbf{m}_t^\theta}{\sqrt{\mathbf{v}_t^\theta + \epsilon}}$
 877 10 **end for**
 878
 879

880 *Proof of Proposition 3.5.* Let $\mathbf{D} = \text{Diag}(\sqrt{\sqrt{\mathbf{v}_t} + \epsilon})$, so that $\|\boldsymbol{\theta}\|_{\text{ada2}} = \|\mathbf{D}\boldsymbol{\theta}\|_2$. Then by Propo-
 881 sition 3.2, one step of RSD w.r.t. $\|\cdot\|_{\text{ada2}}$ is given by

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \eta \|\mathbf{m}_t\|_{\text{ada2},*} \text{LMO}_{\text{ada2}}(\mathbf{m}_t) \quad (57)$$

$$\stackrel{(i)}{=} \boldsymbol{\theta}_t + \eta \|\mathbf{D}^{-T} \mathbf{m}_t\|_{2,*} \mathbf{D}^{-1} \text{LMO}_2(\mathbf{D}^{-T} \mathbf{m}_t) \quad (58)$$

$$\stackrel{(ii)}{=} \boldsymbol{\theta}_t - \eta \|\mathbf{D}^{-T} \mathbf{m}_t\|_2 \mathbf{D}^{-1} \frac{\mathbf{D}^{-T} \mathbf{m}_t}{\|\mathbf{D}^{-T} \mathbf{m}_t\|_2} \quad (59)$$

$$= \boldsymbol{\theta}_t - \eta \mathbf{D}^{-1} \mathbf{D}^{-T} \mathbf{m}_t \quad (60)$$

$$= \boldsymbol{\theta}_t - \eta \text{Diag}\left(\frac{1}{\sqrt{\mathbf{v}_t} + \epsilon}\right) \mathbf{m}_t \quad (61)$$

$$= \boldsymbol{\theta}_t - \eta \frac{\mathbf{m}_t}{\sqrt{\mathbf{v}_t} + \epsilon}, \quad (62)$$

892 where (i) uses Lemma A.1 and (ii) uses $\text{LMO}_2(\mathbf{v}) = -\mathbf{v}/\|\mathbf{v}\|_2$. \square

893
 894 For reference, we include the pseudocode for MuonAdam (Muon side-by-side with Adam) in
 895 Algorithm 1.

896 **Proposition 3.6.** MuonAdam (Algorithm 1) is exactly CSD with step size η_m with respect to

$$\|\mathbf{W}\|_{\text{muon}} = \max \left(\max_{\ell \in [L]} \|\mathbf{W}^\ell\|_{2 \rightarrow 2}, \frac{\eta_m}{\eta_b} \|\boldsymbol{\theta}\|_{\text{ada}\infty} \right). \quad (15)$$

901 *Proof of Proposition 3.6.* By Proposition 3.1, one step of CSD w.r.t. $\|\cdot\|_{\text{muon}}$ can be written as

$$\mathbf{W}_{t+1} = \mathbf{W}_t + \eta_m \text{LMO}_{\text{muon}}(\mathbf{M}_t), \quad (63)$$

902 where \mathbf{M}_t is the momentum buffer for all network parameters, i.e. it is the concatenation of the
 903 momentum buffers of each parameter:

$$\mathbf{M}_t = (\mathbf{M}_t^1, \dots, \mathbf{M}_t^L, \mathbf{m}_t^\theta). \quad (64)$$

904 Denote $\lambda = \eta_b/\eta_m$. To compute the LMO term, we can rewrite $\|\mathbf{W}\|_{\text{muon}}$ as

$$\|\mathbf{W}\|_{\text{muon}} = \max \left(\|\mathbf{W}^1\|_{2 \rightarrow 2}, \dots, \|\mathbf{W}^L\|_{2 \rightarrow 2}, \frac{1}{\lambda} \|\boldsymbol{\theta}\|_{\text{ada}\infty} \right), \quad (65)$$

905 so that $\|\cdot\|_{\text{muon}}$ can be written as the composition (as in Lemma 3.3)

$$\|\mathbf{W}\|_{\text{muon}} = f(g_1(\mathbf{W}^1), \dots, g_L(\mathbf{W}^L), g_{L+1}(\boldsymbol{\theta})), \quad (66)$$

906 with $g_i(\mathbf{M}) = \|\mathbf{M}\|_{2 \rightarrow 2}$ for $i \in [L]$, $g_{L+1}(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_{\text{ada}\infty}$, and $f(\mathbf{v}) = \|\mathbf{D}\mathbf{v}\|_\infty$, where $\mathbf{D} =$
 907 $\text{Diag}(1, \dots, 1, 1/\lambda) \in \mathbb{R}^{(L+1) \times (L+1)}$. Therefore, by Lemma 3.3, the update in Equation 63 is
 908 equivalent to

$$\begin{aligned} \mathbf{W}_{t+1}^\ell &= \mathbf{W}_t^\ell + \eta_m \phi_\ell \text{LMO}_{2 \rightarrow 2}(\mathbf{M}_t^\ell) \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t + \eta_m \phi_{L+1} \text{LMO}_{\text{ada}\infty}(\mathbf{m}_t^\theta), \end{aligned} \quad (67)$$

918 where $\phi = -\text{LMO}_f(\|\mathbf{M}_t^1\|_{\text{nuc}}, \dots, \|\mathbf{M}_t^L\|_{\text{nuc}}, \|\mathbf{m}_t^\theta\|_{\text{ada}\infty,*})$. We know $\text{LMO}_{2\rightarrow 2}(\mathbf{M}) =$
 919 $-\text{polar}(\mathbf{M})$, and we proved in Proposition 3.4 that
 920

$$\text{LMO}_{\text{ada}\infty}(\mathbf{v}) = -\frac{|\mathbf{m}_t^\theta|}{\sqrt{\mathbf{v}_t^\theta + \epsilon}} \text{sign}(\mathbf{v}), \quad (68)$$

921 so the LMO terms in Equation 67 can be simplified as
 922

$$\begin{aligned} \mathbf{W}_{t+1}^\ell &= \mathbf{W}_t^\ell - \eta_m \phi_\ell \text{polar}(\mathbf{M}_t^\ell) \\ \theta_{t+1} &= \theta_t - \eta_m \phi_{L+1} \frac{\mathbf{m}_t^\theta}{\sqrt{\mathbf{v}_t^\theta + \epsilon}}. \end{aligned} \quad (69)$$

923 To simplify ϕ , we use Lemma A.1. Denoting $\mathbf{u} = (\|\mathbf{M}_t^1\|_{\text{nuc}}, \dots, \|\mathbf{M}_t^L\|_{\text{nuc}}, \|\mathbf{m}_t^\theta\|_{\text{ada}\infty,*})$, we
 924 have
 925

$$\phi = -\text{LMO}_f(\mathbf{u}) = -\mathbf{D}^{-1} \text{LMO}_\infty(\mathbf{D}^{-T} \mathbf{u}) = \mathbf{D}^{-1} \text{sign}(\mathbf{D}^{-T} \mathbf{u}) = \mathbf{D}^{-1} \mathbf{1}, \quad (70)$$

926 so that $\phi_\ell = 1$ for $\ell \in [L]$ and $\phi_{L+1} = \lambda = \eta_b / \eta_m$. Plugging back to Equation 69 gives
 927

$$\begin{aligned} \mathbf{W}_{t+1}^\ell &= \mathbf{W}_t^\ell - \eta_m \text{polar}(\mathbf{M}_t^\ell) \\ \theta_{t+1} &= \theta_t - \eta_a \frac{\mathbf{m}_t^\theta}{\sqrt{\mathbf{v}_t^\theta + \epsilon}}, \end{aligned} \quad (71)$$

928 which is exactly the update from Algorithm 1. \square
 929

930 A.1 RECOVERING EXISTING ALGORITHMS

931 Propositions A.2 and A.3 below show how Scion (Pethick et al., 2025) and PolarGrad (Lau et al.,
 932 2025) are both instances of our steepest descent framework. All notation in this section follows that
 933 of Section 3.

934 Throughout our paper, Scion refers to the following algorithm:

$$\begin{aligned} \mathbf{W}_{t+1}^\ell &= \mathbf{W}_t^\ell - \eta_m \text{polar}(\mathbf{M}_t^\ell) \\ \theta_{t+1} &= \theta_t - \eta_b \text{sign}(\mathbf{m}_t^\theta). \end{aligned} \quad (72)$$

935 This update differs slightly from the algorithm proposed by Pethick et al. (2025) in that for each
 936 parameter matrix \mathbf{W} of shape $d_{\text{out}} \times d_{\text{in}}$, we omit a coefficient of $\sqrt{d_{\text{out}}/d_{\text{in}}}$ from the update. This
 937 corresponds to assigning to each weight matrix the spectral norm $\|\cdot\|_{2\rightarrow 2}$ rather than the RMS to
 938 RMS operator norm used by Pethick et al. (2025). Indeed, the motivation of the RMS to RMS norm
 939 is to allow for hyperparameter transfer across architecture sizes, but in our work we focus on LR
 940 sensitivity for a fixed architecture, so for simplicity we did not employ this RMS scaling. However,
 941 we could easily recover the RMS variant by replacing the spectral norm $\|\cdot\|_{2\rightarrow 2}$ with the RMS to
 942 RMS operator norm.
 943

944 **Proposition A.2.** Scion is exactly CSD with step size η_m with respect to

$$\|\mathbf{W}\|_{\text{scion}} = \max \left(\max_{1 \leq \ell \leq L} \|\mathbf{W}^\ell\|_{2\rightarrow 2}, \frac{\eta_m}{\eta_b} \|\theta\|_\infty \right). \quad (73)$$

945 Note that the same conclusion was already reached by Pethick et al. (2025), that is, they already
 946 described Scion in terms of a norm on the space of all parameters (see their Equation (6)). We
 947 include Proposition A.2 to specify how Scion is a special case of our framework.
 948

949 *Proof.* The proof is very similar to that of Proposition 3.6, since Muon-Adam differs from Scion
 950 only in that Adam is used for non-matrix parameters instead of sign SGD with momentum.
 951

952 By Proposition 3.1, one step of CSD w.r.t. $\|\cdot\|_{\text{scion}}$ can be written as
 953

$$\mathbf{W}_{t+1} = \mathbf{W}_t + \eta_m \text{LMO}_{\text{scion}}(\mathbf{M}_t), \quad (74)$$

954 where \mathbf{M}_t is the momentum buffer for all network parameters, i.e. it is the concatenation of the
 955 momentum buffers of each parameter:
 956

$$\mathbf{M}_t = (\mathbf{M}_t^1, \dots, \mathbf{M}_t^L, \mathbf{m}_t^\theta). \quad (75)$$

Denote $\lambda = \eta_b/\eta_m$. To compute the LMO term, we can rewrite $\|\mathbf{W}\|_{\text{scion}}$ as

$$\|\mathbf{W}\|_{\text{scion}} = \max (\|\mathbf{W}^1\|_{2 \rightarrow 2}, \dots, \|\mathbf{W}^L\|_{2 \rightarrow 2}, \frac{1}{\lambda} \|\boldsymbol{\theta}\|_\infty), \quad (76)$$

so that $\|\cdot\|_{\text{scion}}$ can be written as the composition (as in Lemma 3.3)

$$\|\mathbf{W}\|_{\text{scion}} = f(g_1(\mathbf{W}^1), \dots, g_L(\mathbf{W}^L), g_{L+1}(\boldsymbol{\theta})), \quad (77)$$

with $g_i(\mathbf{M}) = \|\mathbf{M}\|_{2 \rightarrow 2}$ for $i \in [L]$, $g_{L+1}(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_\infty$, and $f(\mathbf{v}) = \|\mathbf{D}\mathbf{v}\|_\infty$, where $\mathbf{D} = \text{Diag}(1, \dots, 1, 1/\lambda) \in \mathbb{R}^{(L+1) \times (L+1)}$. Therefore, by Lemma 3.3, the update in Equation 74 is equivalent to

$$\begin{aligned} \mathbf{W}_{t+1}^\ell &= \mathbf{W}_t^\ell + \eta_m \phi_\ell \text{LMO}_{2 \rightarrow 2}(\mathbf{M}_t^\ell) \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t + \eta_m \phi_{L+1} \text{LMO}_\infty(\mathbf{m}_t^\theta), \end{aligned} \quad (78)$$

where $\phi = -\text{LMO}_f(\|\mathbf{M}_t^1\|_{\text{nuc}}, \dots, \|\mathbf{M}_t^L\|_{\text{nuc}}, \|\mathbf{m}_t^\theta\|_{\text{ada}\infty,*})$. We know $\text{LMO}_{2 \rightarrow 2}(\mathbf{M}) = -\text{polar}(\mathbf{M})$ and $\text{LMO}_\infty(\mathbf{v}) = -\text{sign}(\mathbf{v})$, so the LMO terms in Equation 78 can be simplified as

$$\begin{aligned} \mathbf{W}_{t+1}^\ell &= \mathbf{W}_t^\ell - \eta_m \phi_\ell \text{polar}(\mathbf{M}_t^\ell) \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t - \eta_m \phi_{L+1} \text{sign}(\mathbf{m}_t^\theta). \end{aligned} \quad (79)$$

To simplify ϕ , we use Lemma A.1. Denoting $\mathbf{u} = (\|\mathbf{M}_t^1\|_{\text{nuc}}, \dots, \|\mathbf{M}_t^L\|_{\text{nuc}}, \|\mathbf{m}_t^\theta\|_1)$, we have

$$\phi = -\text{LMO}_f(\mathbf{u}) = -\mathbf{D}^{-1} \text{LMO}_\infty(\mathbf{D}^{-T} \mathbf{u}) = \mathbf{D}^{-1} \text{sign}(\mathbf{D}^{-T} \mathbf{u}) = \mathbf{D}^{-1} \mathbf{1}, \quad (80)$$

so that $\phi_\ell = 1$ for $\ell \in [L]$ and $\phi_{L+1} = \lambda = \eta_b/\eta_m$. Plugging back to Equation 79 gives

$$\begin{aligned} \mathbf{W}_{t+1}^\ell &= \mathbf{W}_t^\ell - \eta_m \text{polar}(\mathbf{M}_t^\ell) \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t - \eta_m \text{sign}(\mathbf{m}_t^\theta), \end{aligned} \quad (81)$$

which is exactly the update from Scion (Equation 72). \square

Throughout our paper, PolarGrad refers to the following algorithm:

$$\begin{aligned} \mathbf{W}_{t+1}^\ell &= \mathbf{W}_t^\ell - \eta_s \|\mathbf{M}_t^\ell\|_{\text{nuc}} \text{polar}(\mathbf{M}_t^\ell) \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t - \eta_b \frac{\mathbf{m}_t^\theta}{\sqrt{\mathbf{v}_t^\theta} + \epsilon}. \end{aligned} \quad (82)$$

Lau et al. (2025) use the name "PolarGrad" to refer to a class of matrix-aware optimization methods, whereas we use it to refer to the specific method called "Vanilla PolarGrad" by Lau et al. (2025) (see their Equation (8)), with Adam used for non-matrix parameters.

Proposition A.3. PolarGrad is exactly CSD with step size η_m with respect to

$$\|\mathbf{W}\|_{\text{PG}} = \sqrt{\sum_{\ell=1}^L \|\mathbf{W}^\ell\|_{2 \rightarrow 2}^2 + \frac{\eta_m}{\eta_b} \|\boldsymbol{\theta}\|_{\text{ada2}}^2}. \quad (83)$$

Proof. Denote $\lambda = \eta_b/\eta_m$. Notice that $\|\cdot\|_{\text{PG}}$ can be written as a composition (as in Lemma 3.3) as:

$$\|\mathbf{W}\|_{\text{PG}} = f(g_1(\mathbf{W}^1), \dots, g_L(\mathbf{W}^L), g_{L+1}(\boldsymbol{\theta})), \quad (84)$$

with $g_i(\mathbf{M}) = \|\mathbf{M}\|_{2 \rightarrow 2}$ for $i \leq L$, $g_{L+1}(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_{\text{ada2}}/\sqrt{\lambda}$, and $f(\mathbf{v}) = \|\mathbf{v}\|_2$. Therefore, $\|\cdot\|_{\text{PG}}$ uses the ℓ_2 norm as the product norm, so Equation 11 implies that the update can be rewritten as

$$\begin{aligned} \mathbf{W}_{t+1}^\ell &= \mathbf{W}_t^\ell + \eta_m \|\mathbf{M}_t^\ell\|_{\text{nuc}} \text{LMO}_{2 \rightarrow 2}(\mathbf{M}_t^\ell) \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t + \lambda \eta_m \|\mathbf{m}_t^\theta\|_{\text{ada2,*}} \text{LMO}_{\text{ada2}}(\mathbf{m}_t^\theta). \end{aligned} \quad (85)$$

The update to \mathbf{W}_t^ℓ can be simplified by plugging in $\text{LMO}_{2 \rightarrow 2}(\mathbf{M}) = -\text{polar}(\mathbf{M})$, and the update to $\boldsymbol{\theta}_t$ can be simplified by plugging in the definition of λ and the dual and LMO of $\|\cdot\|_{\text{ada2}}$ from

1026 Proposition 3.5. This yields that Equation 85 is equivalent to
 1027

$$\begin{aligned} \mathbf{W}_{t+1}^\ell &= \mathbf{W}_t^\ell - \eta_m \|\mathbf{M}_t^\ell\|_{\text{nuc}} \text{polar}(\mathbf{M}_t^\ell) \\ \theta_{t+1} &= \theta_t - \eta_b \frac{\mathbf{m}_t^\theta}{\sqrt{\mathbf{v}_t^\theta + \epsilon}}, \end{aligned} \quad (86)$$

1031 which is exactly PolarGrad (Equation 82). \square
 1032

1034 B PROOFS FROM SECTION 4

1036 **Proposition 4.1.** [Constrained Momo] The ball constrained truncated model update is given by
 1037

$$\mathbf{w}_{t+1} = \arg \min_{\|\mathbf{w} - \mathbf{w}_t\| \leq \eta} \left\{ \max \left(\tilde{F}_t + \langle \mathbf{m}_t, \mathbf{w} - \mathbf{w}_t \rangle, F_* \right) \right\} \quad (21)$$

$$= \mathbf{w}_t + \min \left(\eta, \frac{\tilde{F}_t - F_*}{\|\mathbf{m}_t\|_*} \right) \text{LMO}(\mathbf{m}_t) \quad (22)$$

1042
 1043 *Proof of Proposition 4.1.* Similar to the proofs of Proposition 3.1 and 3.2, we change variables to
 1044 parameterize the magnitude $r = \|\mathbf{w} - \mathbf{w}_t\|$ and direction $\Delta = (\mathbf{w} - \mathbf{w}_t)/\|\mathbf{w} - \mathbf{w}_t\|$ of the update.
 1045 So $\mathbf{w}_{t+1} = \mathbf{w}_t + r_t \Delta_t$, where

$$(r_t, \Delta_t) = \arg \min_{r \in [0, \eta], \|\Delta\|=1} \left\{ \max \left(\tilde{F}_t + r \langle \mathbf{m}_t, \Delta \rangle, F_* \right) \right\}. \quad (87)$$

1046 Since $\max \left(\tilde{F}_t + r \langle \mathbf{m}_t, \Delta \rangle, F_* \right)$ is monotonic in $\langle \mathbf{m}_t, \Delta \rangle$,
 1047

$$\Delta_t = \arg \min_{\|\Delta\|=1} \langle \mathbf{m}_t, \Delta \rangle = \text{LMO}(\mathbf{m}_t), \quad (88)$$

1048 so

$$r_t = \arg \min_{r \in [0, \eta]} \left\{ \max \left(\tilde{F}_t - r \langle \mathbf{m}_t, \Delta_t \rangle, F_* \right) \right\} = \arg \min_{r \in [0, \eta]} \left\{ \max \left(\tilde{F}_t - r \|\mathbf{m}_t\|_*, F_* \right) \right\}. \quad (89)$$

1049 Note that $\max \left(\tilde{F}_t - r \|\mathbf{m}_t\|_*, F_* \right)$ can have multiple minimizing values of $r \in [0, \eta]$. If $\eta \leq$
 1050 $(\tilde{F}_t - F_*)/\|\mathbf{m}_t\|_*$, then the minimizer $r = \eta$ is unique. If $\eta \geq (\tilde{F}_t - F_*)/\|\mathbf{m}_t\|_*$, then any r
 1051 with $(\tilde{F}_t - F_*)/\|\mathbf{m}_t\|_* \leq r \leq \eta$ achieves the minimum F_* . In this case, we choose the value that
 1052 minimizes the norm of the update, i.e. $r_t = (\tilde{F}_t - F_*)/\|\mathbf{m}_t\|_*$. These two cases are summarized as:

$$r_t = \min \left(\eta, \frac{\tilde{F}_t - F_*}{\|\mathbf{m}_t\|_*} \right), \quad (90)$$

1053 so

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \min \left(\eta, \frac{\tilde{F}_t - F_*}{\|\mathbf{m}_t\|_*} \right) \text{LMO}(\mathbf{m}_t). \quad (91)$$

\square

1068 **Proposition 4.2.** [Regularized Momo] The regularized truncated model update is given by
 1069

$$\mathbf{w}_{t+1} = \arg \min_{\mathbf{w}} \left\{ \max \left(\tilde{F}_t + \langle \mathbf{m}_t, \mathbf{w} - \mathbf{w}_t \rangle, F_* \right) + \frac{1}{2\eta} \|\mathbf{w} - \mathbf{w}_t\|^2 \right\} \quad (23)$$

$$= \mathbf{w}_t + \min \left(\eta, \frac{\tilde{F}_t - F_*}{\|\mathbf{m}_t\|_*^2} \right) \|\mathbf{m}_t\|_* \text{LMO}(\mathbf{m}_t) \quad (24)$$

1074
 1075 *Proof of Proposition 4.2.* Similar to the proofs of Proposition 3.1 and 3.2, we perform a change of
 1076 variables to parameterize the magnitude $r = \|\mathbf{w} - \mathbf{w}_t\|$ and direction $\Delta = (\mathbf{w} - \mathbf{w}_t)/\|\mathbf{w} - \mathbf{w}_t\|$
 1077 of the update. So $\mathbf{w}_{t+1} = \mathbf{w}_t + r_t \Delta_t$, where

$$(r_t, \Delta_t) = \arg \min_{r \geq 0, \|\Delta\|=1} \left\{ \max \left(\tilde{F}_t + r \langle \mathbf{m}_t, \Delta \rangle, F_* \right) + \frac{r^2}{2\eta} \right\}. \quad (92)$$

1080 Note that $\max \left(\tilde{F}_t + r \langle \mathbf{m}_t, \Delta \rangle, F_* \right) + \frac{r^2}{2\eta}$ is monotonic in $\langle \mathbf{m}_t, \Delta \rangle$, so
 1081

$$\Delta_t = \arg \min_{\|\Delta\|=1} \{ \langle \mathbf{m}_t, \Delta \rangle \} = \text{LMO}(\mathbf{m}_t), \quad (93)$$

1084 and

$$r_t = \arg \min_{r \geq 0} \left\{ \max \left(\tilde{F}_t + r \langle \mathbf{m}_t, \Delta_t \rangle, F_* \right) + \frac{r^2}{2\eta} \right\} \quad (94)$$

$$= \arg \min_{r \geq 0} \left\{ \max \left(\tilde{F}_t - r \|\mathbf{m}_t\|_*, F_* \right) + \frac{r^2}{2\eta} \right\}. \quad (95)$$

1090 Denote $f(r) = \max \left(\tilde{F}_t - r \|\mathbf{m}_t\|_*, F_* \right) + \frac{r^2}{2\eta}$. Then f can be written piecewise as
 1091

$$f(r) = \begin{cases} \tilde{F}_t - r \|\mathbf{m}_t\|_* + \frac{r^2}{2\eta} & r \leq \frac{\tilde{F}_t - F_*}{\|\mathbf{m}_t\|_*} \\ F_* + \frac{r^2}{2\eta} & r \geq \frac{\tilde{F}_t - F_*}{\|\mathbf{m}_t\|_*} \end{cases}. \quad (96)$$

1095 Note that f is increasing for $r \geq (\tilde{F}_t - F_*)/\|\mathbf{m}_t\|_*$, so its minimizer is the minimizer of $\tilde{F}_t - r \|\mathbf{m}_t\|_* + \frac{r^2}{2\eta}$ for $r \leq (\tilde{F}_t - F_*)/\|\mathbf{m}_t\|_*$. So
 1096
 1097

$$r_t = \min \left(\eta \|\mathbf{m}_t\|_*, \frac{\tilde{F}_t - F_*}{\|\mathbf{m}_t\|_*} \right), \quad (97)$$

1100 therefore

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \left(\eta, \frac{\tilde{F}_t - F_*}{\|\mathbf{m}_t\|_*^2} \right) \|\mathbf{m}_t\|_* \text{LMO}(\mathbf{m}_t). \quad (98)$$

1102 Note that this value of \mathbf{w}_{t+1} is the unique minimizer of
 1103

$$\max \left(\tilde{F}_t + \langle \mathbf{m}_t, \mathbf{w} - \mathbf{w}_t \rangle, F_* \right) + \frac{1}{2\eta} \|\mathbf{w} - \mathbf{w}_t\|^2, \quad (99)$$

1104 since this function is strongly convex (sum of a convex function and a strongly convex function),
 1105 and therefore has a unique minimizer. \square
 1106
 1107

1109 The pseudocode for Constrained Momo and Regularized Momo are shown in Algorithm 2. To see
 1110 why this algorithm correctly computes \tilde{F}_t , note that
 1111

$$\tilde{F}_t = \sum_{i=0}^t \rho_{t,i} (F_i(\mathbf{w}_i) + \langle \mathbf{g}_i, \mathbf{w}_t - \mathbf{w}_i \rangle) \quad (100)$$

$$= \sum_{i=0}^t \rho_{t,i} (F_i(\mathbf{w}_i) - \langle \mathbf{g}_i, \mathbf{w}_i \rangle) + \sum_{i=0}^t \rho_{t,i} \langle \mathbf{g}_i, \mathbf{w}_t \rangle \quad (101)$$

$$= \sum_{i=0}^t \rho_{t,i} (F_i(\mathbf{w}_i) - \langle \mathbf{g}_i, \mathbf{w}_i \rangle) + \langle \mathbf{m}_t, \mathbf{w}_t \rangle. \quad (102)$$

1121 So denoting $\tilde{f}_t = \sum_{i=0}^t \rho_{t,i} (F_i(\mathbf{w}_i) - \langle \mathbf{g}_i, \mathbf{w}_i \rangle)$, we have $\tilde{F}_t = \tilde{f}_t + \langle \mathbf{m}_t, \mathbf{w}_t \rangle$, and
 1122

$$\tilde{f}_t = \beta \tilde{f}_{t-1} + (1 - \beta) (F_t(\mathbf{w}_t) - \langle \mathbf{g}_t, \mathbf{w}_t \rangle), \quad (103)$$

1124 so that \tilde{f}_t is given by the running average used in Algorithm 2.
 1125

1126 Now we derive the closed-form update for our proposed algorithm MuonMax-Momo. Algorithm
 1127 3 has the pseudocode for the algorithm, and Proposition 4.3 proves that this procedure implements
 1128 Regularized Momo with respect to $\|\cdot\|_{\text{MM}}$. Note that Algorithm 3 shows the pseudocode with stale
 1129 nuclear norm approximations, while Proposition 4.3 considers the vanilla version.
 1130

1131 It should be noted that, if we set $\beta = 0$, the stepsize scaling $\sum_{\ell=1}^L \|\mathbf{G}_t^\ell\|_{\text{nuc}}$ for the matrix layers in
 1132 Algorithm 3 was previously mentioned by Bernstein & Newhouse (2024a) (see their Proposition 5).
 1133 However, we are not aware of any existing implementation or evaluation of this stepsize scaling, and
 1134 we found in our experiments that this sort of scaling (without model truncation) is not competitive
 1135 with Muon.

1134 **Algorithm 2** Momo (Constrained or Regularized)
1135 **Inputs:** \mathbf{w}_0 , learning rate η , momentum β , loss lower bound F_*
1136 1 **for** $t = 0, 1, \dots, T - 1$ **do**
1137 2 $\mathbf{g}_t \leftarrow \text{backward}(\mathbf{w}_t)$
1138 3 $\mathbf{m}_t = \beta \mathbf{m}_{t-1} + (1 - \beta) \mathbf{g}_t$
1139 4 $\tilde{f}_t = \beta \tilde{f}_{t-1} + (1 - \beta) (F_t(\mathbf{w}_t) - \langle \mathbf{g}_t, \mathbf{w}_t \rangle)$
1140 5 $\tilde{F}_t = \tilde{f}_t + \langle \mathbf{m}_t, \mathbf{w}_t \rangle$
1141 6 **if** Constrained **then**
1142 7 $\mathbf{w}_{t+1} = \mathbf{w}_t + \min \left(\eta, \frac{\tilde{F}_t - F_*}{\|\mathbf{m}_t\|_*} \right) \text{LMO}(\mathbf{m}_t)$
1143 8 **else**
1144 9 $\mathbf{w}_{t+1} = \mathbf{w}_t + \min \left(\eta, \frac{\tilde{F}_t - F_*}{\|\mathbf{m}_t\|_*^2} \right) \|\mathbf{m}_t\|_* \text{LMO}(\mathbf{m}_t)$
1145 10 **end if**
1146 11 **end for**
1147

Algorithm 3 MuonMax-Momo

1149 **Inputs:** $\mathbf{W}_0^1, \dots, \mathbf{W}_0^L, \boldsymbol{\theta}_0$, learning rates η_m, η_b , EMA parameters β, β_2 , loss lower bound F_*
1150 **Defaults:** $\eta_m = \eta_b = 0.01$, $\beta = \beta_2 = 0.95$

1151 1 **for** $t = 0, 1, \dots, T - 1$ **do**

1152 **Update momentum.**

1153 2 $(\mathbf{G}_t^1, \dots, \mathbf{G}_t^L, \mathbf{g}_t^\theta) \leftarrow \text{backward}(\mathbf{W}_t^1, \dots, \mathbf{W}_t^L, \boldsymbol{\theta}_t)$
1154 3 **for** $\ell = 1, \dots, L$ **do**
1155 4 $\mathbf{M}_t^\ell = \beta \mathbf{M}_{t-1}^\ell + (1 - \beta) \mathbf{G}_t^\ell$
1156 5 **end for**
1157 6 $\mathbf{m}_t^\theta = \beta \mathbf{m}_{t-1}^\theta + (1 - \beta) \mathbf{g}_t^\theta$
1158 7 $\mathbf{v}_t^\theta = \beta_2 \mathbf{v}_{t-1}^\theta + (1 - \beta_2) \mathbf{g}_t^\theta \odot \mathbf{g}_t^\theta$

1159 **Update internal truncation variables.**

1160 8 $\tilde{f}_t = \beta \tilde{f}_{t-1} + (1 - \beta) \left(F_t(\mathbf{W}_t) - \sum_{\ell=1}^L \langle \mathbf{G}_t^\ell, \mathbf{W}_t^\ell \rangle - \langle \mathbf{g}_t^\theta, \boldsymbol{\theta}_t \rangle \right)$
1161 9 $\tilde{F}_t = \tilde{f}_t + \sum_{\ell=1}^L \langle \mathbf{M}_t^\ell, \mathbf{W}_t^\ell \rangle + \langle \mathbf{m}_t^\theta, \boldsymbol{\theta}_t \rangle$
1162 10 $d_t = \sqrt{\left(\sum_{\ell=1}^L d_{t-1}^\ell \right)^2 + \frac{\eta_b}{\eta_m} \left\| \frac{\mathbf{m}_t^\theta}{\sqrt{\mathbf{v}_t^\theta + \epsilon}} \right\|_2^2}$

1163 **Update parameters.**

1164 11 **for** $\ell = 1, \dots, L$ **do**
1165 12 $\mathbf{P} \leftarrow \text{polar}(\mathbf{M}_t^\ell)$
1166 13 $\mathbf{W}_{t+1}^\ell \leftarrow \mathbf{W}_t^\ell - \min \left(\eta_m, \frac{\tilde{F}_t - F_*}{d_t^\ell} \right) \left(\sum_{j=1}^L d_{t-1}^\ell \right) \mathbf{P}$
1167 14 $d_t^\ell \leftarrow \langle \mathbf{P}, \mathbf{M}_t^\ell \rangle$
1168 15 **end for**
1169 16 $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \min \left(\eta_b, \frac{\eta_b}{\eta_m} \frac{\tilde{F}_t - F_*}{d_t^2} \right) \frac{\mathbf{m}_t^\theta}{\sqrt{\mathbf{v}_t^\theta + \epsilon}}$

1170 17 **end for**

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188
 1189 **Proposition 4.3.** [MuonMax-Momo] Regularized Momo with respect to the norm $\|\cdot\|_{\text{MM}}$ as
 1190 defined in equation 17 has the following closed form:
 1191

$$\begin{aligned}
 d_t &= \sqrt{\left(\sum_{\ell=1}^L \|\mathbf{M}_t^\ell\|_{\text{nuc}}\right)^2 + \frac{\eta_b}{\eta_m} \left\| \frac{\mathbf{m}_t^\theta}{\sqrt{\sqrt{\mathbf{v}_t^\theta} + \epsilon}} \right\|_2^2} \\
 \mathbf{W}_{t+1}^\ell &= \mathbf{W}_t^\ell - \min \left\{ \eta_m, \frac{\tilde{F}_t - F_*}{d_t^2} \right\} \left(\sum_{j=1}^L \|\mathbf{M}_t^j\|_{\text{nuc}} \right) \text{polar}(\mathbf{M}_t^\ell) \\
 \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t - \min \left\{ \eta_b, \frac{\eta_b}{\eta_m} \frac{\tilde{F}_t - F_*}{d_t^2} \right\} \frac{\mathbf{m}_t^\theta}{\sqrt{\sqrt{\mathbf{v}_t^\theta} + \epsilon}}.
 \end{aligned} \tag{25}$$

1198
 1199 *Proof of Proposition 4.3.* The proof structure is largely similar to that of Proposition 3.6. By Propo-
 1200 sition 4.2, one step of Regularized Momo w.r.t. $\|\cdot\|_{\text{MM}}$ can be written as

$$\mathbf{W}_{t+1} = \mathbf{W}_t + \min \left(\eta_m, \frac{\tilde{F}_t - F_*}{\|\mathbf{M}_t\|_{\text{MM},*}^2} \right) \|\mathbf{M}_t\|_{\text{MM},*} \text{LMO}_{\text{MM}}(\mathbf{M}_t), \tag{104}$$

1203 where \mathbf{M}_t is the momentum buffer for all network parameters, i.e. it is the concatenation of the
 1204 momentum buffers of each parameter:

$$\mathbf{M}_t = (\mathbf{M}_t^1, \dots, \mathbf{M}_t^L, \mathbf{m}_t^\theta). \tag{105}$$

1207 Comparing Equation 104 with Equation 25, we have to prove that $d_t = \|\mathbf{M}_t\|_{\text{MM},*}$ and compute
 1208 $\|\mathbf{M}_t\|_{\text{MM},*} \text{LMO}_{\text{MM}}(\mathbf{M}_t)$. To do this, we write $\|\cdot\|_{\text{MM}}$ with repeated compositions of norms whose
 1209 dual and LMO we already know. Denoting $\lambda = \eta_b/\eta_m$ and

$$f(z_1, z_2) = \sqrt{z_1^2 + \frac{1}{\lambda} z_2^2} \tag{106}$$

$$g_1(\mathbf{W}_1, \dots, \mathbf{W}_L) = \max_{\ell \in [L]} \|\mathbf{W}_\ell\|_{2 \rightarrow 2} \tag{107}$$

$$g_2(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_{\text{ada2}}, \tag{108}$$

1215 we can write $\|\cdot\|_{\text{MM}}$ as a composition in the notation of Lemma 3.3 as

$$\|\mathbf{W}\|_{\text{MM}} = f(g_1(\mathbf{W}_1, \dots, \mathbf{W}_L), g_2(\boldsymbol{\theta})). \tag{109}$$

1217 Further denoting $\mathbf{D} = \text{diag}(1, 1/\sqrt{\lambda})$, we can write $f(z_1, z_2) = \|\mathbf{D}(z_1, z_2)^T\|_2$. We can now use
 1218 Lemma 3.3 to compute the dual of $\|\cdot\|_{\text{MM},*}$ as
 1219

$$\|\mathbf{W}\|_{\text{MM},*} = f_*(g_{1,*}(\mathbf{W}_1, \dots, \mathbf{W}_L), g_{2,*}(\boldsymbol{\theta})) \tag{110}$$

$$\stackrel{(i)}{=} \sqrt{g_{1,*}^2(\mathbf{W}_1, \dots, \mathbf{W}_L) + \lambda g_{2,*}^2(\boldsymbol{\theta})} \tag{111}$$

$$\stackrel{(ii)}{=} \sqrt{g_{1,*}^2(\mathbf{W}_1, \dots, \mathbf{W}_L) + \lambda \left\| \frac{\boldsymbol{\theta}}{\sqrt{\sqrt{\mathbf{v}_t^\theta} + \epsilon}} \right\|^2} \tag{112}$$

$$\stackrel{(iii)}{=} \sqrt{\left(\sum_{\ell=1}^L \|\mathbf{W}_\ell\|_{\text{nuc}} \right)^2 + \lambda \left\| \frac{\boldsymbol{\theta}}{\sqrt{\sqrt{\mathbf{v}_t^\theta} + \epsilon}} \right\|^2} \tag{113}$$

1230 where (i) uses Lemma A.1 to plug in the dual of f , (ii) plugs in the dual of $\|\cdot\|_{\text{ada2}}$ which we
 1231 computed in the proof of Proposition 3.5, and (iii) uses Lemma 3.3 to compute the dual of g_1 , which
 1232 itself is a composition $g_1 = \ell_\infty \circ (\|\cdot\|_{2 \rightarrow 2}, \dots, \|\cdot\|_{2 \rightarrow 2})$. This confirms that $d_t = \|\mathbf{M}_t\|_{\text{MM},*}$, so

$$\mathbf{W}_{t+1} = \mathbf{W}_t + \min \left(\eta_m, \frac{\tilde{F}_t - F_*}{d_t^2} \right) d_t \text{LMO}_{\text{MM}}(\mathbf{M}_t), \tag{114}$$

1235 To compute the LMO of $\|\cdot\|_{\text{MM}}$, we again use Lemma 3.3. Denoting $(\phi_1, \phi_2) = -\text{LMO}_f(g_{1,*}(\mathbf{W}_1, \dots, \mathbf{W}_L), g_{2,*}(\boldsymbol{\theta}))$, Lemma 3.3 implies

$$\text{LMO}_{\text{MM}}(\mathbf{W}) = (\phi_1 \text{LMO}_{g_1}(\mathbf{W}_1, \dots, \mathbf{W}_L), \phi_2 \text{LMO}_{g_2}(\boldsymbol{\theta})) \tag{115}$$

$$\stackrel{(i)}{=} (-\phi_1(\text{polar}(\mathbf{W}_1), \dots, \text{polar}(\mathbf{W}_L)), \phi_2 \text{LMO}_{g_2}(\boldsymbol{\theta})) \tag{116}$$

$$\stackrel{(ii)}{=} -\left(\phi_1(\text{polar}(\mathbf{W}_1), \dots, \text{polar}(\mathbf{W}_L)), \phi_2 \frac{\boldsymbol{\theta}}{\sqrt{\sqrt{\mathbf{v}_t^\theta} + \epsilon}} \right) \left/ \left\| \frac{\boldsymbol{\theta}}{\sqrt{\sqrt{\mathbf{v}_t^\theta} + \epsilon}} \right\|_2 \right. \tag{117}$$

1242 where (i) uses Lemma 3.3 to compute the LMO of g_1 , which again is the composition $g_1 = \ell_\infty \circ$
 1243 $(\|\cdot\|_{2 \rightarrow 2}, \dots, \|\cdot\|_{2 \rightarrow 2})$, and (iii) uses Lemma A.1 to plug in the dual norm of $g_2 = \|\cdot\|_{\text{ada2}}$. The
 1244 ϕ terms can be simplified as

$$1245 \quad (\phi_1, \phi_2) = -\text{LMO}_f(g_{1,*}(\mathbf{W}_1, \dots, \mathbf{W}_L), g_{2,*}(\boldsymbol{\theta})) \quad (118)$$

$$1246 \quad \stackrel{(i)}{=} -\text{LMO}_f\left(\sum_{\ell=1}^L \|\mathbf{W}_\ell\|_{\text{nuc}}, \left\|\frac{\boldsymbol{\theta}}{\sqrt{\sqrt{\mathbf{v}_t} + \epsilon}}\right\|_2\right) \quad (119)$$

$$1247 \quad \stackrel{(ii)}{=} -\mathbf{D}^{-1} \text{LMO}_2\left(\sum_{\ell=1}^L \|\mathbf{W}_\ell\|_{\text{nuc}}, \sqrt{\lambda} \left\|\frac{\boldsymbol{\theta}}{\sqrt{\sqrt{\mathbf{v}_t} + \epsilon}}\right\|_2\right) \quad (120)$$

$$1248 \quad = \frac{1}{d_t} \mathbf{D}^{-1} \left(\sum_{\ell=1}^L \|\mathbf{W}_\ell\|_{\text{nuc}}, \sqrt{\lambda} \left\|\frac{\boldsymbol{\theta}}{\sqrt{\sqrt{\mathbf{v}_t} + \epsilon}}\right\|_2 \right) \quad (121)$$

$$1249 \quad = \frac{1}{d_t} \left(\sum_{\ell=1}^L \|\mathbf{W}_\ell\|_{\text{nuc}}, \lambda \left\|\frac{\boldsymbol{\theta}}{\sqrt{\sqrt{\mathbf{v}_t} + \epsilon}}\right\|_2 \right), \quad (122)$$

1250 where (i) plugs in the previously computed duals $g_{1,*}$ and $g_{2,*}$, and (ii) uses Lemma A.1 to plug in
 1251 the LMO of f . Plugging the values of (ϕ_1, ϕ_2) into Equation 117 yields

$$1252 \quad \text{LMO}_{\text{MM}}(\mathbf{W}) = -\frac{1}{d_t} \left(\left(\sum_{\ell=1}^L \|\mathbf{W}_\ell\|_{\text{nuc}} \right) (\text{polar}(\mathbf{W}_1), \dots, \text{polar}(\mathbf{W}_L)), \lambda \frac{\boldsymbol{\theta}}{\sqrt{\mathbf{v}_t} + \epsilon} \right), \quad (123)$$

1253 and finally, plugging this back into Equation 114 yields

$$1254 \quad \mathbf{W}_{t+1}^\ell = \mathbf{W}_t - \min\left(\eta_m, \frac{\tilde{F}_t - F_*}{d_t^2}\right) \left(\sum_{i=1}^L \|\mathbf{W}_i\|_{\text{nuc}} \right) \text{polar}(\mathbf{M}_t^\ell) \quad (124)$$

$$1255 \quad \boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \min\left(\eta_m, \frac{\tilde{F}_t - F_*}{d_t^2}\right) \lambda \frac{\mathbf{m}_t^\theta}{\sqrt{\mathbf{v}_t^\theta} + \epsilon} = \boldsymbol{\theta}_t - \min\left(\eta_b, \frac{\eta_b}{\eta_m} \frac{\tilde{F}_t - F_*}{d_t^2}\right) \frac{\mathbf{m}_t^\theta}{\sqrt{\mathbf{v}_t^\theta} + \epsilon}, \quad (125)$$

1256 which is exactly the update in Equation 25. \square

C EXPERIMENTAL DETAILS

1257 **Setup** We did not use weight decay or Nesterov momentum, as we found both to have very small
 1258 effects on final loss. All methods use a warmup-stable-decay learning rate schedule, where the
 1259 learning rate is linearly warmed up for the first 5% of steps, held constant until halfway through
 1260 training, then linearly decayed to 10% of the warmed up value. We use a context length of 1024 and
 1261 a batch size of 512. Rather than the Newton-Schulz iterations of the original Muon implementation,
 1262 we use the PolarExpress algorithm (Amsel et al., 2025) to compute approximate polar factors. In
 1263 this implementation, the weights and gradients are computed in float32, whereas the polar factor is
 1264 computed in bfloat16 by the PolarExpress (Amsel et al., 2025).

1265 **Tuning Protocol** For the experiments with FineWeb data in Section 5.1, we tune 36 variations
 1266 of steepest descent using an iterated grid search to for the two learning rates η_m and η_b . For the
 1267 18 variations without model truncation, we first fix the base learning rate at an intermediate value
 1268 $\eta_b = 1e-3$, then tune the Muon learning rate with grid search over $\eta_m \in \{1e-3, 1e-2, 1e-1, 1\}$. Some
 1269 algorithms diverged with $\eta_b = 1e-3$, and for these algorithms we instead used $\eta_b = 1e-6$ and searched
 1270 over $\eta_m \in \{1e-6, 1e-5, 1e-4, 1e-3\}$. For those algorithms that used $\eta_b = 1e-6$ for the first phase,
 1271 we instead search over $\eta_b \in \{1e-7, 1e-6, 1e-5, 1e-4\}$ in the second phase. Finally, for all of these
 1272 grid searches, we extend the search space individually for each algorithm until the best LR is not a
 1273 boundary point of the search space. The resulting tuned LRs are shown in Table 2.

1274 For the 18 variations with model truncation, rather than entirely retuning all algorithms, we reuse the
 1275 tuned LR ratio η_m/η_b and do a single grid search where η_m and η_b scale together. More specifically,
 1276 we run each algorithm with LRs $(\rho\eta_m, \rho\eta_b)$, where (η_m, η_b) are the LRs tuned for each algorithm
 1277 without truncation, and the scaling factor ρ ranges over $\rho \in \{0.3, 1, 3, 10, 30, 100\}$. We found that

Table 2: Final validation losses for all variations without model truncation.

(SD type, Product Norm, Backup Norm)	Muon LR	Other LR	Final Loss	Name
(Regularized, $\ \cdot\ _\infty, \ \cdot\ _\infty$)	1e-3	1e-5	3.783	-
(Constrained, $\ \cdot\ _\infty, \ \cdot\ _\infty$)	1e-2	1e-3	3.599	Scion
(Regularized, $\ \cdot\ _2, \ \cdot\ _\infty$)	1e-1	1e-6	4.179	-
(Constrained, $\ \cdot\ _2, \ \cdot\ _\infty$)	1e-1	1e-2	3.712	-
(Regularized, $\ \cdot\ _{\text{hyb}}, \ \cdot\ _\infty$)	1e-3	1e-5	3.826	-
(Constrained, $\ \cdot\ _{\text{hyb}}, \ \cdot\ _\infty$)	1e-2	1e-3	3.610	-
(Regularized, $\ \cdot\ _\infty, \ \cdot\ _{\text{ada}\infty}$)	1e-3	1e-5	3.859	-
(Constrained, $\ \cdot\ _\infty, \ \cdot\ _{\text{ada}\infty}$)	1e-2	1e-3	3.604	Muon
(Regularized, $\ \cdot\ _2, \ \cdot\ _{\text{ada}\infty}$)	1e-1	1e-4	4.229	-
(Constrained, $\ \cdot\ _2, \ \cdot\ _{\text{ada}\infty}$)	1e-1	1e-2	3.748	-
(Regularized, $\ \cdot\ _{\text{hyb}}, \ \cdot\ _{\text{ada}\infty}$)	1e-3	1e-4	3.917	-
(Constrained, $\ \cdot\ _{\text{hyb}}, \ \cdot\ _{\text{ada}\infty}$)	1e-2	1e-2	3.628	-
(Regularized, $\ \cdot\ _\infty, \ \cdot\ _{\text{ada}2}$)	1e-3	1e-4	3.757	-
(Constrained, $\ \cdot\ _\infty, \ \cdot\ _{\text{ada}2}$)	1e-2	1e-3	3.701	-
(Regularized, $\ \cdot\ _2, \ \cdot\ _{\text{ada}2}$)	1e-1	1e-3	4.049	PolarGrad
(Constrained, $\ \cdot\ _2, \ \cdot\ _{\text{ada}2}$)	1e-1	1e-2	3.664	-
(Regularized, $\ \cdot\ _{\text{hyb}}, \ \cdot\ _{\text{ada}2}$)	1e-3	1e-3	3.791	MuonMax
(Constrained, $\ \cdot\ _{\text{hyb}}, \ \cdot\ _{\text{ada}2}$)	1e-2	1e-2	3.585	-

the best value of ρ for each algorithm was always at least 1 and at most 30. The resulting tuned LRs are shown in Table 3.

Hybrid Norm Definition Recall that Muon-Max is defined as regularized steepest descent with respect to the following norm:

$$\|\mathbf{W}\|_{\text{MM}} = \sqrt{\left(\max_{\ell \in [L]} \|\mathbf{W}^\ell\|_{2 \rightarrow 2}\right)^2 + \frac{\eta_m}{\eta_b} \|\boldsymbol{\theta}\|_{\text{ada}2}^2}. \quad (126)$$

This norm fits into our framework by assigning the spectral norm to each weight matrix \mathbf{W}^ℓ , assigning $\|\cdot\|_{\text{ada}2}$ to the remaining parameters, and aggregating norms for all parameters with the following "hybrid" product norm:

$$\|(v_1, \dots, v_L, v_{L+1})\|_{\text{hyb}} = \sqrt{\left(\max_{\ell \in [L]} v_\ell\right)^2 + \frac{\eta_m}{\eta_b} v_{L+1}^2}. \quad (127)$$

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 FINEWEB

The final validation loss reached by all 36 of our evaluated methods is shown in Tables 2 and 3. Each method is denoted as a 3-tuple of settings from our steepest descent framework: regularized vs constrained steepest descent, product norm, and norm for parameters besides hidden weight matrices.

For the methods without model truncation (Table 2), we see that the RSD methods struggle generally lag behind the CSD methods, likely due to a lack of update normalization. For the CSD methods, Muon and Scion are among the best variations, though the best performing method is actually (Constrained, $\|\cdot\|_{\text{hyb}}, \|\cdot\|_{\text{ada}2}$) (we will return to discuss this method shortly).

For the methods with model truncation (Table 3), we see that both CSD and RSD methods are competitive, meaning that in general model truncation helped RSD methods more than CSD methods (at least in terms of final loss with tuned LRs). Muon-Momo has the lowest loss at 3.551 and Scion-Momo is again among the best performers, but actually many methods achieve losses very close to 3.551. Again, we see that (Constrained, $\|\cdot\|_{\text{hyb}}, \|\cdot\|_{\text{ada}2}$) achieves a very low loss, only being outperformed by Muon-Momo.

The method (Constrained, $\|\cdot\|_{\text{hyb}}, \|\cdot\|_{\text{ada}2}$) is quite similar to our proposed method Muon-Max, the only difference being the use of a normalized update. While this method does achieve a lower

Table 3: Final validation losses for all variations with model truncation.

(SD type, Product Norm, Backup Norm)	Muon LR	Other LR	Final Loss	Name
(Regularized, $\ \cdot\ _\infty, \ \cdot\ _\infty$)	1e-2	1e-4	3.627	-
(Constrained, $\ \cdot\ _\infty, \ \cdot\ _\infty$)	1e-2	1e-3	3.592	Scion-Momo
(Regularized, $\ \cdot\ _2, \ \cdot\ _\infty$)	1	1e-5	3.728	-
(Constrained, $\ \cdot\ _2, \ \cdot\ _\infty$)	1e-1	1e-2	3.843	-
(Regularized, $\ \cdot\ _{hyb}, \ \cdot\ _\infty$)	1e-2	1e-4	3.628	-
(Constrained, $\ \cdot\ _{hyb}, \ \cdot\ _\infty$)	3e-2	3e-3	3.604	-
(Regularized, $\ \cdot\ _\infty, \ \cdot\ _{ada\infty}$)	3e-2	3e-4	3.578	-
(Constrained, $\ \cdot\ _\infty, \ \cdot\ _{ada\infty}$)	3e-2	3e-3	3.551	Muon-Momo
(Regularized, $\ \cdot\ _2, \ \cdot\ _{ada\infty}$)	1	1e-3	3.719	-
(Constrained, $\ \cdot\ _2, \ \cdot\ _{ada\infty}$)	1e-1	1e-2	3.737	-
(Regularized, $\ \cdot\ _{hyb}, \ \cdot\ _{ada\infty}$)	3e-2	3e-3	3.584	-
(Constrained, $\ \cdot\ _{hyb}, \ \cdot\ _{ada\infty}$)	3e-2	3e-2	3.607	-
(Regularized, $\ \cdot\ _\infty, \ \cdot\ _{ada2}$)	3e-3	3e-4	3.662	-
(Constrained, $\ \cdot\ _\infty, \ \cdot\ _{ada2}$)	1e-2	1e-3	3.701	-
(Regularized, $\ \cdot\ _2, \ \cdot\ _{ada2}$)	3	3e-2	3.613	PolarGrad-Momo
(Constrained, $\ \cdot\ _2, \ \cdot\ _{ada2}$)	3e-1	3e-2	3.602	-
(Regularized, $\ \cdot\ _{hyb}, \ \cdot\ _{ada2}$)	1e-2	1e-2	3.576	MuonMax-Momo
(Constrained, $\ \cdot\ _{hyb}, \ \cdot\ _{ada2}$)	3e-2	3e-2	3.553	-

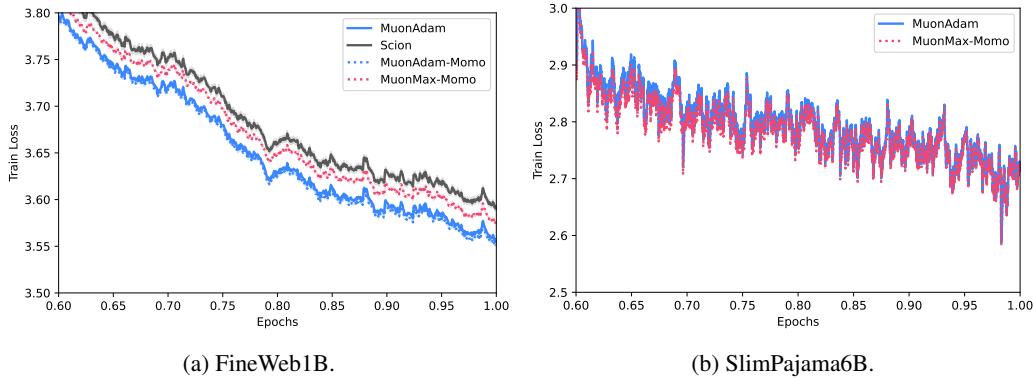


Figure 4: Training loss for the last 40% of training for FineWeb1B (left) and SlimPajama6B (right).

loss after tuning than MuonMax, we found that this method was not as robust to learning rate tuning. So this method was bested by MuonAdam-Momo in terms of final loss, and it was bested by MuonMax-Momo in terms of learning rate sensitivity, and for this reason we did not perform further evaluations with this method.

We include loss curves for the last 40% of training for the best variations (with tuned learning rates) in Figure 4a, and the final losses reached by the best variations (over three seeds) in Table 4. Also, Figure 5 shows a comparison of MuonAdam, Scion, MuonMax against their truncated counterparts.

Table 4: Validation loss for FineWeb1B with tuned LRs (mean \pm std over three seeds).

MuonAdam	Scion	MuonAdam-Momo	MuonMax-Momo
3.5592 ± 0.0014	3.5947 ± 0.0031	3.5546 ± 0.0004	3.5779 ± 0.0007

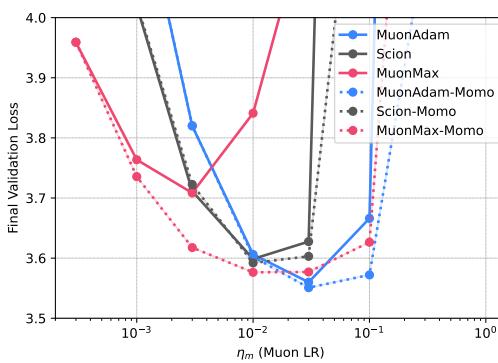


Figure 5: Effect of model truncation on final validation loss. Note that for these runs, we did not use stale nuclear norm approximations in order to isolate the effect of model truncation.

Table 5: Hyperparameter information for additional baselines. For all baselines, we tune the learning rate over $10^{-5+i/4}$ for $i \in \{0, \dots, 15\}$ once with weight decay on, and again with weight decay off. For each baseline, we set the weight decay coefficient λ according to the default value for that algorithm, listed below.

	Tuned LR ($\lambda = 0$)	Tuned LR ($\lambda > 0$)	Alg-specific parameters
AdamW	$\eta = 1e-3$	$\eta = 1e-3 (\lambda = 0.01)$	$\beta_1 = 0.95, \beta_2 = 0.95$
Lion	$\eta = 5.6e-5$	$\eta = 5.6e-5 (\lambda = 0.01)$	$\beta_1 = 0.95, \beta_2 = 0.98$
Adan	$\eta = 1.8e-3$	$\eta = 1e-3 (\lambda = 0.02)$	$\beta_1 = 0.02, \beta_2 = 0.08, \beta_3 = 0.01$
Sophia	$\eta = 5.6e-5$	$\eta = 5.6e-5 (\lambda = 0.2)$	$\beta_1 = 0.965, \beta_2 = 0.99, \rho = 0.05$, Hessian estimator: GNB

D.1.1 ADDITIONAL BASELINES

Here we evaluate four additional baselines (AdamW, Lion, Adan, Sophia) for the GPT2-Small/FineWeb1B setting. We use the same hyperparameters as outlined in Section C, such as batch size, learning rate schedule, random seeds, etc. For a fair comparison with the Muon-type algorithms from the main paper, we allow the same computational budget for hyperparameter tuning. In particular, since the Muon-type algorithms have two learning rates that were tuned over four possible values each, we tune the learning rate of our additional baselines over 16 values. We also evaluate each additional base both with and without weight decay. For weight decay coefficients and algorithm-specific hyperparameters, we use each baseline’s default settings as reported in their respective papers. The complete search range and tuned values for each algorithm are shown in Table 5.

The losses for each additional baseline are shown in Figure 6. The most important feature to notice is that none of these baselines reach as low a loss as the baselines from the main paper: from Figure 2a, all of MuonAdam, Scion, MuonAdam-Momo, and MuonMax-Momo achieve less than 3.6 loss with a tuned LR and less than 3.75 loss with multiple LRs in the grid. All of the additional baselines except for AdamW never get below 4.0 validation loss, and AdamW at its best reaches only 3.759. Note also that each of the four baselines were run with and without weight decay, which did not make a significant difference. This means that each baseline was allowed a total of 32 hyperparameter configurations, which is significantly more than the Muon-type algorithms from Figure 2a. We conclude that AdamW is the only additional baseline that is competitive with the aforementioned Muon-type algorithms, though it is still decisively outperformed.

D.1.2 ADDITIONAL METRICS

We further quantify the efficiency and learning rate sensitivity of each method in Table 6. Efficiency is measured in terms of token throughput, time per training step, time and tokens to reach a target loss, and the “width” of the basin of the LR sensitivity curves. We define the LR basin width as

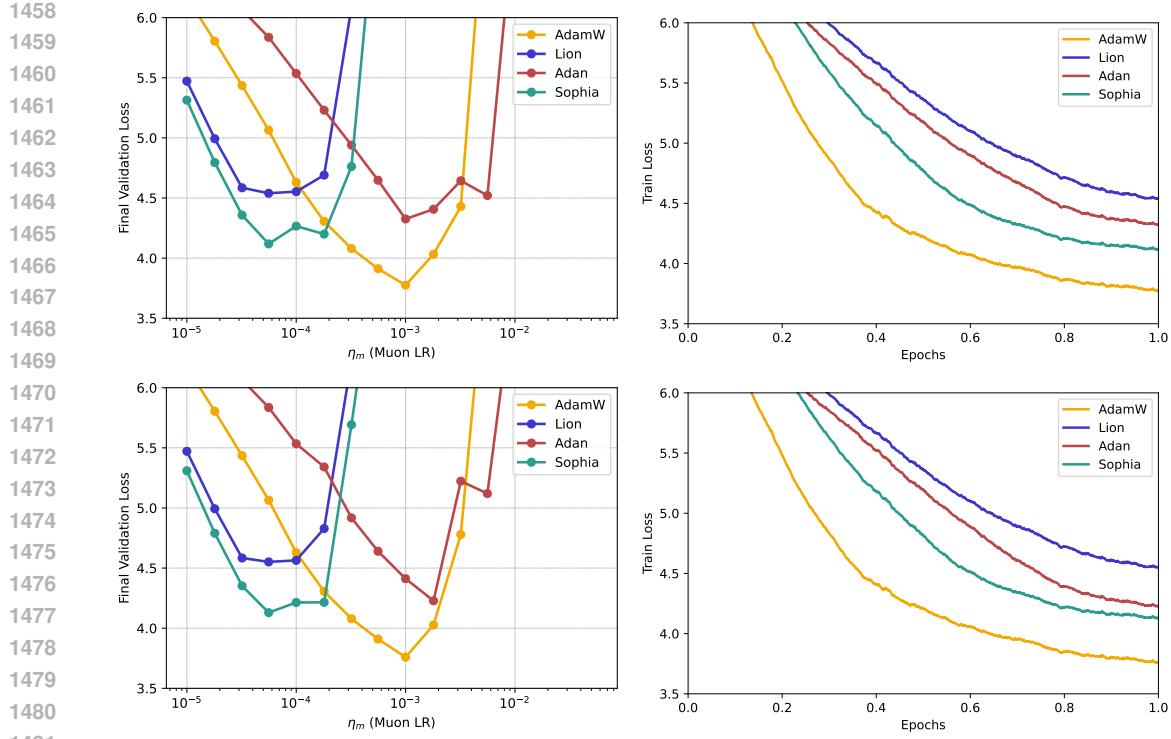


Figure 6: Loss for additional baselines when training GPT2-Small on FineWeb1B. Top row shows results with weight decay, bottom row without weight decay. Left: Validation loss for a sweep over learning rates. Right: Training loss curves for each baseline with tuned learning rate.

follows: for a learning rate sweep of a particular method, let ℓ be the loss achieved by the best learning rate, and let η_0 (respectively η_1) be the smallest (respectively largest) learning rate in the grid that achieves less than 1.2ℓ loss. The LR basin width is then defined as $\log_{10}(\eta_1/\eta_0)$. Essentially, the basin width quantifies the orders of magnitude by which the learning rate can vary while still achieving a reasonable loss of 1.2 times the optimum. For throughput and time per step, we average over all learning rates, while for time-to-target, tokens-to-target, and perplexity we choose the best value over all learning rates. Similar metrics for our GPT2-Large/SlimPajama experiments are given in Tables 7 and 8 in Section D.2.1.

From Tables 6, 7, 8, we see that the best perplexity is always achieved by either MuonAdam-Momo or MuonMax-Momo, and these two algorithms significantly outperform all baselines in terms of learning rate sensitivity as quantified by the LR basin width. Compared to MuonAdam, our two proposed algorithms take about 5% more time per step for GPT2-Small and 1.5% to 3% more for GPT2-Large. Also, with tuned LRs, our two proposed algorithms reach the target loss with as many or fewer tokens than all other baselines. The time to target loss of our algorithms with tuned LRs is sometimes better, sometimes worse than MuonAdam, but the gap is never more than 5% for MuonMax-Momo and 10% for MuonAdam-Momo. These results reinforce our finding that our proposed algorithms are significantly more robust to learning rate tuning than baselines, with similar or improved performance after tuning and only a modest increase in wall-clock time.

D.1.3 VARYING BATCH SIZE

In this section, we perform learning rate sweeps for MuonAdam, Scion, MuonAdam-Momo, and MuonMax-Momo with varying batch sizes. We evaluate these algorithms on the GPT2-Small/FineWeb1B setup detailed in Sections 5.1 and C. Previously we used a batch size of 512; in this section, we vary the batch size over $\{128, 256, 512, 1024, 2048\}$ while keeping all other settings the same. Note that we reuse the tuned LR ratio η_m/η_b as detailed in Section C.

1512 Table 6: Additional metrics for GPT2-Small/FineWeb1B, including the additional baselines from
 1513 Section D.1.1. The target loss for this setting is 3.8, which we chose to be small enough to discrim-
 1514 inate between the best methods and large enough to include AdamW.

	Best Perplexity	Throughput (tok/s)	Time per step (s)	Time to target loss (s)	Tokens to target loss	LR Basin W idth
MuonAdam	33.21	938K	0.559	503.31	458M	1.523
Scion	34.40	948K	0.554	631.51	548M	1.477
MuonAdam-Momo	33.14	894K	0.587	566.82	458M	2.523
MuonMax-Momo	33.95	892K	0.588	530.04	458M	3.523
AdamW	40.99	990K	0.530	840.61	787M	1.000
Lion	92.11	996K	0.527	-	-	1.000
Adan	66.46	957K	0.548	-	-	0.750
Sophia	59.48	974K	0.539	-	-	1.250

1527 For each batch size, the final validation loss reached by each algorithm with varying learning rate
 1528 is shown in Figure 7. Overall, we find the results with different batch size to be largely consistent
 1529 with our previous results. For all batch sizes, both MuonAdam-Momo and MuonMax-Momo
 1530 have a wider range of competitive learning rates than MuonAdam and Scion, and for all batch
 1531 sizes greater than 512, both MuonAdam-Momo and MuonMax-Momo outperform the baselines
 1532 for every learning rate we tried.

1533 D.1.4 QWEN2MOE MODEL

1536 We also compared the best performing methods MuonAdam, Scion, MuonMax-Momo and
 1537 MuonAdam-Momo, when training a Mixture of Experts type model. We trained two Qwen2-MoE
 1538 variants on the FineWeb dataset. The small variant has hidden size 256, 12 decoder layers, 4 attention
 1539 heads with 64-d head size, 8 experts per layer, top-2 routing, per-expert FFN width 1280, and
 1540 shared expert width 1536. The medium variant has hidden size 768, 16 decoder layers, 12 attention
 1541 heads with 64-d head size, 4 experts per layer, top-2 routing, per-expert FFN width 4096, and shared
 1542 expert width 4096. Both variants use tied embeddings, context length 1024, and micro-batch size
 1543 32 (global batch size 512 sequences).

1544 These configurations emphasize MoE capacity while keeping active parameters per token modest
 1545 for rapid ablation, following prior sparse expert designs (Shazeer et al., 2017; Fedus et al., 2021; Du
 1546 et al., 2022). Qwen2-MoE architectural choices and implementation details are taken from the offi-
 1547 cial Qwen2 repository (Team, 2024). No intermediate validation was performed (only end-of-epoch
 1548 loss) to minimize overhead.

1549 For the two Momo methods we use $F^* = 3.2$ without tuning or trying other values. This turned out
 1550 to be far from the loss achieved by this small MoE model.

1551 The final loss for each algorithm across a range of learning rates is shown in Figure 8. Indeed,
 1552 again we found MuonMax-Momo to be the most stable method; for the small variant, MuonMax-
 1553 Momo achieves the lowest loss for every learning rate we tried. The best loss over all learning rates
 1554 achieved by each method is given in the following table.

	Qwen2-MoE Small	Qwen2-MoE Medium
MuonAdam	5.2072	4.8995
Scion	5.2156	4.7504
MuonAdam-Momo	5.1975	4.8184
MuonMax-Momo	5.2017	4.6561

1562 D.2 SLIMPJAMA

1563 Figure 9 shows a 2D visualization of final validation losses for Muon, Scion, MuonAdam-Momo,
 1564 and MuonMax-Momo as the two learning rates vary. We find MuonMax-Momo to be most stable
 1565 to changes in the learning rates, with both Muon and Scion suffering high losses when the base LR

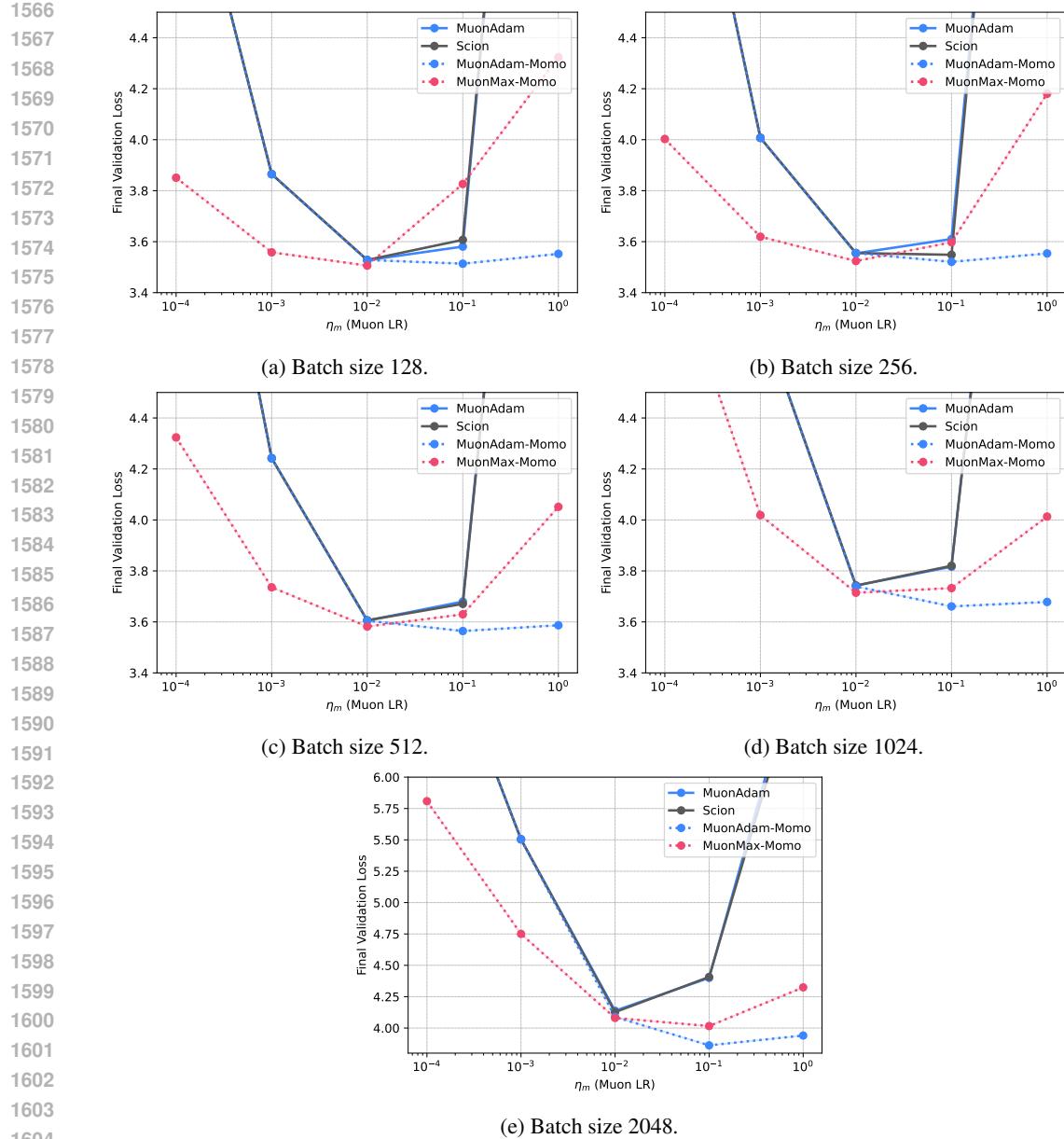


Figure 7: Learning rate sensitivity for GPT2-Small/FineWeb1B with varying batch sizes.

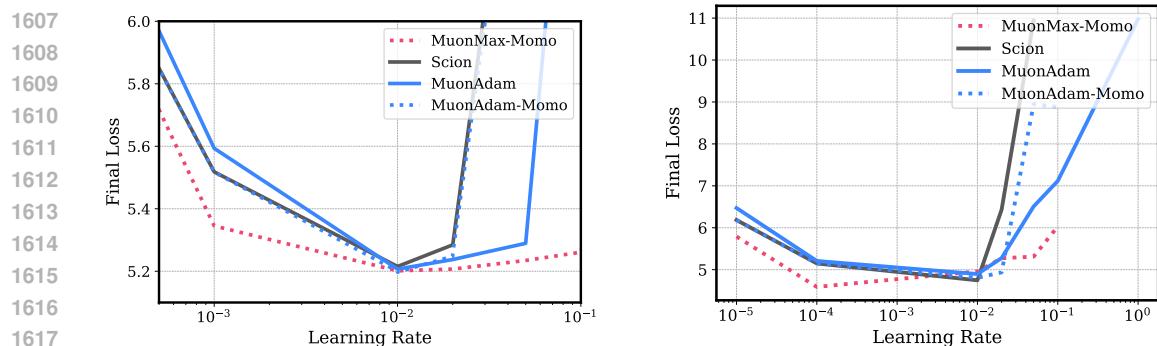


Figure 8: Final loss of Qwen2-MoE for FineWeb1B. Left: Small architecture with 1B tokens. Right: Medium architecture with 10B tokens.

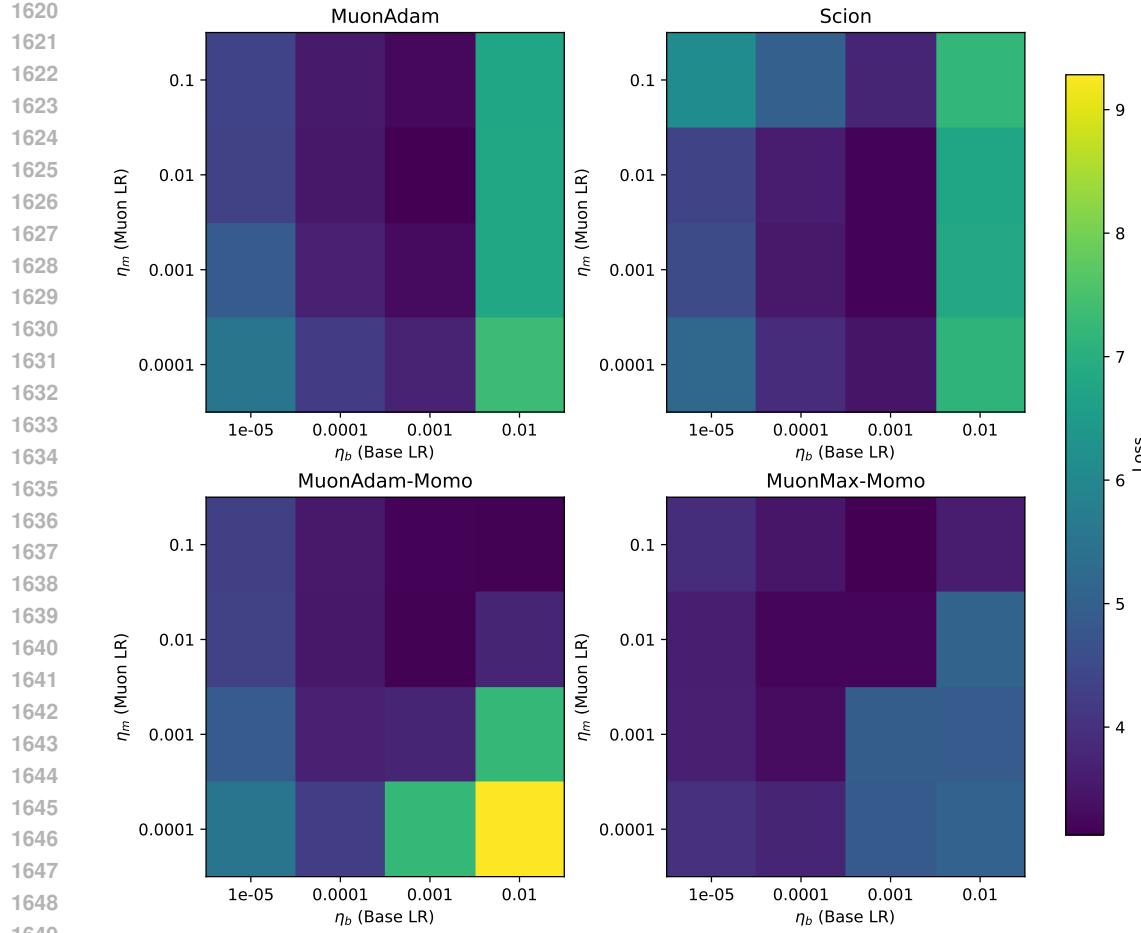


Figure 9: 2D learning rate sensitivity for SlimPajama1B.

Table 7: Additional metrics for GPT2-Large/SlimPajama1B. The target loss for this setting is 3.3.

	Best Perplexity	Throughput (tok/s)	Time per step (s)	Time to target loss (s)	Tokens to target loss	LR Basin Width
MuonAdam	25.40	126K	4.138	3172.77	389M	1.000
Scion	26.69	127K	4.114	3164.58	389M	1.000
MuonAdam-Momo	25.51	125K	4.164	2237.39	275M	4.000
MuonMax-Momo	24.84	125K	4.178	2309.51	275M	5.000

η_b is large. Interestingly, Muon-Momo has the highest loss when the Muon LR η_m is small and the base LR η_b is large.

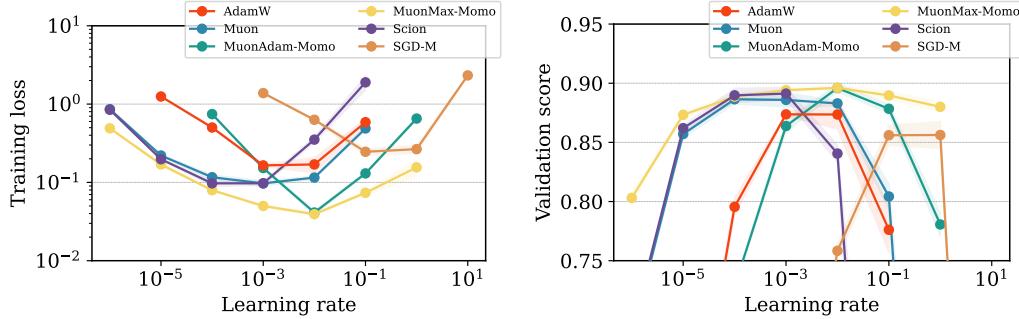
We also include loss curves for the last 40% of training for MuonAdam and MuonMax-Momo (with tuned learning rates) in Figure 4b.

D.2.1 ADDITIONAL METRICS

Similarly to Section D.1.2, here we include additional metrics to quantify efficiency and LR robustness for our SlimPajama experiments. The definition of each metric is the same as Section D.1.2, here we only change the target loss to 3.3 for GPT2-Large/SlimPajama1B and 3.0 for GPT2-Large/SlimPajama6B. The results are shown in Tables 7 and 8, and are largely similar to those of Table 6. See Section D.1.2 for a discussion of Tables 6, 7, and 8 together.

1674 Table 8: Additional metrics for GPT2-Large/SlimPajama6B. The target loss for this setting is 3.0.
1675

	Best Perplexity	Throughput (tok/s)	Time per step (s)	Time to target loss (s)	Tokens to target loss	LR Basin W idth
MuonAdam	17.29	127K	4.124	4309.90	531M	1.000
MuonMax-Momo	17.21	123K	4.239	4308.02	531M	2.000

1693 Figure 10: CIFAR-10 with ResNet20. Note that the x-axis shows the base learning rate η_b , while
1694 the Muon learning rate η_m is set according to the tuned ratio η_m/η_b .1695
1696 D.3 IMAGE CLASSIFICATION1697 In order to benchmark our proposed algorithms in a variety of settings, here we evaluate our
1698 proposed algorithms and baselines for image classification tasks. We evaluate SGD-M (SGD with
1699 momentum), AdamW, MuonAdam, Scion, MuonAdam-Momo, and MuonMax-Momo, first for
1700 training a ResNet20 (He et al., 2016) on CIFAR-10, then for a ResNet110 on CIFAR-100.1701
1702
1703
1704
1705 **Setup** All methods use a batch size of 128 and cross entropy loss. We train for 50 epochs with
1706 ResNet20/CIFAR-10 and 100 epochs with ResNet110/CIFAR-100. We use a constant learning rate
1707 schedule and we do not use weight decay. For SGD-M we set the momentum to 0.9. For AdamW,
1708 MuonAdam, MuonAdam-Momo, and MuonMax-Momo, we set $\beta_1 = \beta_2 = 0.95$. We use stand-
1709 ard data augmentation for CIFAR: normalization, random horizontal flipping, and random crop-
1710 ping. For Muon-type algorithms, we assign the spectral norm to weights of convolutional layers
1711 except for the first convolution in the network. We interpret each convolutional filter as a matrix by
1712 flattening all dimensions after the first two, following an early implementation of Muon for image
1713 classification (Jordan, 2024).1714 For the algorithms with two learning rates, i.e. the Muon-type algorithms, we tune the
1715 ratio between learning rates with a double grid search. The base LR η_b is tuned over
1716 $\{1e-5, 1e-4, 1e-3, 1e-2\}$, and the Muon LR η_m is tuned over $\{1e-4, 1e-3, 1e-2, 1e-1\}$. To bench-
1717 mark the learning rate sensitivity with a 1D sweep, we then fix the ratio η_m/η_b and vary η_b over
1718 $\{1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1\}$. For SGD-M and AdamW, we sweep the learning rate over
1719 $\{1e-3, 1e-2, 1e-1, 1, 10\}$ and $\{1e-5, 1e-4, 1e-3, 1e-2, 1e-1\}$, respectively. For the final sweep, we run
1720 three random seeds for each algorithm/LR.1721
1722
1723 **Results** The final training losses and validation accuracies for CIFAR-10 and CIFAR-100 are
1724 shown in Figures 10 and 11, respectively. The plots show the mean plus/minus one standard de-
1725 viation across three seeds.1726 For CIFAR-10, MuonMax-Momo achieves the lowest training loss for every learning rate and the
1727 highest validation accuracy for nearly every learning rate. Here, MuonMax-Momo has achieved
the best of both worlds: it reaches the strongest performance with a tuned learning rate and the

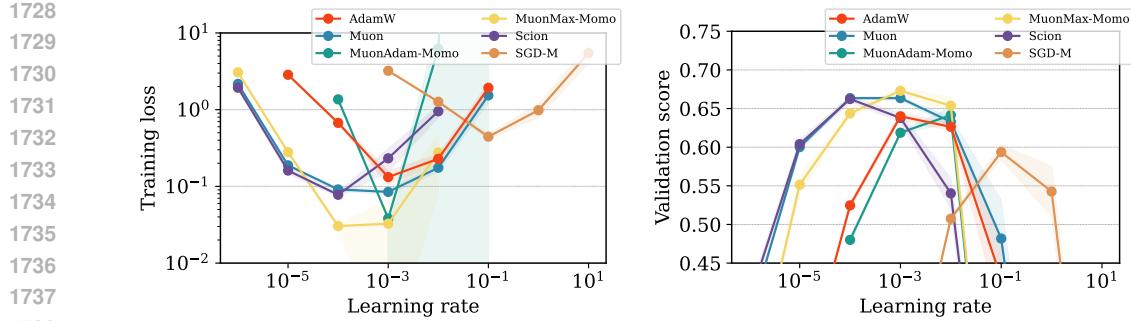


Figure 11: CIFAR-100 with ResNet110. Note that the x-axis shows the base learning rate η_b , while the Muon learning rate η_m is set according to the tuned ratio η_m/η_b .

widest basin across learning rates. Interestingly, while MuonAdam-Momo achieves nearly the best training loss for a tuned learning rate, its basin is much thinner than that of MuonMax-Momo. MuonAdam and Scion are competitive in terms of validation accuracy, while SGD-M and AdamW lag behind in terms of both training loss and validation accuracy.

For CIFAR-100, all algorithms appear more sensitive to the choice of learning rate, and MuonMax-Momo again achieves the lowest loss and highest validation accuracy with a tuned learning rate. Again, MuonAdam-Momo is more sensitive than MuonMax-Momo, and the ranking of the remaining baselines is similar to CIFAR-10.

1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781