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ABSTRACT

Amplitude encoding of classical vectors serves as a cornerstone for numerous
quantum machine learning algorithms in real-world applications. Nevertheless,
achieving exact amplitude encoding for general vectors needs an exponential num-
ber of gates, which negates the potential quantum advantages. To address the
challenge of large gate number in the state preparation phase, we propose an ap-
proximate amplitude encoding algorithm based on entropy reduction (ER-AAE)
within the classical framework. Given a target vector, the ER-AAE algorithm
generates a sequence of gates, comprising single-qubit rotations and CZ gates,
that approximates the amplitude encoding of the target vector. The structure of
encoding circuits in ER-AAE is built inductively using a greedy search strategy that
maximally reduces the linear entropy. We further prove that the state produced by
ER-AAE approximates to the target state with the infidelity bounded by the linear
entropy of intermediate states. Experimental results, including state preparations
on random quantum circuit states, random vectors, MNIST digits, and CIFAR-10
images, validate our method. Specifically, real-world data reveals a noteworthy
trend where linear entropy decays significantly faster compared to random vectors.
Furthermore, the ER-AAE algorithm surpasses the best existing encoding tech-
niques, achieving lower error with an equivalent or fewer number of CNOT or CZ
gates.

1 INTRODUCTION

The experimental advancements of quantum devices (Arute et al., 2019; Wu et al., 2021; Madsen
et al., 2022) have catalyzed the development of quantum algorithms (Montanaro, 2016) across
various fields, including machine learning (Biamonte et al., 2017; Schuld & Killoran, 2019; Wiebe
et al., 2012), quantum simulations (Daley et al., 2022), and numerical analysis (Harrow et al., 2009;
Montanaro & Pallister, 2016; Xin et al., 2020; Liu et al., 2021; Lubasch et al., 2020). For practical
tasks, a state preparation process is often required to encode classical data into quantum states.
For instance, the quantum linear system solver (Harrow et al., 2009) (HHL algorithm) generates
the solution to Ax = b in state form given the oracle preparing the state |bi =

P
i bi|ii/kbk2,

i.e. the amplitude encoding (Grover, 2000) of b. Numerous quantum machine learning algorithms
share this requirement, including quantum support vector machines (Rebentrost et al., 2014) and
quantum k-means algorithms (Kerenidis et al., 2019; Zardini et al., 2024), which rely on the HHL
algorithm as a core component. Similar demands arise in solving differential equations, where
quantum solvers (Xin et al., 2020; Liu et al., 2021; Lubasch et al., 2020) require amplitude encoding
for boundary conditions. Moreover, many quantum algorithms claim speed-up by focusing on
oracle query complexities (Aaronson, 2015), making efficient oracle implementations essential for
realizing practical quantum advantages. Specifically, quantum state preparation methods that scale
polynomially with the number of qubits N are highly desirable.

Despite its critical role in numerous quantum algorithms, state preparation for amplitude encodings
remains computationally inefficient in general. Both exact and approximate amplitude encoding
typically require Õ(2N ) single- and two-qubit gates (Grover, 2000; Kaye & Mosca, 2001; Long &
Sun, 2001; Bergholm et al., 2005; Plesch & Brukner, 2011), which can undermine the exponential
speed-up offered by quantum algorithms. Additionally, current quantum hardware—classified as noisy
intermediate-scale quantum (NISQ) devices (Preskill, 2018)—has limitations in gate fidelity, with
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error rates around O(10�4) and O(10�3) for single- and two-qubit gates, respectively1. Consequently,
it is imperative to explore strategies for generating approximate amplitude encodings (AAEs) with
fewer gates, especially two-qubit gates. Recent work (Zoufal et al., 2019; Ran, 2020; Iaconis & Johri,
2023; Jobst et al., 2023; Nakaji et al., 2022; Mitsuda et al., 2024; Shirakawa et al., 2021; Rudolph
et al., 2023) on AAE, based on tensor networks (Schollwöck, 2011), has introduced encoding circuits
consisting of two-qubit unitaries. Although these methods highlight the relationship between small
quantum entanglement and easy-to-encode states, they do not optimize circuit architectures based on
the entanglement property. Furthermore, these approaches inefficiently utilize elementary two-qubit
gates such as CNOT and CZ, as the decomposition of general two-qubit unitaries requires three
CNOT gates (Vatan & Williams, 2004).

In this work, we introduce a novel state preparation algorithm for approximate amplitude encoding
based on entropy reduction (ER-AAE). The ER-AAE algorithm for a target normalized vector v in
C2N consists of two stages. The first stage constructs a gate sequence G1, G2, · · · , GC inductively,
reducing the quantum entanglement in the state that corresponds to the vector GC · · ·G1v until it
becomes approximately unentangled. In the second stage, a shallow gate structure W , involving O(N)
one-qubit gates, is applied. Parameters in W and {Gc}

C
c=1 are optimized to minimize the infidelity

1 � |0T
· WGC · · ·G1v|2. The final gate sequence for AAE is constructed as W

†
, G

†
C , · · · , G

†
1.

As AAE is generally a hard problem, we aim to identify conditions that guarantee the accuracy
of ER-AAE. To this end, we derive an upper bound for the infidelity between the target state and
the ER-AAE-generated state, which scales as O(L), where L is the linear entropy of intermediate
states with vector formulations GC · · ·G1v. We validate ER-AAE through state preparation tasks on
synthetic datasets of Gaussian random vectors and real-world image datasets, including MNIST and
CIFAR-10. Our results demonstrate that ER-AAE outperforms the best existing AAE methods in all
tasks, achieving lower infidelity and higher peak signal-to-noise ratio with fewer or equal numbers of
quantum gates. Additionally, we observe that real-world images exhibit a more rapid decay of linear
entropy compared to random vectors, which may inspire future AAE research.

2 PRELIMINARY

2.1 NOTATIONS AND QUANTUM COMPUTING BASICS

We denote by [N ] the set {1, · · · , N}. The form k · k2 represents the `2 norm for the vector and the
spectral norm for the matrix, respectively. We denote by aj the j-th component of the vector a. The
tensor product operation is denoted as “⌦". The conjugate transpose of a matrix A is denoted as
A

†. The trace of a matrix A is denoted as Tr[A]. The notation bxc denotes the largest integer that is
smaller than or equal to x. We employ O to describe complexity notions. We employ Õ to describe
complexity notions neglecting minor terms.

Now we introduce quantum computing knowledge and notations. The pure state of a qubit could be
written as |�i = a|0i+ b|1i, where a, b 2 C satisfy |a|

2 + |b|
2 = 1, and |0i = (1, 0)T , |1i = (0, 1)T .

The N -qubit space is formed by the tensor product of N single-qubit spaces. For pure states, the
corresponding density matrix is defined as ⇢ = |�ih�|, in which h�| = (|�i)†. We use the density
matrix to represent general mixed quantum states, i.e., ⇢ =

P
k ck|�kih�k|, where ck 2 R andP

k ck = 1. A single-qubit operation to the state behaves like the matrix-vector multiplication
and can be referred to as the gate in the quantum circuit language. Specifically, single-qubit
operations are often used as RX(✓) = e

�i✓X/2, RY (✓) = e
�i✓Y/2, and RZ(✓) = e

�i✓Z/2, where

X =


0 1
1 0

�
, Y =


0 �i

i 0

�
, Z =


1 0
0 �1

�
.

Moreover, two-qubit operations, such as CNOT and CZ gates, are employed for generating quantum
entanglement:

CNOT =

0

B@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CA =
•

, CZ =

0

B@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

1

CA =
•

•

.

1Data from IBM quantum devices available at https://quantum.ibm.com/services/resources.
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We could obtain information from the quantum system by performing measurements, for example,
measuring the state |�i = a|0i+ b|1i generates 0 and 1 with probability p(0) = |a|

2 and p(1) = |b|
2,

respectively. Such a measurement operation could be mathematically referred to as calculating the
average of the observable O = �3 under the state |�i:

h�|O|�i ⌘ Tr[�3|�ih�|] = |a|
2
� |b|

2 = p(0)� p(1).

2.2 RELATED WORK

Quantum circuits for amplitude encoding have been extensively explored in prior research. Early
studies (Grover, 2000; Kaye & Mosca, 2001; Long & Sun, 2001; Bergholm et al., 2005; Plesch &
Brukner, 2011) demonstrated that amplitude encoding of an N -qubit state can be achieved using
Õ(2N ) single- and two-qubit gates without prior knowledge. Ref. (Sun et al., 2023) introduced
the use of auxiliary qubits to reduce circuit depth, though the gate count still scales exponentially.
These results align with the lower bounds of state complexity. Since an N -qubit state represents a
normalized vector in C2N with 2N+1

� 1 degrees of freedom, it is essential to employ O(2N ) gates
for arbitrary state preparation. Subsequent work (Gleinig & Hoefler, 2021) proposed an algorithm
that constructs amplitude encoding for S-sparse vectors using O(SN) CNOT gates. However, many
input states derived from classical datasets, such as real-world images (Lecun et al., 1998; Krizhevsky
et al., 2009), are not sparse.

Given the inefficiency of exact amplitude encoding, researchers have focused on approximating the
amplitude encoding of the target state. The central concept is to achieve this with a modest number
of gates, i.e., approximate amplitude encoding trades precision for reduced quantum resources. For
instance, quantum generative adversarial networks (Zoufal et al., 2019) have been used to generate
quantum states from implicit data distributions. Due to the hradness of amplitude encoding for
general states, it is crucial to investigate properties of easily encodable states. The simplest example
is the tensor product of single-qubit states, which can be prepared from the zero state |0i by applying
a series of single-qubit unitaries to each qubit. These tensor product states exhibit zero quantum
entanglement, which is measured by the linear entropy (Manfredi & Feix, 2000) of single-qubit
subsystem from the entire state. Other easily encodable states, such as those from shallow circuits,
also have relatively low entanglement compared to states from deep circuits (Dankert et al., 2009).
Thus, a natural approach is to assess the entanglement of the target state and employ low-entanglement
approximations as an initial guess for the encoding state. This idea has catalyzed the development of
a series of AAE methods based on tensor networks (Schollwöck, 2011).

Early AAE methods focused on target states with limited entanglement. Specifically, an N -qubit
matrix product state (MPS) (Perez-Garcia et al., 2007) with bond dimension 2 can be exactly prepared
using N � 1 two-qubit unitaries(Schön et al., 2005). This process can be sequentially applied
to general quantum states (Ran, 2020), where MPS approximations are obtained via truncated
singular value decomposition (SVD) (Schollwöck, 2011). More recent MPS-based AAE methods
have been developed for real-world datasets (Iaconis & Johri, 2023; Jobst et al., 2023; Nakaji
et al., 2022; Mitsuda et al., 2024) and specific distributions (Holmes & Matsuura, 2020; Iaconis
et al., 2024). Additionally, a recent study (Shirakawa et al., 2021) proposed the AQCE algorithm for
generating AAE, where locally optimal two-qubit unitaries are iteratively updated during optimization.
Subsequent research (Rudolph et al., 2023) enhanced the AQCE algorithm by using an MPS as the
initial guess, demonstrating superior performance compared to using the identity operator as the
initial guess. Besides, several recent works (Nakaji et al., 2022; Mitsuda et al., 2024) have proposed
to use fixed quantum circuit architectures such as hardware efficient ansatzes with tunable parameters
as the candidate of encoding circuits, and the AAE is obtained by training parameters for minimizing
the infidelity.

3 APPROXIMATE AMPLITUDE ENCODING BASED ON ENTROPY REDUCTION

In this section, we introduce the proposed ER-AAE in detail. The whole algorithm is an entirely
classical framework that contains two components, i.e., a procedure to generate a circuit for reducing
the state entanglement and a procedure to optimize the parameters in the circuit. Our framework is
inspired by the fact that a quantum state with small quantum entanglement, e.g. the tensor product
of 1-qubit states, can be efficiently prepared with shallow circuits. Therefore, an AAE circuit could
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Figure 1: Two-qubit unitary G in Algorithm 1, which contains 4 parameters.

Algorithm 1 Circuit generation based on entropy reduction (ERCG)

Require: Normalized target vector vtarget 2 C2N , two-qubit gate set S, two-qubit gate number
threshold C, gate slide CER.

Ensure: Gate list G = (G1, · · · , GC) such that the linear entropy in Eq. (2) of the vector
GCGC�1 · · ·G1vtarget approximates to 0.

1: Initialize G = ?, v0 = vtarget.
2: for i = 1 to C do

3: for G 2 S do

4: Minimize the linear entropy in Eq. (2) of the vector Gvi�1 by tuning parameters in G.
5: Record the optimized LEG and G.
6: end for

7: Find the optimal G⇤ = argminGLEG.
8: if the qubit pair of G⇤ has been repeated in previous (i� 1, i� 2, i� 3) iterations then

9: Choose the suboptimal gate with different qubit pairs as G⇤.
10: end if

11: Let the new gate be Gi = G
⇤.

12: Update the vector vi = Givi�1 and the gate list G = G +Gi.
13: if i%CER = 0 then

14: Minimize the linear entropy in Eq. (2) of the vector GiGi�1 · · ·G1vtarget by tuning param-
eters in G1, · · · , Gi.

15: Update the gate list G = (G1, · · · , Gi) with optimal parameters.
16: Update the current vector vi = Gi · · ·G1v0.
17: end if

18: end for

19: return Result

be obtained if we can reduce the entanglement in the quantum state gradually by adding new gate
structures. The efficiency of this AAE approach would depends on the decay rate of the entanglement.
Specifically, we use the sum of linear entropy of the 1-qubit subsystems from the quantum state as a
metric of quantum entanglement.

The circuit generation procedure for reducing the entanglement is shown in Algorithm 1. In general,
the circuit architecture is obtained via the greedy search. Firstly, we initialize the current state
|v0i = |vtargeti and the gate list G = ?. We assume that a feasible two-qubit candidate set S is
given. Each candidate G consists of four single-qubit rotations followed by one CZ gate that act on
arbitrary qubit pairs,

S =
�
CZ(n1, n2)RY RZ ⌦R

0
Y R

0
Z

�� n1, n2 2 [N ], n1 6= n2

 
. (1)

The gate formulation in S is generated to employ CZ gates efficiently considering the equivalence
of gate structures measured by the linear entropy as shown in Fig. 1. Specifically, we begin from
the structure V ⌦ V

0CZU ⌦ U
0 that contains only one CZ gate. Single-qubit unitaries V and V

0

could be removed since they do not affect the value of linear entropy. Next, arbitrary single-qubit
unitaries U and U

0 can be decomposed into formulations RZRY RZ and R
0
ZR

0
Y R

0
Z . Since RZ and

R
0
Z commute with the CZ gate, they can be further removed by considering the equivalence of gate

structures. Therefore, we obtain the structure G that contains only four single-qubit rotations.

Next, we perform the “add gate” procedure for C times, where one two-qubit unitary is attached to
the circuit per iteration. Different from the previous AAE methods that using two-qubit unitaries
with two or more CNOT/CZ gates, the employed two-qubit unitary here contains only one CZ gate.
During the i-th iteration, we perform a greedy search for the optimal two-qubit gate. For each feasible
two-qubit gate G in the gate set S , we consider finding parameters with the lowest entanglement by
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calculating the minimum of the linear entropy of the vector v = Gvi�1 in Eq. (2) classically:

LE (v) =
NX

n=1

n
1� Tr{n}

h�
Tr[N ]�{n}|vihv|

�2io
. (2)

The optimization of the linear entropy focuses on the training of 4 parameters in G, which is
computationally efficient since each G could only affect the linear entropy of two qubits. In practice,
we perform this optimization using the BFGS optimizer. After the optimization with all gates in
S, we select the one with the optimal minimized linear entropy value. We remark that an arbitrary
two-qubit unitary can be decomposed using 3 CNOT/CZ gates. So it could lead to redundant gates if
two-qubit gates acting on the same qubits have been selected consequently for more than 3 times,
even when they are locally optimal choices. For this case, we seek to the suboptimal two-qubit gates
with different qubit pairs. Next, we add the selected gate as Gi into the gate list G and update the
current vector vi = Givi�1.

The locally optimal greedy search of G may lead to suboptimal global performance. To mitigate this
issue, we periodically train the whole circuit for minimizing the linear entropy in Eq. (2) after every
CER two-qubit gates marked as the gate slide. Finally, we generate a gate list G = (G1, · · · , GC),
such that the vector

vC = GC · · ·G1vtarget (3)

has a small linear entropy. For the ideal case, where the linear entropy is zero, the vector vC is the
tensor product of 2-dimensional vectors. Thereby we can prepare |vCi from the zero state by using
one layer of single-qubit unitaries W1 ⌦ · · ·⌦WN , which means the state |vtargeti is constructed as

|vtargeti =
⇣
G

†
1 · · ·G

†
C

⌘
|vCi =

⇣
G

†
1 · · ·G

†
C

⌘
(W1 ⌦ · · ·⌦WN ) |0i := V (✓)|0i. (4)

We denote by V (✓) in Eq. (4) the parameterized circuit that encodes the target state.

Generally, the optimization of the linear entropy could not reach zero. For this case, the circuit V (✓)
provides an initial guess of the approximate amplitude encoding of the target state. Subsequently, we
perform the second procedure of ER-AAE to further improve the precision. Namely, we training the
parameter ✓ in the encoding circuit to optimize the infidelity loss function

Linfid(✓;V,vtarget) := 1� |hvtarget|V (✓)|0i|2. (5)

We remark that parameters in
QC

i=1 G
†
C have been tuned to reduce the linear entropy, but parameters

in the single-qubit unitary layer have not been properly designed yet. Compared to naive uniform
initializations, a reasonable strategy is to initialize the parameter in ⌦

N
n=1Wn by using the infor-

mation from vC . Specifically, we design the tensor network initialization (TN initialization) in
Proposition 1, where the density matrix ⇢ is the reduced density matrix of state |vCi on each qubit in
[N ]. Specifically, each single-qubit unitary Wn can be constructed by using two rotations RZRY .
Proposition 1. Denote |�i = RZ(↵)RY (✓)RZ(�)|0i. Then the state |�i has the largest projection

to the state ⇢, i.e,

max
↵,�,✓

Tr [|�ih�|⇢] =
1

2
+

s✓
⇢00 � ⇢11

2

◆2

+ |⇢10|
2 =

1 +
p
1� 2LE(⇢)

2
(6)

with

�
⇤ = 0, ✓⇤ =

⇡

2
� arcsin

⇢00 � ⇢11p
4|⇢10|2 + (⇢00 � ⇢11)2

,↵
⇤ = arg(⇢10). (7)

The TN initialization guarantees non-vanishing projection of the initial encoding state on the target
state as shown in Proposition 2. For example, suppose the linear entropy is optimized to be < 0.5, the
fidelity between the initial and the target state could be larger than 0.5. Therefore, the optimization of
✓ is free from the barren plateau (McClean et al., 2018) since the initial fidelity is away from zero.
Proof of Propsitions 1 and 2 can be checked in the appendix. In practice, we minimize the loss in
Eq. (5) by employing the Adam optimizer. After the optimization of Eq. (5) with Linfid(✓⇤) ! 0, we
obtain the approximate amplitude encoding

|vtargeti ⇡ e
�i↵gV (✓⇤)|0i, (8)

where g is the global phase term that would not affect the measurement result from the encoded state.
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(a) (b)

Figure 2: Optimization result of the ER-AAE algorithm with TER = 0. Fig. 2(a) shows the linear
entropy during the Algorithm 1 for different datasets for the CZ gate number C 2 [100]. Fig. 2(b)
show the infidelity during the parameter optimization part of the ER-AAE algorithm with TER = 0 for
C 2 {10, 20, 40, 60, 100}. Each point is the average over M independent samples, where M = 10
for RQC states and M = 50 for other cases.

Table 1: Feasible numbers of CNOT/CZ gates used in different encoding methods. The term N is the
number of qubits, and the term k 2 N can be any positive integer.

number of CNOT/CZ gates

ER-AAE n2 = k

AQCE (C) n2 = 3k
AQCE (R) n2 = 2k
MPS, AQCE-MPS (C) n2 = 3(N � 1)k
MPS, AQCE-MPS (R) n2 = 2(N � 1)k
ADAPT-VQE n2 = 2k
HE n2 = d

1
2Nke

Proposition 2. Denote by L the linear entropy loss Eq. (2) value of the state |vCi from Algorithm 1.

Then the projection of the TN initial state V (✓)|0i on the target state is lower bounded as

|hvtarget|V (✓)|0i|2 � 2b�2Lc
. (9)

4 EXPERIMENTS

In this section, we present numerical results about the performance of the ER-AAE approach on
both synthetic and real-world datasets. We use the two-qubit gate number C = 100 and the gate
slide CER = 1. The optimization of linear entropy after each gate slide is conducted via the Adam
optimizer with learning rate 0.01 for TER steps. We consider two cases TER 2 {0, 100} denoted
by ERAAE-0 and ERAAE-100, respectively. The infidelity minimization phase is trained with
10000 iterations. Besides, we compare the ER-AAE approach with several existing AAE methods.
Specifically, all parameter training are achieved via Adam optimizer with learning rate 0.01.

Matrix product state approximation (MPS). The MPS method (Ran, 2020) is an iterative approach.
Given the N -qubit target state |vtargeti and encoding gates G1, · · · , G(N�1)i in the i+1-th iteration,
the method generates the MPS approximation of the state G

†
(N�1)i · · ·G

†
1|vtargeti with bond dimen-

6
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(a) (b)

(c) (d)

Figure 3: Result of the different AAE algorithms. Figs. 3(a)-3(d) show the infidelity corresponding
to MNIST images, CIFAR-10 images, random vectors, and random quantum circuit states using
different AAE algorithms. Each point is the average over M independent samples, where M = 10
for RQC states and M = 50 for other cases.

sion 2. This MPS could induce a list of N � 1 two-qubit unitaries G(N�1)i+1, · · · , G(N�1)(i+1) that
exactly encodes the MPS state, which are are then attached to encoding gates.

Automatic quantum circuit encoding (AQCE). This method was firstly proposed in Ref. (Shi-
rakawa et al., 2021) and then being subsequently explored for constructing quantum machine learning
datasets (Placidi et al., 2023). The AQCE algorithm performs locally optimal two-qubit unitary
updations based on SVD. Suppose a current encoding unitary list {G1, · · · , GM} is given as the
AAE of target state |vtargeti from the zero state. Then the m-th locally optimal two-qubit unitary is
updated as

Fm = Tr[N ]/Qm

h
G

†
m+1 · · ·GM |vtargetih0|G

†
1 · · ·G

†
m�1

i
,

X,D, Y = SV D(Fm),

Gm
0 = XY.

The two-qubit unitary updation is performed sequentially in a forward-backward manner for several
times before adding new gates into the circuit with the same procedure. In the experiment, we consider

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the number of forward-backward procedures as 1 and 100 and denote corresponding methods by
AQCE-1 and AQCE-100, respectively.

AQCE initialized with MPS approximations (AQCE-MPS). This procedure (Rudolph et al., 2023)
considers to initialize unitaries that are added into circuits via the MPS approach. Suppose a list
of unitaries are given as |vencodei = GM · · ·G1|0i as the AAE of |vtargeti in the AQCE algorithm.
Then the method calculate the new N � 1 two-qubit unitaries via the MPS approach. Similar
to the AQCE case, we consider different numbers of forward-backward procedures denoted by
AQCE-MPS-1 and AQCE-MPS-100, respectively.

ADAPT-VQE. The method (Grimsley et al., 2019) generates AAE iteratively in a greedy search ap-
proach. In each iteration with target state |vtargeti and encoded state |vi(✓)i = Gi(✓i) · · ·G1(✓1)|0i,
one gate Gi+1(✓i+1) is selected from the given gate set such that the fidelity |hvtargetGi+1|vi(✓)i|2

has the largest gradient at ✓i+1 = 0. Then the whole parameter ✓ = (✓1, · · · , ✓i+1) is updated to max-
imize the fidelity |hvtarget|vi+1(✓)i|2, where |vi+1(✓)i = Gi+1(✓i+1)|vi(✓)i. In the experiment,
we use the gate set {RX , RY , RZ , CRX , CRY , CRZ} and train parameters for 1000 iterations.

Hardware-efficient (HE) circuits. We use this method as the baseline. The HE circuit we employed
consists of several HE layers initialized with the parameter ✓ = 0. Each HE layer contains a RY

rotation layer, a RZ rotation layer, and a CNOT layer that perform CNOT gates on adjacent qubit
pairs. Specifically, in the i-th layer, CNOT gates are applied on qubit pairs (2n, (2n+ 1)%N) , 0 

2n  N � 1 for i%2 = 0 and (2n+ 1, (2n+ 2)%N) , 0  2n  N � 2 for i%2 = 1. In the
experiment, parameters are trained with 10000 iterations.

As shown above, the number of two-qubit gates have different constraints for distinct AAE methods.
We summarize feasible numbers of CNOT/CZ gates in different methods in Tab. 1. Specifically, the
decomposition of arbitrary two-qubit unitary requires two and three CNOT/CZ gates for the real
matrix case and the general complex case (Vatan & Williams, 2004). The decomposition of CRX ,
CRY , and CRZ gates requires two CNOT gates (Vale et al., 2023).

Next, we introduce the dataset used in this work. For the classical dataset, we employ the MNIST
hand written number dataset (Lecun et al., 1998) and the CIFAR-10 dataset (Krizhevsky et al., 2009).
We remark that 28⇥ 28 MNIST images are first expanded into 32⇥ 32 as the target state with qubit
number N = 10. CIFAR-10 images are colorful with three channels of 32⇥ 32 pixels, leading to a
vector v with dimension 3072. The corresponding target state is set to be the state proportional to
v:2048+ iv2048:, i.e., the classical vector is divided into two parts and filled to the dimension 2048 for
being encoded into the real and the imaginary part of quantum state with N = 11 qubits. Thus, we
could test the performance of AAE algorithms on the compact variant of amplitude encoding (Mitsuda
et al., 2024). For the quantum case, we generate three datasets that contain random complex vectors,
random quantum circuit (RQC) states and hardware-efficient states, respectively. Random vectors
are generated from independent Gaussian distributions N (0, 1) for both real and imaginary parts
followed by the L2 normalization. Random quantum circuits are generate by using 150 single-qubit
rotations and 50 CZ gates with random structures and parameters. To distinguish from the HE method,
we prepare hardware-efficient states in the last dataset by using L-layered hardware-efficient circuits
with L random parameters, where each layer consists of one RX rotation layer, one RY rotation
layer, and one CZ layer that acts CZ gates on qubit pairs (n, (n+ 1)%N), 0  n  N � 1.

4.1 ENTROPY REDUCTION

The performance of entropy reduction of Algorithm 1 is illustrated in Fig. 2(a). We employ Algo-
rithm 1 for MNIST and CIFAR-10 images, random vectors, RQC states, and HE states with layer
L 2 {2, 3}. Specifically, we remark that the behavior of the linear entropy of MNIST and CIFAR-10
images is bounded by that of HE states with layers L = 2 and L = 3, and CIFAR-10 images contain
less quantum entanglements than MNIST images measured by the linear entropy. For RQC states, the
entropy decays with a relatively large speed, while random vectors show some degree of robustness
in the reduction of entropy, which is consistent with the fact that random vectors are hard to encode.
Since the linear entropy of the real-world data decays rapidly, we expect that the corresponding
ER-AAE could be accurate and efficient. Specifically, we plot the infidelity during the parameter
optimization part of ER-AAE for the MNIST dataset using different numbers of two-qubit gates. The
result is shown in Fig. 2(b). The loss is away from zero at the initial time, which verifies Proposition 2.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Infidelity of AAE by different methods on MNIST, CIFAR-10, random vector, and RQC
state datasets. Each point is the average over M independent samples, where M = 10 for RQC states
and M = 50 for other cases.

MNIST CIFAR-10 random vector RQC state

ER-AAE-0 0.029± 0.014 0.015± 0.009 0.398± 0.007 0.141± 0.074
ER-AAE-100 0.021± 0.012 0.013± 0.008 0.342± 0.008 0.094± 0.068
AQCE-1 0.044± 0.022 0.024± 0.015 0.608± 0.008 0.315± 0.123
AQCE-100 0.028± 0.014 0.020± 0.013 0.551± 0.007 0.244± 0.136
AQCE-MPS-1 0.083± 0.032 0.028± 0.017 0.717± 0.014 0.559± 0.062
AQCE-MPS-100 0.036± 0.016 0.017± 0.011 0.602± 0.021 0.357± 0.099
MPS 0.218± 0.074 0.045± 0.026 0.864± 0.010 0.748± 0.041
ADAPT-VQE 0.179± 0.063 0.056± 0.031 0.841± 0.012 0.634± 0.078
HE 0.076± 0.035 0.022± 0.012 0.459± 0.006 0.458± 0.006

Table 3: Peak signal-to-noise ratio (PSNR) of AAE by different methods on MNIST and CIFAR-10
datasets. Each point is the average over 50 independent samples.

MNIST CIFAR-10

ER-AAE-0 29.8± 6.8 25.1± 1.9
ER-AAE-100 31.8± 7.5 25.6± 1.9
AQCE-1 26.3± 6.6 22.8± 2.0
AQCE-100 28.7± 7.9 23.7± 2.0
AQCE-MPS-1 22.7± 4.1 22.2± 2.0
AQCE-MPS-100 26.9± 5.8 24.5± 2.0
MPS 18.2± 3.3 20.0± 2.1
ADAPT-VQE 19.1± 3.3 18.8± 1.8
HE 23.6± 5.5 23.2± 1.9

4.2 AAE ACCURACY

We compare the performance of AAE using ER-AAE and other methods introduced in Section 4,
with results shown in Fig. 3 and Tabs. 2 and 3. Specifically, Tabs. 2 and 3 show the performance of
ER-AAE-0 and ER-AAE-100 using 100 CZ gates. The number of CZ/CNOT gates in other methods
is chosen to be the smallest value in [100,+1) according to constraints in Tab. 1. Across the MNIST,
CIFAR-10, RQC state, and random vector datasets, the proposed ER-AAE consistently outperforms
other existing approaches, including MPS, AQCE, AQCE-MPS, ADAPT-VQE, and the HE baseline
method, demonstrating the lowest infidelity and the highest PSNR. To illustrate the performance
of ER-AAE, we show the image recover of encoded states in Fig. 4. The feature of images can be
roughly identified when the number of two-qubit gates exceeds 40.

5 CONCLUSION

In this manuscript, we propose ER-AAE, a novel classical approach for approximate amplitude
encoding of real-world data based on the entropy reduction. We demonstrate that the proposed
algorithm outperforms existing AAE approaches with equal or fewer CNOT or CZ gates. Besides,
we show that the real-world data like MNIST or CIFAR-10 images exhibit rapid decay on the linear
entropy, which may be of independent interest that can inspire other AAE research on real-world
data.
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