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Abstract
Linguists can access movement in the sign lan-
guage video corpus through manual annota-
tion or computational methods. The first relies
on a predefinition of features, and the second
requires technical knowledge. Methods like
MediaPipe and OpenPose are now more often
used in sign language processing. MediaPipe
detects a two-dimensional (2D) body pose in
a single image with a limited approximation
of the depth coordinate. Such 2D projection
of a three-dimensional (3D) body pose limits
the potential application of the resulting mod-
els outside the capturing camera settings and
position. 2D pose data does not provide lin-
guists with direct and human-readable access to
the collected movement data. We propose our
four main contributions: A novel 3D normaliza-
tion method for MediaPipe’s 2D pose, a novel
human-readable way of representing the 3D
normalized pose data, an analysis of Japanese
Sign Language (JSL) sociolinguistic features
using the proposed techniques, where we show
how an individual signer can be identified based
on unique personal movement patterns suggest-
ing a potential threat to anonymity. Our method
outperforms the common 2D normalization on
a small, diverse JSL dataset. We demonstrate
its benefit for deep-learning approaches by sig-
nificantly outperforming the pose-based state-
of-the-art models on the open sign language
recognition benchmark.

1 Introduction

Our research aims to find a movement representa-
tion that allows processing of sign language move-
ment directly, without relying on annotations or
systems of predefined movement features, such
as the Hamburg Notation System (Prillwitz et al.,
1989). And help to overcome the camera settings
constraints of the available datasets.

1.1 Problem
Due to its visual nature, sign language data are
stored and distributed in a video format. Lin-

guists must annotate the sign language features
on the video to process them. And to annotate a
feature, it must first be clearly defined and thor-
oughly explained to the annotators. That process
is not only time-consuming, but it also limits ac-
cess to the collected data and the processing poten-
tial. Pose estimation methods like OpenPose (Cao
et al., 2017, 2021) and MediaPipe (Lugaresi et al.,
2019) are more often included in the sign language
processing pipeline. Recently published sign lan-
guage datasets often include pose estimation data.
How2Sign1, a large multimodal dataset of Amer-
ican Sign Language (ASL) presented in Duarte
et al. (2021), and the Word-Level American Sign
Language2 (WLASL) video dataset presented in
Li et al. (2020a), both provide estimated pose data.
However, the detection accuracy of pose estimation
techniques still requires improvement. Moryossef
et al. (2021) reported the negative influence of in-
accurate or missing estimations on model perfor-
mance and applicability beyond training datasets.

Generally, sign language researchers indepen-
dently develop their own ways of processing
pose data for specific body joints and features.
Recent approaches still rely on raw pixel data
(Sadeghzadeh and Islam, 2022) or a combination
of pixel and pose data (Shi et al., 2021). Moreover,
sign language datasets vary in terms of the position
of the camera relative to the signer, resulting in dis-
similarity in 2D pose estimation output for similar
movements. Such inconsistencies prevent model
generalization, thereby limiting movement feature
extraction and inference outside the dataset.

The commonly used standard normalization pro-
cess proposed in Celebi et al. (2013), recently
adopted in Schneider et al. (2019) and Fragkiadakis
et al. (2020), involves coordinates axis origin trans-
lation to a "neck key point" and scaling of all co-
ordinates so that the distance between shoulder

1Available at: https://how2sign.github.io/
2Available at: https://dxli94.github.io/WLASL/
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key points equals one. This work will refer to this
normalization method as the "basic." This method
successfully eliminates the influence of body size
differences. However, features such as body rota-
tion (toward the camera), posture, and body pro-
portions in the dataset can still influence feature
extraction.

1.2 Related Work

Overcoming the camera setting boundaries and
pose estimation are being actively researched.
Complete 3D body pose estimation using a sin-
gle camera is one of the main goals (Ji et al., 2020).
Activity classification results obtained using 2D
and 3D pose data were compared, with no signifi-
cant difference emerging; the features in 2D data
were sufficient (Marshall et al., 2019). A pipeline
that includes learning 3D pose coordinates from 2D
pose data collected from sign language videos was
proposed and used recognizing tasks and synthe-
sizing avatar animations (Brock et al., 2020). The
Skeletor (Jiang et al., 2021), a deep-learning ap-
proach that refines the pose’s estimated coordinates
in three dimensions. However, it relies on contex-
tual information and therefore requires a sequence
of frames.

1.3 Our Proposal

Here, we propose a three-dimensional normaliza-
tion and encoding method for MediaPipe pose data
that is entirely algorithmic and normalizes pose
data based on fixed human proportions. Data is
presented as a series of angular joint changes. It
could be applied to various sign language process-
ing tasks and datasets and allows the search and
extraction of movement features. Both methods are
detailed in Sections 2.1 and 2.3.

We tested our method against the basic normal-
ization on continuous sign language data using
standard machine learning techniques in Section
3.1 and isolated sign language data using the deep-
learning in Section 3.2. We show how the JSL
sociolinguistic features are present in the signing
movement and how they can be explored using our
methods.

The main contributions are:

• Novel three-dimensional normalization
method for MediaPipe

• Novel movement representation method for a
direct sign language processing

• An analysis of JSL sociolinguistic features
present in movement patterns

• Substantially outperforming state-of-the-art
results on the WLASL-100 public benchmark
for pose-based deep-learning methods

Our solution and reproduction code are available
as a mp2signal python package and as a GitHub
repository3.

2 Methodology

To achieve our goal of directly processing sign
language, we set the following requirements for the
desired movement representation: the adherence to
the triangle inequality, the capability of movement
synthesis, being intuitive and understandable to
humans, and being low-dimensional.

The adherence triangle inequality is essential for
automated data processing techniques like cluster-
ing, machine learning, and indexing.

Movement representation data must be dis-
tributed across a space compatible with the notion
of distance and similarity. Sampling from such a
space should return the corresponding pose, and
moving through it should produce movement to
meet the movement synthesis requirement.

The space should not have any latent features,
and its dimensions must be perceivable by a human.
To promote readability and facilitate processing,
the space must be as low-dimensional as possible
to eliminate unnecessary information from repre-
sentations.

Normalization must transform pose data into the
desired space, and encoding must represent it suit-
ably for human perception.

To determine the degree of adherence to these
requirements and compare our method to the basic
normalization method, mentioned in Section 1.1,
we conducted experiments on two types of sign
language data using standard machine learning and
deep-learning techniques.

2.1 3D Normalization
The MediaPipe’s holistic model4 along with two x
and y provides a limited estimation of the z coor-
dinate for each body key point on the given frame.
We propose a procedure to improve the depth z
coordinate estimated by MediaPipe.

3Available at: https://github.com/vskobov/
mp2signal

4Available at: https://google.github.io/mediapipe/
solutions/holistic.html
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Joints do not move in isolation; they naturally
interact within the skeleton. For example, the move-
ment of the arm changes the position of the hand
and its fingers. Therefore, we propose processing
pose skeleton data as a "joint tree structure" that
respects actual human proportions, with the root
node in the neck key point. We aimed to use all
available information to simplify pose data pro-
cessing. We selected 137 joints from the holistic
model: 22 for each hand, nine for the upper body,
and 84 for facial expression. We created a human
skeleton, which showed rigidness, proportions, and
connectivity in line with the human body.

To improve the depth coordinates estimated by
MediaPipe, we use the proportions of the body. In
Herman (2016), an overview of standard human
body proportions is provided. For simplification,
we assume that the body proportions for all data
processed with MediaPipe are constant when using
our method.

We captured a short video of a body standing
upright and used MediaPipe to calculate the ra-
tio of distances between key points relative to the
distance between the shoulders. The maximum
distances across frames were used to calculate the
proportions. The joint tree model of the human
body aligned with MediaPipe key points stores the
proportional values for each joint. From the length
of just one joint in real space, we can compute the
lengths of all joints, which requires some reliable
MediaPipe estimation as a basis.

The holistic MediaPipe model includes a face
model for estimating key facial points; its depth
coordinates are the most accurate. The distance be-
tween the eyes in the MediaPipe model is selected
as a basis for calculating the lengths of body joints.
We trust its estimation the most. Eyes positions are
calculated based on the average positions of key
points 159, 143, 157, and 149 for the left eye, and
key points 384, 386, 379, and 372 for the right eye.
Relative to the distance between the shoulders, the
distance between the eyes was calculated as 0.237
from the previously captured short video.

With this ratio, we calculate the lengths of all
body joints in 3D using the Formula 1, where
eyedistance gives the distance between the eyes
according to MediaPipe and propj gives the "cap-
tured proportion" of the joint. We calculate the z
coordinate using the length, and relative x and y
coordinate with the origin in the “parent joint” in
the joint tree structure. Lastly, we apply the sign

value from MediaPipe’s original z estimation to it.

lengthj = propj ∗ (eyedistance/0.237) (1)

The joint tree structure allows us to control the
order of calculation with the traversal and process
only the desired part of the tree if needed. To obtain
the coordinates for a joint with the origin set at
the neck point, we sum the coordinates for all its
parent joints in the tree. A detailed example of the
3D estimation step is shown in the middle part of
Figure 1.

Side view Semi-front view

Standard 2D Normalization

 

Our 3D Normalization

Figure 1: Normalization of a pose captured from the
side (top-left) and “semi-front” (top-right), basic nor-
malization (middle), our 3D normalization (down).

2.2 Scaling and Rotation
After 3D coordinates refinement, the pose data are
represented as a joint tree structure with coordi-
nates in 3D space. To address the variation in cam-
era angle and relative position, we rotate and scale
the coordinates as the final part of the normaliza-
tion process. The resulting pose is consistently
rotated toward the camera and is fixed in size. The



root node (neck point) is the origin (0,0,0), and the
left shoulder is at (0.5,0,0).

Both scaling and rotation are performed through
a linear transformation in 3D space. To generate the
transformation matrix, a scaling factor and rotation
angles are required, which we compute for each
frame. We apply the transformation matrix to all
joint coordinates, using joint tree structure traversal
to obtain rotated and scaled coordinates for each
joint. A detailed example of a scaled and rotated
pose is shown in Figure 1 (bottom panel).

Facial expressions are essential for processing
sign language. Therefore, we perform an additional
separate transformation only for face points. We
scale and rotate the key face points so that the nose
points toward the camera along the z-axis, while
the point between the eyes is on the y-axis. Addi-
tional normalized facial key point data are shown
in Figure 1 (bottom panel, upper right corners) and
2e–h.

2.3 Representation

Our normalization process returns pose data as 137
“tree-structured joints” with 3D coordinates, which
is helpful for decomposing movement. We use
relative coordinates for each joint, with the ori-
gin set at the parent joint, to represent the joint’s
movement in space independently. Since the pro-
portions are fixed and known, independent move-
ment may be estimated with arccosine of direction
cosines values, i.e.,the angles between joint and
axes, which range from −π to π in radians. The
resulting body movement appears as a series of 411
(3∗137) isolated signals. Each signal shows a value
for the angle between the corresponding joint and
the corresponding axis at every frame. The result-
ing decomposition allows the quick determination
of when, where, and what movement of the body
is captured, providing direct access to it.

Initially, for each key body point, we obtained
three values from the MediaPipe. After normaliza-
tion, the key body points became joints with three
direction angles values, striped from the variation
in size, rotation, and body proportions. The di-
mensionality of the information remained the same
while the representation space changed, adhering
to the requirements in Section 2.

We use image RGB color space to visualize a
series of direction angles for joints to simplify the
interpretation of the movement. The process is
shown in Figure 2a–b: direction angles with x-, y-,

and z-axes ranging from −π to π in radians are
encoded in the red, green, and blue channels, re-
spectively, as 8-bit integers ranging from 0 to 255.
Figure 3 shows an example image of a representa-
tive movement.

For handshapes, it might serve as an additional
visual clue to add one-dimensional (1D) encoding
of the absolute 3D angle (0°–180°; blue = 0°, red
= 90°, green = 180°) between the hand joints and
their parents. Figure 2d provides an example.
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Figure 2: Proposed encoding scheme: a) calculating a
joint’s direction angles with arccosine; b) translating
the angle values into RGB color space; c) displaying the
RGB-encoded data as an image; d) adding additional
3D angles between the joints with color-coding; e) nor-
malizing facial expressions with a relaxed baseline face;
and f–g) example color-coding of various facial expres-
sions deviating from the relaxed baseline face.

Key face points are encoded differently. We
captured a relaxed facial expression as the baseline
(Figure 2e) and encoded deviation angles for each
key point in three axes. The angle changes are
usually tiny, so we multiplied the difference by a
factor of four (determined by trial and error) to
boost visual interpretation. Figure 2f–g shows an
example of encoded facial expressions.

For computer processing methods, channels
must be separated; thus, data will be encoded as an



8-bit integer with only one channel per pixel. This
method allows for movement manipulation via im-
age manipulation. Image processing is a highly ad-
vanced area with various methods and approaches
applicable to movement processing. Movement
detection and recognition can borrow approaches
from object detection (image processing).

Figure 4 shows an encoded representation of 13
simultaneous closings and openings of a rotating
fists. Where and when the movement occurs is
easily detectable with the naked eye, and might also
be easily detectable via modern pattern-recognition
methods.

The proposed encoding scheme is straightfor-
ward, and the image can easily be decoded back to
direction angles and coordinates. Movement pat-
terns are fully explainable and can produce skeleton
animations, aiding visual comprehension and thus
satisfying the requirements in Section 2.

We hope to encourage researchers to explore
the capabilities of encoded movement data, aug-
menting their sign language knowledge to explore
movement features. Section 3 discusses how the
proposed methods compare to the standard normal-
ization process used for linguistic and sociolinguis-
tic features extracted from sign language datasets.

additional 1 dimensional 3d
angle (0-180) encoding for
hands and lower arms

right arm and hand

eyes and brows

left arm and hand

frames

mouth and lips
411(137*3)-
dimensional

space

Figure 3: Structure our movement encoding method.

3 Experimental Setup

The proposed normalization was explicitly devel-
oped to process data with high variance, which is
typical of data captured in real life. The decomposi-
tion property of our approach allows for comparing
pure movement data on a joint-by-joint basis. In

Figure 4: Hands movement is clearly visible on the
encoding plot of a processed video sample with 13 clos-
ings and openings of rotating fists.

this Section, we compare the performance of our
method to the basic normalization method, men-
tioned in Section 1.1, on a dataset composed of
continuous samples — the JSL Dataset and a pub-
lic benchmark dataset collected of isolated samples
— the WLASL-100 dataset. The JSL dataset has a
variation in the camera angle and includes coding
for various sociolinguistic features. However, it
is a small and very diverse dataset; therefore, it
will be used for feature exploration and camera
settings boundary testing using standard machine
learning algorithms. The isolated WLASL-100 is
more suitable for deep-learning testing since it is
an established public sign language recognition
benchmark.

3.1 Continious Signs - JSL

We created a simple dataset from the Japanese Sign
Language (JSL) Corpus presented by Bono et al.
(2014, 2020). The JSL Corpus is a continuous and
dialog-based corpus that includes utterance- and
word-level annotations. It consists of conversations
between two participants freely discussing various
topics. The signers vary in age, geographic area,
gender, and the deaf school they attended. Conver-
sations were captured from both the semi-front and
side positions; a sample from the dataset is shown
in Figure 1.

3.1.1 JSL Dataset Satistics
Using the word-level annotations, we have selected
lexical signs from the JSL Corpus with more than
25 samples. For each lexical sign, we extracted
25 video examples for each camera view (a total
of 50 samples). Some samples had an insufficient
capturing quality for pose estimation, so our final
dataset comprised 674 semi-front view and 608
side view videos. The resulting number of classes
and samples per class for each feature is shown in
Table 4.



For comparison, we created a second dataset
from the same samples by normalizing the Me-
diaPipe pose data using the basic normalization
method. The resulting samples vary in duration
from four to 120 frames, and we had to resize them
using linear interpolation to fit the longest sam-
ple in the dataset. The JSL Corpus includes the
signer ID, prefecture of residence, deaf school, age
group, and gender. This information was added to
the dataset since we were interested in examining
whether these features affected signing movements.

3.1.2 Classification
First, we used the “Neighbourhood Components
Analysis” (NCA) approach presented in Gold-
berger et al. (2004) to visualize the embedding
space for each sociolinguistic feature in the dataset.
We tested various classification techniques using
the scikit-learn package 5(Pedregosa et al., 2011),
including the linear support vector classifier (SVC)
(Fan et al., 2008), nearest neighbor classifier (Cover
and Hart, 1967), naive Bayes (Zhang, 2004), and
decision tree (Breiman et al., 1984), to check for
the presence of features in the data and assess the
potential applicability of our normalization method
to classification tasks.

We designed an experiment in which a model
was trained on data captured from the front per-
spective and tested using data captured from the
side perspective. We did this to address the camera
angle boundary and generalization issue mentioned
in Section 1, i.e., to determine the applicability to
other datasets and capture conditions.

3.2 Isolated Signs - WLASL

We used the popular public deep-learning bench-
mark, the Word Level American Sign Language
Dataset (Li et al., 2020a), to demonstrate the utility
of our normalization and representation methods
in deep-learning pose-based approaches.

3.2.1 WLASL-100 Dataset Satistics
We selected the WLASL-100, a WLASL subset of
the top one hundred samples per sign. The split
statistics are shown in Table 1.

Classes Train Validation Test
100 1442 338 258

Table 1: WLASL-100 data subset satistics.

5Available at: https://scikit-learn.org

3.2.2 WLASL Preprocessing
The WLASL dataset is distributed in video for-
mat, requiring preprocessing before training. Our
preprocessing flow starts with the mediapipe pose
data extraction and normalization using the pro-
posed methods and basic normalization to create
two datasets for comparison. The next preprocess-
ing steps are visualized in Figure 8 and include
finding and cutting to the part where both hands
are visible, resizing using the linear interpolation
to a fixed 100 frames, and removing the facial and
relative joint information rows from the samples to
reduce the dimensionality from 455 and 411 in ba-
sic normalization case to 159 values per 100 frames.
We want to point out that start and end frames for
basic normalization samples were determined using
a corresponding sample of the proposed normaliza-
tion dataset to guarantee consistency between the
two datasets.

3.2.3 Model
We chose the Conformer model presented by Gulati
et al. (2020) as the core unit since it is aimed at two-
dimensional signal representations. Figure 5 shows
the overview of our model, where we use the adap-
tive average pool layer to reduce each sample to 15
frames and add one fully connected layer before
and one after the conformer. Both do not have bias
nor an activation but have an L2 normalization and
a dropout layer after. The resulting model ends up
as simple as possible. We train it using the Adam
optimizer (Kingma and Ba, 2015) and the log loss
for 200 epochs with the mini-batch size 32. Before
training, all samples are standard-scaled6 on the
training set, and during training, a 50% uniform
noise is added to the samples.

4 Results and Analysis

4.1 Continious Signs

Figure 6 shows the well-distinguished clusters for
Signer ID, Prefecture, Deaf School, and Age Group,
with the only exception for the Gender feature.
Table 4 shows all classification results and samples
per class distribution, whereas Table 2 shows only
the best results as a summary.

For the Lexical Sign feature, our method outper-
forms the basic normalization method. Signer ID
was the best-performing feature on front view data
(accuracy = 78.57%) when using naive Bayes, for

6Implementation used: https://gist.github.com/
farahmand-m/8a416f33a27d73a149f92ce4708beb40
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Figure 5: An adaptive average pooling layer, with a single conformer layer (Gulati et al., 2020) trained with
cross-entropy loss.

which the baseline was 8.33% and 43/12 samples
per number classes ratio. Also, Lexical Sign with
49.78% accuracy on front plus side view data from
naive Bayes compared to a 3.7% chance of guess-
ing with only 43/27 samples per number classes
ratio. Each signer has a unique movement pattern
(i.e., signing style). Likewise, stylistic characteris-
tics uniquely vary depending on the prefecture of
residence, deaf school, and age group; only gender
had no influence on signing movements.

The results, shown in Table 2, indicate that the
only feature that did not significantly improve pre-
diction performance from the chance level was Gen-
der (accuracy = 75.53%), even though it had the
most samples per class among all features and is
binary in data. This is consistent with the NCA em-
bedding visualization. We cannot predict the JSL
signer’s gender based on their signing movements.
Model performances on other features were consis-
tently above the baseline, except for the learning
transfer tests (training on front view images and
testing on side view images), thus confirming the
presence of the movement patterns attributed to
them. JSL experts validated the results, confirming
our findings based on their experience.

The last two columns in Table 2 indicate that our
method retains the extracted features better than
the basic normalization method for all features,
overcoming the camera angle setting boundary.

4.2 Isolated Signs

In Table 3, we report the average accuracy across
ten runs for each dataset with the top 1, top 5,
and top 10 prediction scores as established in the
WLASL benchmark reporting practice. Our model

outperforms the state-of-the-art pose-based results
on both datasets. Moreover, the proposed normal-
ization pose-only dataset exceeds the models with
combined modalities. As for comparing the nor-
malization of two datasets, the results suggest a
great performance improvement using the proposed
normalization over the basic normalization, going
from 75.85% to 84.26% using the same pose es-
timated data from MediaPipe. In Figure 7, the
accuracy curve of the test data set during training is
shown, indicating a clear improvement in learning
with the proposed normalization.

5 Discussion and Conclusions

The proposed methods allow linguists and engi-
neers to directly access the movement captured in
the sign language corpus. Before, they had to use
human annotation or recognition methods, which
both relied on a predefinition of the features and
were effectively limited by it.

Sign language movement can now be repre-
sented and stored in human-readable form with the
proposed encoding method, allowing researchers
to observe and comprehend it visually. Normal-
ized pose data are distributed over a joint-based,
low-dimensional feature space with distinct and
fully explainable dimensions. Machine learning
methods can also process it directly since it com-
plies with the distance notion and the triangular
inequality.

The embedding results showed the presence
of stylistic movement features that correspond to
known sociolinguistic features of JSL, similar to
predictions of the speaker’s country of origin based
on their accent. Linguists and sign language ex-



Train Dataset Front + Side Side View Front View Front View
Test Dataset Front + Side Side View Front View Side View

Feature Baseline Ours Basic Ours Basic Ours Basic Ours Basic
Lexical Sign 3.7 49.78 25.32 37.27 16.36 39.02 21.14 32.73 8.18
Signer ID 8.3 72.64 66.04 72 83.33 78.57 62.07 40 25
Prefecture 25 50 57.35 56.25 45.45 56.76 66.67 34.38 30.3
Deaf School 16.67 48.05 46.75 54.05 45.95 55 43.9 35.13 29.73
Age Group 16.67 49.12 42.1 44.44 51.72 45.16 39.29 33.33 24.14
Gender 50 76.88 70.52 71.61 76.83 76.34 78.02 75.31 57.32

Table 2: Comparison of the normalization methods in terms of JSL feature classification performance.

Pose- Frame+
Model based Backbone Top 1 Top 5 Top 10
Li et al. (2020a) ✓ 65.89 84.11 89.92
Li et al. (2020b) ✓ 77.55 91.42 -
Hosain et al. (2021) ✓ 75.67 86.42 90.16
Maruyama et al. (2021) ✓ ✓ 81.38 94.13 96.05
Tunga et al. (2021) ✓ 60.15 83.98 88.67
Boháček and Hrúz (2022) ✓ 63.18 - -
Maruyama et al. (2021) ✓ 71.07 90.13 92.42
Naz et al. (2023) ✓ 72.09 88.76 92.64
Ours (basic norm) Agv, Std ✓ 75.85(±1.14) 92.75(±0.6) 95.27(±0.48)
Ours (basic norm) Max ✓ 77.51 93.8 96.12
Ours (3D norm) Avg, Std ✓ 84.26(±0.82) 95.66(±0.42) 96.86(±0.27)
Ours (3D norm) Max ✓ 85.27 96.12 97.28

Table 3: The comparison of accuracy scores on the WLASL-100 test data. We report the performance of our model
with the proposed and basic normalization method.

perts can apply their knowledge of language prop-
erties and the proposed method to uncover novel
features. Nevertheless, our results raise a concern
about signer privacy protection since stylistic fea-
tures of individual signers can be predicted based
solely on signing movement.

The deep-learning WLASL-100 benchmark re-
sults are consistent with the JSL dataset tests. Our
method significantly outperforms other pose-based
methods and successfully competes with multi-
modal approaches. Sign language is naturally con-
veyed through body movement; extracting it from
the collected video data improves performance and
robustness.

Our method performs consistently well across
all data sets. We satisfied the initial requirements
outlined in Section 2 and addressed the generaliza-
tion issue discussed in Section 1. The proposed
methods are suitable for any sign language, and
multiple sign languages can be encoded into one
signing space, thus facilitating cross-language stud-
ies in future research.

Limitations

The proposed representation method can be used
for any three-dimensional pose estimation. How-
ever, the proposed normalization method relies en-
tirely on the initial data recording quality and esti-
mation accuracy of MediaPipe and is incompatible
with two-dimensional pose estimation methods like
OpenPose. Our normalization method recalculates
the value of z coordinate but relies on MediaPipe’s
depth estimations to determine the order of the
final coordinates. Even under ideal conditions, ac-
counting for body proportions is difficult since the
normalization method assumes all humans have the
same body proportions. It may lead to instances
where the hands are not ideally touching, failing to
detect an important sign language feature.

Processing some facial expressions, mouth ges-
tures, and mouthing is limited and requires addi-
tional modalities (e.g., pixel data). Still, the de-
tected facial key points can provide aid in pixel
extraction.



Ethics Statement

In our work, we used anonymized pose skeleton
data extracted from the published Japanese Sign
Language Corpus (Bono et al., 2014, 2020) in ac-
cordance with the ACL Ethics Policy. However,
one of the work’s conclusions proposes that a per-
son can be identified, to a limited degree, using
their signing style. We encourage the research com-
munity to pay closer attention to the possible de-
velopment of future authentification systems using
movement habits.
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Figure 6: The NCA embedding visualization of various Japanese sign language corpus features.

0 40 80 120 160 200
n Epochs

0

10

20

30

40

50

60

70

80

%
 A

cc
ur

ac
y

top-1

Normalization
Ours
Basic

0 40 80 120 160 200
n Epochs

20

30

40

50

60

70

80

90

%
 A

cc
ur

ac
y

top-5

Normalization
Ours
Basic

0 40 80 120 160 200
n Epochs

30

40

50

60

70

80

90
%

 A
cc

ur
ac

y

top-10

Normalization
Ours
Basic

Figure 7: Accuracy (%) on top 1 (left), top 5 (middle), and top 10 (right) on the test dataset of WLASL-100 dataset
during training.

Normalized input samples Start and end frames cuts Resized to 100 frames Facial and relative rows removed 

Preprocessed sample: 

(22 * 2 hands joints  
+ 9 body joints) 
* 3 dimensions 
 = 159 values over a 100 frames

Proposed
Basic 

Basic Proposed

Proposed Proposed
Basic Basic 

Figure 8: WLASL preprocessing: to simplify the data, we focus only on the parts of the sample where hands are
visible. Then, we resize the data to 100 frames and eliminate facial and relative joint information to reduce the
complexity.



Train Dataset Front + Side Side View Front View Front View
Test Dataset Front + Side Side View Front View Side View

Ours Basic Ours Basic Ours Basic Ours Basic
Lexical Sign

Baseline: 3.704 Number of Classes: 27 Samples per Class: 43
Nearest Neighbors 30.9 12.02 27.27 15.46 28.45 12.2 27.27 5.46
Linear SVM 49.78 25.32 37.27 14.54 39.02 21.14 32.73 3.64
Decision Tree 19.74 17.17 25.45 16.36 23.58 20.32 18.18 8.18
Naive Bayes 24.03 11.16 19.09 12.73 29.27 12.2 16.36 4.54
Best 49.78 25.32 37.27 16.36 39.02 21.14 32.73 8.18

Signer ID
Baseline: 8.333 Number of Classes: 12 Samples per Class: 43

Nearest Neighbors 41.51 45.28 50 39.58 37.5 36.21 40 8.33
Linear SVM 72.64 66.04 70 56.25 64.29 50 34 14.58
Decision Tree 50.94 56.6 62 54.17 50 62.07 20 25
Naive Bayes 66.98 39.62 72 83.33 78.57 51.72 14 16.67
Best 72.64 66.04 72 83.33 78.57 62.07 40 25

Prefecture
Baseline: 25 Number of Classes: 4 Samples per Class: 84

Nearest Neighbors 32.35 57.35 50 45.45 37.84 41.67 21.88 21.21
Linear SVM 50 39.71 50 27.27 51.35 66.67 21.88 30.3
Decision Tree 30.88 39.71 56.25 33.33 32.43 55.56 15.62 15.15
Naive Bayes 38.23 33.82 50 33.33 56.76 63.89 34.38 21.21
Best 50 57.35 56.25 45.45 56.76 66.67 34.38 30.3

Deaf School
Baseline: 16.667 Number of Classes: 6 Samples per Class: 65

Nearest Neighbors 33.77 46.75 40.54 43.24 40 41.46 27.03 18.92
Linear SVM 42.86 46.75 48.65 45.95 42.5 43.9 29.73 29.73
Decision Tree 28.57 32.47 40.54 32.43 37.5 31.71 35.13 21.62
Naive Bayes 48.05 36.36 54.05 40.54 55 29.27 21.62 18.92
Best 48.05 46.75 54.05 45.95 55 43.9 35.13 29.73

Age Group
Baseline: 16.667 Number of Classes: 6 Samples per Class: 47

Nearest Neighbors 31.58 28.07 18.52 37.93 32.26 39.29 33.33 17.24
Linear SVM 45.61 42.1 29.63 37.93 38.71 28.57 22.22 24.14
Decision Tree 31.58 35.09 33.33 27.59 35.48 32.14 25.93 10.35
Naive Bayes 49.12 26.32 44.44 51.72 45.16 39.29 14.81 20.69
Best 49.12 42.1 44.44 51.72 45.16 39.29 33.33 24.14

Gender
Baseline: 50 Number of Classes: 2 Samples per Class: 423

Nearest Neighbors 76.88 70.52 71.61 62.2 70.97 60.44 61.73 50
Linear SVM 69.36 68.79 71.61 76.83 68.82 78.02 75.31 57.32
Decision Tree 65.32 67.05 70.37 67.07 75.27 64.83 45.68 39.02
Naive Bayes 65.32 61.85 54.32 71.95 76.34 58.24 61.73 48.78
Best 76.88 70.52 71.61 76.83 76.34 78.02 75.31 57.32

Table 4: Comparison of the performance of the various standard classification methods for JSL feature prediction.


