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ABSTRACT

This paper studies the high probability convergence behaviour of the stochastic
gradient descent (SGD) method applied to convex problems. The existing tail-
bound analysis of SGD relies crucially on assuming the domain of the problem to
be bounded. In this work, we show that the bounded domain assumption can be
removed for free. That is, we prove SGD in an unbounded domain enjoys the same
high probability error bound as the bound established in the bounded domain; SGD
converges with rate O(log(1/δ)/ε2) no matter the problem domain is bounded or
not. As a by-product, we also prove that the trajectory of SGD is guaranteed to stay
in a neighbourhood of the initialization with almost bounded diameter. As simple
extensions of our analysis, we further establish the high probability error bounds
of the last iterate of SGD and SGD with momentum, respectively.

1 INTRODUCTION

Stochastic gradient descent (SGD) is a simple and effective optimization algorithm for solving big
data problems. Indeed, SGD and its variants, such as AdaGrad (Duchi et al., 2011) and ADAM
(Kingma & Ba, 2015) are the dominant algorithms for training today’s complex machine learning
models with massive training data. Due to the empirical success of SGD, its convergence theory has
been extensively studied in the literature (Robbins & Monro, 1951; Polyak & Juditsky, 1992; Zhang,
2004; Shalev-Shwartz et al., 2007; Nemirovski et al., 2009; Ghadimi & Lan, 2013; Shamir & Zhang,
2013; Bubeck, 2015).

Classic convergence analysis of SGD mostly focused on the error bounds in terms of expectation. It
is well-established that the averaged iterate of SGD enjoys an expected error bound O(1/

√
T ) for

convex problems and O(1/T ) (Shalev-Shwartz et al., 2007; Nemirovski et al., 2009; Lacoste-Julien
et al., 2012) for strongly convex problems. High probability error bounds of SGD exist (Kakade &
Tewari, 2008; Rakhlin et al., 2012; Hazan & Kale, 2014; Harvey et al., 2019) but are less-studied
compared with the convergence analysis on expectation. Consequently, there are still some missing
pieces for a thorough understanding of the high probability error bounds of SGD. We aim to fill some
of the missing pieces in this work. In particular, we study the high probability error bounds of SGD
for the constrained convex problem with unbounded domain, that is, the constraint set may not have
bounded diameter; for example, consider the constraint set Rd, where d is the dimension of variables.
Formally, we summarize our contributions as follows.

• For constrained convex problems that are Lipschitz continuous (or smooth) but with un-
bounded domain, we show that the averaged iterate of SGD enjoys aO(log(1/δ)/

√
T ) error

bound (Theorem 5.4 and Theorem 6.2), where T is the number of iterations and δ is the
confidence level. To our knowledge, this is the first high probability error bound in the form
of O(log(1/δ)/

√
T ) without assuming the constraint set to have bounded diameter.

• As a by-product of our analysis, we show that the iterates generated from SGD are guaranteed
to stay in a bounded region with high probability even if the constraint set may not be
bounded (Theorem 5.5 and Theorem 6.3). We note that this result can potentially relax the
bounded domain assumption for the analysis SGD in various settings.

• As simple extensions of our analysis in Section 5 and Section 6, we show that the high
probability error bounds of the last iterate of SGD and SGD with momentum (mSGD) can
easily be established.
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The theoretical analysis in this work is arguably concise. Our proof relies on standard techniques
in the analysis of first-order methods and a recent martingale concentration inequality called the
generalized Freedman’s inequality due to Harvey et al. (2019). Although our proof techniques are
simple, we stress that the conclusions established in this work are non-trivial.

2 RELATED WORK

The stochastic gradient descent (SGD) algorithm is an old algorithm that can be traced back to 1951
(Robbins & Monro, 1951). Although simple, SGD is particularly effective in handling today’s large-
scale datasets and complex machine learning models because its convergence rate is independent of
the number of data and model size. SGD is now a fundamental learning algorithm in the machine
learning community. Given the empirical success and popularity of SGD, a huge line of works have
been devoted to (i) designing new variants of SGD to improve its convergence either theoretically or
empirically (Shalev-Shwartz et al., 2007; Ghadimi & Lan, 2013; Johnson & Zhang, 2013; Defazio
et al., 2014; Kingma & Ba, 2015; Schmidt et al., 2017; Allen-Zhu, 2017a;b); (ii) refining the classic
analysis of SGD in various settings and contributing to a better understanding of the classic SGD
algorithm (Zhang, 2004; Rakhlin et al., 2012; Shamir & Zhang, 2013; Schmidt & Le Roux, 2013; Ma
et al., 2018; Vaswani et al., 2019; Fang et al., 2021). This work belongs to the second category.

Most classic convergence rates of SGD are characterized in terms of expectation (Nemirovski et al.,
2009; Ghadimi & Lan, 2013). The high probability error bounds of SGD is scarce in early works
but have received substantial attention in recent years (Kakade & Tewari, 2008; Rakhlin et al., 2012;
Hazan & Kale, 2014; Harvey et al., 2019; Feldman & Vondrák, 2019; Li & Orabona, 2020; Jain
et al., 2021; Varre et al., 2021; Cutkosky & Mehta, 2021; Liu & Lu, 2021; Davis et al., 2021; Zhu
et al., 2022). However, to our knowledge, high probability error bound in form O(log(1/δ)/

√
T )

has not been established for a single run of SGD in the convex and unbounded domain scenario. Our
theoretical analysis owes to Harvey et al. (2019) as the main technical tool used in our analysis is the
generalized Freedman’s inequality proposed by Harvey et al. (2019). We note that Harvey et al. (2019)
mainly focused on strongly convex problems, and it is already known that the high probability error
bound of SGD for strongly convex problems holds regardless of the bounded domain assumption
(Remark 4.2); for non-strongly convex problems, Harvey et al. (2019) assumed the domain to be
bounded. Therefore the conclusions established in this work do not overlap with Harvey et al. (2019).

Notations Throughout the paper, we denote [n] := {1, 2, . . . , n} for any positive integer n. We
denote ‖ · ‖ as the Euclidean norm and use Õ(·) to hide poly-logarithmic terms.

3 PRELIMIARIES

We consider the problem
min
x∈X

f(x), (P)

where f(x) is a convex function and X is a closed and convex constraint set. We denote f∗ :=
infx∈X f(x). For simplicity, we assume that the minimum of f is attainable and denote x∗ as
a solution of (P); when the minimum is not attainable, we can instead fix x∗ as an approximate
solution whose objective is close to f∗. Throughout this paper, we assume that f is bounded below,
e.g., f∗ > −∞. The projected SGD algorithm is given in Algorithm 1, where ΠX (·) denotes
the projection operator onto the set X , i.e., ΠX (x) = arg miny∈X ‖x − y‖ for any x ∈ Rd. For
convenience, we use SGD as a shortcut of projected SGD in the following content. We impose the
following assumption on the gradient noises of Algorithm 1.

Assumption 3.1 (Bounded and unbiased gradient noise). There exist M > 0 such that

E[ξ(t) | x(t), . . . , x(1)] = 0 and ‖ξ(t)‖ ≤M a.s. ∀t ∈ N,

where ξ(t)’s are the gradient noises of Algorithm 1.

The above assumption ensures that our estimation for the gradient is unbiased and the error is bounded
by some constant in all iterations. Note that it is possible to relax the bounded noise assumption to
the sub-Gaussian (light-tail) noise assumption, and all conclusions established in this work still hold
but with some additional poly-logarithmic terms. For the simplicity of analysis and cleanness of
presentation, we assume the noise is bounded almost sure.
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Algorithm 1 Stochastic gradient descent (SGD)

Input: number of iteration T ∈ N+, initial iterate x(1), learning rate η > 0.
for t← 1, . . . , T − 1 do
ĝ(t) = g(t) + ξ(t), g(t) ∈ ∂f(x(t)) B get an unbiased estimation for gradient
x(t+1) = ΠX (x(t) − ηĝ(t)) B update iterate

end for
Output: averaged iterate xout = 1

T

∑T
t=1 x

(t).

We restate the generalized Freedman’s inequality from Harvey et al. (2019), which serves as the key
technical tool for our analysis.

Lemma 3.2 (Harvey et al., 2019, Theorem 3.3). Let {di,Fi}Ti=1 be a martingale difference
sequence. Suppose vi−1 ≥ 0,∀i ∈ [T ] are Fi−1-measurable random variables such that
E[exp(λdi) | Fi−1] ≤ exp(λ

2

2 vi−1) for all i ∈ [T ], λ > 0. Let St =
∑t
i=1 di and Vt =

∑t
i=1 vi−1.

Let δ ∈ (0, 1) and suppose there are positive values R(δ) > 0 and non-negative values {αi}Ti=1 such

that Pr
[
VT ≤

∑T
i=1 αidi +R(δ)

]
≥ 1− δ. Then

Pr [ST ≥ x] ≤ δ + exp

(
− x2

4 maxi∈[T ] αix+ 8R(δ)

)
∀x > 0.

4 CLASSIC CONVERGENCE ANALYSIS

We review the classic convergence analysis of SGD for convex problems and describe why it is
challenge to derive a high probability error bound in the form of O(polylog(1/δ)/

√
T ), where

δ ∈ (0, 1) is the confidence level. We assume that f is convex and G-Lipschitz continuous for some
G > 0 in this section.

Now we present the classic convergence analysis of SGD. Denote {x(t)}Tt=1 as the iterates generated
from Algorithm 1. For any t ∈ N, we have

‖x(t+1) − x∗‖2 = ‖ΠX
(
x(t) − η(g(t) + ξ(t))

)
− x∗‖2

(i)

≤ ‖x(t) − η(g(t) + ξ(t))− x∗‖2

= ‖x(t) − x∗‖2 − 2η〈g(t), x(t) − x∗〉 − 2η〈ξ(t), x(t) − x∗〉+ η2‖g(t) + ξ(t)‖2

(ii)

≤ ‖x(t) − x∗‖2 − 2η(f(x(t))− f∗)− 2η〈ξ(t), x(t) − x∗〉+ 2η2(G2 +M2),
(1)

where (i) is by the non-expansiveness of the projection operator and (ii) comes from the convexity of
f . Rearranging the above inequality leads to

2η(f(x(t))− f∗) ≤ ‖x(t) − x∗‖2 − ‖x(t+1) − x∗‖2 − 2η〈ξ(t), x(t) − x∗〉+ 2η2(G2 +M2).

Summing the above inequality over t ∈ {1, . . . , T} and divide both sides by 2ηT . We obtain

1

T

T∑
t=1

(f(x(t))− f∗) ≤ ‖x
(1) − x∗‖2

2ηT
− 1

T

T∑
t=1

〈ξ(t), x(t) − x∗〉+ η(G2 +M2)

(i)
=⇒ f(xout)− f∗ ≤

‖x(1) − x∗‖2

2ηT
+ η(G2 +M2)︸ ︷︷ ︸

:= X

+
1

T

T∑
t=1

〈ξ(t), x∗ − x(t)〉︸ ︷︷ ︸
:= Z

, (2)

where (i) is by the convexity of f . In order to prove f(xout) − f∗ = O
(
polylog(1/δ)/

√
T
)

with
probability at least 1− δ, we need to bound X and Z with O

(
polylog(1/δ)/

√
T
)

respectively.

• Bounding the term X is easy. It is obvious that X = O(1/
√
T ) by setting η ∝ 1/

√
T .
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• The challenge comes from the tail bound of the term Z. When the domain X has bounded
diameter, i.e., supx,y∈X ‖x− y‖ ≤ R for some R > 0, we can apply the Azuma’s inequality or
the Freedman’s inequality and obtain Z = O(

√
log(1/δ)/

√
T ). However, when X is unbounded,

for example X = Rd, it is unclear if maxt∈[T ] ‖x(t)−x∗‖ can be bounded by some constant, and
this technical issue prevent us from using the Azuma’s inequality or the Freedman’s inequality.

We list several remarks for the above analysis before proceeding to our results.

Remark 4.1. When analyzing the convergence of SGD on expectation, the term Z in eq. (2) can
be ignored since E[Z] = 0. Because of the term Z, the analysis of high probability error bounds is
usually more complicated than the analysis of expected error bounds.

Remark 4.2. When f is µ-strongly convex for some µ > 0, it is already well-established that the
distance between iterates and the solution (‖x(t) − x∗‖) is uniformly bounded (Rakhlin et al., 2012).
Therefore the convergence of SGD for strongly convex problems holds no matter the domain is
bounded or not. Consequently, strong convexity will trivialize our analysis, and we do not include
strongly convex problems in our discussion.

Remark 4.3. When f is non-convex, without further assumptions, classic analyses usually resort to
the convergence to stationary points instead of the global minimum. Interestingly, in the analysis of
the convergence to stationary points, the term 〈ξ(t), x∗−x(t)〉 is replaced by 〈ξ(t),∇f(x(t))〉 and the
tail bound of the latter term is easy to derive; see Appendix E for a brief discussion. Consequently,
the high probability error bound of SGD for non-convex problems holds regardless of the bounded
domain assumption, and we exclude non-convex problems from our discussion.

5 HIGH PROBABILITY ERROR BOUND OF SGD FOR CONVEX AND LIPSCHITZ
FUNCTIONS

In this section, we derive a high probability error bound of SGD for Lipschitz continuous problems
without the bounded domain assumption step by step. All missing proofs are placed in Appendix.
We begin with a lemma that upper bounds the distance between the iterates generated by Algorithm 1
and the solution, i.e., ‖x(t) − x∗‖2.

Lemma 5.1. Suppose that f is convex and G-Lipschitz for some G > 0 and Assumption 3.1
holds. Denote {x(t)}Tt=1 as the iterates from Algorithm 1 with learning rate η > 0. Then for
any t ∈ [T ],

‖x(t) − x∗‖2 ≤ ‖x(1) − x∗‖2 + 2η

t−1∑
i=1

〈ξ(i), x∗ − x(i)〉+ 2η2(t− 1)(G2 +M2).

As discussed in the previous section, the tail bound of the martingale sequence Z in eq. (2) is the key
to establishing the high probability error bound of SGD. When deriving the tail bound of a martingale
sequence, it is natural to begin with its total conditional variance (TCV). Based on Lemma 5.1, we can
characterize the total conditional variance (TCV) of 1

T

∑t
i=1〈ξ(i), x∗ − x(i)〉 for any t ∈ [T ] in the

following proposition. Proposition 5.2 serves as a technical preparation for applying the generalized
Freedman’s inequality.

Proposition 5.2. Suppose that f is convex and G-Lipschitz for some G > 0 and Assumption 3.1
holds. Denote {x(t)}Tt=1 as the iterates from Algorithm 1 with learning rate η > 0. For
any t ∈ [T ], let Ft−1 be the σ-algebra generated from {x(1), . . . , x(t)}, dt := 1

T 〈ξ
(t), x∗ −

x(t)〉, vt−1 := M2

T 2 ‖x(t) − x∗‖2 and define Vt =
∑t
i=1 vi−1. Then for any t ∈ [T ],

E[exp(λdt) | Ft−1] ≤ exp

(
λ2

2
vt−1

)
∀λ ∈ R

and

Vt ≤
M2‖x(1) − x∗‖2

T
+

2M2η

T

t−1∑
i=1

(t− i)di + 2M2(G2 +M2)η2. (3)
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Equation (3) suggests that the total conditional variance of the martingale sequence
∑t
i=1 di is

bounded by a linear transformation of the martingale sequence itself, which is referred as the “chicken
and egg” phenomenon by Harvey et al. (2019). With Proposition 5.2, we are now ready to apply the
generalized Freedman’s inequality (Lemma 3.2) and derive a high probability upper bound of the
term 1

T

∑T
t=1〈ξ(t), x∗ − x(t)〉.

Proposition 5.3. Suppose f is convex and G-Lipschitz for some G > 0 and Assumption 3.1
holds. Denote {x(t)}Tt=1 as the iterates generated from Algorithm 1 with learning rate η > 0
and let DX := ‖x(1) − x∗‖. Then for any t ∈ [T ] and δ ∈ (0, 1),

1

T

t∑
i=1

〈ξ(i), x∗ − x(i)〉 ≤ 16M2η log(1/δ) + 4

(
MDX√

T
+
√

2Mη
√
G2 +M2

)√
log(1/δ)

with probability at least 1− δ.

Setting η ∝ 1/
√
T , Proposition 5.3 immediately gives a O(log(1/δ)/

√
T ) tail bound of the term

Z and therefore further leads to a O(log(1/δ)/
√
T ) high probability error bound of Algorithm 1.

Formally, the following theorem is established.

Theorem 5.4. Suppose f is convex and G-Lipschitz for some G > 0 and Assumption 3.1 holds.
Denote xout as the output of Algorithm 1 with learning rate η = min{1/(M

√
T ), 1/

√
T}.

Then

f(xout)− f∗ = O
(

log(1/δ)√
T

)
with probability at least 1− δ for any δ ∈ (0, 1).

Note that we directly bounded the term 1
T

∑T
t=1〈ξ(t), x∗ − x(t)〉 in the above analysis, and we have

not prove if the distance between iterates and solution, e.g., ‖x(t) − x∗‖ can be bounded during the
optimization procedure. Interestingly, Lemma 5.1 allows us to further translate the upper bound of
1
T

∑t
i=1〈ξ(i), x∗ − x(i)〉 to ‖x(t) − x∗‖. The following Theorem makes this precise.

Theorem 5.5. Suppose f is convex and G-Lipschitz for some G > 0 and Assumption 3.1
holds. Denote {x(t)}Tt=1 as the iterates generated from Algorithm 1 with learning rate η ≤
min{1/(M

√
T ), 1/

√
T}. Then

max
t∈[T ]

‖x(t) − x∗‖ ≤ DX +
√

2(G2 +M2) + 4
√

2 log(T/δ)

with probability at least 1− δ for any δ ∈ (0, 1), where DX := ‖x(1) − x∗‖.

Theorem 5.5 is a useful result as it demonstrates that the iterates generated from the SGD algorithm
are guaranteed to stay in a neighbourhood of the initialization whose diameter only logarithmically
depends on the number of iteration T . This convenient property of SGD allows us to relax the
bounded domain assumption used in existing convergence analysis of SGD almost for free; the cost
is just some logarithmic terms. We show some direct applications of Theorem 5.5 in Section 7.1.

Remark 5.1. All results in this section are based on the fixed learning rate scheduling η = 1/
√
T ,

which requires us to know the total number of iterations T as a priori. When T is not known in
advance, dynamic learning rate scheduling ηt ∝ 1/

√
t is usually adopted. Following exactly the

same proof template and some tedious calculation, it is easy to show that all results in this section
also hold for the dynamic learning rate scheduling ηt ∝ 1/

√
t. For the simplicity of the presentation,

we omit the error bounds with the dynamic learning rate.

5



Under review as a conference paper at ICLR 2023

6 HIGH PROBABILITY ERROR BOUND OF SGD FOR CONVEX AND SMOOTH
FUNCTIONS

In this section, we focus on the high probability error bound of SGD for smooth and convex functions
that may not be globally Lipschitz continuous. This class of functions is quite common in practice,
for example the unconstrained least-square problem.

For convex functions, it is well-known that SGD applies to the Lipschitz continuous and smooth
functions enjoys similar convergence rate on expectation (Ghadimi & Lan, 2013). Therefore it is
natural to conjecture that the same conclusion also holds for the high probability error bound. In the
following content of this section, we show that this is indeed the case; with some minor modifications
to the proofs, all the propositions and theorems established in Section 5 also hold for smooth and
convex functions. To avoid tedious repetition, we only state the main conclusions in this section and
place the auxiliary propositions and detailed proofs in Appendix.

Lemma 6.1. Suppose f is convex and L-smooth for some L > 0 and Assumption 3.1 holds.
Denote {x(t)}Tt=1 as the iterates from Algorithm 1 with the learning rate η ∈ (0, 1/(2L)]. Then
for any t ∈ [T ],

‖x(t) − x∗‖2 ≤ ‖x(1) − x∗‖2 + 2η

t−1∑
i=1

〈ξ(i), x∗ − x(i)〉+ 2(t− 1)η2(2‖∇f(x∗)‖2 +M2).

Lemma 6.1 is very similar to Lemma 5.1, the minor differences are: (i) we need to require η ∈
(0, 1/(2L)] in Lemma 6.1 instead of η > 0 in Lemma 5.1; (ii) the Lipschitz parameter G2 in
Lemma 5.1 is replaced by the gradient norm at solution, e.g., 2‖∇f(x∗)‖2 in Lemma 6.1. Then it
is straightforward to see that Proposition 5.2 and Proposition 5.3 should also hold for convex and
smooth objectives with some minor modifications. We directly state the convergence result and
describe the modified versions of Proposition 5.2 and Proposition 5.3 in the Appendix.

Theorem 6.2. Suppose f is convex andL-smooth for someL > 0 and Assumption 3.1 holds. De-
note xout as the output of Algorithm 1 with learning rate η = min{1/(2L), 1/(M

√
T ), 1/

√
T}.

Then

f(xout)− f∗ = O
(

log(1/δ)√
T

)
with probability at least 1− δ for any δ ∈ (0, 1).

Similar to Theorem 5.5, we can also develop an upper bound on the distance to solution for the
trajectory of SGD applies to convex and smooth objectives. The only difference is that we need to
use Lemma 6.1 instead of Lemma 5.1 during the proof.

Theorem 6.3. Suppose f is convex and L-smooth for some L > 0 and Assumption 3.1
holds. Denote {x(t)}Tt=1 as the iterates generated from Algorithm 1 with learning rate
η ≤ min{1/(2L), 1/(M

√
T ), 1/

√
T}. Then

max
t∈[T ]

‖x(t) − x∗‖ ≤ DX +
√

4‖∇f(x∗)‖2 + 2M2 + 4
√

2 log(T/δ)

with probability at least 1− δ for any δ ∈ (0, 1).

As an immediate consequence of Theorem 6.3, we can show that the iterates of SGD has bounded
gradient norm.

Corollary 6.4. Under the same conditions as Theorem 6.3. For any x ∈ conv{x(1), . . . , x(T )},

‖∇f(x)‖ ≤ ‖∇f(x∗)‖+ LDX + L
√

4‖∇f(x∗)‖2 + 2M2 + 4L
√

2 log(T/δ)

with probability at least 1− δ for any δ ∈ (0, 1).
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Remark 6.1. Although smooth functions are not necessarily globally Lipschitz continuous in its
domain, Corollary 6.4 indicates that the trajectory of SGD is guaranteed to enjoy a finite Lips-
chitz constant with high probability. Therefore when analyzing the theoretical properties of SGD,
Corollary 6.4 suggests that the Lipschitz continuity assumption can be removed almost for free if
smoothness is assumed; the cost is just an additional

√
log(T/δ) term.

7 EXTENSIONS

We present some extensions of the analysis in previous sections. In particular, we show that the
high probability error bound of the last iterate of SGD and SGD with momentum can be established
without the bounded domain assumption. We also briefly discuss differential-private SGD (DP-SGD)
as another potential application of Theorem 5.5 and Theorem 6.3.

7.1 CONVERGENCE OF THE LAST ITERATE

The high probability error bounds established in Section 5 and Section 6 are based on the averaged
iterate, that is xout = 1

T

∑T
t=1 x

(t). In fact, most classic convergence analyses of SGD did focus on
the averaged iterate because the averaged iterate is easy to analyze and can usually yield clear proofs.

However, the averaged iterate is rarely used in practice, and practitioners usually prefer to use the last
iterate as the output of SGD. This gap between theory and practice has received substantial interest in
recent years, and both convergences on expectation and high probability convergence rates of the last
iterate of SGD have been established nowadays (Zhang, 2004; Rakhlin et al., 2012; Shamir & Zhang,
2013; Harvey et al., 2019). However, to our knowledge, all existing analyses require the domain X to
have a bounded diameter, which is a rather restricted setting. In this section, as simple corollaries of
Theorem 5.5 and Theorem 6.3, we show that the bounded domain assumption can be relaxed almost
for free.

Before proceeding to the conclusion, we first review an existing high probability error bound of the
last iterate of SGD with the bounded domain assumption, which is given by Harvey et al. (2019).

Theorem 7.1 (Harvey et al., 2019, Theorem 3.2). Assume f is convex and G-Lipschitz for some
G > 0, diam(X ) ≤ R for some R > 0 and Assumption 3.1 holds. Denote {x(t)}Tt=1 as the iterates
generated by Algorithm 1 with η = 1/

√
T . Then

f(x(T ))− f∗ = O
(

log(T ) log(1/δ)√
T

)
with probability at least 1− δ.

Note that Theorem 7.1 is slightly different from Harvey et al., 2019, Theorem 3.2 where we adopt
constant learning rate η = 1/

√
T instead of the dynamic learning rate ηt = 1/

√
t used by Harvey

et al. (2019). A careful examination of the proof of Harvey et al., 2019, Theorem 3.2 concludes
that it is sufficient to assume maxt∈[T ] ‖x(t) − x∗‖ ≤ R instead of assuming diam(X ) ≤ R for the
derivation. Therefore, combining Theorem 7.1 and Theorem 5.5 immediately leads to the following
corollary.

Corollary 7.2. Assume f is convex and G-Lipschitz for some G > 0 (or L-smooth for some
L > 0) and Assumption 3.1 holds. Denote {x(t)}Tt=1 as the iterates generated by Algorithm 1
with η = min{1/(M

√
T ), 1/

√
T}. Then

f(x(T ))− f∗ = Õ
(

1√
T

)
with probability at least 1− δ.

Corollary 7.2 achieves essentially the same error bound as Theorem 7.1 up to poly-logarithmic terms
but without assuming X to have bounded diameter, e.g., diam(X ) <∞.

7.2 SGD WITH MOMENTUM

We consider the SGD with momentum (mSGD), also known as the heavy-ball method. The detailed
algorithm is shown in Algorithm 2. Note that we present mSGD in the iterate-moving-average form
for the ease of analysis; mSGD may be equivalently formulated as other forms (Gower, 2022).
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Algorithm 2 Stochastic gradient descent with momentum (mSGD)

Input: number of iterations T ∈ N+, initial iterate x(1), η > 0, λt : N→ R+.
z(1) = x(1)

for t← 1, . . . , T − 1 do
ĝ(t) = g(t) + ξ(t), g(t) ∈ ∂f(x(t)) B get an unbiased estimation for gradient
z(t+1) = ΠX

(
z(t) − ηtĝ(t)

)
B update the iterate z

x(t+1) =
λt

λt + 1
x(t) +

1

λt + 1
z(t+1) B update the iterate x

end for
Output: the last iterate xout = x(T ).

Following almost the same proof templates described in Section 5 and Section 6, we can obtain the
following high probability error bound of mSGD.

Theorem 7.3. Suppose f is convex and G-Lipschitz for some G > 0 and Assumption 3.1 holds.
Denote {x(t)}Tt=1 as the iterates generated from Algorithm 2 with learning rate η = 1/

√
T and

λt = t. Then

f(x(T ))− f∗ = O
(

log(1/δ)√
T

)
with probability at least 1− δ for any δ ∈ (0, 1).

Again, following the same proof template, we can also develop a high probability bound on the
distance between iterates and solution.

Theorem 7.4. Suppose f is convex and G-Lipschitz for some G > 0 and Assumption 3.1 holds.
Denote {x(t)}Tt=1 and {z(t)}Tt=1 as the iterates generated from Algorithm 2 with learning rate
η ≤ min{1/(M

√
T ), 1/

√
T} and λt = t. Then

max
t∈[T ]

‖z(t) − x∗‖ ≤ DX +
√

2(G2 +M2) + 4
√

2 log(T/δ)

with probability at least 1− δ for any δ ∈ (0, 1).

Note that the above distance to solution is based on {z(t)}Tt=1, it is straightforward that similar result
also holds for {x(t)}Tt=1 by noticing x(t+1) is a convex combination of x(t) and z(t+1). We omit the
details.

7.3 DIFFERENTIAL-PRIVATE SGD
Training models without leaking information of the training data is an emerging research topic in
machine learning. The differential-private SGD (DP-SGD) is a simple and effective algorithm that
can approximately solve the empirical-risk minimization problem with a privacy guarantee. Due to
the popularity of DP-SGD, the convergence of DP-SGD in various scenarios has been extensively
studied in recent years (Song et al., 2013; Bassily et al., 2014; Wang et al., 2017; Bassily et al., 2019;
Feldman et al., 2020; Asi et al., 2021).

Lipschitz continuity plays a crucial role in the analysis of DP-SGD. When the objective is smooth but
not globally Lipschitz continuous, for example, the unconstrained least square problem, bounded
domain assumption is usually required. There have been some recent discussions on removing the
bounded domain assumption used in the analysis of DP-SGD; see for example Wang et al., 2022,
Remark 5. Given that the convergence analysis of DP-SGD in the literature of differential-privacy
usually follows the same proof template as the convergence of SGD (Bassily et al., 2014), thus
our Theorem 5.5, Theorem 6.3 and Corollary 6.4 have the potential to relax the bounded domain
assumption used in the existing convergence analysis of DP-SGD. We conjecture that the bounded
domain assumption can be removed when analyzing DP-SGD; the costs are some additional poly-
logarithmic terms on the error bound and the light-tail-noise assumption Assumption 3.1. Exploring
this direction in depth would deviate too far from the main purpose of this paper, and we left this tiny
conjecture as a future research topic.

8
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Figure 1: The evolution of the distance between iterates and initialization (‖x(t) − x(1)‖) on the
MNIST and CIFAR datasets with softmax classification.

8 NUMERICAL STUDY

We conduct some numerical experiments to complement our analysis in previous sections. We
perform softmax classification on two standard image classification datasets: the MNIST (LeCun &
Cortes, 2011) and CIFAR10 (Krizhevsky, 2009) datasets. We use SGD, Adagrad, and Adam with
constant learning rates and the same initialization to train the model, respectively. We set the learning
rate to be 0.01 and the batch size to be 128 for all experiments. All experiments are conducted on a
server with 64GB memory, 32 CPUs, and 2 NVIDIA 3090 GPUs.

For each training algorithm, we plot the evolution of the 2-norm distance between iterates and the
initialization, i.e., ‖x(t) − x(1)‖. The results are shown in Figure 1. From Figure 1, we can observe
that the iterate-initialization-distance is almost uniformly bounded among all training iterations
for the SGD and Adagrad optimizers. Given that maxt∈[T ] ‖x(t) − x(1)‖ ≤ C for some C > 0

implies maxi,j∈[T ] ‖x(i) − x(j)‖ ≤ 2C. Figure 1 indicates that the iterates generated from the SGD
and Adagrad optimizers tend to stay in a bounded region, which is consistent with our theoretical
analysis on SGD in Section 5 and Section 6. However, for the Adam optimizer, the distance between
iterates and initialization tends to grow quickly as the number of iterations increases. This empirical
observation suggests the iterates generated from Adam may not stay in a bounded region.

9 CONCLUSION

In this paper, we studied the high probability error bounds of SGD under an unbounded domain. We
developed concise and flexible proof templates showing that SGD applied to convex problems with
possibly unbounded domain attains the O(log(1/δ)/

√
T ) error bound. Our theoretical results also

indicate that the iterates generated from SGD will stay in a bounded region with a high probability,
which further suggests that the bounded domain assumption can be removed almost for free when
analyzing the high probability error bound of SGD. Simple corollaries of our analysis show that the
high probability error bound on the last iterate of SGD and mSGD can also be established.

Future directions remain. The classic convergence analysis of Adagrad algorithm also relies crucially
on the bounded domain assumption (Duchi et al., 2011). Different from the SGD algorithm, the
analysis of Adagrad requires the bounded domain assumption even when analyzing the convergence
in terms of expectation. Therefore, whether it is possible to remove the bounded domain assumption
used in the convergence analysis of Adagrad is an important research question to be answered.
Another possible direction is to extend the results in this paper to composite problems in the form
f + g, where g is some nonsmooth convex regularizers. More specifically, one can study the high
probability error bound of proximal-SGD for composite problems based on the proof techniques
developed by this paper. Finally, as mentioned in Section 7.3, the proof template in this paper can
potentially improve the analysis of DP-SGD, which may be of interest to the DP community.

9
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APPENDIX

A FACTS AND LEMMAS

Fact A.1. For any n ∈ N+,
∑n
i=1 1/i ≤ 1 + log(n).

Lemma A.2 (Azuma’s inequality). Let {Xt}∞t=1 be a martingale difference sequence such that
|Xt+1 −Xt| ≤ ct with probability 1 for any t ∈ N+. Let St =

∑t
i=1Xi ∀t ∈ N+. Then

Pr [ST ≥ ε] ≤ 2 exp

(
− ε2

2
∑T
t=1 c

2
t

)
for any ε > 0 and T ∈ N+.

Lemma A.3. Suppose that f is convex and L-smooth on X for some L > 0. Then

‖∇f(x)‖2 ≤ 2L(f(x)− f∗) + 2‖∇f(x∗)‖2 ∀x ∈ X .

Proof. By Nesterov (2004, Theorem 2.1.5), we know that

f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 1

2L
‖∇f(x)−∇f(y)‖2 ∀x, y ∈ X .

Making the identification x = x, y = x∗, we obtain that

f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉 ≥ 1

2L
‖∇f(x)−∇f(x∗)‖2

(i)
=⇒ f(x)− f(x∗) ≥ 1

2L
‖∇f(x)−∇f(x∗)‖2

=⇒ ‖∇f(x)‖2 ≤ 2‖∇f(x)−∇f(x∗)‖2 + 2‖∇f(x∗)‖2 ≤ 2L(f(x)− f∗) + 2‖∇f(x∗)‖2,
where (i) is by the first-order optimality condition, e.g., 〈∇f(x∗), x− x∗〉 ≥ 0 ∀x ∈ X .

B MISSING PROOFS FOR SECTION 5
Lemma 5.1. Suppose that f is convex and G-Lipschitz for some G > 0 and Assumption 3.1 holds.
Denote {x(t)}Tt=1 as the iterates from Algorithm 1 with learning rate η > 0. Then for any t ∈ [T ],

‖x(t) − x∗‖2 ≤ ‖x(1) − x∗‖2 + 2η

t−1∑
i=1

〈ξ(i), x∗ − x(i)〉+ 2η2(t− 1)(G2 +M2).

Proof. For any t ∈ {1, 2, . . . , T − 1}

‖x(t+1) − x∗‖2
(i)

≤ ‖x(t) − x∗‖2 − 2η(f(x(t))− f∗)− 2η〈ξ(t), x(t) − x∗〉+ 2η2(G2 +M2)

(ii)

≤ ‖x(t) − x∗‖2 + 2η〈ξ(t), x∗ − x(t)〉+ 2η2(G2 +M2),

where (i) comes from eq. (1) and (ii) is true by noticing η > 0 and f(x(t)) ≥ f∗.
Apply the above inequality recursively, we obtain that

‖x(t) − x∗‖2 ≤ ‖x(1) − x∗‖2 + 2η

t−1∑
i=1

〈ξ(i), x∗ − x(i)〉+ 2η2(t− 1)(G2 +M2)

for any t ∈ [T ].

Proposition 5.2. Suppose that f is convex andG-Lipschitz for someG > 0 and Assumption 3.1 holds.
Denote {x(t)}Tt=1 as the iterates from Algorithm 1 with learning rate η > 0. For any t ∈ [T ], let Ft−1
be the σ-algebra generated from {x(1), . . . , x(t)}, dt := 1

T 〈ξ
(t), x∗−x(t)〉, vt−1 := M2

T 2 ‖x(t)−x∗‖2

and define Vt =
∑t
i=1 vi−1. Then for any t ∈ [T ],

E[exp(λdt) | Ft−1] ≤ exp

(
λ2

2
vt−1

)
∀λ ∈ R

13
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and

Vt ≤
M2‖x(1) − x∗‖2

T
+

2M2η

T

t−1∑
i=1

(t− i)di + 2M2(G2 +M2)η2. (3)

Proof. By the definition of di and Assumption 3.1, we have that

d2t
(i)

≤ M2

T 2
‖x(t) − x∗‖2 =⇒ E[exp(λdt) | Ft−1] ≤ exp

(
λ2

2

M2

T 2
‖x(t) − x∗‖2

)
∀λ ∈ R,

where (i) is by the fact that d2t ≤ ‖ξ(t)‖2‖x(t) − x∗‖2/T 2. Then we derive the upper bound of Vt,

Vt =

t∑
i=1

vi−1

=
M2

T 2

t∑
i=1

‖x(i) − x∗‖2

(i)

≤ M2

T 2

t∑
i=1

‖x(1) − x∗‖2 + 2η

i−1∑
j=1

〈ξ(j), x∗ − x(j)〉+ 2η2(i− 1)(G2 +M2)


≤ M2‖x(1) − x∗‖2

T
+

2M2η

T

t∑
i=1

i−1∑
j=1

dj + 2M2(G2 +M2)η2

≤ M2‖x(1) − x∗‖2

T
+

2M2η

T

t−1∑
i=1

(t− i)di + 2M2(G2 +M2)η2, (4)

where (i) is by Lemma 5.1. This finishes the proof.

Proposition 5.3. Suppose f is convex and G-Lipschitz for some G > 0 and Assumption 3.1 holds.
Denote {x(t)}Tt=1 as the iterates generated from Algorithm 1 with learning rate η > 0 and let
DX := ‖x(1) − x∗‖. Then for any t ∈ [T ] and δ ∈ (0, 1),

1

T

t∑
i=1

〈ξ(i), x∗ − x(i)〉 ≤ 16M2η log(1/δ) + 4

(
MDX√

T
+
√

2Mη
√
G2 +M2

)√
log(1/δ)

with probability at least 1− δ.

Proof. Let

dt :=
1

T
〈ξ(t), x∗ − x(t)〉, St :=

t∑
i=1

di, vt−1 :=
M2‖x(t) − x∗‖2

T 2
, Vt :=

t∑
i=1

vi

for any t ∈ [T ]. Given t ∈ [T ], apply Proposition 5.2 and Lemma 3.2 and making the identification

αi =
2M2η(t− i)

T
∀i ∈ [T ], R :=

M2‖x(1) − x∗‖2

T
+ 2M2η2(G2 +M2).

We obtain

Pr[St ≥ x] ≤ exp

(
− x2

4 maxi∈[t] αix+ 8R

)
∀x > 0.

Let α = maxi∈[t] αi and set x = max{8α log(1/δ), 4
√
R log(1/δ)} gives

Pr
[
St ≥ max{8α log(1/δ), 4

√
R log(1/δ)}

]
≤ δ ∀δ ∈ (0, 1).
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Plug in α and R(δ), we obtain

Pr
[
St ≥ max{8α log(1/δ), 4

√
R log(1/δ)}

]
≤ δ

=⇒ Pr
[
St ≥ 8α log(1/δ) + 4

√
R log(1/δ)

]
≤ δ

=⇒ Pr

[
St ≥ 16M2η log(1/δ) + 4

√
log(1/δ)

(
M‖x(1) − x∗‖√

T
+
√

2Mη
√
G2 +M2

)]
≤ δ.

(5)

Noticing St = 1
T

∑t
i=1〈ξ(i), x∗ − x(i)〉 and the above proof template holds for all t ∈ [T ], the proof

is finished.

Theorem 5.4. Suppose f is convex and G-Lipschitz for some G > 0 and Assumption 3.1 holds.
Denote xout as the output of Algorithm 1 with learning rate η = min{1/(M

√
T ), 1/

√
T}. Then

f(xout)− f∗ = O
(

log(1/δ)√
T

)
with probability at least 1− δ for any δ ∈ (0, 1).

Proof. We start with eq. (2). By setting η = min{1/(M
√
T ), 1/

√
T},

X =
‖x(1) − x∗‖2(M + 1)

2
√
T

+
G2 +M2

√
T

. (6)

Then we apply Proposition 5.3 to bound the term Z. To sum up,

f(xout)− f∗ ≤ X +
16M log(1/δ)√

T
+ 4

(
M‖x(1) − x∗‖+

√
2(G2 +M2)√

T

)√
log(1/δ)

with probability at least 1− δ. Substitute X with eq. (6) finishes the proof.

Theorem 5.5. Suppose f is convex and G-Lipschitz for some G > 0 and Assumption 3.1
holds. Denote {x(t)}Tt=1 as the iterates generated from Algorithm 1 with learning rate η ≤
min{1/(M

√
T ), 1/

√
T}. Then

max
t∈[T ]

‖x(t) − x∗‖ ≤ DX +
√

2(G2 +M2) + 4
√

2 log(T/δ)

with probability at least 1− δ for any δ ∈ (0, 1), where DX := ‖x(1) − x∗‖.

Proof. Let St = 1
T

∑t
i=1〈ξ(i), x∗ − x(i)〉 ∀t ∈ [T ]. Then by Lemma 5.1, we know that for all

t ∈ [T ],

‖x(t) − x∗‖2 ≤ ‖x(1) − x∗‖2 + 2ηTSt−1 + 2η2(t− 1)(G2 +M2)

(i)

≤ ‖x(1) − x∗‖2 + 2ηTSt−1 + 2(G2 +M2), (7)

where (i) is by the definition of η. By Proposition 5.3, we further know that

2ηTSt−1 ≤ 32M2η2T log(1/δ) + 8
√

log(1/δ)

(
M‖x(1) − x∗‖ηT√

T
+
√

2Mη2T
√
G2 +M2

)
(i)

≤ 32 log(1/δ) + 8
(
‖x(1) − x∗‖+

√
2
√
G2 +M2

)√
log(1/δ),

with probability at least 1 − δ, where (i) is by the definition of η. Plug the above inequality into
eq. (7), we obtain that

‖x(t) − x∗‖2 ≤ D2
X + 2(G2 +M2) + 32 log(1/δ) + 8

(
DX +

√
2(G2 +M2)

)√
log(1/δ),

(8)
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with probability at least 1− δ. Noticing that eq. (8) holds for all t ∈ [T ]. By union bound, we can
further obtain

max
t∈[T ]

‖x(t) − x∗‖2 ≤ D2
X + 2(G2 +M2) + 32 log(1/δ) + 8

(
DX +

√
2(G2 +M2)

)√
log(1/δ)

=⇒ max
t∈[T ]

‖x(t) − x∗‖ ≤ DX +
√

2(G2 +M2) + 4
√

2 log(1/δ)

with probability at least 1− Tδ. Substitute δ with δ/T finishes the proof.

C PROOFS FOR SECTION 6
Lemma 6.1. Suppose f is convex and L-smooth for some L > 0 and Assumption 3.1 holds. Denote
{x(t)}Tt=1 as the iterates from Algorithm 1 with the learning rate η ∈ (0, 1/(2L)]. Then for any
t ∈ [T ],

‖x(t) − x∗‖2 ≤ ‖x(1) − x∗‖2 + 2η

t−1∑
i=1

〈ξ(i), x∗ − x(i)〉+ 2(t− 1)η2(2‖∇f(x∗)‖2 +M2).

Proof. We start with eq. (1) (note that we need to substitute G with ‖∇f(x(t))‖ since we are not
assuming Lipschitz continuous now).

‖x(t+1) − x∗‖2

≤ ‖x(t) − x∗‖2 − 2η(f(x(t))− f∗)− 2η〈ξ(t), x(t) − x∗〉+ 2η2‖∇f(x(t))‖2 + 2η2M2

(i)

≤ ‖x(t) − x∗‖2 − 2(η − 2Lη2)(f(x(t))− f∗)− 2η〈ξ(t), x(t) − x∗〉+ 4η2‖∇f(x∗)‖2 + 2η2M2

(ii)

≤ ‖x(t) − x∗‖2 − 2η〈ξ(t), x(t) − x∗〉+ 2η2(2‖∇f(x∗)‖2 +M2),

where (i) is by Lemma A.3 and (ii) is true since η−2Lη ≥ 0 by assuming η ∈ (0, 1/(2L)]. Applying
the above inequality recursively yields the desired result.

Proposition C.1. Suppose that f is convex and L-smooth for some L > 0 and Assumption 3.1 holds.
Denote {x(t)}Tt=1 as the iterates generated from Algorithm 1 with learning rate η ∈ (0, 1/(2L)].
For any t ∈ [T ], let Ft−1 be the σ-algebra generated from {x(1), . . . , x(t)}, dt := 1

T 〈ξ
(t), x∗ −

x(t)〉, vt−1 := M2

T 2 ‖x(t) − x∗‖2 and define Vt =
∑t
i=1 vi. Then

E[exp(λdt) | Ft−1] ≤ exp

(
λ2

2
vt−1

)
∀λ ∈ R (9)

and

Vt ≤
M2‖x(1) − x∗‖2

T
+

2M2η

T

t−1∑
i=1

(t− i)di + 2η2M2(2‖∇f(x∗)‖2 +M2)

for any t ∈ [T ].

Proof. The proof for eq. (9) is exactly the same as in Proposition 5.2 and omit the details.

Vt =

t∑
i=1

vi−1

=
M2

T 2

t∑
i=1

‖x(i) − x∗‖2

(i)

≤ M2

T 2

t∑
i=1

‖x(1) − x∗‖2 + 2η

i−1∑
j=1

〈ξ(j), x∗ − x(j)〉+ 2η2(i− 1)(2‖∇f(x∗)‖2 +M2)


≤ M2‖x(1) − x∗‖2

T
+

2M2η

T

t∑
i=1

i−1∑
j=1

dj + 2η2M2(2‖∇f(x∗)‖2 +M2)
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≤ M2‖x(1) − x∗‖2

T
+

2M2η

T

t−1∑
i=1

(t− i)di + 2η2M2(2‖∇f(x∗)‖2 +M2),

Proposition C.2. Suppose f is convex and L-smooth for some L > 0 and Assumption 3.1 holds.
Denote {x(t)}Tt=1 as the iterates generated from Algorithm 1 with learning rate η ∈ (0, 1/(2L)].
Then for any t ∈ [T ] and δ ∈ (0, 1),

1

T

t∑
i=1

〈ξ(i), x∗ − x(i)〉 ≤ c3σ
2η log(2/δ) + 4c4

√
log(2/δ)

(
σ‖x(1) − x∗‖√

T
+ 2ση‖∇f(x∗)‖

)
with probability at least 1− δ, where c3, c4 are some absolute positive constants.

Proof. Let

dt :=
1

T
〈ξ(t), x∗ − x(t)〉, St :=

t∑
i=1

di, vt−1 :=
M2‖x(t) − x∗‖2

T 2
, Vt :=

t∑
i=1

vi

for any t ∈ [T ].

Given t ∈ [T ], apply Proposition C.1 and Lemma 3.2 and making the identification

αi =
2M2η(t− i)

T
∀i ∈ [T ], R :=

M2‖x(1) − x∗‖2

T
+ 2η2M2(2‖∇f(x∗)‖2 +M2).

We obtain

Pr[St ≥ x] ≤ exp

(
− x2

4 maxi∈[t] αix+ 8R

)
∀x > 0.

Let α = maxi∈[t] αi and set x = max{8α log(1/δ), 4
√
R log(1/δ)} gives

Pr
[
St ≥ max{8α log(1/δ), 4

√
R log(1/δ)}

]
≤ δ ∀δ ∈ (0, 1).

Plug in α and R, we obtain

Pr
[
St ≥ max{8α log(1/δ), 4

√
R log(1/δ)}

]
≤ δ

=⇒ Pr
[
St ≥ 8α log(1/δ) + 4

√
R log(1/δ)

]
≤ δ

=⇒ Pr

[
St ≥ 16M2η log(1/δ) + 4

√
log(1/δ)

(
M‖x(1) − x∗‖√

T
+Mη

√
4‖∇f(x∗)‖2 + 2M2

)]
≤ δ.

(10)

Noticing that St = 1
T

∑t
i=1〈ξ(i), x∗ − x(i)〉 and the above proof template holds for all t ∈ [T ]. The

proof is finished.

Theorem 6.2. Suppose f is convex and L-smooth for some L > 0 and Assumption 3.1 holds. Denote
xout as the output of Algorithm 1 with learning rate η = min{1/(2L), 1/(M

√
T ), 1/

√
T}. Then

f(xout)− f∗ = O
(

log(1/δ)√
T

)
with probability at least 1− δ for any δ ∈ (0, 1).

Proof. We start with eq. (2) (substitute G2 with 2‖f(x∗)‖2). By setting η =

min{1/(2L), 1/(M
√
T ), 1/

√
T},

X =
L‖x(1) − x∗‖2

T
+
‖x(1) − x∗‖2(M + 1)

2
√
T

+
2‖∇f(x∗)‖2 +M2

√
T

.
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Then we apply Proposition C.2 to bound the term Z. To sum up,

f(xout)− f∗ ≤
L‖x(1) − x∗‖2

T
+
‖x(1) − x∗‖2(M + 1)

2
√
T

+
2‖∇f(x∗)‖2 +M2

√
T

+
16M log(1/δ)√

T

+ 4

(
M‖x(1) − x∗‖+M

√
4‖∇f(x∗)‖2 + 2M2

√
T

)√
log(1/δ)

with probability at least 1− δ, which finishes the proof.

Theorem 6.3. Suppose f is convex and L-smooth for some L > 0 and Assumption 3.1
holds. Denote {x(t)}Tt=1 as the iterates generated from Algorithm 1 with learning rate η ≤
min{1/(2L), 1/(M

√
T ), 1/

√
T}. Then

max
t∈[T ]

‖x(t) − x∗‖ ≤ DX +
√

4‖∇f(x∗)‖2 + 2M2 + 4
√

2 log(T/δ)

with probability at least 1− δ for any δ ∈ (0, 1).

Proof. The proof is basically the same as the proof of Theorem 5.5. We omit the details.

D PROOFS FOR SECTION 7

First, we develop some technical lemmas and propositions. Lemma D.1, Proposition D.2 and
Proposition D.3 are analogies of Lemma 5.1, Proposition 5.2 and Proposition 5.3 to the mSGD
algorithm.

Lemma D.1. Suppose that f is convex and G-Lipschitz for some G > 0 and Assumption 3.1 holds.
Denote {x(t)}Tt=1 and {z(t)}Tt=1 as the iterates generated from Algorithm 2 with learning rate η > 0.
Then for any t ∈ [T ],

‖z(t) − x∗‖2 ≤ ‖x(1) − x∗‖2 + 2(t− 1)η2(G2 +M2) + 2η

t−1∑
i=1

〈ξ(t), x∗ − z(t)〉.

Proof. Given any t ∈ [T ],

‖z(t+1) − x∗‖2

≤ ‖z(t) − x∗ − η∇f(x(t))− ηξ(t)‖2

= ‖z(t) − x∗‖2 − 2η〈∇f(x(t)), z(t) − x∗〉 − 2η〈ξ(t), z(t) − x∗〉+ 2η2
(
G2 +M2

)
= ‖z(t) − x∗‖2 − 2η〈∇f(x(t)), x(t) − x∗〉 − 2ηλt−1〈∇f(x(t)), x(t) − x(t−1)〉

− 2η〈ξ(t), z(t) − x∗〉+ 2η2
(
G2 +M2

)
≤ ‖z(t) − x∗‖2 − 2η(f(x(t))− f∗)− 2ηλt−1(f(x(t))− f(x(t−1)))

− 2η〈ξ(t), z(t) − x∗〉+ 2η2
(
G2 +M2

)
= ‖z(t) − x∗‖2 − 2η(1 + λt−1)(f(x(t))− f∗) + 2ηλt−1(f(x(t−1))− f∗)

− 2η〈ξ(t), z(t) − x∗〉+ 2η2
(
G2 +M2

)
.

By the definition of λt, we know that λt = 1 + λt−1. Rearranging the above inequality gives

‖z(t+1) − x∗‖2 + 2ηλt(f(x(t))− f∗)
≤ ‖z(t) − x∗‖2 + 2ηλt−1(f(x(t−1))− f∗) + 2η2

(
G2 +M2

)
+ 2η〈ξ(t), x∗ − z(t)〉.

(11)

Summing over the above inequality over {1, 2, . . . , t − 1} and noticing f(x(t−1)) − f∗ ≥ 0, we
obtain the desired result.
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Proposition D.2. Suppose that f is convex andG-Lipschitz for someG > 0 and Assumption 3.1 holds.
Denote {x(t), z(t)}Tt=1 as the iterates from Algorithm 1 with learning rate η > 0. For any t ∈ [T ],
let Ft−1 be the σ-algebra generated from {ξ(1), . . . , ξ(t−1)}, dt := 1

T 〈ξ
(t), x∗ − z(t)〉, vt−1 :=

M2

T 2 ‖z(t) − x∗‖2 and define Vt =
∑t
i=1 vi−1. Then for any t ∈ [T ],

E[exp(λdt) | Ft−1] ≤ exp

(
λ2

2
vt−1

)
∀λ ∈ R

and

Vt ≤
M2‖x(1) − x∗‖2

T
+

2M2η

T

t−1∑
i=1

(t− i)di + 2M2(G2 +M2)η2.

Proof. The proof follows exactly the same as Proposition 5.2, the only difference is that we apply
Lemma D.1 instead of Lemma 5.1.

Proposition D.3. Suppose f is convex and G-Lipschitz for some G > 0 and Assumption 3.1 holds.
Denote {x(t), z(t)}Tt=1 as the iterates generated from Algorithm 1 with learning rate η > 0 and let
DX := ‖x(1) − x∗‖. Then for any t ∈ [T ] and δ ∈ (0, 1),

1

T

t∑
i=1

〈ξ(i), x∗ − z(i)〉 ≤ 16M2η log(1/δ) + 4

(
MDX√

T
+
√

2Mη
√
G2 +M2

)√
log(1/δ)

with probability at least 1− δ.

Proof. The proof follows exactly the same as Proposition 5.3.

Theorem 7.3. Suppose f is convex and G-Lipschitz for some G > 0 and Assumption 3.1 holds.
Denote {x(t)}Tt=1 as the iterates generated from Algorithm 2 with learning rate η = 1/

√
T and

λt = t. Then

f(x(T ))− f∗ = O
(

log(1/δ)√
T

)
with probability at least 1− δ for any δ ∈ (0, 1).

Proof. We start with eq. (11). Summing eq. (11) over {1, 2, . . . , T} and rearranging, we obtain that

f(x(T ))− f∗ ≤ ‖z
(1) − x∗‖2

2ηλT
+

2Tη

λT
(G2 +M2) +

1

λT
〈ξ(t), x∗ − z(t)〉

≤ ‖z
(1) − x∗‖2

2ηT
+ 2η(G2 +M2) +

1

T
〈ξ(t), x∗ − z(t)〉,

where the second line is by the definition of λt = t. By setting η = 1/
√
T and combining

Proposition D.3, we obtain the desried result.

Theorem 7.4. Suppose f is convex and G-Lipschitz for some G > 0 and Assumption 3.1 holds.
Denote {x(t)}Tt=1 and {z(t)}Tt=1 as the iterates generated from Algorithm 2 with learning rate
η ≤ min{1/(M

√
T ), 1/

√
T} and λt = t. Then

max
t∈[T ]

‖z(t) − x∗‖ ≤ DX +
√

2(G2 +M2) + 4
√

2 log(T/δ)

with probability at least 1− δ for any δ ∈ (0, 1).

Proof. The proof follows exactly the same as Theorem 5.5. We omit the details.
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E OTHER DISCUSSIONS

For nonconvex problems, following the standard proof template, we start the derivation with the
descent lemma.

f(x(t+1)) ≤ f(x(t)) + 〈∇f(x(t)), x(t+1) − x(t)〉+
L

2
‖x(t+1) − x(t)‖2

≤ f(x(t))− η‖∇f(x(t))‖2 − η〈∇f(x(t)), ξ(t)〉+ Lη2‖∇f(x(t))‖2 + Lη2‖ξ(t)‖2.

Rearranging gives

(η − Lη2)‖∇f(x(t))‖2 ≤ f(x(t))− f(x(t+1))− η〈∇f(x(t)), ξ(t)〉+ Lη2M2.

Different from the convex case, the term 〈ξ(t), x(t)−x∗〉 is replaced by 〈∇f(x(t)), ξ(t)〉. The latter is
easier the analyze since it does not require us to bound ‖x(t) − x∗‖. When f is Lipschitz continuous,
one can simply bound

∑T
t=1〈∇f(x(t)), ξ(t)〉 by the Azuma’s inequality. Then the standard analysis

(Ghadimi & Lan, 2013) will gives a O(polylog(1/δ)/
√
T ) convergence rate to stationary point.
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