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Abstract

Data debugging is to find a subset of the training data such that the model obtained1

by retraining on the subset has a better accuracy. A bunch of heuristic approaches2

are proposed, however, none of them are guaranteed to solve this problem effec-3

tively. This leaves an open issue whether there exists an efficient algorithm to find4

the subset such that the model obtained by retraining on it has a better accuracy.5

To answer this open question and provide theoretical basis for further study on6

developing better algorithms for data debugging, we investigate the computational7

complexity of the problem named DEBUGGABLE. Given a machine learning8

modelM obtained by training on dataset D and a test instance (xtest, ytest) where9

M(xtest) ̸= ytest, DEBUGGABLE is to determine whether there exists a subset D′ of10

D such that the modelM′ obtained by retraining on D′ satisfiesM′(xtest) = ytest.11

To cover a wide range of commonly used models, we take SGD-trained linear12

classifier as the model and derive the following main results. (1) If the loss function13

and the dimension of the model are not fixed, DEBUGGABLE is NP-complete14

regardless of the training order in which all the training samples are processed15

during SGD. (2) For hinge-like loss functions, a comprehensive analysis on the16

computational complexity of DEBUGGABLE is provided; (3) If the loss function is a17

linear function, DEBUGGABLE can be solved in linear time, that is, data debugging18

can be solved easily in this case. These results not only highlight the limitations of19

current approaches but also offer new insights into data debugging.20

1 Introduction21

Given a machine learning model, data debugging is to find a subset of the training data such that22

the model will have a better accuracy if retrained on that subset [1]. Data debugging serves as a23

popular method of both data cleaning and machine learning interpretation. In the context of data24

cleaning, data debugging (a.k.a. training data debugging [2] or data cleansing [1]) can be used25

to improve the quality of the training data by removing the flaws leading to mispredictions [3–5].26

When it comes to ML interpretation, data debugging locates the part of the training data responsible27

for unexpected predictions of an ML model. Therefore it is also studied as a training data-based28

(a.k.a. instance-based [6]) interpretation, which is crucial for helping system developers and ML29

practitioners to debug ML system by reporting the harmful part of training data [7].30

To solve the data debugging problem, existing researches adopt a two-phase score-based heuristic31

approach [2]. In the first phase, a score representing the estimated impact on the model accuracy is32

assigned to each training sample in the training data. It is hoped that the harmful part of training33

data gets a lower score than the other part. In the second phase, training samples with lower scores34

are removed greedily and the model is retrained on the modified training data. The two phases are35

carried out iteratively until a well-trained model is obtained. Most of the related works focus on36
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developing algorithms to estimate the scores efficiently in the first phase [8–16], but rarely study the37

effectiveness of the entire two-phase approach.38

Since it is computationally intractable to estimate the score for all possible subsets of the training39

data, it is often assumed that the score representing the impact of a subset is approximately equal40

to the sum of the scores of each individual training samples from the subset. However, Koh et. al.41

[10] showed this is not always the case. For a bunch of subsets sampled from the training data,42

they empirically studied the difference between the estimated impact and the actual impact of each43

subset by taking influence functions as the scoring method. The estimated impact is calculated by44

summing up the score by influence function of each training samples in the subset, and the actual45

impact is measured by the improvement of accuracy of the model retrained after removing the subset46

from training data. They found that the estimated impact tends to underestimate the actual impact.47

Removing a large number of training samples could result in a large deviation between estimated48

and actual impacts. Although an upper bound of the deviation under certain assumptions has been49

derived, it is still unknown whether the deviation can be reduced or eliminated efficiently.50

The above deviation also poses challenges to the effectiveness of the entire approach. Suppose the51

influence function is adopted as the scoring method, the accuracy of the model is not guaranteed52

to improve due to the deviation reported in [10] if a large group of training samples are removed53

during each iteration. Moreover, there is no theoretical analysis for the effectiveness of the greedy54

approach in the second phase. Even if only one training sample is removed during each iteration55

of the two-phase approach, the accuracy of the model is still not guaranteed to be improved. The56

effectiveness of the entire two-phase approach is therefore not assured. This leaves the following57

open problem:58

Problem 1.1. Is there an efficient algorithm to find the subset of the training data, such that the59

model obtained by retraining on it has a better accuracy?60

The computational complexity results presented in this paper demonstrate that it is unlikely to solve61

the data debugging problem efficiently in polynomial time. To figure out its hardness, we study the62

problem DEBUGGABLE which is the decision version of data debugging when the test set consists of63

only one instance. Formally, DEBUGGABLE is defined as follows:64

Problem 1.2 (DEBUGGABLE). Given a classifierM, its training data T , a test instance (x, y). Is65

there a T ′ ⊆ T , such thatM predicts y on x if retrained on T ′?66

Basically, we prove that DEBUGGABLE is NP-complete, which means data debugging is unlikely67

to be solved in polynomial time. This result answers the open question mentioned above directly,68

this is, the large deviation of estimated impacts [10] cannot be reduced or eliminated efficiently. This69

is because if the impact of a subset of the training data could be accurately estimated as the sum of70

the impact of each training sample in the subset, data debugging can be solved in polynomial time,71

which is impossible unless P=NP.72

Although DEBUGGABLE is generally intractable, we still hope to develop efficient algorithms tailored73

to specific cases. Thus it is necessary to figure out the root cause of the hardness for DEBUGGABLE.74

Previous research are always conducted based on the belief that the complexity of data debugging is75

due to the chosen model architecture is complicated. However, we show that at least for models trained76

by stochastic gradient descent (SGD), the hardness stems from the hyper-parameter configuration77

selected for the SGD training, which was not yet aware of by previous work. To cover a wide range of78

commonly used machine learning models, we take linear classifiers as the model and show that even79

for linear classifiers, DEBUGGABLE is NP-hard as long as they are trained by SGD. Moreover, we80

provided a comprehensive analysis on hyper-parameter configurations that affect the computational81

complexity of DEBUGGABLE, including the loss function, the model dimension and the training82

order. Training order, a.k.a. training data order [17] or order of training samples [18], refers to the83

order in which each training sample is considered during the SGD. Detailed complexity results are84

shown in Table 1.85

Our contribution can be concluded as follows:86

• We studied the computational complexity of data debugging and showed that data debugging87

is NP-hard for linear classifiers in the general setting for all possible training orders.88

• We studied the complexity of DEBUGGABLE when the loss is fixed as the hinge-like89

function. For 2 or higher dimension, DEBUGGABLE is NP-complete when the training order90
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Table 1: Computational complexity of the data debugging problem
Loss Function Dimension Training Order Complexity

Not Fixed Not Fixed - NP-hard
Hinge-like ≥ 2 Adversarially Chosen NP-hard

Hinge-like, β < 0 1 Adversarially Chosen NP-hard
Hinge-like, β ≥ 0 1 - Linear Time

Linear - - Linear Time

is adversarially chosen; For one-dimensional cases, DEBUGGABLE can be NP-hard when91

the interception β < 0, and is solvable in linear time when β ≥ 0.92

• We proved that DEBUGGABLE is solvable in linear time when the loss function is linear.93

Moreover, we have a discussion on the implications of these complexity results for machine learning94

interpretability and data quality, as well as limitations of score-based greedy methods. Our results95

suggest the further study as follows. (1) It is better to characterize the training sample and find the96

criterion which can be used to decide the existence of efficient algorithms; (2) Designing algorithms97

with CSP-solver is a potential way to solve data debugging more efficiently than the brute-force one;98

(3) Developing random algorithms is a potential way to solve data debugging successfully with high99

probability.100

1.1 Related Works101

The solution of data debugging has applications in database query results reliability enhancement102

[2, 19], training data cleaning [1] and machine learning interpretation[9, 8, 10, 20, 21]. Existing103

works on data debugging mainly adopt a two-phase approach, which scores the training samples in the104

first phase and greedily deletes training samples with lower scores in the second phase. Most of the105

research focus on the first phase. There are mainly two ways of scoring adopted for data debugging in106

practice. Leave-one-out (LOO) retraining is a widely studied way, which evaluates the contribution of107

a training sample through the difference in the model’s accuracy trained without that training sample.108

To avoid the cost of model retraining, Koh and Liang took influence functions as an approximation of109

LOO [8]. After that, various extensions and improvements of the influence function based method110

are proposed, such as Fisher kernel [9], influence function for group impacts [10], second-order111

approximations [11] and scalable influence functions [12]. Another way is Shapley-based scoring,112

where the impact of a training sample is measured by its average marginal contribution to all subsets113

of the training data [13]. Since Shapley-base scoring suffers from expensive computational cost [22],114

recent works focus on techniques that efficiently estimate the Shapley value, including Monte-Carlo115

sampling [13], group testing [14, 15] and using proxy models such as k-NN [16, 3]. However,116

those methods do not admit any theoretical guarantee on the effectiveness. This paper discusses the117

limitations of the above methods and suggests some future directions on data debugging.118

2 Preliminaries and Problem Definition119

Linear classifiers. Formally, a (binary) linear classifier is a function λw : Rd → {−1, 1}, where d is120

called its dimension and w ∈ Rd its parameter. Without loss of generality, the bias term of a linear121

classifier is set as zero in this paper. All vectors in this paper are assumed to be column vectors. For122

an input x, the value of λw is defined as123

λw(x) =

{
1 if w⊤x ≥ 0

−1 otherwise.

We denote the class of linear models as Λ.124

Training data. A training sample is a pair (x, y) in which x ∈ Rd is the input and y ∈ {−1, 1} is125

the label of x. The training data is a multiset of training samples. We employ w T−→ w′ to denote126

that the parameter w′ is obtained by training the parameter w on the training data T , and employ127

w
(x,y)−−−→ w′ to denote that w′ is obtained by training w on the training sample (x, y).128
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Loss functions and learning rates. Binary linear classifiers typically use unary functions on yw⊤x129

as their loss functions [23]. Therefore we only consider loss functions of the form L : yw⊤x 7→ R130

for the rest of the paper.131

The linear loss is in the form of132

Llin(yw⊤x) = −α(yw⊤x+ β).

The hinge-like loss function is defined as the following form133

Lhinge(yw⊤x) =

{
−α(yw⊤x+ β), yw⊤x < β

0, otherwise.

We call β as the interception of Lhinge. We represent the learning rate of a model using a vector134

η = (η1, . . . , ηd), where ηi ≥ 0 and each parameter wi can be updated with the corresponding135

learning rate ηi.136

Stochastic gradient descent. The stochastic gradient descent (SGD) method updates parameter w137

from its initial value w(0) through several epochs. During each epoch, the SGD goes through the138

entire set of training samples in some training order through several iterations. The training order is139

defined as a sequence of training samples, in the form of (x1, y1) . . . (xn, yn). For 1 ≤ i < j ≤ n,140

(xi, yi) is considered before (xj , yj) during the SGD. We use wi to denote the i-th coordinate of w.141

We also use w(e,k) to denote the value of w at the end of k-th iteration of epoch e and use w(e) to142

denote the value of w after the end of epoch e. Assuming (x, y) to be the training sample considered143

at iteration k, the stochastic gradient descent (SGD) method updates parameter wi for each i by144

w
(e,k)
i ← w

(e,k−1)
i − ηi ·

∂L(y(w(e,k−1))⊤x)

∂wi
(1)

In other words, we have145

w(e,k) ← w(e,k−1) − η ⊗∇L(y(w(e,k−1))⊤x)

where η ⊗ ∇L = (η1
∂L
∂w1

, . . . , ηd
∂L
∂wd

) is the Hadamard product. We say a training sample x146

is activated at iteration k during epoch e if ∇L(y(w(e,k−1))⊤x) ̸= 0. The SGD terminates at147

the end of epoch e if ∥w(e−1) − w(e)∥ < ε for threshold ε or e reached some predetermined148

value. We denote w∗ = w(e). A linear classifier trained by SGD with the meta-parameters149

mentioned above is denoted as SGDΛ(L,η, ε, T ) = λw∗ . With a slight abuse of notation, we define150

SGDΛ(L,η, ε, T,x) = λw∗(x). We also use SGDΛ(T,x) to avoid cluttering when the context is clear.151

Problem definition. With the above definitions, DEBUGGABLE for SGD-trained linear classifiers152

can be formalized as follows:153

DEBUGGABLE-LIN
Input: Training data T , loss function L, initial parameter w(0), learning
rate η, threshold ε and instance (xtest, ytest).
Output: “Yes”: if ∃∆ ⊆ T such that SGDΛ(L,η, ε, T \∆,xtest) = ytest;

“No”: otherwise.

154

We say SGDΛ(L,η, ε, T ) is debuggable on (xtest, ytest) if (L,w(0),η, ε, T,xtest, ytest) is a yes-instance155

of DEBUGGABLE-LIN, and not debuggable on (xtest, ytest) otherwise.156

3 Results for Unfixed Loss Functions157

In this section, we prove the NP-hardness of DEBUGGABLE-LIN. Intuitively, DEBUGGABLE-LIN is158

to determine whether there exists a subset T ′ ⊆ T where activated training samples within T ′ drive159

the parameter w toward the region defined by ytestw
⊤xtest > 0. The activation of training samples160

depends on the complex interaction between the training data and the model.161

Theorem 3.1. DEBUGGABLE-LIN is NP-hard for all training orders.162

We only show the proof sketch and leave the details in the appendix.163
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Proof Sketch. We build a reduction from an NP-hard problem MONOTONE 1-IN-3 SAT [24]:164

MONOTONE 1-IN-3 SAT
Input: A 3-CNF formula φ with no negation signs.
Output:“Yes”: if φ has a 1-in-3 assignment, under which each clause
contains exactly one true literal;

“No”: otherwise.

165

For example, φ1 = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) is a yes-instance because (x1, x2, x3, x4) =166

(T,F,F,T) is an 1-in-3 assignment; φ2 = (x1∨x2∨x3)∧(x2∨x3∨x4)∧(x1∨x2∨x4)∧(x1∨x3∨x4)167

is a no-instance.168

Given a 3-CNF formula φ, our goal is to construct a configuration of the training process, such that169

the resulting model outputs the correct answer if and only if its training data T ′ encodes an 1-in-3170

assignment ν of φ. This can be done by carefully designing the encoding so that for each xi ∈ φ,171

ν(xi) = TRUE if and only if txi ∈ T ′. Finally, we can construct some T with T ⊇ T ′∪{txi |xi ∈ φ},172

such that some classifier trained on T is a yes-instance of DEBUGGABLE-LIN if and only if φ is a173

yes-instance of MONOTONE 1-IN-3 SAT, thereby finishing our proof.174

The reduction. Suppose φ has m clauses and n variables, let N = n+2m+1. We set the dimension175

of the linear classifier to N .176

The input. Each coordinate of the input is named as177

x = (xc1 , . . . , xcm , xx1
, . . . , xxn

, xb1 , . . . , xbm , xdummy)
⊤

We also use xi to denote the i-th coordinate of x.178

The parameters. Each coordinate of the parameter is named as179

w = (wc1 , . . . , wcm , wx1
, . . . , wxn

, wb1 , . . . , wbm , wdummy)
⊤

We also use wi to denote the i-th coordinate of w. Each wxj
represents the truth value of variable xj ,180

where 1 represents TRUE and -1 represents FALSE. Similarly, each wcj represents the truth value of181

clause cj based on the value of its variables. wbj and wdummy are used for convenience of proof.182

The initial value of the parameter is set to183

w(0) = (

m︷ ︸︸ ︷
1

2
, . . . ,

1

2
,

n︷ ︸︸ ︷
−1, . . . ,−1,

m︷ ︸︸ ︷
−1, . . . ,−1, 1)⊤

Loss function. We denote U(x0, δ) := {x|x0 − δ < x < x0 + δ} as the δ-neighborhood of x0 and184

define U(±x0, δ) = U(x0, δ) ∪ U(−x0, δ). We define the local ramp function as185

rx0,δ(x) =


0 , x ≤ x0 − δ;

x− x0 + δ , x ∈ U(x0, δ);

2δ , x ≥ x0 + δ.

The loss function is defined as186

L = −12N

5
r−5,0.01(yw

⊤x)− r− 1
2 ,0.26

(yw⊤x)− 1

1000N

∑
x0∈{±1,±3}

rx0,0.01(yw
⊤x).

L is monotonically decreasing with derivatives187

∂L
∂wi

=


− 12N

5 · yxi , yw⊤x ∈ U(−5, 0.01);
−yxi , yw⊤x ∈ U(− 1

2 , 0.26);

− 1
1000N yxi , yw⊤x ∈

⋃
x0∈{±1,±3} U(x0, 0.01);

0 , otherwise.

(2)
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Table 2: Training data for var(i)
xxi

y

5 1

Table 3: Training data for clause(i, i1, i2, i3)
xci xxi1

xxi2
xxi3

xbi y

1 1 1 1 1
2 1

Learning rate. The learning rate for SGD is set to be188

η = (

m︷ ︸︸ ︷
5, . . . , 5,

n︷ ︸︸ ︷
1

6N
, . . . ,

1

6N
,

m︷ ︸︸ ︷
2000N, . . . , 2000N, 1)⊤.

Training data. We define two gadgets, var(i) and clause(i, i1, i2, i3), as illustrated in Table 2 and189

3. All the unspecified coordinates are set to zero. We use T0 to denote the training data. var(i)190

is contained in T0 if and only if xi ∈ φ, and clause(i, i1, i2, i3) is contained in T0 if and only if191

ci = (xi1 ∨ xi2 ∨ xi3) ∈ φ.192

Threshold and instance. The threshold ε can be any fixed value in R+. The instance is defined as193

(xtest, ytest), where ytest = 1 and194

xtest = (

m︷ ︸︸ ︷
1, . . . , 1,

n+m︷ ︸︸ ︷
0, . . . , 0,

−11m+ 5

2
)⊤.

The following reduction works for all possible training orders. Intuitively, during the training process,195

each var(i) in the training data will set wxi
to around 1 (that is, mark xi as TRUE) in the first epoch,196

and each clause(i, i1, i2, i3) will set wci to near 11
2 in the second epoch, if and only if exactly one197

of wxi1
, wxi2

, wxi3
is near 1 and the others near −1 (that is, mark ci as satisfied if exactly one of198

its literals is TRUE and the others FALSE). The training process terminates at the end of the second199

epoch.200

4 Results for Fixed Loss Functions201

We have proved the NP-hardness for DEBUGGABLE-LIN when the loss function is not fixed. In202

this section, we study the complexity when the loss function is fixed as linear and hinge-like203

functions. Assuming that SGD terminates after only one epoch with a fixed order, we will show204

that DEBUGGABLE-LIN is solvable in linear time for linear loss. For hinge-like loss functions,205

DEBUGGABLE-LIN can be solved in linear time only when the dimension d = 1 and the interception206

β ≥ 0. For the rest cases, DEBUGGABLE-LIN becomes NP-hard.207

4.1 The Easy Case208

We start with the linear loss function L = −α(yw⊤x + β), with which all the training data are209

activated and w∗ = w∗(T ) = w(0)+
∑

(x,y)∈T αyη⊗x. Since ytest ∈ {−1, 1}, DEBUGGABLE-LIN210

is equivalent to deciding whether211

max
T ′⊆T

{ytest(w
∗(T ′))⊤xtest} > 0.

A training sample (x, y) is “good” if ytest(αyη ⊗ x)⊤xtest > 0 and “bad” otherwise. The good212

training-sample assessment (GTA) algorithm, as shown in Algorithm 1, deals with this situation by213

greedily picking all “good” training samples.214

Denoting T ∗ as the set of all good data in T , it follows that215

ytest(w
∗(T ∗))⊤xtest = ytest(w

(0))⊤xtest +
∑

(x,y)∈T∗

ytest(αyη ⊗ x)⊤xtest

≥ ytest(w
(0))⊤xtest +

∑
(x,y)∈T ′

ytest(αyη ⊗ x)⊤xtest

for all T ′ ⊆ T . Hence maxT ′⊆T {ytest(w
∗(T ′))⊤xtest} = ytest(w

∗(T ∗))⊤xtest and DEBUGGABLE-216

LIN can be solved by GTA in linear time. The following theorem is straightforward.217
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Theorem 4.1. DEBUGGABLE-LIN is linear time solvable for linear loss functions.218

Algorithm 1: Good Training-sample Assessment (GTA)

Input: Training data T , loss function L, initial parameter w(0), learning rate η, threshold ε and
test instance (xtest, ytest).

Output: TRUE, iff SGDΛ(L,η, ε, T ) is debuggable on (xtestytest).
1 w← w(0);
2 for (x, y) ∈ T do
3 if ytest(αyη ⊗ x)⊤xtest > 0 then
4 w← w + αyη ⊗ x;
5 end
6 end
7 if ytestw

⊤xtest ≥ 0 then
8 return TRUE;
9 end

10 return FALSE;

219

GTA is still effective for one-dimensional classifiers trained with hinge-like losses when β ≥ 0.220

Theorem 4.2. DEBUGGABLE-LIN is linear time solvable for hinge-like loss functions, when d = 1221

and β ≥ 0.222

Proof. It suffices to prove that if ∃T ′ ⊆ T such that SGDΛ(T ′, xtest) = ytest, SGDΛ(T ∗, xtest) = ytest.223

a) Suppose all the data in T ∗ are activated, we have224

ytestw
∗(T ∗)xtest = ytestw

(0)xtest +
∑

(x,y)∈T∗

ytestαyηxxtest

≥ ytestw
(0)xtest +

∑
(x,y)∈T ′∩T∗

ytestαyηxxtest +
∑

(x,y)∈T ′\T∗

ytestαyηxxtest

= ytestw
∗(T ′)xtest ≥ 0

b) Suppose (x, y) ∈ T ∗ is the first inactivated data during the training phase, and w is the current225

parameter, we have ywx > β. Since αη · (xy) · (xtestytest) ≥ 0, we have (xtestytest) ·w ≥ 0. Let T ′′ be226

the set of training data appeared before (x, y), we have ytestw
∗(T ∗)xtest ≥ ytestw

∗(T ′′)xtest ≥ 0.227

4.2 The Hard Case228

The gradient of training data may not always be activated and could be affected by the training order.229

When the training order is adversarially chosen, the following theorem shows that DEBUGGABLE-LIN230

is NP-hard for all d ≥ 2 and β ∈ R.231

Theorem 4.3. If the training order is adversarially chosen and d ≥ 2, DEBUGGABLE-LIN is NP-hard232

for each hinge-like loss function at every constant learning rate.233

Proof sketch. Since the result can be easily extended for all d > 2 by padding the other d − 2234

dimensions with zeros, we only prove for the case of d = 2. We assume β ≥ −1 and leave the235

β < −1 case to the appendix. To avoid cluttering, we further assume η = 1 and α = 1. The proof236

can be easily generalized by appropriately re-scaling the constructed vectors.237

We build a reduction from the subset sum problem, which is well-known to be NP-hard:238

SUBSET SUM
Input: A set of positive integer S, and a positive integer t.
Output: “Yes”: if ∃S′ ⊆ S such that

∑
a∈S′ a = t;

“No”: otherwise.

239
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Suppose n = |S|, m = maxa∈S{a}, γ = max{β, 1} and S = {a1, a2, . . . , an}. We further assume240

n > 1. Let the training data be241

T = {(x1, y1), (x2, y2), . . . , (xn, yn)} ∪ {(xc, yc), (xb, yb), (xa, ya)}

where xiyi = (
√
γ

n+1 , 3
√
γai) for all 1 ≤ i ≤ n,xcyc = ((18n2m2 − 2)

√
γ,−3t√γ),xbyb =242

(
√
γ,−√γ),xaya = (

√
γ,
√
γ). Let w(0) = (−18n2m2√γ, 0). Let the test instance (xtest, ytest)243

satisfy xtestytest = (1, 0).244

Let the training order be (x1, y1), (x2, y2), . . . , (xn, yn), (xc, yc), (xb, yb), (xa, ya).245

For each 1 ≤ i < n, suppose w(0) T∩{(xi,yi)|1≤j≤i}−−−−−−−−−−−−→ wi, we have246

yi+1w
⊤
i xi+1 ≤

√
γ

n+ 1
(−18n2m2√γ +

√
γi

n+ 1
) + 3

√
γai+1

i∑
j=1

3
√
γaj

≤ γ

(
−n− 1

n+ 1
· 9nm2 +

n

(n+ 1)2

)
< −1 ≤ β

This means all the T \ {(xc, yc), (xb, yb), (xa, ya)} can be activated. Thus the resulting parameter247

trained by T \ {(xc, yc), (xb, yb), (xa, ya)} is248

wc = w(0) +

n∑
i=1

xiyi =

(
−18n2m2√γ +

√
γ|T ∗|
n+ 1

, 3
√
γ

n∑
i=1

ai

)
.

It now suffices to prove that for all S′ ⊆ S,
∑

a∈S′ a = t if and only if ∃T ′ ⊆ T such that249

w : w(0) T ′

−→ w satisfies ytestw
⊤xtest > 0.250

If: Suppose ∃S′ ⊆ S such that
∑

a∈S a = t, we prove that ∃T ′ ⊆ T such that ytest(w
∗)⊤xtest > 0251

for w∗ satisfying w(0) T ′

−→ w∗.252

Let T ∗ = {(xi, yi)|ai ∈ S′}, T ′ = T ∗ ∪ {(xc, yc), (xb, yb), (xa, ya)}. We have253

wc = (−18n2m2√γ +

√
γ|T ∗|
n+ 1

, 3
√
γ
∑
ai∈S′

ai) = (−18n2m2√γ +

√
γ|T ∗|
n+ 1

, 3
√
γt).

And therefore ycw
⊤
c xc = γ

(
(−18n2m2 + |T∗|

n+1 )(18n
2m2 − 2)− 9t2

)
< −1 ≤ β, so254

wc
(xc,yc)−−−−→ wb = wc + xcyc = (

√
γ(
|T ∗|
n+ 1

− 2), 0).

Note that ybw⊤
b xb = γ( |T

∗|
n+1 − 2) < −1 ≤ β, we have255

wb
(xb,yb)−−−−→ wa = wb + xaya = (

√
γ(
|T ∗|
n+ 1

− 1),−√γ)

Note also that yaw⊤
a xa = γ( |T

∗|
n+1 − 2) < −1 ≤ β, we have256

wa
(xa,ya)−−−−−→ w∗ = wa + xaya = (

|T ∗|√γ
n+ 1

, 0)

Therefore, ytest(w
∗)⊤xtest =

|T∗|√γ

n+1 > 0.257

Only if: For each T ′ ⊆ T , let T ∗ = T ′ \ {(xc, yc), (xb, yb), (xa, ya)}. If ytest(w
∗)⊤xtest > 0 for258

w∗ satisfying w(0) T ′

−→ w∗, we prove that ∃S′ ⊆ S such that
∑

a∈S′ a = t. We first show that for259

each T ′ ⊆ T , if w(w(0) T ′

−→ w) satisfying ytestw
⊤xtest > 0, we have ∀k ∈ {a, b, c}, (xk, yk) ∈260

T ′, ykw
⊤
k xk < γ, where w(0) T∗

−−→ wc
(xc,yc)−−−−→ wb

(xb,yb)−−−−→ wa. Otherwise, suppose ∃k ∈ {a, b, c}261

such that (xk, yk) ̸∈ T ′ or ykw⊤
k xk ≥ γ, we have262

ytestw
⊤xtest ≤

√
γ(
|T ∗|
n+ 1

− 1) < 0

8



which contradicts to the fact that ytestw
⊤xtest ≥ 0.263

Let S′ = {ai|(xi, yi) ∈ T ∗} and t′ =
∑

a∈S′ ai, it suffices to prove t′ = t. Notice that264

w(0) T∗∩{(xi,yi)|1≤j≤i}−−−−−−−−−−−−−→ wc = (
√
γ(−18n2m2 +

|T ∗|
n+ 1

), 3
√
γ
∑
ai∈S′

ai)

= (
√
γ(−18n2m2 +

|T ∗|
n+ 1

), 3
√
γt′)

Hence ycw
⊤
c xc = γ(−18n2m2 + |T∗|

n+1 )(18n
2m2 − 2)− 9γtt′ < −1 ≤ β, thus265

wc
(xc,yc)−−−−→ wb = wc + xcyc = (

√
γ(
|T ∗|
n+ 1

− 2), 3
√
γ(t′ − t))

(1) If t′ ≤ t− 1, we have ybw
⊤
b xb = γ

(
|T∗|
n+1 − 2 + 3(t− t′)

)
> γ ≥ β, a contradiction.266

(2) If t′ ≥ t+ 1, we have yaw
⊤
a xa = γ

(
|T∗|
n+1 − 2 + 3(t′ − t)

)
> γ ≥ β, another contradiction.267

Therefore t′ = t, and this completes the proof.268

Moreover, DEBUGGABLE-LIN is NP-hard even when d = 1 and β < 0.269

Theorem 4.4. If the training order is adversarially chosen and d = 1, DEBUGGABLE-LIN remains270

NP-hard for each hinge-like loss function with β < 0 at every constant learning rate.271

Remarks. The training order in this section can be arbitrary as long as the last three training272

samples are (xc, yc), (xb, yb), (xa, ya), respectively. All the training samples are “good” since for273

each (x, y) ∈ T we have x⊤xtestyytest > 0. This implies that DEBUGGABLE-LIN is NP-hard even if274

all the training data are “good” training samples, and exemplifies why the GTA algorithm fails for275

higher dimensions.276

5 Discussion and Conclusion277

In this paper, we provided a comprehensive analysis on the complexity of DEBUGGABLE. We focus278

on the linear classifier that is trained using SGD, as it is a key component in the majority of popular279

models.280

Since DEBUGGABLE is a special case of data debugging, the above results proved the intractability281

of data debugging and therefore gives a negative answer to Problem 1.1 declared in the introduction.282

The complexity results also demonstrated that it is not accurate to estimate the impact of subset of283

training data by summing up the score of each training samples in the subset, as long as the scores284

can be calculated in polynomial time.285

In Section 4, a training sample is said to be “good” if it can help the resulting model to predict286

correctly on the test instance. That is, it can increase ytest(w
∗)⊤xtest. However, in our proof we287

showed that DEBUGGABLE remains NP-hard even if all training samples are “good”. This suggests288

that the quality of a training sample does not depend only on some properties of itself but also on289

the interaction between the rest of the training data, which should be taken into consideration when290

developing data cleaning approaches.291

Moreover, the NP-hardness of DEBUGGABLE implies that, it is in general intractable to figure out the292

causality between even the prediction of a linear classifier and its training data. This may be seem293

surprising since linear classifiers have long been considered “inherently interpretable”. As warned294

in [25], a method being “inherently interpretable” needs to be verified before it can be trusted, the295

concept of interpretability must be rigorously defined, or at least its boundaries specified.296

Our results suggests the following directions for future research. Firstly, characterizing the training297

sample may be helpful in designing efficient algorithms for data debugging; Secondly, designing298

algorithms using CSP-solver is a potential way to solve data debugging more efficiently than the brute-299

force algorithms; Finally, developing random algorithms is a potential way to solve data debugging300

successfully with high probability.301
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A Detailed Proofs for Section 3381

Notations. Given some orderings {oe} of training data, where oet as the order of t in epoch e. We382

use w
(e,l)
xi to denote the value of wxi

after the l-th iteration in epoch e. We also denote xt and yt as383

the feature and the label of training data t, respectively. We denote t(e,l) as the training sample being384

considered during epoch e, iteration l.385

Lemma A.1. Suppose T ⊆ T0 is the training data and let T e
l,r = {t(e,l), t(e,l+1), . . . , t(e,r)}386

be the set of consecutive training samples considered during epoch e from iteration l to r. For387

1 ≤ l ≤ r ≤ |T |, if clause(γ, i1, i2, i3) ̸∈ T e
l,r, then w

(e,l−1)
cγ = w

(e,r)
cγ .388

Proof. For each t ∈ T e
l,r, we have (xt)cγ = 0. Therefore389 ∣∣∣∣ ∂L∂cγ

∣∣∣∣
t

∣∣∣∣ ≤ max

{∣∣∣∣−12N

5
yxcγ

∣∣∣∣ , | − yxcγ |,
∣∣∣∣− 1

1000N
yxcγ

∣∣∣∣ , 0} = 0

Hence ∂L
∂cγ

∣∣∣
t
= 0, and390

w(e,r)
cγ = w(e,l−1)

cγ − ηcγ
∑

t∈T e
l,r

∂L
∂cγ

∣∣∣∣
t

= w(e,l−1)
cγ

Similarly, (xt)bγ = 0, and391 ∣∣∣∣ ∂L∂bγ
∣∣∣∣
t

∣∣∣∣ ≤ max

{∣∣∣∣−12N

5
yxbγ

∣∣∣∣ , | − yxbγ |,
∣∣∣∣− 1

1000N
yxbγ

∣∣∣∣ , 0} = 0

Hence ∂L
∂bγ

∣∣∣
t
= 0, and392

w
(e,r)
bγ

= w
(e,l−1)
bγ

− ηbγ
∑

t∈T e
l,r

∂L
∂bγ

∣∣∣∣
t

= w
(e,l−1)
bγ

393

Lemma A.2. Suppose T ⊆ T0 is the training data and Tl := {t(1,1), . . . , t(1,l)}. ∀1 ≤ i ≤ n, 1 ≤394

l ≤ |T |, w(1,l)
xi ∈ U(1, l+1

6000N2 ) if var(i)∈ Tl; Otherwise w
(1,l)
xi ∈ U(−1, l+1

6000N2 ).395

Proof. We prove this lemma by induction.396

Basic Case: Note that for all 1 ≤ i ≤ n, w(0)
xi = −1, and for all 1 ≤ γ ≤ m,w

(0)
cγ = 1/2, w

(0)
bγ

= −1.397

We denote t = t(1,1) to avoid cluttering. For any fixed i:398

(1) If t =var(i). We have yt(w
(0))⊤x′

t = 5w
(0)
xi = −5, hence399

∂L
∂wxi

∣∣∣∣
t

= −12N

5
yt(xt)i = −12N

and400

w(1,1)
xi

= w(0)
xi
− ηxi

∂L
∂wxi

∣∣∣∣
t

= −1− 1

6N

(
−12N

5

)
= 1 ∈ U(1,

2

6000N2
)

(2) If t =clause(γ, i, i′, i′′). We have401

yt(w
(0))⊤x′

t = w(0)
xi

+ w(0)
xi′

+ w(0)
xi′′

+ w(0)
cγ +

1

2
w

(0)
bγ

= −3

hence402
∂L
∂wxi

∣∣∣∣
t

= − 1

1000N
yt(xt)xi = −

1

1000N

12



and403

w(1,1)
xi

= w(0)
xi
− ηxi

∂L
∂wxi

∣∣∣∣
t

= −1− 1

6N

(
− 1

1000N

)
= −1 + 1

6000N2
∈ U(−1, 2

6000N2
)

(3) Otherwise, wxi will not be updated. Therefore w
(1,1)
xi = w

(0)
xi = −1 ∈ U(−1, 2

6000N2 ).404

Hence this lemma is true for l = 1.405

Induction Step: Suppose the lemma is true for l < |T |. We prove that this lemma remains true for406

l+1. We denote t = t(1,l+1) to avoid cluttering. This makes sense since l+1 ≤ |T | and thus t ∈ T .407

For any fixed i:408

(1) If t =var(i), then var(i) ̸∈ Tl because there are at most one var(i) in T for each i.409

Therefore w
(1,l)
xi ∈ U(−1, l+1

6000N2 ). We have yt(w
(1,l))⊤x′

t = 5w
(1,l)
xi ∈ U(−5, 0.01), and410

∂L
∂wxi

∣∣∣
t
= − 12N

5 yt(xt)i = −12N . Hence411

w(1,l+1)
xi

= w(1,l)
xi
− ηxi

∂L
∂wxi

∣∣∣∣
t

= w(1,l)
xi
− 1

6N

(
−12N

5

)
= w(1,l)

xi
+ 2 ∈ U(1,

l + 2

6000N2
)

(2) If t =clause(γ, i, i′, i′′). In this case, clause(γ, ·, ·, ·)̸∈ T 1
1,l and by Lemma A.1 we have412

w
(1,l)
cγ = w

(0)
cγ , w

(1,l)
bγ

= w
(0)
bγ

. From the induction hypothesis we have413

w(1,l)
xi

, w(1,l)
xi′

, w(1,l)
xi′′
∈ U(±1, l + 1

6000N2
)

and thus414

yt(w
(1,l))⊤x′

t = w(1,l)
xi

+ w(1,l)
xi′

+ w(1,l)
xi′′

+ w(1,l)
cγ +

1

2
w

(1,l)
bγ

= w(1,l)
xi

+ w(1,l)
xi′

+ w(1,l)
xi′′

∈
⋃

x0∈{±1,±3}

U(x0,
3(l + 1)

6000N2
) ⊆

⋃
x0∈{±1,±3}

U(x0, 0.01)

We have ∂L
∂wxi

∣∣∣
t
= − 1

1000N and w
(1,l+1)
xi = w

(1,l)
xi − ηxi

∂L
∂wxi

∣∣∣
t
= w

(1,l)
xi + 1

6000N2 . Consider the415

following cases:416

• If var(i)∈ Tl, then var(i)∈ Tl+1 and w
(1,l)
xi ∈ U(1, l+1

6000N2 ). Therefore w
(1,l+1)
xi ∈417

U(1, l+2
6000N2 ).418

• If var(i) ̸∈ Tl, then var(i) ̸∈ Tl+1 and w
(1,l)
xi ∈ U(−1, l+1

6000N2 ). Therefore w
(1,l+1)
xi ∈419

U(−1, l+2
6000N2 ).420

(3) Otherwise, wxi
will not be updated, and w

(1,l+1)
xi = w

(1,l)
xi . If var(i)∈ Tl then var(i)∈ Tl+1 and421

w
(1,l+1)
xi ∈ U(1, l+2

6000N2 ); Otherwise var(i)̸∈ Tl+1 and w
(1,l+1)
xi ∈ U(−1, l+2

6000N2 ).422

Hence if the lemma is true for l < |T |, it is also true for l + 1. Therefore, the lemma is true for all423

1 ≤ l ≤ |T |.424

Corollary A.1. Suppose T ⊆ T0 is the training data. ∀1 ≤ i ≤ n, 1 ≤ l ≤ |T |, if var(i)∈ T , then425

w
(1)
xi ∈ U(1, 1

6000N ). Otherwise w
(1)
xi ∈ U(−1, 1

6000N ).426
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Proof. Note that w(1)
xi = w

(1,|T |)
xi and N = 2m+ n+ 1. By Lemma A.2, if var(i)∈ T we have427

w(1,|T |)
xi

∈ U(1,
|T |+ 1

6000N2
) ⊆ U(1,

m+ n+ 1

6000N2
) ⊆ U(1,

1

6000N
)

If var(i)̸∈ T , we have428

w(1,|T |)
xi

∈ U(−1, |T |+ 1

6000N2
) ⊆ U(−1, m+ n+ 1

6000N2
) ⊆ U(−1, 1

6000N
)

429

Lemma A.3. Suppose T ⊆ T0 is the training data. ∀1 ≤ γ ≤ m, if ∃1 ≤ i1, i2, i3 ≤ n such that430

clause(γ, i1, i2, i3) ∈ T , then w
(1)
bγ

= 0, w
(1)
cγ = 1

2 + 1
200N ; Otherwise, w(1)

bγ
= −1, w(1)

cγ = 1
2 .431

Proof. (1) If such tγ =clause(γ, i1, i2, i3) exists in T , by Lemma A.2 we have432

w
(1,o1tγ )
xi1

+ w
(1,o1tγ )
xi2

+ w
(1,o1tγ )
xi3

∈
⋃

x0∈{±1,±3}

U(x0,
3(o1tγ + 1)

6000N2
) ⊆

⋃
x0∈{±1,±3}

U(x0, 0.01)

By Lemma A.1 we have w
(1,o1tγ−1)
cγ = w

(0)
cγ and w

(1,o1tγ−1)

bγ
= w

(0)
bγ

because clause(γ, ·, ·, ·)̸∈433

T 1
1,otγ−1. Hence434

ytγ (w
(1,o1tγ−1)

)⊤x′
tγ = w

(1,o1tγ )
xi1

+ w
(1,o1tγ )
xi2

+ w
(1,o1tγ )
xi3

+ w
(1,o1tγ−1)
cγ +

1

2
w

(1,o1tγ−1)

bγ

= w
(1,o1tγ )
xi1

+ w
(1,o1tγ )
xi2

+ w
(1,o1tγ )
xi3

+ w
(1,o1tγ−1)
cγ

∈
⋃

x0∈{±1,±3}

U(x0, 0.01)

We have ∂L
∂wcγ

∣∣∣
tγ

= − 1
1000N , and435

w
(1,o1tγ )
cγ = w

(1,o1tγ−1)
cγ − ηcγ

∂L
∂wcγ

∣∣∣∣
tγ

=
1

2
+ 5× 1

1000N
=

1

2
+

1

200N

Similarly, ∂L
∂wbγ

∣∣∣
tγ

= − 1
2000N and436

w
(1,o1tγ )

bγ
= w

(1,o1tγ−1)

bγ
− ηbγ

∂L
∂wcγ

∣∣∣∣
tγ

= −1− 2000N × (− 1

2000N
) = 0

Note also that clause(γ, ·, ·, ·)̸∈ T 1
otγ ,|T |, by Lemma A.1 we have437

w
(1)
cγ = w

(1,|T |)
cγ = w

(1,o1tγ )
cγ = 1

2 + 1
200N and w

(1)
bγ

= w
(1,|T |)
bγ

= w
(1,o1tγ )

bγ
= 0.438

(2) If such tγ =clause(γ, i1, i2, i3) does not exist in T , by Lemma A.1 we have w
(1)
cγ = w

(0)
cγ = 1

2439

and w
(1)
bγ

= w
(0)
bγ

= −1.440

Lemma A.4. Suppose T ⊆ T0 and Cl be the number of clause() in T 2
1,l. ∀1 ≤ i ≤ n, 1 ≤ l ≤ |T |,441

w
(2,l)
xi ∈ U(1, Cl+1/2

6N ) if var(i)∈ T ; Otherwise w
(2,l)
xi ∈ U(−1, Cl+1/2

6N ).442

Proof. Similar to the proof of A.2, we prove this lemma by induction.443

Basic Case: Note that for all 1 ≤ i ≤ n, w(1)
xi = U(±1, 1

6000N ), and for all 1 ≤ γ ≤ m,w
(1)
cγ ∈444

{ 12 ,
1
2 + 1

200N }, w
(1)
bγ
∈ {−1, 0}. We denote t = t(2,1) to avoid cluttering. For any fixed i:445

(1) If t =var(i), C1 = 0. By Corollary A.1, w(1)
xi = U(1, 1

6000N ). We have446

yt(w
(1))⊤x′

t = 5w(1)
xi
∈ U(5,

1

1200N
)
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hence ∂L
∂wxi

∣∣∣
t
= 0, and447

w(2,1)
xi

= w(1)
xi
∈ U(1,

1

6N
) = U(1,

Cl + 1/2

6N
)

(2) If t =clause(γ, i, i′, i′′), C1 = 1. By Lemma A.3, we have w
(1)
cγ = 1

2 + 1
200N and w

(1)
bγ

= 0.448

Therefore,449

yt(w
(1))⊤x′

t = w(1)
xi

+ w(1)
xi′

+ w(1)
xi′′

+ w(1)
cγ +

1

2
w

(1)
bγ

= w(1)
xi

+ w(1)
xi′

+ w(1)
xi′′

+
1

2
− 1

200N

∈
⋃

x0∈{ 1
2±1, 12±3}

U(x0, 0.01)

hence ∂L
∂wxi

∣∣∣
t
∈ {0,−yxxi

} = {−1, 0}, and ηxi

∂L
∂wxi

∣∣∣
t
∈ {− 1

6N , 0}.450

By Corollary A.1, if var(i)∈ T , we have451

w(2,1)
xi

= w(1)
xi
− ηxi

∂L
∂wxi

∣∣∣∣
t

∈ U(1,
3/2

6N
) = U(1,

Cl + 1/2

6N
)

If var(i)̸∈ T , we have452

w(2,1)
xi

= w(1)
xi
− ηxi

∂L
∂wxi

∣∣∣∣
t

∈ U(−1, 3/2
6N

) = U(−1, Cl + 1/2

6N
)

(3) Otherwise, wxi
will not be updated and C1 ≤ 1. Therefore if var(i)∈ T ,453

w(2,1)
xi

= w(1)
xi
∈ U(1,

3/2

6N
) ⊆ U(1,

Cl + 1/2

6N
)

If var(i)̸∈ T ,454

w(2,1)
xi

= w(1)
xi
∈ U(−1, 3/2

6N
) ⊆ U(−1, Cl + 1/2

6N
)

Hence this lemma is true for l = 1.455

Induction Step: Suppose the lemma is true for l < |T |. We prove that this lemma remains true for456

l+1. We denote t = t(2,l+1) to avoid cluttering. This makes sense since l+1 ≤ |T | and thus t ∈ T .457

For any fixed i:458

(1) If t =var(i), Cl+1 = Cl. By Corollary A.1, w(2,l)
xi ∈ U(1, Cl+1/2

6N ).459

We have yt(w
(2,l))⊤x′

t = 5w
(2,l)
xi ∈ U(5, 1/6) and ∂L

∂wxi

∣∣∣
t
= 0.Hence w

(2,l+1)
xi = w

(2,l)
xi ∈460

U(1, Cl+1+1/2
6N ).461

(2) If t =clause(γ, i, i′, i′′), Cl+1 = Cl + 1. In this case, clause(γ, ·, ·, ·)̸∈ T 2
1,l and by Lemma462

A.1 and Lemma A.3 we have w
(2,l)
cγ = w

(1)
cγ = 1

2 + 1
200N , w

(2,l)
bγ

= w
(1)
bγ

= 0. From the induction463

hypothesis we have w
(2,l)
xi , w

(2,l)
xi′ , w

(2,l)
xi′′ ∈ U(±1, Cl+1/2

6N ). Noting that464

Cl + 1/2

6N
≤ m+ 1/2

6N
=

m+ 1/2

(n+ 2(m+ 1/2))
≤ 1

12

we have465

yt(w
(2,l))⊤x′

t = w(2,l)
xi

+ w(2,l)
xi′

+ w(2,l)
xi′′

+ w(2,l)
cγ +

1

2
w

(2,l)
bγ

= w(2,l)
xi

+ w(2,l)
xi′

+ w(2,l)
xi′′

+
1

2
+

1

200N

∈
⋃

x0∈{ 1
2±1, 12±3}

U

(
x0,

3(Cl + 1/2)

6N
+

1

200N

)
⊆

⋃
x0∈{ 1

2±1, 12±3}

U(x0, 0.26)
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And thus ∂L
∂wxi

∣∣∣
t
∈ {0,−yxxi

} = {−1, 0}, and ηxi

∂L
∂wxi

∣∣∣
t
∈ {− 1

6N , 0}.466

By Corollary A.1, if var(i)∈ T , w(2,l+1)
xi = w

(l)
xi − ηxi

∂L
∂wxi

∣∣∣
t
∈ U(1, Cl+3/2

6N ) = U(1, Cl+1+1/2
6N );467

if var(i)̸∈ T , w(2,l+1)
xi = w

(l)
xi − ηxi

∂L
∂wxi

∣∣∣
t
∈ U(−1, Cl+3/2

6N ) = U(−1, Cl+1+1/2
6N ).468

(3) Otherwise, wxi
will not be updated. We have Cl+1 ≤ Cl + 1 w

(2,l+1)
xi = w

(2,l)
xi . If var(i)∈ T469

then w
(2,l+1)
xi ∈ U(1, Cl+1+1/2

6N ); If var(i) ̸∈ T then w
(2,l+1)
xi ∈ U(−1, Cl+1+1/2

6N ).470

Hence if the lemma is true for l < |T |, it is also true for l + 1. Therefore, the lemma is true for all471

1 ≤ l ≤ |T |.472

Corollary A.2. Suppose T ⊆ T0 is the training data. ∀1 ≤ i ≤ n, if var(i)∈ T , then w
(2)
xi ∈473

U(1, 0.1). Otherwise w
(2)
xi ∈ U(−1, 0.1).474

Proof. Note that w(2)
xi = w

(2,|T |)
xi and C|T | ≤ m. By Lemma A.4, if var(i)∈ T we have475

w(2,|T |)
xi

∈ U(1,
C|T | + 1/2

6N
) ⊆ U(1,

m+ 1/2

6N
) ⊆ U(1,

1

12
) ⊆ U(1, 0.1)

If var(i) ̸∈ T , we have476

w(1,|T |)
xi

∈ U(−1,
C|T | + 1/2

6N
) ⊆ U(−1, m+ 1/2

6N
) ⊆ U(−1, 1

12
) ⊆ U(−1, 0.1)

477

Lemma A.5. Suppose T ⊆ T0 is the training data. ∀1 ≤ i ≤ m, if ∃1 ≤ i1, i2, i3 ≤ n such that478

clause(i, i1, i2, i3) ∈ T , then479

1. w
(2)
bj

= 1000N ;480

2. w
(2)
cj = 11

2 + 1
200N if exactly one of var(i1), var(i2), var(i3) is in T . Otherwise w

(2)
cj =481

1
2 + 1

200N .482

Otherwise, w(2)
bi

= −1, w(2)
ci = 1

2 .483

Proof. (1) If such tγ =clause(γ, i1, i2, i3) exists in T , by Lemma A.4 we have484

w
(2,o1tγ )
xi1

, w
(2,o1tγ )
xi2

, w
(2,o1tγ )
xi3

∈ U(±1, m+ 1/2

6N
) ⊆ U(±1, 1

12N
)

By Lemma A.1 we have w
(2,o1tγ−1)
cγ = w

(1)
cγ = 1

2 + 1
200N and w

(2,o1tγ−1)

bγ
= w

(1)
bγ

= 0 because485

clause(γ, ·, ·, ·)̸∈ T 1
1,otγ−1. Consider the following two cases:486

(a) If exactly one of var(i1), var(i2), var(i3) is in T , by Corollary A.2 we have487

ytγ (w
(2,o1tγ−1)

)⊤x′
tγ = w

(2,o1tγ−1)
xi1

+ w
(2,o1tγ−1)
xi2

+ w
(2,o1tγ−1)
xi3

+ w
(2,o1tγ−1)
cγ +

1

2
w

(2,o1tγ−1)

bγ

= w
(2,o1tγ−1)
xi1

+ w
(2,o1tγ−1)
xi2

+ w
(2,o1tγ−1)
xi3

+
1

2
+

1

200N

∈ U(−1

2
,

3

12N
+

1

200N
) ⊆ U(−1

2
, 0.26)

Hence ∂L
∂wcγ

∣∣∣
tγ

= −1, and488

w
(2,o1tγ )
cγ = w

(2,o1tγ−1)
cγ − ηcγ

∂L
∂wcγ

∣∣∣∣
tγ

=
1

2
+

1

200N
+ 5 =

11

2
+

1

200N
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Similarly,489

w
(2,o1tγ )

bγ
= w

(2,o1tγ−1)

bγ
− ηbγ

∂L
∂wbγ

∣∣∣∣
tγ

= 1000N

Note also that clause(γ, ·, ·, ·)̸∈ T 1
otγ ,|T |, by Lemma A.1 we have w

(2)
cγ = w

(2,|T |)
cγ = w

(2,o1tγ )
cγ =490

11
2 −

1
200N and w

(2)
bγ

= w
(2,|T |)
bγ

= w
(2,o1tγ )

bγ
= 1000N .491

(b) Otherwise, we have492

ytγ (w
(2,o1tγ−1)

)⊤x′
tγ = w

(2,o1tγ−1)
xi1

+ w
(2,o1tγ−1)
xi2

+ w
(2,o1tγ−1)
xi3

+ w
(2,o1tγ−1)
cγ +

1

2
w

(2,o1tγ−1)

bγ

= w
(2,o1tγ−1)
xi1

+ w
(2,o1tγ−1)
xi2

+ w
(2,o1tγ−1)
xi3

+
1

2
+

1

200N

∈
⋃

x0∈{− 7
2 ,

1
2 ,

5
2}

U(x0,
3

12N
+

1

200N
) ⊆

⋃
x0∈{− 7

2 ,
1
2 ,

5
2}

U(x0, 0.26)

Hence ∂L
∂wcγ

∣∣∣
tγ

= ∂L
∂wbγ

∣∣∣
tγ

= 0, so w
(2,o1tγ )
cγ = w

(2,o1tγ−1)
cγ = 1

2 + 1
200N , w

(2,o1tγ )

bγ
= w

(2,o1tγ−1)

bγ
= 0.493

Note also that clause(γ, ·, ·, ·)̸∈ T 1
otγ ,|T |, by Lemma A.1 we have w

(2)
cγ = w

(2,|T |)
cγ = w

(2,o1tγ )
cγ =494

1
2 + 1

200N and w
(2)
bγ

= w
(2,|T |)
bγ

= w
(2,o1tγ )

bγ
= 0.495

(2) If such tγ =clause(γ, i1, i2, i3) does not exist in T , by Lemma A.1 and Lemma A.3 we have496

w
(2)
cγ = w

(1)
cγ = 1

2 and w
(2)
bγ

= w
(1)
bγ

= −1.497

Moreover, w reaches its fixpoint at the end of the second epoch and will no longer be updated.498

Lemma A.6. w(2) = w(3).499

Proof. Suppose w(2) ̸= w(3), then there exists 1 ≤ i ≤ N such that w(2)
i ̸= w

(3)
i , and there500

are some training sample t in the training data such that ∂L
∂w

(2)
i

∣∣∣∣
t

̸= 0. Let t = (xt, yt) and501

I = U(−5, 0.01) ∪ U(− 1
2 , 0.26) ∪

(⋃
x0∈{±1,±3} U(x0, 0.01)

)
. By (2) we have yt(w(2))⊤xt

′ ∈ I.502

At least one of the following is true:503

1. ∃1 ≤ i ≤ n, t = var(i). According to lemma A.2, yt(w
(2))⊤xt

′ = yw
(2)
xi xi ∈504

U(5, 0.5) ⊆ R \ I, contradicting to yt(w
(2))⊤xt

′ ∈ I.505

2. ∃1 ≤ i ≤ m and 1 ≤ i1, i2, i3 ≤ n, such that t = clause(i, i1, i2, i3). According to506

lemma A.5, we have507

yt(w
(2))⊤xt

′ = w
(2)
bi

+ w(2)
ci + w(2)

xi1
+ w(2)

xi2
+ w(2)

xi3

≥ 1000N +
1

2
+

1

200N
+ 3× (−1− 0.1)

≥ 1000− 3.3 ≥ 996

We have yt(w
(2))⊤xt

′ ̸∈ I, another contradiction.508

Therefore w(2) = w(3), w reaches its fixpoint at the end of the second epoch. In other words,509

w∗ = w(2).510

We are now ready to give a rigorous proof of theorem 3.1.511
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Proof of theorem 3.1. It only suffices to prove the correctness of the reduction in section 3.512

If. Suppose φ ∈MONOTONE 1-IN-3 SAT, then there is a truth assignment ν(·) that assigns exactly513

one variable in each clause of φ is true. Let ∆ = {var(i)|ν(xi) = FALSE}. Let w′ be the parameter514

of SGDΛ(T0 \∆). By Lemma A.5, (w′)cγ = 11
2 + 1

200N for all 1 ≤ γ ≤ m, hence515

(w′)⊤xtest =

m∑
γ=1

w′
cγ ≥

11m

2
+
−11m+ 5

2
=

5

2
> 0

and λw′(xtest) = 1, thus SGDΛ(T0) is thus debuggable.516

Only if. Suppose SGDΛ(T0) is debuggable, there will be a ∆ such that SGDΛ(T0,xtest) = ytest . We517

denote w′ as the parameter trained by SGD on T0 \∆. We have λw′(xtest) = 1 and (w′)⊤xtest ≥ 0.518

By Lemma A.5, w′
cγ = { 12 + 1

200N , 11
2 + 1

200N }. Suppose wc∗ = 1
2 + 1

200N , then519

(w′)⊤xtest = wc∗ +
∑

cγ ̸=c∗

wcγ

≤ 11

2
(m− 1) +

1

2
+

m

200N
− 11m

2
+

5

2

= −5

2
+

m

200N

≤ −5

2
+

1

200
= −2.495 < 0

leading to a contradiction.520

As a consequence, w′
cγ = 11

2 + 1
200N for all 1 ≤ γ ≤ m. By Lemma A.5, exactly one of521

var(i1),var(i2),var(i3) is in T0 \∆ for each cγ = (xi1 ∨ xi2 ∨ xi3). Consider a truth assignment ν522

that maps every xi to FALSE where var(i)∈ ∆, and maps the rest to TRUE. Then ν assigns exactly523

one variable true in each cγ = (xi1 ∨ xi2 ∨ xi3) if and only if exactly one of var(i1),var(i2),var(i3)524

is in T0 \∆. Hence ν is a truth assignment that assigns true to exactly one variable in each clause of525

φ, and thus φ is a yes-instance of MONOTONE 1-IN-3 SAT.526

B Detailed Proofs for Section 4527

B.1 Proof of Theorem 4.4528

Proof. We build a reduction from the SUBSET SUM problem with a fixed size, which is NP-hard as a529

particular case of the class of knapsack problems [26]. Formally, it is defined as:530

SUBSET SUM with a fixed size
Input: A set of positive integer S, and two positive integers t, k.
Output: “Yes”: if ∃S′ ⊆ S of size k such that

∑
a∈S′ a = t;

“No”: otherwise.

531

The ordered training data T is constructed as532

T = {(x1, y1), (x2, y2), . . . , (xn, yn)} ∪ {(xa, ya)}

where xiyi =
2
3 + ai

3
∑

a∈S a for all 1 ≤ i ≤ n and xaya = 1 + 1
6
∑

a∈S a . Let η = 1, α = 1, β = −1,533

w(0) = −1− 2
3k−

t
3
∑

a∈S a and let the test instance (xtest, ytest) satisfy xtestytest = 1. It now suffices534

to prove that ∃S′ ⊆ S such that |S′| = k and
∑

a∈S′ a = t if and only if ∃T ′ ⊆ T such that535

w : w(0) T ′

−→ w satisfies ytestwxtest > 0.536

If: Suppose ∃S′ ⊆ S such that |S′| = k and
∑

a∈S a = t. Let T ∗ = {(xi, yi)|ai ∈ S′}, we prove537

that ytestw
∗xtest > 0 for w∗ satisfying w(0) T ′=T∗∪{(xa,ya)}−−−−−−−−−−−→ w∗.538
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Since

w(0) +
∑
ai∈S′

xiyi = −1−
2

3
k − t

3
∑

a∈S a
+
∑
ai∈S′

(
2

3
+

ai
3
∑

a∈S a

)

= −1− 2

3
k − t

3
∑

a∈S a
+
∑
ai∈S′

2

3
+

∑
a∈S′ a

3
∑

a∈S a
= −1

and ∀1 ≤ i ≤ n, xiyi >
2
3 , for each 1 ≤ i < n, suppose w(0) T∗∩{(xj ,yj)|1≤j≤i}−−−−−−−−−−−−−→ wi, we have

wixi+1yi+1 <

w(0) +
∑

aj∈S′

xjyj −
2

3

 · 2
3
< −10

9
< β.

That is, each training sample in T ∗ is activated. Then for w(0) T∗

−−→ wa, we have wa = −1. Then,539

since yawaxa = −(1 + 1
6
∑

a∈S a ) < β and wa
(xa,ya)−−−−−→ w∗ we have w∗ = wa + xaya = 1

6
∑

a∈S a .540

Therefore, ytestw
∗xtest =

1
6
∑

a∈S a > 0.541

Only if: For each T ′ ⊆ T , let T ∗ = T ′ \ {(xa, ya)} and c(T ∗) be the set of training samples in542

T ∗ that are activated. If ytestw
∗xtest ≥ 0 for w∗ satisfying w(0) T ′

−→ w∗, we prove that the set543

S′ = {ai|(xi, yi) ∈ c(T ∗)} satisfies |S′| = k and
∑

a∈S′ a = t.544

We first show that ytestwaxtest < 0 for w(0) c(T∗)−−−→ wa. Otherwise, suppose ytestwaxtest ≥ 0 we545

have wa ≥ 0. Let (x, y) be the last training sample of c(T ′), since 2
3 < xy ≤ 1, we have546

w′ ≥ wa − xy ≥ −1 for w′ (x,y)−−−→ wa. Thus yw′x ≥ β, which contradicts to the definition of c(T ∗).547

We next show that |S′| = k. Suppose |S′| ≤ k − 1, we have

wa = w(0) +
∑

(xi,yi)∈c(T∗)

xiyi = −1−
2

3
k − t

3
∑

a∈S a
+
∑
ai∈S′

2

3
+

∑
a∈S′ a

3
∑

a∈S a

< −1− 2

3
k +

2

3
(k − 1) +

1

3
= −4

3
Thus w∗ ≤ wa + xaya < − 4

3 + (1 + 1
6
∑

a∈S a ) < 0 and then ytestw
∗xtest < 0, which contradicts to548

the fact that ytestw
∗xtest ≥ 0. Therefore |S′| ≥ k.549

Suppose |S′| ≥ k + 1, we have

wa = w(0) +
∑

(xi,yi)∈c(T∗)

xiyi ≥ −1−
2

3
k − 1

3
+

2

3
(k + 1) = −2

3

Then yawaxa ≥ (− 2
3 ) · (1 +

1
6
∑

a∈S a ) ≥ −
7
9 ≥ β, that is, (xa, ya) is not activated and w∗ = wa.550

Then since ytestwaxtest < 0, we have ytestw
∗xtest = ytestwaxtest < 0, which contradicts to the fact that551

ytestw
∗xtest ≥ 0. Therefore |S′| = k.552

It remains to prove that
∑

a∈S′ a = t. Otherwise, suppose
∑

a∈S′ a ≤ t− 1, we have

wa = w(0) +
∑

(xi,yi)∈c(T∗)

xiyi ≤ −1−
2

3
k − t

3
∑

a∈S a
+

2

3
k +

t− 1

3
∑

a∈S a

= −1− 1

3
∑

a∈S a

Thus ytestw
∗xtest ≤ ytest(wa + xaya)xtest ≤ − 1

6
∑

a∈S a < 0, which contradicts to the fact that553

ytestw
∗xtest ≥ 0. Therefore

∑
a∈S′ a ≥ t.554

Suppose
∑

a∈S′ a ≥ t+ 1 we have

wa = w(0) +
∑

(xi,yi)∈c(T∗)

xiyi ≥ −1−
2

3
k − t

3
∑

a∈S a
+

2

3
k +

t+ 1

3
∑

a∈S a

= −1 + 1

3
∑

a∈S a
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Thus
yawaxa ≥ (−1 + 1

3
∑

a∈S a
) · (1 + 1

6
∑

a∈S a
)

≥ −1 + 1

6
∑

a∈S a
+

1

18(
∑

a∈S a)2
≥ β.

That is, (xa, ya) is not activated and w∗ = wa. Then since ytestwaxtest < 0, we have ytestw
∗xtest =555

ytestwaxtest < 0, which contradicts to the fact that ytestw
∗xtest ≥ 0. Therefore

∑
a∈S′ a = t.556

B.2 Proof of Theorem 4.3 for β < −1557

Proof. To avoid cluttering, we still assume η = 1 and α = 1. The proof can be generalized by558

appropriately re-scaling the constructed vectors.559

Let M = −β(n + 2) + 9βnm2(n + 1) + 3. Suppose n = |S| > 1, m = maxa∈S{a} and560

S = {a1, a2, . . . , an}. We further assume n > 1. Let the ordered set of training samples be561

T = {(x1, y1), (x2, y2), . . . , (xn, yn)} ∪ {(xc, yc), (xb, yb), (xa, ya)}
where xiyi = ( 1

n+1 ,−3βai) for all 1 ≤ i ≤ n,xcyc = (M + 3
2β − 1, β(3t − 1

2 )),xbyb =562

(1,−1),xaya = (− 3
2β,−

3
2β). Let w(0) = (−M, 0). Let the test instance (xtest, ytest) satisfy563

xtestytest = (1, 0).564

For each 1 ≤ i < n, suppose w(0) T∩{(xi,yi)|1≤j≤i}−−−−−−−−−−−−→ wi, we have565

yi+1w
⊤
i xi+1 ≤ −M ·

1

n+ 1
+

i

(n+ 1)2
+ 9β2ai+1

i∑
j=1

aj

≤ −M · 1

n+ 1
+

n

(n+ 1)2
+ 9β2nm2 < β

This means all the (xi, yi) ∈ T \ {(xc, yc), (xb, yb), (xa, ya)} can be activated and thus the resulting566

parameter trained by T \ {(xc, yc), (xb, yb), (xa, ya)} is567

wc = w(0) +

n∑
i=1

xiyi =

(
−M +

|T ∗|
n+ 1

,−3β
n∑

i=1

ai

)

It now suffices to prove that for all S′ ⊆ S,
∑

a∈S′ a = t if and only if ∃T ′ ⊆ T such that568

w : w(0) T ′

−→ w such that ytestw
⊤xtest > 0.569

If: Suppose ∃S′ ⊆ S such that
∑

a∈S a = t, we prove that ∃T ′ ⊆ T such that ytest(w
∗)⊤xtest > 0570

for w∗ satisfying w(0) T∗

−−→ w∗.571

Let T ∗ = {(xi, yi)|ai ∈ S′}, T ′ = T ∗ ∪ {(xc, yc), (xb, yb), (xa, ya)}. We have572

wc = (−M +
|T ∗|
n+ 1

,−3β
∑
ai∈S′

ai) = (−M +
|T ∗|
n+ 1

,−3βt)

And ycw
⊤
c xc = (−M + |T∗|

n+1 )(M + 3
2β − 1)− 3tβ2(3t− 1

2 ) < β, so573

wc
(xc,yc)−−−−→ wb = wc + xcyc = (

|T ∗|
n+ 1

+
3

2
β − 1,−1

2
β)

Note that β < −1, we have ybw
⊤
b xb =

|T∗|
n+1 + 2β < (β + |T∗|

n+1 ) + β < β, and574

wb
(xb,yb)−−−−→ wa = wb + xaya = (

|T ∗|
n+ 1

+
3

2
β,−1

2
β − 1)

Note also that yaw⊤
a xa = 3

2 (−β)(
|T∗|
n+1 − 1 + β) < β, we have575

wa
(xa,ya)−−−−−→ w∗ = wa + xaya = (

|T ∗|
n+ 1

,−2β − 1)
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Therefore, ytest(w
∗)⊤xtest =

|T∗|
n+1 ≥ 0.576

Only if: For each T ′ ⊆ T , let T ∗ = T ′ \ {(xc, yc), (xb, yb), (xa, ya)}, if ytest(w
∗)⊤xtest for w∗577

satisfying w(0) T ′

−→ w∗, we prove that ∃S′ ⊆ S such that
∑

a∈S′ a = t. We first show that for578

each T ′ ⊆ T , if w(w(0) T ′

−→ w) satisfying ytestw
⊤xtest ≥ 0, we have ∀k ∈ {a, b, c}, (xk, yk) ∈579

T ′, ykw
⊤
k xk < β, where w(0) T∗

−−→ wc
(xc,yc)−−−−→ wb

(xb,yb)−−−−→ wa. Otherwise, suppose ∃k ∈ {a, b, c}580

such that (xk, yk) ̸∈ T ′ or ykw⊤
k xk ≥ β, we have581

ytestw
⊤xtest ≤ −M +

|T ∗|
n+ 1

+M +
3

2
β − 1 + 1− 3

2
β −min

{
1,M +

3

2
β − 1,−3

2
β

}
=
|T ∗|
n+ 1

− 1 < 0

which contradicts to the fact that ytestw
⊤xtest ≥ 0.582

Let S′ = {ai|(xi, yi) ∈ T ∗} and t′ =
∑

a∈S′ ai, it suffices to prove t′ = t. Notice that583

w(0) T∗

−−→ wc = (−M +
|T ∗|
n+ 1

,−3β
∑
ai∈S′

ai)

= (−M +
|T ∗|
n+ 1

,−3βt′)

Hence ycw
⊤
c xc = (−M + |T∗|

n+1 )(M + 3
2β − 1)− 3t′β2(3t− 1

2 ) < β, thus584

wc
(xc,yc)−−−−→ wb = wc + xcyc = (

|T ∗|
n+ 1

+
3

2
β − 1,−3β(t′ − t)− 1

2
β)

(1) If t′ ≤ t− 1, we have585

ybw
⊤
b xb =

|T ∗|
n+ 1

− 1 + 2β + 3β(t′ − t)

≥ |T
∗|

n+ 1
− (1 + β) > 0 > β

a contradiction. Hence wa = wb
(xb,yb)−−−−→ wa = ( |T

∗|
n+1 + 3

2β,−3β(t
′ − t)− 1

2β − 1).586

(2) If t′ ≥ t+ 1, we have587

yaw
⊤
a xa = −3β

2

(
|T ∗|
n+ 1

− 1 + β − 3β(t′ − t)

)
≥ −3β

2

(
|T ∗|
n+ 1

− 1− 2β

)
> −3β

2

(
|T ∗|
n+ 1

+ 1

)
> 0 > β

another contradiction. Therefore t′ = t, and this completes the proof.588

589

C Limitations590

It is important to emphasize that the complexity results in section 4 requires the training order to591

be adversarially chosen. The complexity of DEBUGGABLE for randomly chosen training order is592

unclear and needs to be figured out in the future research.593
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