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Abstract

Multi-modal Large Language Models (MLLMs) have shown remarkable capabili-
ties across a wide range of vision-language tasks. However, due to the restricted
input resolutions, MLLMs face significant challenges in precisely understanding
and localizing visual details in high-resolution images—particularly when dealing
with extra-small objects embedded in cluttered contexts. To address this issue, we
propose FINERS, a two-stage MLLM-based reinforcement learning framework for
jointly reasoning and segmenting extremely small objects within high-resolution
scenes. FINERS adopts a coarse-to-fine pipeline comprising Global Semantic
Exploration (GSE) and Localized Perceptual Refinement (LPR). Specifically, GSE
performs instruction-guided reasoning to generate a textural response and a coarse
target region, while LPR refines this region to produce an accurate bounding box
and segmentation mask. To couple the two stages, we introduce a locate-informed
retrospective reward, where LPR’s outputs are used to optimize GSE for more ro-
bust coarse region exploration. Additionally, we present FINERS-4k, a new dataset
for evaluating MLLMs on attribute-level reasoning and pixel-level segmentation
on subtle, small-scale targets in complex high-resolution scenes. Experimental
results on FINERS-4k and public datasets demonstrate that our method consistently
outperforms state-of-the-art MLLM-based approaches on both instruction-guided
segmentation and visual reasoning tasks.

1 Introduction

Recently, Multi-modal Large Language Models (MLLMs) [1, 2, 3, 4] have achieved remarkable
success in a variety of vision-language tasks, such as visual question answering, referring expression
comprehension, and instruction-guided segmentation. Among these tasks, one foundational challenge
is instruction-guided reasoning and segmentation — a capacity of not only understanding what the
user is asking, but also where in the image the referred object appears at the pixel level. Some early
attempts [3] integrate MLLMs [4, 5, 6] with foundational segmentation models [7, 8], enabling joint
language generation and object segmentation for more interactive and interpretable visual understand-
ing. However, these methods are tailored to standard-resolution images and large, prominent objects,
where spatial structures are easily accessible to the model’s visual backbone. Their heavy reliance on
global visual-semantic alignment becomes increasingly unreliable in scenes with dense layouts and
small, low-saliency targets (see Fig. 1 (a)).

To address this challenge, the research community has begun to explore the capacity of MLLMs to
perceive fine-grained, detailed objects within high-resolution images. To mitigate detail degradation
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<think> 1. Identify the tennis ... 6. 
Output the bounding box and 
the color of the slide.</think>
Response: The slide next to the 
tennis is yellow.  Response: “A”

Correct Response and 
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Figure 1: Given a user instruction and a high-resolution image, existing MLLMs face limitations
in effectively reasoning and segmenting small objects. (a) MLLMs (e.g., LISA [3]) designed for
standard-resolution images fail to generalize to small objects. (b) MLLMs (e.g., DC2 [10]) developed
for high-resolution images only support optional question answering and lack localization ability. (c)
MLLMs (e.g., SegZero [16]) with RFT fail to produce explicit answers and accurate segmentation
masks within a unified framework. (d) Our FINERS combines a coarse-to-fine perception pipeline
with reinforcement learning, enabling unified, precise instruction-guided reasoning and segmentation
of small objects in high-resolution images.

caused by image downsampling, existing methods [1, 9, 10] mimic human visual perception by
decomposing high-resolution images into smaller patches to achieve local vision-text alignment.
However, due to the scarcity of high-resolution data, these methods typically adopt a training-free
pipeline, where the absence of supervised fine-tuning limits their perception accuracy in complex
scenarios (as shown in Fig. 1 (b)). More importantly, the lack of precise localization ability restricts
their scalability and applicability to downstream tasks demanding pixel-level grounding and spatial
reasoning.

Recent studies [11, 12, 13] have revealed that LLMs can generalize effectively to domain-specific
tasks with only thousands of training samples. Moreover, incorporating a “thinking” process prior
to answering can significantly enhance their reasoning ability. The core technique behind this
improvement is Reinforcement Fine-Tuning (RFT) [12, 14, 13], which enables LLMs to be emergently
optimized for downstream tasks via data-efficient fine-tuning. The success of RFT has driven the
extension of vision RFT [14, 15, 16] to empower MLLMs across a variety of vision-language tasks,
including image classification [14], object detection [14], and reasoning segmentation [16]. However,
due to input resolution limitations, these methods [16] still struggle to capture fine-grained details,
and cannot simultaneously generate explicit answers and segmentation masks without a unified
multi-task reward mechanism (see Fig. 1 (c)).

To address the above issues, we propose FINERS, a two-stage MLLM framework for instruction-
guided reasoning and segmentation of small objects in high-resolution images. FINERS is designed
to jointly optimize semantic reasoning and spatial perception through a coarse-to-fine pipeline.
Specifically, a Global Semantic Exploration (GSE) module first performs instruction-guided reasoning
to produce both a textual response and a coarse target region that contains the referred objects
inside. The subsequent Localized Perceptual Refinement (LPR) module then refines this region by
generating an accurate bounding box and the corresponding segmentation mask. To reduce reliance
on heavy supervised fine-tuning, we integrate vision RFT into our framework and design effective
rewards to simultaneously address object reasoning and segmentation. Specifically, in addition to
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basic region/box regularization rewards, we introduce a response reward to encourage the model to
simultaneously generate both textual answers and object boxes. Furthermore, to effectively couple
these two stages, we introduce a locate-informed retrospective reward, which uses LPR to guide
and optimize the exploration behavior of GSE via reinforcement learning. The synergy between the
coarse-to-fine framework and reinforcement learning not only enables fine-grained perception of
extremely small objects but also allows for data-efficient multi-task training, resulting in a unified
framework that consistently delivers high performance across both reasoning and segmentation tasks.

To enable a comprehensive evaluation, we introduce FINERS-4k, a human-annotated, high-quality
dataset designed to benchmark model performance on Instruction-guided Segmentation (IS), Open-
ended Visual Question Answering (OVQA), and Multiple-choice Visual Question Answering
(MVQA). Compared to previous high-resolution benchmarks [9, 10], FINERS-4k leverages UAV-
captured imagery, providing large-scale, complex environments with extreme object size variability,
scattered small-object distributions, and cluttered spatial contexts. Extensive experiments on FIN-
ERS-4k and other public datasets [9, 10] demonstrate that FINERS consistently outperforms existing
MLLM-based methods in both answer accuracy and segmentation precision.

To summarize, our contributions are as follows:

• We propose FINERS, a two-stage MLLM framework that jointly performs instruction-guided
reasoning and segmentation for small-object understanding in high-resolution images. To the best
of our knowledge, FINERS is the first method to unify reasoning and fine-grained segmentation
under a reinforcement learning paradigm.

• We introduce FINERS-4k, the first UAV-captured high-resolution dataset designed for instruction-
guided reasoning and segmentation on ultra-small objects, offering more challenging object distri-
butions and spatial variability compared to previous datasets.

• We conduct extensive experiments on FINERS-4k and other public datasets, demonstrating that
the proposed FINERS consistently outperforms state-of-the-art MLLM-based approaches across
instruction-guided segmentation, open-ended VQA, and multiple-choice VQA.

2 Related Works

MLLM-based Reasoning and Segmentation. The success of MLLMs has significantly advanced
object detection and segmentation for more accurate open-world understanding. Pioneering efforts
such as LISA [3] and LISA++ [17] introduce a <SEG> token to bridge MLLMs with segmentation
models [7]. To evaluate performance, they propose reasoning segmentation, an extension of referring
segmentation that enables simultaneous generation of text responses and segmentation masks. This
design has inspired a series of follow-up works [18, 19], which further explore special-token-based
interfaces to integrate vision-language reasoning with segmentation. Despite their promising results,
these approaches still face notable limitations. First, most MLLM-based models restrict the input
resolution to avoid out-of-memory risks, leading to severe downsampling that compromises fine-
grained visual details and degrades performance on high-resolution imagery. Second, they rely
heavily on supervised training with extensive public datasets [20, 3], which limits their adaptability
and transferability to more challenging scenarios with limited training data availability. In this work,
we aim to address the challenges of small-object reasoning and segmentation within high-resolution
images. We propose a two-stage MLLM framework that combines global semantic exploration with
localized perceptual refinement and applies a reinforcement learning strategy to achieve data-efficient
fine-tuning.

High-resolution Image Understanding and Reasoning. Recent studies [9, 10, 1, 21] have revealed
that MLLMs still face significant challenges in perceiving and reasoning over high-resolution images,
particularly for small and densely distributed objects. To overcome the resolution restrictions
of MLLMs, fine-tuning-based methods [22, 23] divide input images into uniform patches and
process them in parallel with visual encoders, enabling MLLMs to handle arbitrary-resolution
inputs. Concurrently, SEAL [9] considers a more complex challenge of small object perception
in high-resolution images. It introduces both an evaluation benchmark and a guided visual search
mechanism that leverages LLM priors to selectively focus on important regions, effectively improving
visual reasoning ability in complex and crowded high-resolution scenarios. Due to the scarcity of
available training data, subsequent methods [10, 21] have developed training-free pipelines that apply
hierarchical image partitioning to form stepwise reasoning processes. Similarly, attention-based
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Table 1: Comparisons of different benchmarks. The annotation type includes Question (Q), Answer
(A), and object mask. The supported tasks are Multiple-choice Visual Question Answering (MVQA),
Open-ended Visual Question Answering (OVQA), and Instruction-guided Segmentation (IS). For
small object granularity, “Partial” means that the dataset contains some small objects but doesn’t
provide an explicit indication.

Dataset HR Images Annotation Type Sample Num Supported Tasks Small Object Granularity
V∗ [9] ✓ Q&A 191 MVQA ✗
HR-Bench [10] ✓ Q&A 200 MVQA ✗
refCOCOg [20] ✗ Q&Mask 95,010 IS Partial
ReasonSeg [3] ✗ Q&Mask 1,218 IS Partial

Ours (FINERS-4k) ✓ Q&A&Mask 12,132 MVQA&OVQA&IS S/XS/XXS

Question: What color pants is the person sitting 
in the tricycle wearing? (A) Black (B) Blue (C) 
Gray (D) Purple  

Answer: C

Question: What shape is the warning sign on the 
roadside? (A) Circle (B) Rectangle (C) Triangle 
(D) Octagon.

Answer: B

Question: The person wearing a black tank topQuestion: The clock on the right of the bell 
tower. Referring Seg about Position Referring Seg about Color

Option Seg about Shape

Answer:Rectangle

Question: Which country's flag is erected 
on the rooftop?

Answer: France

Open Seg about Others

Question: What is the shape of the billboard 
on the stairs at the bottom left corner?
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Figure 2: Overview of our benchmark. (a) The innermost ring shows three instruction types. The
middle ring presents the mask size distribution within each type. The outermost ring breaks each
type down into four attribute categories: color, shape, position, and others. (b) Visualization of six
representative examples, each illustrating a different attribute category (color, shape, position, others)
across the three instruction types in the outermost ring.

visual intervention methods [1] enhance the perception of small visual details by interpreting and
manipulating internal attention maps of MLLMs. Despite these advancements, existing methods
remain sensitive to heuristic cropping algorithms and still fail to achieve precise object localization.
In this paper, we introduce a large-scale dataset and propose a data-efficient fine-tuning pipeline that
employs reinforcement learning to adapt MLLMs for small object reasoning and segmentation.

Reinforcement Learning for MLLMs. Recently, Reinforcement Learning (RL) [24, 25] has become
a new-emerging technique for enhancing reasoning in large language models, as demonstrated
by OpenAI’s o1 [11] and DeepSeek R1-Zero [12]. Among them, a critic-free algorithm, Group
Relative Policy Optimization (GRPO) [13] is designed to eliminate Supervised Fine-Tuning (SFT) by
directly comparing candidate responses in groups. Inspired by this, Visual-RFT [14] proposes an
RL-based fine-tuning strategy for Large Vision-Language Models (LVLMs), improving performance
on classification and detection tasks using GRPO-based rewards under limited supervision. However,
it is limited to coarse-level tasks such as classification and detection, and does not support fine-grained
segmentation. In contrast, Seg-Zero [16] leverages high-quality box-level rewards within an RL
framework and feeds them into a frozen SAM2 [8] segmentation model, enabling pixel-level visual
perception and reasoning. While it performs well on standard-resolution and regular object scenarios,
challenges remain in small-object segmentation for high-resolution images. Moreover, Seg-Zero
adopts a fixed reward paradigm, making it difficult to generalize to more diverse question-answering
formats, such as open-ended and multiple-choice VQA. Inspired by the success of RFT in vision-
language tasks, we apply RFT to our two-stage MLLM framework, where both localization and
VQA rewards are integrated to boost the unification of object segmentation and VQA. Besides, we
introduce a retrospective reward between two stages for more consistent global-to-local perception.
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3 FINERS-4k Benchmark

To comprehensively evaluate the capacities of MLLMs for instructed-guided ultra-small object
reasoning and segmentation, we construct a new dataset FINERS-4k. Unlike previous high-resolution
benchmarks [9, 10] that are primarily captured by handheld or ground-based cameras under structured
conditions, FINERS-4k comprises images captured by Unmanned Aerial Vehicles (UAVs). This
enables a much wider field-of-view and introduces complex visual challenges such as dense layouts,
extreme variations in object scale, and small-object sparsity.

We begin by collecting 4k-resolution drone videos (3840× 2060) from YouTube and our own UAV
footage. Volunteers are then tasked with filtering high-quality frames and annotating small objects
with a triplet annotation consisting of question, answer, and mask. Considering the difficulty in
annotating ultra-small objects in high resolution images, annotators were primarily instructed to
identify a single, unambiguous small object of interest from the image and compose questions that
uniquely specify it (e.g., referencing color, shape, position, or context). For several cases with
multiple similar objects, they were required to formulate disambiguating questions and to visually
inspect the entire image to ensure no other object matched the same description. The annotation
was completed by 14 volunteers, organized in pairs for mutual cross-checking. In addition, a team
of 4 senior reviewers conducted a final round of quality assurance to correct ambiguities and verify
consistency. This multi-stage validation process was designed to maximize precision and minimize
annotation bias. This process results in 8,411 annotated small entities across 4,563 high-resolution
images, yielding a total of 12,132 text-mask pairs. Specifically, we divide them into train set (8,956),
validation set (749), and test set (2,427). The overall comparison of our FINERS-4k and other datasets
is illustrated in Tab. 1.

Fig. 2 illustrates a detailed analysis of the distribution of task type and object sizes. As shown in
the innermost ring of Fig. 2 (a), FINERS-4k provides instructions for three sub-tasks, including 1)
Instruction-guided Segmentation (IS, 39%) that requires generating a mask based on the instruction;
2) Multiple-choice VQA (MVQA, 30.5%) that involves predicting both a segmentation mask and
an option based on the option-given instruction; and 3) Open-ended VQA (OVQA, 30.5%) that
requires producing both a mask along and a free-form answer. Each entity is bound to at least one
instruction type. We further classify object size into three categories based on their proportion to
the entire image area: small (S, >0.055%), extra small (XS, 0.017%–0.055%), and extra-extra small
(XXS, < 0.017%). The distribution of these object sizes across task types is shown in the second ring
of Fig. 2 (a). The outermost ring illustrates the types of attribute-specific instructions, including color,
shape, position, and other distributions. Combining the three task types and four attribute types yields
12 distinct instruction-task combinations, with the numbers indicating the annotated instance count
for each sub-task. Fig. 2 (b) illustrates the visual examples of different tasks in FINERS-4k. More
detailed analysis about object size and spatial distribution can be found in Fig. A1.

4 Methodology

4.1 Preliminary

Task Definition. Given an image I and a user instruction Q, MLLMs [4, 2] are capable of jointly
understanding visual and textual input to generate appropriate responses Apre. The objective of
instruction-guided segmentation [3, 16] is to predict a segmentation mask Mpre based on the image
I and instruction Q. In contrast, our method unifies these two tasks into a single framework,
(I,Q) → (Apre,Mpre), enabling simultaneous instruction-guided segmentation, open-ended VQA,
and multiple-choice VQA.

GRPO for Visual Perception. Visual-RFT [14] and Seg-Zero [16] extend the GRPO [13] framework
to visual perception tasks by introducing task-specific rewards. Given an input image I and instruction
Q, the model generates n candidate predictions of the expected output, each of which is compared
against ground-truth coordinates to compute individual rewards. GRPO then performs group-wise
normalization over these rewards, guiding the model to favor perceptually accurate outputs, even in
the absence of reasoning data during cold-start training. This approach enables more effective visual
alignment and improves the generalization capability of MLLMs for object detection, classification,
and referring segmentation.
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Figure 3: Framework overview of FINERS. (a) During training, we design specific reward functions
to train GSE and LPR, where the LPR is optimized first and adopted to form a retrospective reward
to enhance the coarse region accuracy of GSE. (b) During inference, GSE takes a high-resolution
image and user instructions as input and produces an answer and a coarse region containing referred
objects. Then, LPR processes the instruction and coarse region to generate the object box and adopts
SAM2 [8] to generate the final mask. (c) To unify VQA and segmentation into a single MLLM, we
design a multi-task reward pool and assign the items to supervise GSE and LPR.

4.2 Overall Framework of FINERS

The overall framework of FINERS is illustrated in Fig. 3. It consists of a two-stage MLLM pipeline,
comprising Global Semantic Exploration (GSE) and Localized Perceptual Refinement (LPR). Unlike
prior high-resolution MLLMs [10, 21] that rely on complex search strategies across multiple cropped
image patches, our framework is designed to produce both textual responses and object segmentation
masks through a single feedforward pass. As shown in Fig. 3 (a), during training, GSE and LPR
are optimized independently with specially designed rewards to facilitate perception at different
levels of granularity. We introduce a locate-informed retrospective reward, which leverages LPR to
select a robust coarse region, enhancing the global exploration precision of GSE. The detailed reward
formulations for both modules are shown in Fig. 3 (c). During inference, as shown in Fig. 3 (b), only
the original high-resolution image and user instruction are fed into GSE, which directly outputs the
coarse box Bpre

r and the text response Apre. The GSE stage can be formulated as:

(Bpre
r , Apre) = G(θGSE(I,Q)), (1)

where G represents a post-processing function to extract the keywords of the long response. To
constrain the search space of Bpre

r , we set a fixed box size to optimize only the center offsets. The
coarse box indicates an enlarged region around the referred object, which will subsequently be passed
to LPR for object localization and mask generation. In the second stage, LPR first crops the original
image based on Bpre

r to obtain a lower-resolution input Ic, and performs local reasoning to generate
bounding boxes Bpre and points P pre

1 , P pre
2 . The LPR stage can be formulated as:

(Bpre, P pre
1 , P pre

2 ) = G(θLPR(Ic, Q)). (2)

Finally, the generated boxes and points are passed to the frozen SAM2 [8] to produce the segmentation
mask Mpre for the target object.

4.3 Training Pipeline

The comparison in Tab. 1 illustrates that the number of samples in existing high-resolution benchmarks
is substantially lower than that of standard-resolution datasets. To avoid data overload of supervised
fine-tuning, we exploit a recent vision reinforcement learning strategy to enhance the reasoning
capacities of two-stage MLLMs. The training process is illustrated in Fig. 3 (a). Specifically, we train
our FINERS model with the GRPO algorithm in two stages. First, the coarse-grained LPR module is
trained with LPR rewards to generate the object box from a local image crop. Then, the GSE module
is optimized using a combination of GSE rewards and a locate-informed retrospective reward guided
by the LPR module. In addition, a standard KL divergence penalty is applied between the policy and
the reference model.
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❶ Refinement Stage for Masks. The supervised annotations for LPR training include bounding
boxes Bgt, points P gt

1 and P gt
2 , and text responses Agt, all derived from the masks and answer

annotations provided in training data. The <think> process originates from a prompt-based cold start
and is supervised using the <think> format. Notably, since LPR is designed to focus on fine-grained
perception within lower-resolution regions, it is trained on image patches that are randomly cropped
around the ground-truth bounding boxes.

❷ Coarse Region Selection with LPR. Unlike LPR, the coarse region of GSE lacks explicit ground
truth supervision for reward calculation. To address this, we design a locate-informed retrospective
reward that uses the outputs of LPR to provide robust coarse region supervision for GSE. Specifically,
for each training sample, we first generate n randomly offset coarse regions that cover the GT
bounding box Bgt. We then compute the IoU score between the LPR-predicted boxes Bpre and the
ground-truth boxes, selecting the region with the highest IoU as the GT regions Bgt

r for training the
GSE module.

❸ Global Stage for Coarse Region. Due to the complex scenes in high-resolution images, which
make it challenging for the model to focus on small targets, the GSE model is designed to generate
approximate regions where small targets are likely to exist, based on the instruction context. Therefore,
the training data for GSE consists of high-resolution images annotated with the optimal regions Bgt

r
selected by LPR and corresponding ground-truth answer labels Agt.

4.4 Reward Functions

Inspired by the reward functions of the GRPO strategy, we design distinct reward functions at different
levels of granularity for the LPR and GSE modules.

Rewards for LPR. The rewards for LPR include Point L1 Rpoint, Box L1 RbL1 , Box IoU RbIoU ,
JSON-1 format Rformat1, Think format Rthink, and Q&A Accuracy Rresponse. Among these
functions, Rpoint, RbL1 , and RbIoU are computed based on the predicted boxes Bpre, predicted
points P pre, GT boxes Bgt and GT points P gt, to enforce spatial alignment between predictions
and ground-truth annotations. The JSON-1 format reward Rformat1 is only considered correct if the
model outputs exact keywords {bbox, points 1, points 2, response} in the required structure. The
response reward Rresponse for the final response Apre is defined as:

Rresponse =

{
1 , if Apre is True,
0 , if Apre is False, (3)

where the criteria for determining whether Apre is correct vary across task settings. For instruction-
guided segmentation, the response is considered correct if it includes phrases like “is detected” or
“is found”. In the multiple-choice VQA setting, the response is correct if it exactly matches the
ground-truth option. In the open-ended VQA setting, the response is deemed correct if the fuzzy
matching similarity to the ground-truth answer exceeds 0.8. The final reward of LPR is computed as:

RLPR = RbIoU +RbL1 +Rpoint +Rformat1 +Rresponse +Rthink. (4)

Rewards for GSE. Unlike LPR, the reward functions for GSE are designed to encourage alignment
between the predicted coarse region Bpre

r and the ground-truth region Bgt
r selected by LPR. Specif-

ically, we name this reward as locate-informed retrospective reward that consists of a region IoU
reward RregionIoU and a region L1 RregionL1 between the predicted and GT regions Bpre

r , Bgt
r . Since

this stage focuses solely on contextual regions rather than fine-grained localization, the point-level
reward is omitted, and the output JSON format is updated to a new template as {region, response}.
Additionally, to ensure that the predicted regions are compatible with the input size expected by the
LPR module and sufficiently cover the target object, we introduce a region size Rsize reward and a
box-in-region Rcover reward. They encourage the model to generate regions of appropriate size and
position, aligned with those used during LPR training. The think format and Q&A accuracy rewards
are kept consistent with those used in LPR. The final reward of GSE is computed as:

RGSE = RregionIoU +RregionL1 +Rsize +Rcover +Rformat2 +Rresponse +Rthink. (5)
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Table 2: Performance comparison on the test set of FINERS-4k. “†” indicates that the corresponding
method is retrained with our dataset. We label the best results with a bold style.

IoU (gIoU/cIoU) QA Acc. (MVQA/OVQA)Method S xS xxS All Color Shape Others Position All

Training-free
LISA 7B [3] 19.1/6.49 8.28/1.20 4.19/0.34 9.00/2.38 0.00/6.11 0.00/0.00 0.00/9.37 0.00/16.7 0.00/5.51
LISA 13B [3] 16.4/3.86 7.02/0.73 2.55/0.18 7.29/1.42 0.00/6.46 0.00/6.55 0.00/9.37 0.00/5.55 0.00/6.58
LISA++ 7B [17] 25.9/12.3 13.5/2.90 3.70/0.70 12.3/5.20 5.90/9.79 0.82/1.63 35.7/6.24 26.3/5.55 6.72/8.19
PixelLM 7B [19] 13.6/6.70 3.30/1.10 0.50/0.10 4.40/2.10 0.00/4.56 0.82/0.09 3.57/9.31 0.09/5.55 0.27/4.05
SEAL [9] – – – – 7.46/3.14 8.26/0.03 7.14/15.6 5.26/16.7 7.53/3.49
DC2 [10] – – – – 39.0/19.5 36.3/9.00 57.1/21.8 36.8/16.6 39.2/17.8
MLLMs-Know 7B [1] – – – – 52.8/50.2 45.5/32.0 60.7/34.4 36.8/5.56 51.5/45.4
MLLMs-Know 13B [1] – – – – 56.1/54.0 36.4/32.0 67.9/37.5 26.3/16.7 52.6/48.8
MLLMs-Know 7B [1] + LISA 7B [3] 21.2/19.2 15.0/7.95 11.3/4.50 14.9/12.5 52.8/50.2 45.5/32.0 60.7/34.4 36.8/5.56 51.5/45.4
MLLMs-Know 13B [1] + LISA 13B [3] 27.0/20.3 18.3/9.29 12.4/3.62 17.9/12.8 56.1/54.0 36.4/32.0 67.9/37.5 26.3/16.7 52.6/48.8
Seg-Zero 7B [16] 55.9/18.6 34.7/4.94 16.5/0.84 32.1/6.61 – – – – –
Training
LISA† 7B [3] 13.0/9.62 15.0/11.4 8.78/5.59 12.1/9.64 23.9/24.3 24.8/18.6 25.0/6.2 21.1/0.0 23.9/22.0
PixelLM† 7B [19] 1.27/1.02 0.52/0.35 0.08/0.02 0.16/0.13 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
MLLMs-Know 7B [1] + LISA† 7B [3] 1.32/1.16 2.08/1.90 2.85/3.15 2.22/1.57 52.8/50.2 45.5/32.0 60.7/34.4 36.8/5.56 51.5/45.4
Seg-zero† 7B [16] 61.8/50.5 53.0/30.2 31.7/20.7 46.6/38.6 – – – – –

Ours (FINERS) 7B 62.2/52.6 59.0/43.1 47.2/27.5 55.1/46.5 85.8/60.5 76.0/49.2 78.6/34.4 63.2/27.8 83.3/56.7

5 Experiments

5.1 Experimental Settings

Implementation Details. Our two-stage MLLMs are built upon Qwen2.5-VL-7B [2], with input
resolution of 1920 × 1080 for GSE and 512 × 512 for LPR. The output coarse region of GSE is
256× 256, which will be 2× upsampled before being fed into LPR. The whole model is trained on a
4×A800 GPU (80G) setup using the Seg-Zero [16] and DeepSpeed [12] library. During training, the
GSE module uses a total batch size of 16 with 8 samples per training step, while the LPR module
uses a total batch size of 32, also with 8 samples per step. For both stages, the initial learning rate is
set to 1e-6 and the weight decay is 0.01. In addition, we adopt SAM2 [8] for box-to-mask generation,
which is kept frozen during training. The user prompts for GSE and LPR across three tasks are
presented in Fig. A3 and Fig. A4.

Evaluation Metrics. Following previous works [26, 27], we calculate gIoU and cIoU for instruction-
guided segmentation. The gIoU is the average of all per-image Intersection-over-Unions (IoUs),
while the cIoU calculates the cumulative intersection over the cumulative union. We evaluate cIoU
and gIoU metrics across different object sizes. In addition, we calculate the accuracy of multiple-
choice (MVQA) and open-ended (OVQA) visual question answering using option accuracy and the
“difflib.SequenceMatcher” algorithm, with a matching threshold set to 0.8.

5.2 Comparison with State-of-the-art Methods

We evaluate FINERS and other methods on our FINERS dataset across three tasks, including
instruction-guided segmentation, open-ended VQA, and multiple-choice VQA.

❶ Comparison on FINERS-4k. The comparison results on the test and validation sets of our FINERS-
4k are illustrated in Tab. 2 and Tab. A1, respectively. We report both training-free approaches and
selected retrained methods in our dataset. As shown, our model consistently outperforms state-of-
the-art segmentation approaches and high-resolution VQA methods. Note that the IoU scores are
computed on all samples from the three instruction types, while QA accuracy is calculated only on
the samples of MVQA and OVQA. The performance drop of LISA [3] and PixelLM [19] likely arises
from the domain shift and task complexity of FINERS-4k, which contains 4K UAV imagery with
ultra-small, sparse objects. All baselines are fine-tuned on FINERS-4k under the same settings. In
this low-data, high-resolution regime, fixed-architecture models tend to overfit or underfit.

❷ Comparison on Other VQA Datasets. We also conduct a comparison with other approaches
on public high-resolution VQA datasets, including V* [9] and HR-Bench [10]. Compared with
our benchmark, these datasets are captured in a general, non-UVA perception with optional VAQ
annotations. As shown in Tab. 3, without an additional finetuning process, our model achieves
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Table 3: Performance comparison on other high-resolution VQA benchmarks. “Attr.” and “Spat.”
denote attribute and spatial, respectively. We label the best methods with a bold style.

V∗ HR-Bench 4K HR-Bench 8KMethod Segmentation Attr. Spat. Overall FSP FCP Avg. FSP FCP Avg.

SEAL [9] ✗ 74.8 76.3 75.4 47.0 29.3 38.1 42.5 28.8 35.6
Mllms-Know [1] ✗ – – 62.3 52.4 30.2 41.3 47.2 30.7 38.9
VILA-HD-1.5K [28] ✗ – – 68.1 – – – – – –
VILA-HD-4K [28] ✗ – – 71.2 – – – – – –
DC2 [10] ✗ – – 57.3 53.0 47.0 50.0 37.2 44.2 40.8

Ours (FINERS) ✓ 76.5 79.0 77.5 66.4 61.2 63.8 60.2 55.9 58.1

Figure 4: Visual results on Open-ended VQA (OVQA), Multiple-choice VQA (MVQA), and
Instruction-guided Segmentation (IS). The listed images are sampled from FINERS-4k test set.

significantly better accuracy in non-UVA scenarios from 4k to 8k resolutions. Note that SEAL [9] is
the model proposed in the V* benchmark.

❸ Visualization Results. Representative visual results for all three tasks are provided in Fig. 4.
As shown, the proposed two-stage framework is effective in locating tiny objects from a cluttered
background and generating accurate open-ended or optional answers from the textual instructions.

5.3 Ablation Study

Tab. 4 illustrates the evaluation results by separately removing the key components from the whole
framework. To validate the efficacy of retrospective reward, we replace the LPR-informed coarse
regions with a random crop centered around the GT object to supervise the GSE for coarse box
generation. The result of “w/o Restrospective Reward” demonstrates the effectiveness of this design.
To mitigate the sensitivity of LPR to input box variations, we apply a box augmentation strategy
during LPR training. The improvement observed in “w/o Random Input Region in LPR” verifies
the efficacy of this data augmentation strategy. In contrast to [16], our FINERS can generate exact
text answers to user questions, which requires the incorporation of a QA accuracy reward during
training. The performance drop in “w/o QA Acc. Reward” supports the importance of this component.
More detailed analysis on this reward can be found in Tab. A2. In GSE, we use extra box rewards
to facilitate the optimization of coarse region generation. The ablation results of “w/o Box Size
Reward” and “w/o Box-in-region Reward” demonstrate the positive impact of these rewards on model
performance.
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Table 4: Ablation studies about the proposed components on FINERS-4k.

Test set Val setDifferent Settings gIoU cIoU MVQA OVQA gIoU cIoU MVQA OVQA

FINERS 55.1 46.5 83.3 56.7 49.9 39.4 87.2 60.0
w/o Retrospective Reward 54.0 44.0 82.3 53.0 49.4 38.0 86.2 55.8
w/o Random Input Region in LPR 53.9 46.7 83.7 61.9 48.7 39.4 84.8 59.4
w/o QA Acc. Reward 52.8 45.7 – – 48.6 33.7 – –
w/o Box Size Reward 51.0 43.4 56.5 40.8 44.5 35.8 78.4 56.4
w/o Box-in-region Reward 50.1 42.0 56.5 40.8 44.1 34.2 77.9 55.7

6 Discussion

In this paper, we aim to resolve the fine-grained reasoning and segmentation of ultra-small objects in
high-resolution images. We introduce 1) FINERS, a two-stage MLLM-based reinforcement learning
framework that combines global semantic exploration with localized perceptual refinement; and 2)
FINERS-4k, a new dataset featuring challenging scenes annotated with text-mask pairs across three
types of tasks. Extensive experiments on FINERS-4k and other public benchmarks demonstrate the
superiority of the proposed method in both answering accuracy and segmentation precision.

Although our method made an early attempt to apply reinforcement learning for joint object reasoning
and segmentation, several limitations remain in the current architecture. First, the localization
accuracy of LPR is highly dependent on the output coarse region of GSE. The text answer and object
box will be incorrect if the GT object exceeds the coarse region. Incorporating an additional signal
for object existence and enabling re-exploration could help mitigate such missed detection errors.
Second, due to memory constraints, the two-stage models are not jointly optimized during training.
Designing a more efficient architecture for jointly end-to-end training of two stages remains an
important future direction.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The motivations and contributions of this paper is highly summarized in our
abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper focuses on the application of MLLMs without theoretical compo-
nents.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have included the implementation details and will provide the code, models,
and dataset once publication.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We promise to release the code and data after acceptance.

Guidelines:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We clarify the experiment details in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have discussed the metrics in experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have claimed the used computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have checked it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Our data comes from Internet videos or videos shot by ourselves, and there is
no copyright dispute. We mosaic the sensitive data to prevent privacy leakage.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The baseline code used are open-source from Inertnet.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have processed the data to avoid this issue.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our method used MLLMs as baseline for image reasoning and segmentation.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

In this section, we provide additional figures and tables of the analysis on the proposed method and
benchmark.

A.1 More Analysis on FINERS-4k

In this paper, we introduce a new dataset, FINERS-4k, which consists of high-resolution images
containing ultra-small objects with diverse spatial distributions. Fig. A1 illustrates the detailed
distribution of object sizes and spatial locations across all samples in the training, validation, and test
sets. As shown, our dataset exhibits more challenging scenarios with extra-small objects and sparse
distributions.
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Figure A1: (a) Distribution of mask sizes across three subsets, where the x-axis indicates the ratio
of the mask area to the entire image. (b) Spatial division of the image into three regions — center,
middle, and border—based on the location of the mask. (c) Distribution of mask locations across
three subsets.

A.2 Rewards Definition Details

In Eq. 4 and Eq. 5, we introduce several rewards for LPR and GSE modules. Specifically, the detailed
definitions of each rewards in Eq. 4 are:

• Rpoint = 1 if L1 distance between predicted point and GT point is less than 100 pixels.
• RbL1 = 1 if the L1 distance between the predicted box and GT box is less than 10 pixels.
• RbIoU = 1 if their IoU is greater than 0.5.
• Rresponse is set to 1 if the predicted answer is correct (exact match for multiple choice,

fuzzy match for open-ended QA).
• Rformat and Rthink are binary rewards that verify whether the output adheres to the

expected JSON and reasoning formats.

In Eq. 5:

• RregionL1 = 1 if the L1 distance between the predicted coarse box Bpre
r and GT region Bgt

r
is less than 10 pixels.

• RregionIoU = 1 if their IoU is greater than 0.5; Rsize is 1 when the predicted coarse box is
of size 512× 512.

• Rcover is 1 when the ground-truth object lies fully inside the predicted region.

We assign equal weights to all binary terms, following standard GRPO practices [16, 14], which
yielded stable performance without tuning.

A.3 More Comparison Results

Tab. A1 illustrates the comparison results on the validation set of FINERS-4k. While our method
performs slightly lower than SegZero on small-sized objects, it significantly outperforms SegZero
on xs and xxs objects. More importantly, our method supports VQA tasks and outperforms other
approaches in this setting. Additional qualitative results produced by our method are shown in
Fig. A2.
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Table A1: Performance comparison on the validation set of FINERS-4k. “†” indicates that the
corresponding method is retrained with our dataset. We label the best results with a bold style.

IoU (gIoU/cIoU) QA Acc. (Option/Open)Method S xS xxS All Color Shape Others Position All

Training-free
LISA 7B [3] 14.3/2.91 6.40/1.06 3.54/0.36 6.58/1.65 0.00/15.1 0.00/0.00 0.00/0.00 0.00/16.7 0.00/11.6
LISA 13B [3] 12.1/2.42 4.10/0.58 1.21/0.14 4.28/1.10 0.00/19.4 0.00/2.22 0.00/0.00 0.00/16.7 0.00/15.2
LISA++ 7B [17] 25.0/7.10 8.80/2.10 2.30/0.60 8.91/3.72 4.86/16.7 4.86/0.00 4.00/7.80 8.33/16.7 5.99/13.2
PixelLM 7B [19] 10.5/3.31 3.30/1.00 0.42/0.13 3.31/1.60 0.00/3.78 0.00/2.22 0.00/0.00 0.00/0.00 0.00/3.21
SEAL [9] – – – – 2.16/9.68 6.98/0.00 0.00/0.00 8.33/33.3 3.20/7.80
DC2 [10] – – – – 34.6/21.0 25.6/6.67 40.0/0.00 33.3/16.7 33.2/17.2
MLLMs-Know 7B [1] – – – – 46.5/50.0 44.2/37.8 80.0/38.5 41.7/50.0 47.2/47.2
MLLMs-Know 13B [1] – – – – 50.3/51.1 32.6/26.7 80.0/23.1 91.766.7 50.4/45.6
MLLMs-Know 7B [1] + LISA 7B [3] 17.1/11.2 8.94/4.64 8.98/2.78 10.4/7.07 46.5/50.0 44.2/37.8 80.0/38.5 41.7/50.0 47.2/47.2
MLLMs-Know 13B [1] +LISA 13B [3] 23.2/16.0 13.5/6.01 9.57/2.55 13.6/9.16 50.3/51.1 32.6/26.7 80.0/23.1 91.7/66.7 50.4/45.6
Seg-zero 7B [16] 56.5/24.6 28.0/3.75 13.8/1.41 27.0/7.49 – – – – –
Training
LISA† 7B [3] 14.0/10.8 9.92/7.70 7.27/4.52 9.50/8.62 4.86/16.7 2.32/0.00 39.99/7.698.33/16.7 5.99/13.2
PixelLM† 7B [19] 1.27/1.02 0.52/0.35 0.08/0.02 0.16/0.13 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
MLLMs-Know 7B [1] + LISA† 7B [3] 1.10/0.72 1.44/1.40 1.77/1.84 1.52/1.05 46.5/50.0 44.2/37.8 80.0/38.5 41.7/50.0 47.2/47.2
Seg-zero† 7B [16] 67.2/63.8 45.8/15.8 30.2/16.9 42.9/31.3 – – – – –

Ours (FINERS) 7B 64.8/55.3 50.8/27.1 42.5/21.0 49.7/38.6 85.4/65.6 88.4/46.7 100/30.8 91.7/66.7 86.8/60.4

Figure A2: More visual results on Open-ended VQA (OVQA), Multiple-choice VQA (MVQA), and
Instruction-guided Segmentation (IS). The listed images are sampled from FINERS-4k test set.

A.4 More Ablation Studies

QA Rewards in Different Stages. Tab. A2 illustrates the ablation results on the effectiveness of
QA accuracy reward and the two-stage designs. To evaluate the efficacy of our two-stage design, we
remove the LPR stage and modify the GSE to directly generate object bounding boxes (i.e., Bpre in
Eq. 2. This baseline, “One Stage xx”, can be seen as a higher-resolution version of SegZero [16].
From the comparison results, we can observe that the proposed two-stage coarse-to-fine framework
is significantly effective in improving the localization precision of small objects. We also verify
the effect of QA accuracy reward in GSE and LPR. The comparison results between “GSE w/o QA
Acc. & LPR w/o QA Acc.” and “FINERS” demonstrate that the incorporation of additional VQA
ability can effectively enhance the segmentation accuracy on small objects. Besides, the comparison
between “GSE w/ QA Acc. & LPR w/o QA Acc.” and “GSE w/o QA Acc. & LPR w/ QA Acc.”
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demonstrates that the textual response on GSE shows better performance due to the exploration of
global visual information.

Table A2: Ablation study about QA accuracy reward.

Test set Val setMethod gIoU cIoU Option Open gIoU cIoU Option Open

One Stage w/o QA Acc. 46.6 38.6 – – 41.6 31.3 – –
One Stage with QA Acc. 42.3 41.8 84.4 58.2 40.1 37.6 88.5 63.6
GSE w/o QA Acc. & LPR w/o QA Acc. 52.8 45.7 – – 48.6 37.7 – –
GSE w/ QA Acc. & LPR w/o QA Acc. 53.7 46.2 83.3 56.7 49.2 38.2 87.2 60.0
GSE w/o QA Acc. & LPR w/ QA Acc. 54.4 46.0 56.2 39.1 48.1 38.2 55.6 40.4
FINERS 55.1 46.5 83.3 56.7 49.9 39.4 87.2 60.0

Table A3: Hyper-parameter sensitivity analysis on FIN-
ERS-4k test set.

Hyper-parameters gIoU cIoU Option Open

Group 8 55.1 46.5 83.3 56.7
Group 6 54.3 43.7 82.6 53.5
Group 4 52.4 43.9 82.9 55.7
KL 5e-3 55.1 46.5 83.3 56.7
KL 5e-2 54.4 46.1 82.9 55.8
Seed 42 55.1 46.5 83.3 56.7
Seed 48 53.9 45.4 82.0 56.2
Seed 80 55.1 47.6 82.9 55.7

Effects on Hyper-parameters. In our ex-
periments, all hyper-parameters are set to
the default values in [16] without specific
tuning. We conduct a sensitivity analysis
on key hyper-parameters, including group-
ing n, KL weight, and seeds. Tab. A3 illus-
trates the representative hyper-parameter
results on FINERS-4k test set, which are
consistent with SegZero. For a fair compar-
ison, we did not perform expensive hyper-
parameter tuning.

Efficiency Comparison. We report the average wall-clock inference time for 4k-resolution inputs in
Tab. A4. All models were evaluated on a single A100 GPU with consistent runtime environments. As
shown, compared to SEAL [9] and DC2 [10], our method and Seg-Zero [16] exhibit higher inference
latency due to the use of CoT reasoning. Despite our two-stage framework requires extra inference
time, this design is essential for achieving precise reasoning and segmentation of ultra-small objects
in high-resolution scenes.

Table A4: Inference latency and performance of different methods.

FINERS-4k test set HR-bench 4kMethod gIoU/cIoU/MVQA/OVQA Time (s/img) QA Acc. Time (s/img)

SEAL 7B [9] –/–/7.53/3.49 1.21 38.1 1.15
DC2 7B [10] –/–/39.2/17.8 2.69 50.0 2.90
SegZero† 7B [16] 46.4/38.6/–/– 8.67 – –

Ours (FINERS) 7B 55.1/46.5/83.3/56.7 7.31 (GSE) + 5.57 (LPR&SAM2) 63.8 6.35 (GSE only)

Domain Generalization on ReasonSeg [3]. We evaluate our model on ReasonSeg in a zero-shot
manner to verify its generalization on non-UVA scenarios. ReasonSeg contains ground-level daily
scenes with moderate-to-large object sizes, significantly different from aerial, ultra-high-resolution
imagery and ultra-small objects focus of FINERS-4k. We categorize test samples by mask-to-image
area ratio into Large ( 50%), Middle (10–50%), and Small ( 10%). Notably, ReasonSeg’s “Small”
objects are still much larger than FineRS-4k’s (<1%), introducing a challenging domain and scale
gap. Despite this, as shown in Tab. A5, our two-stage model achieves better gIoU on Small objects,
outperforming finetuned baselines like LISA† and Seg-Zero†. This confirms the effectiveness of our
coarse-to-fine strategy in segmenting small targets, even under mismatched resolution and context.
Moreover, we find that our LPR shows strong adaptability across all sizes and outperforms other
methods even without domain-specific finetuning, highlighting its robustness.

Results on Other Baselines. We evaluate our two-stage framework based on Qwen-3b [2], and
the results are reported in Tab. A6. As observed, employing a smaller backbone leads to noticeable
performance degradation, particularly on small objects. Nevertheless, our method still surpasses
SegZero [16] under the same backbone configuration, demonstrating its superior adaptability and
robustness.
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Table A5: Performance on the ReasonSeg test set (IoU: gIoU / cIoU). Results are grouped by object
size. Notely, “†” denotes the corresponding methods are finetuned with FineRS-4k without pretraining
on large-scale referring segmentation datasets. “Resize” means we directly resize ReasonSeg image
to meet our model’s require (1920 × 1080). “Padding” means that the low-resolution image are
padded to meet our model’s resolution.

Method Large (316 samples) Middle (388 samples) Small (72 samples) ALL

Ours (FINERS) 7B (Resize) 25.2 / 4.92 41.4 / 15.6 42.3 / 7.12 35.0 / 7.16
Ours (FINERS) 7B (Padding) 27.5 / 5.02 43.2 / 16.1 40.0 / 9.42 36.1 / 7.52
LPR only 59.0 / 52.4 54.4 / 35.3 45.7 / 24.6 56.6 / 42.1
SegZero† 7B [16] 49.3 / 41.7 46.1 / 30.9 35.8 / 15.4 47.1 / 38.8
SegZero 7B [16] 65.3 / 55.2 53.5 / 31.4 39.0 / 16.0 57.5 / 52.0
LISA† 7B [3] 0.44 / 0.34 4.08 / 1.38 8.14 / 1.12 2.98 / 0.55
LISA 7B [3] 55.3 / 56.7 34.2 / 26.9 20.3 / 24.8 48.7 / 48.8

Table A6: Performance comparison on the test set of FINERS-4k using Qwen2.5-VL (3b). “†”
indicates that the corresponding method is retrained with our dataset.

IoU (gIoU/cIoU) QA Acc. (Option/Open)Method S xS xxS All Color Shape Others Position All

Seg-zero† 3B [16] 57.7/45.3 47.4/22.8 26.3/0.86 41.6/29.5 – – – – –
Ours (FINERS) 3B 57.3/45.4 53.8/23.3 43.0/9.86 50.4/29.9 65.6/50.5 68.5/41.0 60.7/21.8 52.6/22.2 65.6/47.0

A.5 User Prompt for FINERS

Fig. A3 and Fig. A4 illustrate the user prompts of Global Semantic Exploration (GSE) and Localized
Proceptual Refinement (LPR) modules across three tasks, including Instruction-guided Segmentation
(IS), Open-ended VQA (OVQA), and Multiple-choice VQA (MVQA).

Prompt for IS

Prompt for MVQA

Prompt for OVQA

" Based on the '{Question}', identify a 256*256 bounding box that best localizes the region most relevant to the query.     
And respond with whether the object is found. "
" Compare the difference between regions and find the most closely matched one. "
" Output the thinking process in <\think> and final answer in <\answer> <\answer> tags. "
" Output the 256*256 region bbox and the final response inside the interested object in JSON format. "
" i.e., <think> thinking process here <\think> "
" <answer>{'bbox' : [x_min,y_min,x_min+256,y_min+256] , response: 'The object is here.' }<\answer>"

" Compare the difference between regions and find the most closely matched one. "
" Output the thinking process in <\think> and final answer in <\answer> <\answer> tags. "
" Output the 256*256 region bbox and the final response inside the interested object in JSON format. "
" i.e., <think> thinking process here <\think> "
" <answer>'bbox' : [x_min,y_min,x_min+256,y_min+256], response: 'The cat is white.' }<\answer>"

" Compare the difference between regions and find the most closely matched one. "
" Output the thinking process in <\think> and final answer in <\answer> <\answer> tags. "
" Output the 256*256 region bbox and the final response inside the interested object in JSON format. "
" i.e., <think> thinking process here <\think> "
" <answer>'bbox' : [x_min,y_min,x_min+256,y_min+256], response: 'A' }<\answer>"

" Based on the '{Question}', identify a 256*256 bounding box that best localizes the region most relevant to the query.     
And give me a final response with a word or phrase. "

" Based on the '{Question}', identify a 256*256 bounding box that best localizes the region most relevant to the query.     
And give me a correct option from {Options}. "

Figure A3: User prompt for GSE module.
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Prompt for IS

Prompt for MVQA

Prompt for OVQA

" Please find '{Question}' with bbox and points. And respond with whether the target is found."

" Compare the difference between objects and find the most closely matched one. "
" Output the thinking process in <\think> and final answer in <\answer> <\answer> tags. "

" Output the one bbox and center points of two largest inscribed circles inside the interested object in JSON format. "

" i.e., <think> thinking process here <\think> "
" <answer>{'bbox' : [10,100,200,210], 'points 1' : [30,110], 'points 2' : [35,180] , response: 'The object is here.' }<\answer>"

" Please find '{Question}' with bbox and points. And give me a final response with a word or phrase."
" Compare the difference between objects and find the most closely matched one. "
" Output the thinking process in <\think> and final answer in <\answer> <\answer> tags. "
" Output the one bbox and center points of two largest inscribed circles inside the interested object in JSON format. "
" i.e., <think> thinking process here <\think> "
" <answer>'bbox' : [10,100,200,210], 'points 1' : [30,110], 'points 2' : [35,180] , response: 'The cat is white.' }<\answer>"

" Please find ' {Question} ' with bbox and points. And give me a correct option from {options}."

" Compare the difference between objects and find the most closely matched one. "
" Output the thinking process in <\think> and final answer in <\answer> <\answer> tags. "
" Output the one bbox and center points of two largest inscribed circles inside the interested object in JSON format. "
" i.e., <think> thinking process here <\think> "
" <answer>'bbox' : [10,100,200,210], 'points 1' : [30,110], 'points 2' : [35,180] , response: 'A' }<\answer>"

Figure A4: User prompt for LPR module.
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