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The dynamic portfolio construction problem requires dynamic modeling of the joint distribution 
of multivariate stock returns. To achieve this, we propose a dynamic generative factor model 
which uses random variable transformation as an implicit way of distribution modeling and 
relies on the Attention-GRU network for dynamic learning and forecasting. The proposed model 
captures the dynamic dependence among multivariate stock returns, especially focusing on the 
tail-side properties. We also propose a two-step iterative algorithm to train the model and then 
predict the time-varying model parameters, including the time-invariant tail parameters. At each 
investment date, we can easily simulate new samples from the learned generative model, and 
we further perform CVaR portfolio optimization with the simulated samples to form a dynamic 
portfolio strategy. The numerical experiment on stock data shows that our model leads to wiser 
investments that promise higher reward-risk ratios and present lower tail risks.

1. Introduction

In the portfolio construction problem, one seeks optimal weights invested in stocks and aims for a favored portfolio with a high 
reward and a low risk. A well-known model-free portfolio strategy is the equal weight (EW) diversification method which requires 
no extra work to allocate the weights. Actually, DeMiguel et al. (2009) claimed that there was no method consistently outperforming 
this naive diversification method on all datasets. Besides, the passive index-tracking method also serves as an effective strategy and as 
a benchmark (Gaivoronski et al., 2005; Beasley et al., 2003; Sant’Anna et al., 2017). Other methods for dynamic investing, however, 
rely on dynamic forecasting of the future stock returns or require time-dependent model specifications (if a model is used to describe 
the stock returns). There have been enduring efforts to model the dynamic evolution of stock returns, most of which rely on some 
distributional assumptions.

For example, with the multivariate Gaussian distribution assumption, some time series models are able to capture the dynamic 
patterns of returns, especially the time-dependent structure of the covariance matrix. The most popular model for dynamic covariance 
matrix might be the dynamic conditional correlation (DCC) model proposed by Engle (2002). DCC model fits a GARCH(1,1) process 
to the individual volatility and assumes a similar auto-regressive evolution for the conditional correlation matrix. Despite the clever 
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formulation of DCC model, it still suffers from the curse of dimensionality due to the estimation error of the high-dimensional 
covariance matrix. Several shrinkage regularization strategies have been proposed to relieve the estimation error, such as the linear 
(Ledoit and Wolf, 2004) and non-linear (Engle et al., 2019) shrinkage methods that decompose the covariance matrix and control 
the sparsity of the parameter space. Especially, Engle and Kelly (2012) simply assumed an equal correlation for all pairs of stocks.

The introduction of factor structure lightens the worry of the estimation error in moderate-to-high dimensional portfolio con-

structions. With several common factors, the covariance matrix is reduced to a low-rank representation which provides robustness 
against the model uncertainty in generalization. Most importantly, the factor structure is handy to combine with more specific mod-

els, which further improves the estimation performance. For example, De Nard et al. (2021) applied the DCC model to the residuals 
of an approximate factor model (AFM) and discussed the effect of the number of factors, which turns out that a single factor model 
is sufficient to achieve satisfactory performance. Moreover, Glasserman and Xu (2013) analyzed the robustness against the uncer-

tainty of a dynamic portfolio control problem based on stochastic factor constructions. Furthermore, Corielli and Marcellino (2006)

proposed a factor-based index tracking method and Creal and Tsay (2015) incorporated the factor structure with a flexible copula 
model in capturing the dynamic dependence among assets.

Another branch of literature focuses on constructing black-box neural networks in various topics in finance. Actually, the pop-

ularity of neural networks and deep learning has already brought new perspectives to stock return forecasting or risk forecasting. 
For example, the Long Short-Term Memory (LSTM) network could learn the long-range dependence from sequential returns, and it 
is flexible to combine with other methods for better interpretability, as in Fischer and Krauss (2018) and Wu and Yan (2019). For 
instance, Wu and Yan (2019) adopted LSTM to learn the quantile dynamics of financial return series and capture the tail risk. In 
the area of financial derivatives, Nian et al. (2021) proposed a robust Gated Recurrent Unit model with encoder and decoder layers 
for option hedging. Other works using LSTM or GRU for option hedging include Zhang and Huang (2021); Carbonneau (2021); Dai 
et al. (2022). Besides, deep learning was applied to portfolio optimization as an end-to-end black-box tool, such as in Zhang et al. 
(2020, 2021). There were very few works that adopted deep learning to forecast the core elements of portfolio optimization, such 
as the covariance matrix (Ni and Xu, 2021). Most research works were based on traditional linear econometrics models for dynamic 
covariance forecasting and portfolio optimization (Giamouridis and Vrontos, 2007; De Nard et al., 2021). However, Ni and Xu (2021)

has concluded that deep learning outperforms traditional linear econometrics models.

This paper combines the two branches of research works and proposes a new dynamic factor model for dynamic CVaR portfolio 
construction. We extend the generative factor model recently proposed in Yan et al. (2019) (from the machine learning community) 
to a dynamic version, by combining it with an Attention-GRU network for sequential learning. Such an extension greatly increases 
the difficulty of the modeling because the conditional joint distribution of stock returns needs to be captured now instead of the 
unconditional one. The technical challenge is overcome by us with many novel designs. We accept the common point of view that a 
single factor in modeling financial returns is enough for achieving good portfolio performance. Most crucially, our generative single-

factor model incorporates the asymmetric heavy-tail properties of stock returns. Besides, we also take the advantage of the long-term 
memory capacity of modern neural networks to improve the performance of sequential prediction. Specifically, we combine the 
Gated Recurrent Unit (GRU) network proposed by Cho et al. (2014) with the Bahdanau attention mechanism illustrated in Bahdanau 
et al. (2015). The resulting GF-AGRU model named by us is able to capture the complicated dynamic dependence among multivariate 
stock returns. To tackle the challenge of training such a model, we propose a two-step iterative algorithm to minimize the specified 
loss functions. After training, the time-varying model parameters, or the time-varying/conditional joint distribution of returns, can 
be forecasted.

The classical CVaR portfolio optimization formulation in practice (called SAA, see Section 2 for an introduction) needs some 
samples representing the joint distribution of returns. Existing works used the realized returns observed directly in the market. Our 
dynamic generative factor model GF-AGRU is basically different. We easily simulate new samples from the predicted conditional 
joint distribution of monthly returns and then optimize the CVaR portfolio objective with the simulated samples. Then the corre-

sponding optimal weights are assigned to the out-of-sample stock returns in the next month, thus a dynamic portfolio strategy can 
be constructed. We measure the rewards and various risks of the portfolios given by different methods, under different target return 
constraints and different confidence levels of CVaR. The numerical results of the portfolio performance on the component stocks of 
the Dow Jones Industrial Average index exhibit the consistent outperformance of our GF-AGRU model. Besides, the superior per-

formance shows adequate robustness under various settings and kinds of randomness. Through analysis, we find that the attention 
mechanism and the heavy-tail properties are the two key features making our approach successful.

The rest of this paper is organized as follows. We state some preliminaries in Section 2. Section 3 introduces the mathematical 
formulation of the GF-AGRU model and the comprehensive two-step training algorithm of it. We briefly describe some other com-

peting models in Section 4. The details of the numerical experiment and the analysis for the results are covered in Section 5. Finally, 
we conclude the whole paper in Section 6.

2. Preliminaries

2.1. Static allocation and dynamic allocation

Assuming that the investor aims to decide the optimal holding weights 𝑤𝑡 ∈ℝ𝑁 on 𝑁 assets satisfying 𝑤𝑡 ≥ 0 and 𝟏⊤
𝑁
𝑤𝑡 = 1, we 

let 𝑌 𝑡 ∈ℝ𝑁 denote the random vector of asset returns at time 𝑡, then the portfolio return is 𝑅𝑡 =𝑤⊤𝑡 𝑌
𝑡. The static allocation treats the 

multivariate distribution of 𝑌 𝑡 as unchanged in a given period, then estimates the empirical distribution from limited observations 
2

of historical returns. On the contrary, the dynamic portfolio construction assumes that the multivariate/joint distribution of returns 



Journal of Economic Dynamics and Control 160 (2024) 104821C. Sun, Q. Wu and X. Yan

is time-varying, and thus one should spare no effort to predict the conditional joint distribution of returns at every necessary 𝑡 given 
past information. We know that the financial markets exhibit dynamic patterns, such as the dynamic volatility which shows clustering 
or self-exciting. Accordingly, we consider the dynamic allocation problem in this work and update the optimal holding weights 𝑤𝑡
at each investment date 𝑡. So, the forecasting of the distribution of 𝑌 𝑡 given past return information will be the key problem to be 
addressed.

2.2. The CVaR portfolio optimization

The constructed portfolio is desired to possess a relatively high reward with a low risk, especially that the risk-averse investors 
tend to place more emphasis on controlling the risk. The classic portfolio optimization considers a mean-variance (Markowitz, 
1952) optimization framework that searches for a trade-off between the reward and the variance risk. However, the mean-variance 
optimization is more suitable for normally distributed returns, and it fails to find the proper portfolios for heavy-tailed returns. We 
thus consider the Conditional Value-at-Risk (CVaR) as the risk measure which concerns the down-tail loss of a portfolio. CVaR is a 
coherent risk measure commonly used in risk management and portfolio optimization, as in Zhu and Fukushima (2009) and Ban et 
al. (2018). Actually, the 𝑞-level CVaR of the weighted portfolio return 𝑅𝑡 =𝑤⊤𝑡 𝑌

𝑡 is defined as

CVaR𝑞(−𝑤⊤𝑡 𝑌
𝑡) = 𝔼

[
−𝑤⊤𝑡 𝑌

𝑡|−𝑤⊤𝑡 𝑌 𝑡 ≥ VaR𝑞(−𝑤⊤𝑡 𝑌
𝑡)
]
, (1)

in which VaR𝑞(−𝑤⊤𝑡 𝑌
𝑡) is the 𝑞-quantile (e.g., 95%-quantile) of −𝑤⊤𝑡 𝑌

𝑡, or the so-called Value-at-Risk (VaR). For simplicity, we drop 
the subscript 𝑡 here. As in Rockafellar et al. (2000), CVaR can be computed as a minimization problem:

CVaR𝑞(−𝑤⊤𝑌 ) = min
𝛼

{
𝛼 + 1

1 − 𝑞
𝔼
[
(−𝑤⊤𝑌 − 𝛼)+

]}
. (2)

If we have known the distribution of the random vector 𝑌 , we can use CVaR as the objective to perform the optimization for the 
weights 𝑤 and construct the portfolio:

min
𝑤∈ℝ𝑁

CVaR𝑞(−𝑤⊤𝑌 )

s.t. 𝟏⊤𝑁𝑤 = 1

𝑤⊤𝜇 =𝑅0

𝑤 ≥ 0,

(3)

where 𝜇 = 𝔼[𝑌 ] and 𝑅0 is the target return of the portfolio specified by us. In the above problem, generally we do not know the exact 
distribution of 𝑌 . Instead we have samples of 𝑌 : 𝑌 1, … , 𝑌 𝑛, no matter whether they are historically observed or newly simulated 
from a distribution. In this case, the sample approximate average (SAA, see Ban et al. (2018)) approach to this problem is

min
𝑤∈ℝ𝑁

ĈVaR𝑞(−𝑤⊤𝑌 )

s.t. 𝟏⊤𝑁𝑤 = 1

𝑤⊤�̂� =𝑅0

𝑤 ≥ 0,

(4)

where �̂� = 1
𝑛

∑𝑛
𝑗=1 𝑌

𝑗 and

ĈVaR𝑞(−𝑤⊤𝑌 ) = min
𝛼

{
𝛼 + 1

(1 − 𝑞)𝑛

𝑛∑
𝑗=1

(−𝑤⊤𝑌 𝑗 − 𝛼)+
}
, (5)

which is a sample average estimator for CVaR𝑞(−𝑤⊤𝑌 ). However, in dynamic setting, we usually only have one single observation of 
multivariate stock returns at each time 𝑡. If we can have a good forecast of the distribution of 𝑌 𝑡 based on past information, we can 
simulate many new samples of 𝑌 𝑡 and solve the above SAA formulation to obtain an optimal portfolio. This is the main purpose of 
this paper, compared to the static allocation case where historical observations of returns are used in Equation (4) (i.i.d. assumption, 
equivalently).

2.3. Generative machine learning models

In machine learning, the terminology generative models refer to those models which can be used to simulate new samples, opposed 
to discriminative models. Generative models are an important branch of machine learning or deep learning, for example, the well-

known Generative Adversarial Networks (GANs, see Goodfellow et al. (2020)) and Wasserstein-GAN (Arjovsky et al., 2017) belong 
to this branch. Most recent attractive generative models have the following form:
3

𝑌 =𝐺(𝑍;Θ), (6)
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where 𝑌 is the target random variable (vector) with samples observed, such as multivariate stock returns. 𝑍 is called a base variable 
(vector) whose distribution is usually simple, such as Gaussian or uniform. 𝐺 is a transformation that is used to convert the simple 
distribution to the complicated distribution (of 𝑌 ) we are interested in. Θ is the parameters of 𝐺 that need to be learned or optimized. 
The aim is to approach the distribution of 𝑌 with finite samples observed. One can see, it is quite easy to simulate new samples of 𝑌
through (6), compared to the traditional density function approach for describing a distribution. One only needs to generate samples 
of 𝑍 and then apply 𝐺 on them.

Examples of popular generative models taking the form (6) include variational auto-encoders (VAEs, see Kingma et al. (2019)), 
various GANs, and Normalizing Flows (Kobyzev et al., 2020; Papamakarios et al., 2021). They are proposed or designed with different 
ideas and considerations. But the purposes are the same, to describe or approach the distribution of 𝑌 and to easily sample. Another 
commonality is that all of them adopt a neural network for 𝐺, making the approaches nonparametric. VAEs and GANs have shown 
their successes mainly on image generating and editing. Recently, Cont et al. (2022) proposed Tail-GAN for nonparametric scenario 
generation with tail risk estimation. Wasserstein-GAN was applied for causal inference in Athey et al. (2021), used for simulating 
datasets with counterfactuals and evaluating causal inference methods.

Normalizing Flows are the models that require 𝑌 and 𝑍 have a same dimension and 𝐺 has an inverse in (6). So, the density 
of 𝑌 can be computed by the change-of-variable technique. Conveniently, Normalizing Flow models can be learned with maximum 
likelihood, while GANs must be trained with adversarial schemes. In this paper, our generative model is a specific Normalizing 
Flow model tailored for financial return modeling. It does not adopt a neural network for 𝐺. Instead, a carefully designed 𝐺 with 
financial market considerations is adopted. Most importantly, it is dynamic with the assistance of an Attention-GRU network, which 
is a powerful sequential learning model. Originating from the recent machine learning community, an earlier version (Yan et al., 
2019) of it has been proven to be successful.

2.4. The GRU network and attention mechanism

Deep learning has been successfully applied in finance, such as in empirical asset pricing or cross-section of stock returns (Gu 
et al., 2020; Chen et al., 2023). In deep learning, recurrent neural networks (RNNs) are extremely useful in dealing with sequential 
prediction problems. Especially, the Long Short-Term Memory (LSTM, see Hochreiter and Schmidhuber (1997)) and its younger 
sibling Gated Recurrent Unit (GRU, see Cho et al. (2014)) are known for their powerful capability in capturing the time-dependent 
structure and long memory in the sequential data. Zhai et al. (2020) compared the performance of the LSTM model and the GRU 
model in volatility prediction. The results show that these two models lead to comparable accuracies, while GRU behaves more 
smoothly in convergence. In this work, we adopt the GRU network in our model construction.

The attention mechanism further helps hold necessary information adaptively in dealing with long sequences, whose merits have 
been established in machine translation (Vaswani et al., 2017) and financial forecasting (Chen and Ge, 2019). Especially in machine 
translation, the attention mechanism has achieved great successes. And it is also one of the foundations of ChatGPT (OpenAI, 2023) 
and its predecessors. We utilize a location-based attention structure proposed by Bahdanau et al. (2015) which reweights the outputs 
of the recurrent neural network with an alignment model. Let 𝑇 denote the length of the input sequence and 𝑦1∶𝑇 be the outputs of 
a GRU, then we simply compute a new output �̃� =

∑𝑇
𝜏=1 𝛼𝜏𝑦𝜏 with some soft weights 𝛼𝜏 , 𝜏 = 1, … , 𝑇 . Combined with the single-layer 

GRU network, the weights 𝛼1∶𝑇 are calculated as

𝛼1∶𝑇 = softmax(𝑒1∶𝑇 ),

𝑒𝜏 = 𝑣⊤𝑎 tanh
(
𝑊𝑎𝑦𝜏 +𝑈𝑎𝑦𝑇

)
,

(7)

where 𝑦𝑇 is also the final vector of hidden states. Denoting 𝑛 as the number of hidden units in GRU, then 𝑣𝑎 ∈ℝ𝑛 and 𝑊𝑎, 𝑈𝑎 ∈ℝ𝑛×𝑛
are weight matrices that act as model parameters of the attention layer. After that, a linear layer is then applied on the new output 
�̃�. We call this whole architecture the Attention-GRU network (AGRU).

3. Methodology

3.1. The naive factor model

Before describing our proposed method in detail, we first review the construction of the naive factor model. Let 𝑟𝑡 denote 
an 𝑁 -dimensional vector of stock returns and 𝑓𝑡 be the 𝐾 -dimensional common factors, then a 𝐾 -factor model is formulated as 
𝑟𝑡 = 𝛼𝑡 + 𝐵𝑡𝑓𝑡 + 𝜖𝑡, where 𝛼𝑡 is the vector of intercepts and 𝐵𝑡 is an 𝑁 ×𝐾 matrix that contains corresponding factor loadings. The 
unexplained residual vector 𝜖𝑡 is usually assumed to be normally distributed with zero mean and covariance matrix Ω𝑡. We refer to 
a model with a diagonal Ω𝑡 as an exact factor model (EFM), and otherwise it is called an approximate factor model (AFM).

In this work we assume the stock returns conform to the EFM structure and only consider the case of the single factor model with 
𝐾 = 1, as suggested by De Nard et al. (2021). We denote 𝑌 𝑡

𝑀
as the future one-month market return and 𝑌 𝑡𝑖 as the future one-month 

return of the 𝑖th individual stock, 𝑖 = 1, … , 𝑁 , at an investment date 𝑡. Then the naive factor model can be expressed in such a specific 
form:

𝑌 𝑡
𝑀

= 𝛼𝑡
𝑀

+ 𝛽𝑡
𝑀
𝑍𝑡
𝑀
,

4

𝑌 𝑡𝑖 = 𝛼
𝑡
𝑖 + 𝛽

𝑡
𝑖𝑍
𝑡
𝑀

+ 𝛾𝑡𝑖𝑍
𝑡
𝑖 ,

(naive factor)
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where 𝑍𝑡
𝑀

is the latent market factor, 𝑍𝑡𝑖 is the unexplained residual of the 𝑖th stock, assuming that 𝑍𝑡
𝑀

and 𝑍𝑡𝑖 follow the standard 
normal distribution independently. Noticing that the Naive Factor model can also be considered as a simplified multivariate Gaussian 
distribution. 𝛼𝑡

𝑀
is the expectation of market return, and 𝛼𝑡𝑖 is the expectation of the 𝑖-th stock return. 𝛽𝑡

𝑀
is the volatility of the 

market return, 𝛽𝑡𝑖 is the coefficient to the market factor, and 𝛾𝑡𝑖 is the volatility of the unexplained residual. We allow the coefficient 
𝛽𝑡𝑖 to vary with time, which is different from the constant-coefficient assumption in most existing works, e.g., Engle and Kelly 
(2012) and Levy and Lopes (2021). Finally, we hope to use an Attention-GRU network to predict these time-varying parameters 
Θ𝑡

naive
= {𝛼𝑡

𝑀
, 𝛼𝑡𝑖 , 𝛽

𝑡
𝑀
, 𝛽𝑡𝑖 , 𝛾

𝑡
𝑖}:

Θ𝑡
naive

= AGRU(𝐹<𝑡;𝜃AGRU), (8)

where 𝐹<𝑡 is the features extracted from past observations containing predictive information, and 𝜃AGRU is the parameters of AGRU 
that need to be optimized. We show in the next section that the naive factor model with Attention-GRU (abbreviated as Naive-AGRU) 
is a special case of our proposed model.

3.2. The dynamic generative factor model with tail properties

We extend the non-linear transformation proposed in Yan et al. (2019) to a dynamic version and extend the naive factor model 
to incorporate a better depiction of tail properties of stock returns. The proposed dynamic generative factor model is constructed as

𝑌 𝑡
𝑀

= 𝛼𝑡
𝑀

+ 𝛽𝑡
𝑀
𝑔(𝑍𝑡

𝑀
;𝑢𝑀,𝑣𝑀 ),

𝑌 𝑡𝑖 = 𝛼
𝑡
𝑖 + 𝛽

𝑡
𝑖 𝑔(𝑍

𝑡
𝑀
;𝑢𝑀𝑖 , 𝑣

𝑀
𝑖 ) + 𝛾𝑡𝑖 𝑔(𝑍

𝑡
𝑖 ;𝑢𝑖, 𝑣𝑖),

(generative factor)

where 𝑍𝑡
𝑀

and 𝑍𝑡𝑖 still follow standard normal distribution independently. The 𝑔(⋅) function in the generative factor model is 
specified as

𝑔(𝑥;𝑢, 𝑣) = 𝑥(𝑢
𝑥 + 𝑣−𝑥
𝐴

+ 1), (9)

in which 𝐴 is a positive scaling constant and we set 𝐴 = 4 as in Yan et al. (2019). The strictly monotonically increasing 𝑔(⋅) function1

transforms 𝑍𝑡
𝑀

or 𝑍𝑡𝑖 to a more heavy-tailed random variable whose right and left tails are decided by the parameters 𝑢, 𝑣 ≥ 1. We 
refer 𝜈 = {𝑢, 𝑣} to time-invariant tail parameters. More specifically, 𝜈𝑀 = {𝑢𝑀, 𝑣𝑀}, 𝜈𝑀𝑖 = {𝑢𝑀𝑖 , 𝑣

𝑀
𝑖 }, and 𝜈𝑖 = {𝑢𝑖, 𝑣𝑖}. Larger tail 

parameters lead to relatively heavier tails. Particularly, when all 𝑢 = 𝑣 = 1, the generative factor model reduces to a naive factor 
model. In generative factor, 𝜈𝑀 , 𝜈𝑀𝑖 , and 𝜈𝑖 can all be different, leading to much flexible tail properties for stock returns.

We further use an Attention-GRU network to forecast the time-varying parameters Θ𝑡
GF

= {𝛼𝑡
𝑀
, 𝛼𝑡𝑖 , 𝛽

𝑡
𝑀
, 𝛽𝑡𝑖 , 𝛾

𝑡
𝑖}:

Θ𝑡
GF

= AGRU(𝐹<𝑡;𝜃AGRU), (10)

where 𝐹<𝑡 is the features extracted from past observations containing predictive information, and 𝜃AGRU is the parameters of AGRU 
that need to be optimized. While 𝑌 𝑡

𝑀
and 𝑌 𝑡𝑖 are future one-month returns, 𝐹<𝑡 can be constructed from historical daily returns to 

incorporate as much as information. Besides, the training set collects data points on a daily frequency, so adjacent 𝑌 𝑡
𝑀

(or 𝑌 𝑡𝑖 ) will 
have overlaps in periods, which can increase the training set size for better learning. During the training, the time-invariant tail 
parameters {𝜈𝑀, 𝜈𝑀𝑖 , 𝜈𝑖} will be learned or optimized too. We abbreviate the whole model as GF-AGRU.

3.3. Loss functions

Machine learning models need loss functions as learning objectives or optimization objectives. Given the generative factor model 
and 𝑆 samples of monthly returns 𝑌 𝑡

𝑀
, 𝑌 𝑡𝑖 , 𝑖 = 1, … , 𝑁 , 𝑡 = 1, … , 𝑆 , we have the likelihood

𝑝(𝑌 𝑡
𝑀
,𝑌 𝑡1 ,… , 𝑌

𝑡
𝑁
) = 𝑝(𝑌 𝑡

𝑀
)𝑝(𝑌 𝑡1 ,… , 𝑌

𝑡
𝑁
|𝑌 𝑡
𝑀
)

= 𝑝(𝑌 𝑡
𝑀
)𝑝(𝑌 𝑡1 |𝑌 𝑡𝑀 )⋯𝑝(𝑌 𝑡

𝑁
|𝑌 𝑡
𝑀
),

(11)

because of the conditional independence (given 𝑌 𝑡
𝑀

, then 𝑍𝑡
𝑀

is determined). Now we are able to further deduce the form of the 
negative log-likelihood (NLL) loss as follows:

NLL =
𝑆∑
𝑡=1

−𝓁𝑡 =
𝑆∑
𝑡=1

(−𝓁𝑡
𝑀
) +

𝑆∑
𝑡=1

𝑁∑
𝑖=1

(−𝓁𝑡
𝑖|𝑀 ), (12)

where 𝓁𝑡
𝑀

is the log-likelihood of market return at time 𝑡, and 𝓁𝑡
𝑖|𝑀 is the quasi-log-likelihood of the 𝑖th stock return conditional on 

the realizations of market factor. Because of the formulation in generative factor and the change-of-variable technique, we can have

1 Please see Wu and Yan (2019) for the proof, and we can easily derive that 𝑔−1 uniquely exists and thus the transformation defined by our generative factor model 
5

has an inverse.
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𝓁𝑡
𝑀

= log𝑝(𝑌 𝑡
𝑀
) = − log(𝛽𝑡

𝑀
𝑔′(�̃�𝑡

𝑀
; 𝜈𝑀 )) + log𝜙(�̃�𝑡

𝑀
), (13)

𝓁𝑡
𝑖|𝑀 = log𝑝(𝑌 𝑡𝑖 |𝑌 𝑡𝑀 ) = − log(𝛾𝑡𝑖 𝑔

′(�̃�𝑡𝑖 ; 𝜈𝑖)) + log𝜙(�̃�𝑡𝑖 ), (14)

in which 𝜙 is the density of standard Gaussian distribution and �̃�𝑡
𝑀
, �̃�𝑡𝑖 are the realized latent market factor and the realized residual 

term at time 𝑡:

�̃�𝑡
𝑀

= 𝑔−1(
𝑌 𝑡
𝑀

− 𝛼𝑡
𝑀

𝛽𝑡
𝑀

; 𝜈𝑀 ), (15)

�̃�𝑡𝑖 = 𝑔
−1(
𝑌 𝑡𝑖 − 𝛼

𝑡
𝑖 − 𝛽

𝑡
𝑖 𝑔(�̃�

𝑡
𝑀
; 𝜈𝑀𝑖 )

𝛾𝑡𝑖
; 𝜈𝑖). (16)

Note that 𝑔′(𝑥; 𝜈) and 𝑔−1(⋅; 𝜈) are respectively the derivative with respect to 𝑥 and the inverse of the 𝑔(⋅) function in Equation (9).

We observe that the minimization of the NLL loss can be decomposed into two steps:

1. Firstly minimize 
∑𝑆
𝑡=1(−𝓁

𝑡
𝑀
) with respect to 𝜈𝑀 and Θ𝑡

𝑀
= {𝛼𝑡

𝑀
, 𝛽𝑡
𝑀
} and calculate the realized latent market factor �̃�𝑡

𝑀
, given 

known 𝑌 𝑡
𝑀

for all 𝑡;
2. Then fix �̃�𝑡

𝑀
for all 𝑡 and minimize the quasi-NLL 

∑𝑆
𝑡=1

∑𝑁
𝑖=1(−𝓁

𝑡
𝑖|𝑀 ) with respect to {𝜈𝑀𝑖 , 𝜈𝑖} and Θ𝑡𝑖 = {𝛼𝑡𝑖 , 𝛽

𝑡
𝑖 , 𝛾
𝑡
𝑖} for all individual 

stocks.

We thus split the whole model training into these two steps, and to reduce the difficulty of training, we separately apply a Attention-

GRU network to learn and predict (Θ𝑡
𝑀

or Θ𝑡𝑖) in each of the two steps. We assume all tail parameters 𝜈𝑀, 𝜈𝑀𝑖 , 𝜈𝑖 are fixed over 
the whole period but allow time-varying Θ𝑡

𝑀
, Θ𝑡𝑖 to incorporate the temporal dynamics of returns. Except for optimizing the AGRU 

parameters, to learn the time-invariant 𝜈𝑀 as well, we design an iterative algorithm in Step 1 to learn 𝜈𝑀 and Θ𝑡
𝑀

alternately, as 
introduced in the following subsection. A similar algorithm is also designed for learning {𝜈𝑀𝑖 , 𝜈𝑖} and Θ𝑡𝑖 alternately in Step 2.

3.4. The two-step training with alternately updating

We name the two steps of the training as market return fitting and individual stock return fitting. In each step, the time-invariant 
parameters 𝜈 and the neural network parameters of Attention-GRU (used to predict time-varying Θ𝑡

𝑀
or Θ𝑡𝑖) are updated iteratively 

and alternately. We summarize the two steps of the training in Algorithm 1 and Algorithm 2 respectively.

3.4.1. Market return fitting

In this step, we construct an algorithm to minimize the negative log-likelihood 
∑𝑆
𝑡=1(−𝓁

𝑡
𝑀
) and learn 𝜈𝑀 and Θ𝑡

𝑀
, as described 

in Algorithm 1. Note that the Attention-GRU network will take in a historical window of daily market returns 𝑟𝜏
𝑀

, 𝜏 = 1, … , 𝑇 as 
inputs and output time-varying parameters Θ𝑡

𝑀
for the monthly return 𝑌 𝑡

𝑀
. We also add the squared terms to the inputs. That is, the 

final feature matrix 𝐹<𝑡 is

𝐹<𝑡 =
[

𝑟1
𝑀

⋯ 𝑟𝑇
𝑀

(𝑟1
𝑀

− �̄�𝑀 )2 ⋯ (𝑟𝑇
𝑀

− �̄�𝑀 )2

]
, �̄�𝑀 = 1

𝑇

𝑇∑
𝜏=1
𝑟𝜏
𝑀
, (17)

where 𝑇 is the length of the lookback window and �̄�𝑀 is the historical mean of the daily return sequence. Again the training set 
collects data points on a daily frequency, so adjacent 𝑌 𝑡

𝑀
(or 𝑌 𝑡𝑖 ) will have overlaps in periods, which can increase the training set 

size for better learning.

Then we construct two sub-procedures to learn the time-invariant tail parameters 𝜈𝑀 and the Attention-GRU network parameters 
𝜃AGRU alternately, named as FIX-OPTIM and TV-AGRU. These two sub-procedures will aim at optimizing the same likelihood loss ∑𝑆
𝑡=1(−𝓁

𝑡
𝑀
), but differ in specific gradient back-propagation and descent. In each of the sub-procedures, we update one kind of 

parameters with some steps when keeping the other fixed. We then iteratively conduct these two sub-procedures until reaching the 
stopping condition for convergence. After that, we calculate the in-sample realized latent market factor �̃�𝑡

𝑀
for all 𝑡 using Equation 

(15). Specifically, we constrain the output of FIX-OPTIM to ensure 1 ≤ 𝜈𝑀 ≤ 3 and set proper bounds for the outputs of TV-AGRU 
to increase the stability in gradient descent. We construct a self-defined auto-gradient unit for the inverse of 𝑔(⋅) function based on 
the flexible modules provided by PyTorch. Besides, we apply the RMSProp optimizer with momentum 𝑚 = 0.2, which is a common 
choice in deep learning for financial studies, as discussed in Sezer et al. (2020).

3.4.2. Individual stock return fitting

Given the calculated in-sample �̃�𝑡
𝑀

in Step 1, we further construct Algorithm 2 to minimize the quasi-NLL 
∑𝑆
𝑡=1

∑𝑁
𝑖=1(−𝓁

𝑡
𝑖|𝑀 )

and learn the parameters {𝜈𝑀𝑖 , 𝜈𝑖} and Θ𝑡𝑖 for all individual stocks. Since the parameters of each stock are independent, we divide 
the task into 𝑁 individual sub-problems and tackle them separately. The corresponding unknown parameters for stock 𝑖 are the 
time-invariant tail parameters {𝜈𝑀𝑖 , 𝜈𝑖} and the Attention-GRU network parameters (used to predict Θ𝑡𝑖 = {𝛼𝑡𝑖 , 𝛽

𝑡
𝑖 , 𝛾
𝑡
𝑖}), and the loss 

function is 
∑𝑆
𝑡=1(−𝓁

𝑡
𝑖|𝑀 ). Note that for each stock 𝑖, a separate Attention-GRU will be used and trained, resulting in 𝑁 Attention-GRU 
6

networks totally. Each of them is with a very low dimension, thus the computational cost is not high.
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Algorithm 1 The market return fitting step in training GF-AGRU.

Hyperparameters: learning rate 𝑙fix of the FIX-OPTIM sub-procedure, learning rate 𝑙tv of the TV-AGRU sub-procedure, number of maximum iterative steps 𝑁𝑚 , 
number of training epochs 𝑁fix of FIX-OPTIM, number of training epochs 𝑁tv of TV-AGRU, and the training set size 𝑆 .

Input: training data including the features 𝐹<𝑡 and the label 𝑌 𝑡
𝑀

. 𝐹<𝑡 is constructed by Equation (17) using historical daily market returns, and 𝑌 𝑡
𝑀

is the future 
one-month return. The training set collects data points on a daily frequency.

Initialize: tail parameters 𝜈𝑀 = {𝑢𝑀 , 𝑣𝑀} and the Attention-GRU network parameters 𝜃AGRU.

1: for 𝑏 = 1 ∶𝑁𝑚 do

2: (TV-AGRU)

3: Fix 𝜈𝑀 given by FIX-OPTIM.

4: for 𝑗 = 1 ∶𝑁tv do

5: Compute Θ𝑡
𝑀

= {𝛼𝑡
𝑀
, 𝛽𝑡
𝑀
} = AGRU(𝐹<𝑡; 𝜃AGRU).

6: Compute the NLL loss 𝐿 =∑𝑆
𝑡=1(−𝓁

𝑡
𝑀
) and its partial derivatives with respect to 𝜃AGRU.

7: Update: 𝜃AGRU ← RMSProp(𝜃AGRU, ∇𝜃AGRU
𝐿, 𝑙tv).

8: end for

9: (FIX-OPTIM)

10: Fix 𝜃AGRU given by TV-AGRU.

11: Compute Θ𝑡
𝑀

= {𝛼𝑡
𝑀
, 𝛽𝑡
𝑀
} = AGRU(𝐹<𝑡; 𝜃AGRU) and fix Θ𝑡

𝑀
.

12: for 𝑗 = 1 ∶𝑁fix do

13: Compute the NLL loss 𝐿 =∑𝑆
𝑡=1(−𝓁

𝑡
𝑀
) and its partial derivatives with respect to 𝜈𝑀 .

14: Update: 𝜈𝑀 ← RMSProp(𝜈𝑀 , ∇𝜈𝑀 𝐿, 𝑙fix).
15: end for

16: end for

Output: learnable parameters 𝜈𝑀 and 𝜃AGRU; the time-varying model parameters Θ𝑡
𝑀

; the realized latent market factor �̃�𝑡
𝑀

given by Equation (15).

Algorithm 2 The individual stock return fitting step in training GF-AGRU (for stock 𝑖).
Hyperparameters: the same as in Algorithm 1.

Input: training data including the features 𝐹<𝑡 and the label 𝑌 𝑡𝑖 . 𝐹<𝑡 is constructed by concatenating historical daily market returns and historical daily stock returns 
(both in the form of Equation (17)), and 𝑌 𝑡𝑖 is the future one-month stock return. The training set collects data points on a daily frequency.

Initialize: tail parameters 𝜈𝑀
𝑖

= {𝑢𝑀
𝑖
, 𝑣𝑀
𝑖
}, 𝜈𝑖 = {𝑢𝑖, 𝑣𝑖} and the Attention-GRU network parameters 𝜃AGRU (a different Attention-GRU from that in Algorithm 1 and 

those for other stocks).

1: for 𝑏 = 1 ∶𝑁𝑚 do

2: (TV-AGRU)

3: Fix {𝜈𝑀
𝑖
, 𝜈𝑖} given by FIX-OPTIM.

4: for 𝑗 = 1 ∶𝑁tv do

5: Compute Θ𝑡𝑖 = {𝛼𝑡𝑖 , 𝛽𝑡𝑖 , 𝛾𝑡𝑖 } = AGRU(𝐹<𝑡; 𝜃AGRU).
6: Compute the quasi-NLL loss 𝐿 =∑𝑆

𝑡=1(−𝓁
𝑡
𝑖|𝑀 ) (with known �̃�𝑡

𝑀
obtained from Algorithm 1, see Equation (16)) and its partial derivatives with respect to 

𝜃AGRU.

7: Update: 𝜃AGRU ← RMSProp(𝜃AGRU, ∇𝜃AGRU
𝐿, 𝑙tv).

8: end for

9: (FIX-OPTIM)

10: Fix 𝜃AGRU given by TV-AGRU.

11: Compute Θ𝑡𝑖 = {𝛼𝑡𝑖 , 𝛽𝑡𝑖 , 𝛾𝑡𝑖 } = AGRU(𝐹<𝑡; 𝜃AGRU) and fix Θ𝑡𝑖 .
12: for 𝑗 = 1 ∶𝑁fix do

13: Compute the quasi-NLL loss 𝐿 =∑𝑆
𝑡=1(−𝓁

𝑡
𝑖|𝑀 ) (with known �̃�𝑡

𝑀
obtained from Algorithm 1, see Equation (16)) and its partial derivatives with respect to 

{𝜈𝑀
𝑖
, 𝜈𝑖}.

14: Update: {𝜈𝑀
𝑖
, 𝜈𝑖} ← RMSProp({𝜈𝑀

𝑖
, 𝜈𝑖}, ∇{𝜈𝑀𝑖 ,𝜈𝑖}

𝐿, 𝑙fix).
15: end for

16: end for

Output: learnable parameters {𝜈𝑀
𝑖
, 𝜈𝑖} and 𝜃AGRU; the time-varying model parameters Θ𝑡𝑖.

Similar as Algorithm 1 in Step 1, here we adopt two sub-procedures FIX-OPTIM and TV-AGRU iteratively too, until reaching a 
certain stopping criteria. The specifications of the two sub-procedures are similar to those in Step 1. The inputs or features 𝐹<𝑡 of 
Attention-GRU are similar too, but adding daily returns of the individual stock and the squared terms as well. This results in a input 
dimension of 4, compared to the dimension 2 in Step 1. In both steps, we adopt the widely-used early-stopping strategy in deep 
learning to stop the training, with a validation set extracted from the training set. Now the training of the whole GF-AGRU model 
is finished. As discussed above, the Naive-AGRU model is a special case of the GF-AGRU model when the tail parameters are all 
one. Therefore, we handily modify Algorithm 1 and Algorithm 2 by fixing 𝜈𝑀 = 𝜈𝑀𝑖 = 𝜈𝑖 = 1, 𝑖 = 1, … , 𝑁 in TV-AGRU and omit the 
FIX-OPTIM sub-procedure when training a Naive-AGRU model, while other parts are the same as the GF-AGRU model.

3.5. Computational complexity

We indeed decompose a (𝑁 + 1)-dimensional learning problem into 𝑁 + 1 separate one-dimensional learning problems. Each 
asset will have a learning process separately. In each one-dimensional problem, an Attention-GRU network with a low hidden state 
dimension is enough because the feature dimension of 𝐹<𝑡 is 2 for the market and is 4 for individual stock. The training of one 
Attention-GRU will not be costly, especially when we adopt the early stopping strategy. So totally, the computational cost will be 
7

satisfactory.
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In TV-AGRU, we denote the computational cost of performing gradient descent one time on one data point as 𝑐tv. Similarly, 
we denote the cost of one gradient descent on one data point in FIX-OPTIM as 𝑐fix. Supposing there are totally 𝑁tr data points in 
training set, then the total cost of training a GF-AGRU is 𝑂

(
(𝑁 + 1)𝑁𝑚𝑁tr(𝑁tv𝑐tv +𝑁fix𝑐fix)

)
. For comparison, we define the original 

problem as minimizing the total loss in Equation (12) directly without the decomposition and with one high-dimensional Attention-

GRU network. The inputs and outputs are the aggregations of all inputs and all outputs of our problem, respectively. So, the input 
dimension will be around 120, because the input dimension in our problem is 4 for each stock. Similarity, the output dimension will 
be around 90. For the hidden state dimension, we set it to twice the output dimension (similar as in our problem).

When the network size is 𝑁 + 1 times the one in our problem, the computational complexity of performing one gradient descent 
on one data point will be (𝑁 + 1)2 times (because of the matrix operation). Omitting the 𝑐fix term (≪ 𝑐tv), the complexity of the 
original problem should be 𝑂((𝑁 + 1)2𝑐tv𝑁tr𝑁tv), which is significantly larger than our 𝑂((𝑁 + 1)𝑁𝑚𝑁tr𝑁tv𝑐tv). This is because 
𝑁𝑚 = 6 <𝑁 + 1 in our experiment. Here, the (𝑁 + 1)𝑁𝑚 term is the unique part in our problem, as 𝑁𝑚 is the number of iterative 
steps used to alternate between FIX-OPTIM and TV-AGRU and 𝑁 + 1 is the number of assets. To conclude, our method reduces the 
computational complexity, compared to the simple and straightforward brute-force method.

3.6. CVaR portfolio construction

Given the past information up to date 𝑡, the GF-AGRU model can predict all the parameters of the generative factor model, 
which describes the joint distribution of the future one-month returns 𝑌 𝑡

𝑀
, 𝑌 𝑡1 , … , 𝑌 𝑡

𝑁
starting at date 𝑡. On the new testing set, 

through this dynamic generative factor model, it is convenient to simulate new independent samples from the predicted factor 
model. Specifically, at a certain monthly investment date, we simulate 𝑛 new samples for the future 𝑌 𝑡1 , … , 𝑌 𝑡

𝑁
and perform the CVaR 

portfolio optimization with quantile level 𝑞 introduced in Section 2.2 to find the optimal weights 𝑤𝑡. We then roll forward to next 
month to predict again and to construct a monthly re-balancing portfolio. Note that the training set collects data points on a daily 
frequency, while the prediction happens monthly when testing.

Rather than finding the global minimum of the risk frontier, we put on some constraints on the optimization. We assume no short 
sale for any stock and force these weights of the stocks to be summed as 1. Moreover, we require that the obtained portfolio should 
reach a certain target return. Please refer to Equation (4) and Equation (5) for the details. The target return 𝑅0 is set by us to be 
around the overall average monthly return of all stocks. In actual implementation, we solve the CVaR portfolio optimization problem 
with the MATLAB Optimization Toolbox (MathWorks, 2023b) and Financial Toolbox (MathWorks, 2023a) to find the optimal weights 
of the stocks.

4. Competing methods

We compare the proposed GF-AGRU model with some benchmark models. Firstly, we consider two static allocation strategies. 
One is the naive equal weight (EW) diversification strategy, which assigns time-invariant equal weight to each stock, i.e., 𝑤𝑡 =
[1∕𝑁, … , 1∕𝑁]⊤. The other is the static SAA of CVaR portfolio optimization, i.e., using historical returns with the i.i.d. assumption 
in Equation (4). As to the dynamic competing models, we compare to the DCC model with a factor structure. DCC model is a popular 
multivariate financial time series model, suitable for the comparison.

At last, to better understand the function or usefulness of each component of the proposed GF-AGRU, we compare it to two 
degenerated versions of it. One is the Naive-AGRU model described in Section 3.1, which discards the tail properties of the stock 
returns in the model, aiming for discovering the importance of tail risk modeling in financial markets. The other is a GF-GRU model 
in which we drop the attention mechanism/layer in GF-AGRU, aiming for checking the necessity of including attention mechanism 
in our model.

4.1. The factor-DCC model

It is necessary to briefly introduce the DCC-based model considered. We consider the DCC model with normal distribution 
assumption. To be consistent with the formulation of GF-AGRU, we adopt a factor-based DCC to reduce the parameter complexity. 
We still select a market factor as the common factor and assume the correlations among stocks are fully captured by a single factor, 
thus leading to a diagonal covariance matrix for the independent residuals. De Nard et al. (2021) combined an approximate factor 
structure with a non-linear shrinkage DCC model, but they assume constant factor loadings and directly estimate them with Ordinary 
Least Square.

In contrast, we allow the factor loadings to vary with time. We denote the de-meaned market return and de-meaned stock return 
as 𝑟𝑡
𝑀

and 𝑟𝑡𝑖, and they have volatilities 𝜎𝑡
𝑀

and 𝜎𝑡𝑖 respectively. The Factor-DCC model we adopt assumes that 𝜎𝑡
𝑀

and 𝜎𝑡𝑖 , 𝑖 = 1, … , 𝑁
all follow a respective GARCH(1,1) process, and meanwhile, the correlation between any stock and the market composes a single-

factor structure: 𝑟
𝑡
𝑖

𝜎𝑡
𝑖

= 𝜌𝑡𝑖
𝑟𝑡
𝑀

𝜎𝑡
𝑀

+
√

1 −
(
𝜌𝑡𝑖
)2
𝑍𝑡𝑖 , where 𝜌𝑡𝑖 = corr(𝑟𝑡𝑖, 𝑟

𝑡
𝑀
) is the time-varying correlation. The unexplained residuals 𝑍𝑡𝑖 , 

𝑖 = 1, … , 𝑁 are assumed to be independent and follow a standard normal distribution. We assume the correlation 𝜌𝑡𝑖 also follows a 
8

similar evolution process. For simplicity, we denote the 2 × 2 correlation matrix as 𝑄𝑡𝑖 and update it with the following formula:
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𝑄𝑡𝑖 =
[
1 𝜌𝑡𝑖
𝜌𝑡𝑖 1

]
, 𝑄𝑡𝑖 = (1 − 𝑎− 𝑏)Γ𝑖 + 𝑎𝑒𝑡−1𝑖

(
𝑒𝑡−1𝑖

)⊤ + 𝑏𝑄𝑡−1𝑖 , (18)

where 𝑒𝑡𝑖 = [𝑟𝑡
𝑀
∕𝜎𝑡
𝑀
, 𝑟𝑡𝑖∕𝜎

𝑡
𝑖 ]
⊤ and Γ𝑖 is a constant symmetric matrix with all-one diagonal elements.

For the vanilla DCC model, the estimation of the constant matrix Γ𝑖 is a major challenge, especially in high-dimensional cases. 
A traditional estimation method for Γ𝑖 is the sample correlation matrix (see Engle (2002)) which is prone to estimation error. Engle 
et al. (2019) applied a nonlinear shrinkage method to estimate Γ𝑖 and obtained well-conditioned estimators in high dimensions. 
However, due to the factor structure of the Factor-DCC model here, we can avoid these troubles because Γ𝑖 (a 2 × 2 matrix) only has 
one unknown parameter. We only need to assure the diagonal elements of 𝑄𝑡𝑖 are scaled to ones.

Note that we can train a DCC model with monthly returns and directly predict the distribution parameters for the one-step ahead 
monthly returns, hence predicting the conditional joint distribution. Besides, it is also possible to train the DCC model with daily 
returns and make multi-step ahead simulations, then form a monthly return simulation with 21 consecutive daily simulations. These 
monthly return simulations can be used as the samples needed in CVaR portfolio optimization. We refer to the DCC model trained with 
monthly returns as DCC-MM, and the model trained with daily returns as DCC-DM. Our experience indicates that their performance 
is close on the portfolio construction. So, we will only report the results of DCC-MM in the following experimental section.

4.2. GANs

As a prominent paradigm in the domain of generative models, Generative Adversarial Networks (GANs) exhibit potential in 
financial time series learning and simulation. GANs attempt to generate new data that follows the same distribution as the provided 
inputs. For instance, GANs are supposed to simulate new multivariate return samples that exhibit the same distribution as the 
observed returns in the training set. From this perspective, it is crucial to realize that GANs represent a static model rather than 
a dynamic model, as they are learning the unconditional distribution of the multivariate time series. This contradicts the dynamic 
objective in this study. Oppositely, at an investment date 𝑡 (e.g., the end of a month), our model simulates new samples that follow 
the conditional distribution of future returns, conditional on the information available up to date 𝑡. The new samples serve as the 
inputs to the CVaR optimization problem. To be short and precise, the forecasting of the conditional multivariate distribution is the 
key to the portfolio optimization problem here.

An exception of GAN-based model is the Time-series GAN or TimeGAN in Yoon et al. (2019), which modeled the conditional 
distribution of time series. However, one of the main differences is that the framework of TimeGAN is entirely a black box without 
careful considerations of dependence structure among asset returns (we use the well-explained factor model) and without careful 
specifications of tail properties (we use the well-explained 𝑔(⋅) function), both of which are essential for precise distribution fore-

casting. Besides, TimeGAN is essentially a recurrent neural network which transforms a sequence of pure noises to the target time 
series. However, as we know, it is unclear how to use it to do conditional distribution forecasting in a new time series. At last, it 
adopts a complex embedding from original time series to the latent space, which is redundant for financial time series and brings 
extra uncertainty to the model. Thereby, we do not include GANs for comparisons in our numerical experiment.

5. Numerical experiment

5.1. Data and model settings

In this section, we consider the portfolio construction using the component stocks of the Dow Jones Industrial Average index 
(DJIA) (adopt the stock list on April 6, 2020), and finally select 𝑁 = 28 individual stocks with complete daily return records from 
May 5, 1999 to September 22, 2021. We download corresponding daily adjusted prices and calculate percentage change returns 
as inputs for concerned models. As to the choice of market returns, we consider the S&P 500 index returns as the single factor for 
factor-based models. We divide the whole data set into two parts at February 20, 2013, before which the first 60% is set as the 
training set, and the last 40% is the testing set for portfolio construction and out-of-sample evaluation. There are totally 3, 471 daily 
records for training and 2, 163 out-of-sample daily returns for evaluation.

Note that we aim to examine the model performance on monthly-frequency investment, thus leading to out-of-sample forecasting 
and portfolio re-balancing 𝐿 = 103 times (21 trading days per month, and 2163∕21 = 103). The portfolio performance of every model 
is evaluated. All GRU-based models take in a history window of 𝑇 = 200 daily returns and forecast the model parameters for future 
monthly return. Now there are still about 3, 250 data points for training, despite that the label or the prediction target is monthly 
return. The DCC-MM model estimates its parameters with the 165 monthly returns in the training data (3471∕21 ≈ 165). For the 
static SAA, an expanding window technique is adopted, i.e., the 165 monthly returns are assumed i.i.d. and used in the first-time 
portfolio optimization and then 166, 167, … are used in the following. This yields better performance compared to the rolling 
window approach in our case.

To prevent overfitting and relieve the concern of tuning parameters, we only use one-layer GRU with 4 or 6 hidden nodes and 
choose the last 20% of the training set as the validation set for early stopping. The GRU hidden state dimension is 4 in the market 
return fitting step (Algorithm 1), and is 6 in the individual stock return fitting step (Algorithm 2). These dimensions are twice 
the output dimensions, which are 2 and 3 respectively. They are not large because we indeed decompose the multi-dimensional 
problem to many one-dimensional problems. This reduces the difficulty of learning since each asset will have a low-dimensional 
9

Attention-GRU.
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Table 1

The time-invariant tail parameters 𝜈𝑀 = {𝑢𝑀 , 𝑣𝑀} for market returns S&P 500, and 𝜈𝑀
𝑖

= {𝑢𝑀
𝑖
, 𝑣𝑀
𝑖
}, 𝜈𝑖 =

{𝑢𝑖, 𝑣𝑖} for individual stock returns in the Dow Jones index, averaged from 𝐵𝑟 = 5 independent trainings of 
the GF-AGRU model.

Ticker 𝑢𝑀
𝑖

𝑣𝑀
𝑖

𝑢𝑖 𝑣𝑖 Ticker 𝑢𝑀
𝑖

𝑣𝑀
𝑖

𝑢𝑖 𝑣𝑖

S&P 500
𝑢𝑀
1.009

𝑣𝑀
1.630

AXP 1.993 2.257 1.753 1.516 JPM 1.370 1.568 2.000 1.288

XOM 1.112 1.745 1.491 1.359 MCD 1.927 2.606 1.691 1.756

AAPL 1.618 1.880 1.442 1.785 MMM 1.468 1.838 1.580 1.509

BA 1.374 2.426 1.346 1.361 MRK 2.509 2.692 1.462 1.721

CAT 1.439 1.699 1.690 1.520 MSFT 1.271 1.240 1.900 1.855

CSCO 1.531 1.743 1.618 1.547 NKE 1.939 2.216 1.912 1.817

CVX 1.309 1.743 1.423 1.464 PG 1.237 2.189 1.467 1.850

GS 1.465 1.553 1.725 1.610 TRV 2.660 2.842 2.032 1.494

HD 1.737 2.033 1.401 1.254 UNH 1.747 2.121 1.361 1.653

PFE 1.551 1.851 1.756 1.421 RTX 1.050 1.663 1.786 1.848

IBM 1.358 1.404 1.961 1.944 VZ 2.241 2.085 1.677 1.404

INTC 1.479 1.680 1.333 1.701 WBA 1.650 2.044 1.533 1.621

JNJ 2.648 2.829 1.577 1.309 WMT 1.912 1.841 1.493 1.403

KO 1.855 2.296 1.290 1.501 DIS 1.417 1.906 1.492 1.574

Besides, the following settings are common for both the algorithms: 𝑙fix = 10−2, 𝑙tv = 10−3, 𝑁𝑚 = 6, 𝑁fix = 2000, 𝑁tv = 2000, and 
the batch size 𝑆 is the training set size. We apply the normalization of zero-mean and unit-variance in data pre-processing. At last, to 
ensure the robustness of all GRU-based models, we independently train 𝐵𝑟 = 5 distinct models using different random initialization 
seeds. Each trained model is then utilized to generate a forecast of the factor model. Subsequently, we aggregate these forecasts 
by taking their average and obtain an ensemble forecast. The ensemble forecast is then employed in the subsequent CVaR portfolio 
optimization. This ensemble technique was also adopted in Gu et al. (2020) and was a key to improve the performance and the 
stability of neural networks.

For the large batch size, we know that the standard is using mini-batches. However, based on our experience, it is better to set 
a large batch size here. When it is common in computer science community to adopt a batch size of 128, 256, 512, and so on (the 
powers of 2), we found that these small batch sizes did not work well in our study. We directly set the batch size to be the training 
set size, and it works well. A possible explanation for this is the unstable predictive pattern in financial data. Two mini-batches of 
data can easily have distinct predictive patterns and the gradient descent may not work as expected. A large batch of samples may 
include a more stable relationship between the features and the label.

5.2. Estimated time-invariant tail parameters

We present the estimated time-invariant tail parameters in the GF-AGRU model in Table 1. Note that these estimated parameters 
are the averages from the 𝐵𝑟 = 5 independent trainings using different seeds. The column Ticker gives the symbols of the included 
stocks. As described in the generative factor model, we present the two tail parameters 𝜈𝑀 = {𝑢𝑀, 𝑣𝑀} for the monthly returns of 
S&P 500 index, which serve as the market returns. The right and left tail parameters of the market returns are 1.009 and 1.630
respectively, which indicates a heavier tail in the lower loss than in the upper reward. The number 1.009 on the upper side implies 
an approximate Gaussian right tail (the number 1 implies an exact Gaussian tail).

With regards to the individual stocks, the tail parameters are divided into two parts: 𝜈𝑀𝑖 = {𝑢𝑀𝑖 , 𝑣
𝑀
𝑖 } is concerned with the tail 

sensitivities of the stock to the common market factor; and 𝜈𝑖 = {𝑢𝑖, 𝑣𝑖} controls the residual tails or the idiosyncratic tails. We 
observe that 𝑣𝑀𝑖 is relatively larger than 𝑣𝑖 for most of these individual stocks, which suggests that the individual left tail heaviness 
is mainly decided by the extreme loss attributed to the market factor. Another observation is that for most stocks, 𝑣𝑀𝑖 is larger than 
𝑢𝑀𝑖 and both are larger than 1, which indicates that the stocks exhibit widely-existing tail dependence with the market returns (and 
with each other) and the lower tail dependence (left-tail side) is significantly larger than the upper.

Recall that the closer the tail parameters are to one, the more the distribution tails resemble Gaussian tails, or equally the 
lighter the tails are. Table 1 shows that most stocks have heavier tails than the normal distribution. And in most cases, the tails are 
asymmetric on left and right sides. For example, a larger 𝑣𝑀𝑖 with a smaller 𝑢𝑀𝑖 implies a heavier left tail (attributed to the market 
factor) than the right, as observed in many stocks. However, the residual tails show different patterns across different stocks. For 
example, IBM has similar 𝑢𝑖 and 𝑣𝑖 around 1.95, and the residual tails of JPM are obviously asymmetric and right-skewed (upper tail 
𝑢𝑖 = 2.000 and lower tail 𝑣𝑖 = 1.288), while the residual tails of MRK are left-skewed (upper tail 𝑢𝑖 = 1.462 and lower tail 𝑣𝑖 = 1.721).

5.3. Predicted time-varying parameters and coverage tests

In addition to the time-invariant tail parameters, we can also take a look at the time-varying parameters Θ𝑡
GF

predicted by us in 
the testing/out-of-sample set. They include the time-varying parameters of market returns Θ𝑡

𝑀
= {𝛼𝑡

𝑀
, 𝛽𝑡
𝑀
} and the ones of individual 
10

stock returns Θ𝑡𝑖 = {𝛼𝑡𝑖 , 𝛽
𝑡
𝑖 , 𝛾
𝑡
𝑖}. The visualizations of their temporal behaviors are in Appendix A, in which we show the curve results 
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of S&P 500 and 10 representative stocks selected in the Dow Jones index. One can find that many stocks show a spike in the year of 
2020, which may be attributed to the crash caused by the pandemic.

Because we have forecasted the joint distribution of stock returns in each month in the testing period, we can easily test how well 
the proposed model predicts the return distribution of each stock. It can partially support that our method leads to a good fit for the 
data. Focusing on the tail risk estimations, we conduct some coverage tests to backtest the predictions of VaR at 99%, 95%, or 90% 
level for each stock. The results and analysis are in Appendix B.

5.4. Portfolio optimization settings

Next, we focus on the investment performance of portfolio constructions given by several models with the CVaR objective in 
Equation (4) and Equation (5). The naive EW diversification will allocate equal weights to all stocks regardless of the past returns. As 
to the other models, the optimal weights are obtained by solving the CVaR minimization problem with different confidence levels 𝑞: 
𝑞 ∈ {0.90, 0.95, 0.99}. At each investment date, the number of new samples generated by the forecasted generative factor model (act 
as the inputs to the CVaR minimization problem) is 𝑛 ∈ {5000, 10000, 50000}, corresponding to the different values of 𝑞 respectively. 
It satisfies 𝑛(1 − 𝑞) = 500.

Noticing that the overall average monthly return of all stocks is around 2%, we accordingly set the target return 𝑅0 in CVaR 
minimization as 𝑅0 ∈ {0.01, 0.02, 0.03} (one of the optimization constraints), denoted as 𝑅1, 𝑅2, and 𝑅3 respectively. Besides, we 
also consider chasing the realized return obtained by the equally weighted portfolio, producing a time-varying 𝑅0 and denoting this 
target return strategy as 𝑅ew, which is supposed to improve the performance of the optimal portfolio as suggested in Kirby and 
Ostdiek (2012) and Hwang et al. (2018). It shall be noted that we conduct the simulation and CVaR optimization 10 times and report 
the average result to alleviate the randomness effect of sampling.

5.4.1. Evaluation metrics

The weights �̃�𝑡 obtained by solving the minimization will be used to construct the portfolio at each investment date and obtain 
a one-month future return �̃�⊤𝑡 𝑌

𝑡, where 𝑌 𝑡 now is the actual monthly returns of the 𝑁 stocks. Then we move to the next month 
(21 trading days) for re-balancing the portfolio, and repeat the process until we obtain 𝐿 = 103 dynamic returns, denoted as �̃� =
{�̃�1, … , �̃�𝐿}. For evaluating the performance of �̃�, we measure its average return (AV), standard deviation (SD), and their ratio 
denoted as information ratio (IR). We annualize these measures and calculate

AV =𝐸[�̃�] × 12,

SD =
√

Var(�̃�) × 12,

IR = AV∕SD,

(19)

where 𝐸[⋅] is the empirical mean and Var(⋅) is the empirical variance. Besides, we are also interested in the tail risk of the portfolio 
and thus include the 95% lower-tail CVaR (Expected Shortfall, ES) as a performance measure which is obtained by

ES =𝐸[−�̃�|− �̃� ≥ VaR95%(−�̃�)] × 12. (20)

A small ES is expected for well-performed portfolios. Besides, we also calculate the skewness (SK) of �̃� and the maximum drawdown 
(MD) of the portfolio as performance measures.

At last, noticing that investors do not share an unilateral risk aversion toward the upper and the lower tails of the returns, 
therefore we also include a CVaR-based ratio called Stable-Tail Adjusted Return Ratio or STARR (simplified as CR) proposed by 
Martin et al. (2003). CR is defined as

CR = 𝐸[�̃�]
𝐸[−�̃�|− �̃� ≥ VaR95%(−�̃�)]

, (21)

where the denominator is the 95% lower-tail CVaR of the portfolio. Similarly, the Rachev ratio (RR) given by Biglova et al. (2004)

calculates the ratio of upper expected excess and the lower-tail CVaR:

RR =
𝐸[�̃�|− �̃� ≤ VaR95%(−�̃�)]
𝐸[−�̃�|− �̃� ≥ VaR95%(−�̃�)]

. (22)

The STARR ratio (CR) and Rachev ratio (RR) provide better reward-risk measures for skewed and heavy-tailed portfolio returns (see 
Farinelli et al. (2008)).

5.5. Discussion on performance

Table 2 exhibits the portfolio performance given by four models: EW, static SAA (expanding window), DCC-MM, and the proposed 
GF-AGRU, under different settings of confidence level 𝑞 and sample size 𝑛. Four different target return strategies are considered. 
11

We find that EW leads to a relatively small average return (AV = 0.151) and a low information ratio (IR = 1.088). Meanwhile, the 
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Table 2

Investment performance of CVaR portfolio optimization on the Dow Jones stocks with different settings of confidence level 𝑞 and sample size 
𝑛. Four models are considered for comparisons: EW, static SAA (expanding window), DCC-MM, and the proposed GF-AGRU. 𝑅1 , 𝑅2 , and 𝑅3
represent the target returns of 0.01, 0.02, and 0.03, respectively. 𝑅ew represents the time-varying target return achieved by EW. Given a specific 
target return, the best performance under each evaluation metric is displayed with bold.

Panel A: CVaR Optimization with 𝑞 = 0.90, 𝑛 = 5000

Metric EW SAA DCC-MM GF-AGRU

𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.151 0.139 0.26 0.331 0.208 0.167 0.284 0.313 0.254 0.243 0.311 0.318 0.334

SD 0.139 0.146 0.161 0.292 0.236 0.135 0.172 0.264 0.226 0.171 0.183 0.238 0.22

IR 1.088 0.95 1.615 1.132 0.884 1.237 1.657 1.184 1.121 1.42 1.698 1.337 1.517

MD 0.256 0.211 0.211 0.314 0.206 0.215 0.233 0.284 0.202 0.202 0.196 0.236 0.202

ES 1.133 1.059 1.02 1.832 1.379 1.04 1.158 1.72 1.347 1.0 1.053 1.491 1.155

SK -1.610 0.009 -0.147 0.241 1.294 -0.747 -0.345 0.062 1.251 0.213 0.21 0.277 1.314

CR 0.133 0.131 0.254 0.18 0.151 0.161 0.246 0.182 0.188 0.243 0.295 0.213 0.289

RR 0.191 0.189 0.318 0.241 0.21 0.22 0.309 0.242 0.249 0.307 0.361 0.275 0.355

Panel B: CVaR Optimization with 𝑞 = 0.95, 𝑛 = 10000

Metric EW SAA DCC-MM GF-AGRU

𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.151 0.151 0.257 0.331 0.215 0.167 0.282 0.311 0.253 0.242 0.318 0.323 0.328

SD 0.139 0.142 0.161 0.292 0.235 0.135 0.172 0.263 0.227 0.167 0.183 0.238 0.222

IR 1.088 1.061 1.595 1.132 0.915 1.239 1.644 1.181 1.118 1.452 1.739 1.357 1.48

MD 0.256 0.204 0.214 0.314 0.211 0.217 0.237 0.278 0.2 0.202 0.196 0.234 0.202

ES 1.133 1.047 1.005 1.832 1.335 1.041 1.168 1.692 1.367 1.0 1.053 1.483 1.159

SK -1.610 0.019 -0.141 0.241 1.318 -0.809 -0.372 0.109 1.234 0.235 0.162 0.245 1.276

CR 0.133 0.144 0.256 0.18 0.161 0.161 0.242 0.184 0.185 0.242 0.302 0.218 0.283

RR 0.191 0.202 0.32 0.241 0.22 0.22 0.305 0.244 0.246 0.306 0.368 0.28 0.349

Panel C: CVaR Optimization with 𝑞 = 0.99, 𝑛 = 50000

Metric EW SAA DCC-MM GF-AGRU

𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.151 0.133 0.245 0.331 0.184 0.168 0.286 0.312 0.252 0.218 0.317 0.324 0.309

SD 0.139 0.148 0.168 0.292 0.242 0.135 0.172 0.263 0.227 0.159 0.183 0.238 0.22

IR 1.088 0.901 1.462 1.132 0.761 1.243 1.662 1.189 1.111 1.372 1.737 1.36 1.402

MD 0.256 0.249 0.214 0.314 0.276 0.215 0.235 0.279 0.2 0.202 0.196 0.234 0.202

ES 1.133 1.189 1.136 1.832 1.485 1.041 1.152 1.693 1.364 0.971 1.05 1.478 1.158

SK -1.610 -0.451 -0.147 0.241 1.109 -0.772 -0.345 0.11 1.239 0.216 0.173 0.26 1.359

CR 0.133 0.112 0.216 0.18 0.124 0.161 0.248 0.185 0.185 0.225 0.302 0.219 0.267

RR 0.191 0.169 0.278 0.241 0.181 0.221 0.312 0.245 0.245 0.287 0.369 0.281 0.331

skewness (SK = −1.61) is significantly negative and implies a tendency for a heavy loss of the portfolio. Unlike the robust performance 
of the EW strategy as illustrated in DeMiguel et al. (2009), our experiment shows that the more advanced models can provide better 
investment performance, by solving a portfolio optimization problem with the CVaR objective (some of them forecast and simulate 
from the joint distribution of stock returns).

As we can see from the table, when comparing the static SAA with the EW method, SAA demonstrates some outperformance. For 
example, when the target return is 𝑅2 = 0.02 and the confidence level is 𝑞 = 0.90, the SAA model achieves an Information Ratio (IR) 
of 1.615, which is notably higher than the IR of EW. Although it is still smaller than the IR of 1.657 achieved by the DCC-MM model, 
it should be noted that SAA yields smaller maximum drawdown (MD) and expected shortfall (ES) and slightly higher skewness (SK), 
CR, and RR compared to DCC-MM under 𝑅2. However, for other target returns, SAA falls short in comparisons to DCC-MM under 
most of the metrics and even performs worse than the EW strategy under 𝑅1 and 𝑅ew. As to the DCC-MM model, we observe that 
it achieves a high information ratio (IR = 1.657) when the target return is 𝑅2 = 0.02. However, DCC-MM fails to persist the good 
performance when we optimize the CVaR objective with other target returns. Especially with 𝑅ew, the information ratio (IR = 1.121) 
is close to that given by EW. Overall, DCC-MM performs slightly better than the static SAA, and the static SAA only outperforms EW 
under 𝑅2.

When comparing these benchmarks with the proposed GF-AGRU model, it becomes evident that GF-AGRU consistently outper-

forms them in terms of most metrics across various settings such as the confidence levels of CVaR and the target returns. Notably, the 
introduction of the dynamic generative factor model with tail-property considerations leads to a significant improvement in portfolio 
performance. The GF-AGRU model gives the largest IR for most target returns while also exhibiting superiority in the control of tail 
risk with small MD & ES and large SK. Considering the ratios of reward and tail risk, the STARR ratio (CR) and Rachev ratio (RR), 
we notice that the GF-AGRU model shows consistent outperformance over other models, regardless of the confidence levels of CVaR 
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and the target return constraints. We ascribe the outstanding performance of the GF-AGRU model to the detailed depiction of the tail 
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Table 3

Inspect the importance of each part in the GF-AGRU model (ablation study), by exhibiting the investment performance of CVaR portfolio optimization 
on the Dow Jones stocks with different settings of confidence level 𝑞 and sample size 𝑛. Four models are considered for comparisons: EW, Naive-AGRU, 
GF-GRU, and the proposed GF-AGRU. 𝑅1, 𝑅2 , and 𝑅3 represent the target returns of 0.01, 0.02, and 0.03, respectively. 𝑅ew represents the time-varying 
target return achieved by EW. Given a specific target return, the best performance under each evaluation metric is displayed with bold.

Panel A: CVaR Optimization with 𝑞 = 0.90, 𝑛 = 5000

Metric EW Naive-AGRU GF-GRU GF-AGRU

𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.151 0.165 0.231 0.285 0.242 0.16 0.233 0.278 0.249 0.243 0.311 0.318 0.334

SD 0.139 0.132 0.149 0.206 0.216 0.182 0.195 0.229 0.237 0.171 0.183 0.238 0.22

IR 1.088 1.253 1.553 1.381 1.118 0.876 1.196 1.214 1.053 1.42 1.698 1.337 1.517

MD 0.256 0.209 0.212 0.218 0.195 0.273 0.276 0.248 0.251 0.202 0.196 0.236 0.202

ES 1.133 1.052 1.102 1.379 1.224 1.26 1.362 1.546 1.385 1.0 1.053 1.491 1.155

SK -1.610 -0.571 -0.318 -0.05 1.532 -0.685 -0.521 0.089 0.845 0.213 0.21 0.277 1.314

CR 0.133 0.157 0.21 0.207 0.198 0.127 0.171 0.18 0.18 0.243 0.295 0.213 0.289

RR 0.191 0.216 0.272 0.268 0.259 0.184 0.231 0.24 0.24 0.307 0.361 0.275 0.355

Panel B: CVaR Optimization with 𝑞 = 0.95, 𝑛 = 10000

Metric EW Naive-AGRU GF-GRU GF-AGRU

𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.151 0.165 0.229 0.283 0.241 0.169 0.235 0.278 0.242 0.242 0.318 0.323 0.328

SD 0.139 0.132 0.149 0.205 0.216 0.183 0.196 0.229 0.238 0.167 0.183 0.238 0.222

IR 1.088 1.246 1.539 1.377 1.115 0.921 1.198 1.213 1.017 1.452 1.739 1.357 1.48

MD 0.256 0.212 0.218 0.22 0.195 0.268 0.279 0.248 0.241 0.202 0.196 0.234 0.202

ES 1.133 1.052 1.107 1.372 1.231 1.233 1.325 1.526 1.385 1.0 1.053 1.483 1.159

SK -1.610 -0.621 -0.384 -0.05 1.532 -0.578 -0.403 0.135 0.853 0.235 0.162 0.245 1.276

CR 0.133 0.157 0.207 0.206 0.196 0.137 0.177 0.182 0.174 0.242 0.302 0.218 0.283

RR 0.191 0.216 0.269 0.268 0.257 0.195 0.237 0.242 0.234 0.306 0.368 0.28 0.349

Panel C: CVaR Optimization with 𝑞 = 0.99, 𝑛 = 50000

Metric EW Naive-AGRU GF-GRU GF-AGRU

𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.151 0.165 0.232 0.285 0.24 0.179 0.243 0.282 0.265 0.218 0.317 0.324 0.309

SD 0.139 0.132 0.149 0.205 0.216 0.178 0.197 0.23 0.237 0.159 0.183 0.238 0.22

IR 1.088 1.25 1.562 1.39 1.107 1.001 1.239 1.23 1.119 1.372 1.737 1.36 1.402

MD 0.256 0.212 0.216 0.22 0.194 0.268 0.278 0.245 0.241 0.202 0.196 0.234 0.202

ES 1.133 1.057 1.095 1.363 1.232 1.199 1.303 1.508 1.37 0.971 1.05 1.478 1.158

SK -1.610 -0.61 -0.35 -0.022 1.536 -0.658 -0.398 0.166 0.83 0.216 0.173 0.26 1.359

CR 0.133 0.157 0.212 0.21 0.195 0.149 0.187 0.187 0.193 0.225 0.302 0.219 0.267

RR 0.191 0.216 0.274 0.271 0.255 0.208 0.247 0.248 0.254 0.287 0.369 0.281 0.331

properties of stock returns, the succinct generative model structure, the powerful attention mechanism combined with GRU, and the 
well-designed training algorithm which decomposes a difficult multi-dimensional learning task into many separate one-dimensional 
tasks.

5.6. Ablation study

The GF-AGRU model aggregates the merits of several components, i.e., the generative factor model, the heavy-tail properties 
incorporated, the GRU network, and the attention mechanism. An inquiry that arises naturally is the extent to which each component 
contributes to the overall performance. Therefore, we contemplate the exclusion of a certain component and conduct a thorough 
examination of the individual impact. Note that the model endeavors to learn the joint distribution of multi-dimensional stock returns 
with the generative factor model and makes forecasts with a sequential learning network. Therefore, it is essential to retain the factor 
structure and the GRU network, as these components play fundamental roles in the modeling. The aspects that require specific 
examination are the heavy-tail properties incorporated and the attention mechanism, which introduce flexibility and enhance the 
model’s capability. These components can be considered as the focus of investigation here.

In Section 3.1, we have introduced an alternative approach, which can be obtained by removing the heavy-tail part from the GF-

AGRU model. This approach, referred to as the Naive-AGRU model, solely involves fitting a naive factor model without incorporating 
the 𝑔(⋅) function described in Equation (9). On the other hand, in the case that the attention layer is omitted, we maintain the heavy-

tail part but directly map the final hidden states of GRU to the forecasts of model parameters with a dense linear layer. This variant 
is denoted as the GF-GRU model, distinguishing it from the GF-AGRU model. For all the three models, similarly, we employ separate 
training procedures using 𝐵𝑟 = 5 distinct seeds and take the averaged forecasts. Subsequently, we apply mean-CVaR optimization 
13

and evaluate the investment performance of the three models.
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Fig. 1. The cumulative return curves of the portfolios given by six different models with confidence level 𝑞 = 0.90 in CVaR optimization. The four subfigures correspond 
to four target return constraints respectively, i.e., 𝑅1 = 0.01, 𝑅2 = 0.02, 𝑅3 = 0.03, and 𝑅ew.

Fig. 2. The cumulative return curves of the portfolios given by six different models with confidence level 𝑞 = 0.95 in CVaR optimization. The four subfigures correspond 
to four target return constraints respectively, i.e., 𝑅1 = 0.01, 𝑅2 = 0.02, 𝑅3 = 0.03, and 𝑅ew.

The comparisons of the Naive-AGRU, GF-GRU, and GF-AGRU models in Table 3 demonstrate that the GF-AGRU model consistently 
outperforms the other two across various metrics. An exception is that the portfolios constructed by Naive-AGRU give the smallest 
standard deviation (SD) and sometimes the smallest maximum drawdown (MD). But their information ratio (IR), CR, and RR are 
not satisfactory. This can be interpreted that Naive-AGRU adopts Gaussian distribution assumption for stock returns, and hence 
minimizing CVaR of the portfolio is equivalent to minimizing its variance (given an expected return constraint). However, the gap 
between the real data and Gaussian distribution makes the estimations of other metrics not accurate, such as AV, ES, and SK, resulting 
in relatively low IR, CR, and RR.

These results highlight the significance of the heavy-tail properties incorporated and the attention mechanism, further confirming 
the superiority of our proposed model. It is surprising that the Naive-AGRU model yields a more effective investment strategy 
compared to the GF-GRU model that solely incorporates heavy-tail properties without the attention mechanism. Sometimes GF-GRU 
even performs worse than EW. This suggests that the pure GRU network may struggle to capture the complex patterns of dynamic 
stock returns, if not powered by the attention mechanism.

5.7. The cumulative return curves

In Fig. 1, 2, and 3, we exhibit the cumulative return curves of the portfolios given by the six models considered above: the three 
14

benchmark models (EW, SAA, and DCC-MM), the GF-AGRU model, and its two variants (Naive-AGRU and GF-GRU). These figures 
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Fig. 3. The cumulative return curves of the portfolios given by six different models with confidence level 𝑞 = 0.99 in CVaR optimization. The four subfigures correspond 
to four target return constraints respectively, i.e., 𝑅1 = 0.01, 𝑅2 = 0.02, 𝑅3 = 0.03, and 𝑅ew.

separately show the portfolio performance of six models with different confidence levels in CVaR optimization. For example, Fig. 1

plots the results with confidence level 𝑞 = 0.90 under various target return constraints, i.e., 𝑅1 = 0.01, 𝑅2 = 0.02, 𝑅3 = 0.03, and 𝑅ew. 
The top-left subfigure shows the cumulative return curves of the portfolios targeting at 𝑅1 = 0.01, from which we observe that the 
GF-AGRU model remarkably outperforms others and reaches a high profit. It is followed by the DCC-MM model, but its performance 
closely aligns with the other four models.

The superiority of GF-AGRU persists with other return constraints (other subfigures in Fig. 1) and other confidence levels (Fig. 2

and 3). The static SAA surpasses EW but shows no strength over the DCC-MM model and our model. As to the two variants, i.e., 
Naive-AGRU and GF-GRU, they face challenges in competing with the DCC-MM model. We also notice that different target return 
constraints do significantly influence the portfolio performance, but the change of confidence level 𝑞 does not make much diffidence 
to the outcome.

We observe that the gap between GF-AGRU and other models seems to narrow with target return 𝑅2 or 𝑅3. However, this does 
not necessarily lead to the conclusion that their performance are close, because we have many other evaluation metrics as illustrated 
in Table 2 and 3. The decreasing gap represents that the average portfolio returns given by the other models are becoming better. 
This is because the target return constraint increases from 𝑅1 to 𝑅3. However, our model performs well under various target return 
constraints. Even under the time varying 𝑅ew, our model performs much better than others. We guess that it is because the stock 
market becomes better in the testing years and only our approach can benefit from this (other models need to carefully specify a 
target return constraint).

5.8. Robustness of our model

From deep learning perspective, it is intrinsic to assess the robustness of our model across various settings or under some in-

evitable randomness, and demonstrate the consistent advantages offered by our proposed approach. In concrete, we mainly consider 
three cases of robustness analysis in line with the threads of our numerical experiment, covering the model hyper-parameter spec-

ification, the randomness in training the neural network, and the randomness of simulation in CVaR optimization. In Appendix C, 
we comprehensively analyze the model robustness in these aspects. The results reveal that our model is robust enough and gives 
consistent good performance.

6. Conclusion

We design a dynamic generative factor model with Attention-GRU neural network to dynamically learn and forecast the model 
parameters, hence can forecast the joint distribution of multivariate stock returns. The factor structure alleviates the concerns about 
the curse of dimensionality by compressing the high-dimensional joint distribution into a succinct representation, and asymmetric 
heavy-tail properties are incorporated. Then we use many one-layer GRU networks combined with the attention mechanism to 
predict the parameters of the factor model, including the time-invariant tail parameters. We propose a two-step iterative algorithm 
to train the proposed GF-AGRU model, which decomposes the difficult multi-dimensional learning problem into many separate 
one-dimensional learning problems.

In the numerical experiment, we construct portfolios using the components of the Dow Jones index. The GF-AGRU model learns 
15

from the past daily returns and predicts the parameters (thus the joint distribution) of the future monthly returns. We simulate new
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samples using the generative model learned at each investment date and use the samples to solve the CVaR portfolio optimization 
problem. Compared with three benchmark models and two GF-AGRU variants, the portfolios constructed by our model can provide 
higher reward-risk ratios and smaller tail risks. This superiority is consistent with respect to different target return constraints and 
different confidence levels in CVaR optimization. The superiority also shows adequate robustness. Finally, we find that the attention 
mechanism and the heavy-tail properties are two key features that make the approach successful.
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Appendix A. Predicted time-varying parameters 𝚯𝒕

GF

To have an intuitive view on the temporal behaviors of time-varying parameters Θ𝑡
GF

for the market returns and individual stock 
returns predicted by the proposed GF-AGRU model, we plot the curves of the predicted parameters over time and show the results 
of S&P 500 and 10 representative stocks, as displayed in Fig. A.4, A.5, and A.6.

The left subplot in Fig. A.4 shows the forecasts of 𝛼𝑡
𝑀

for the market returns (S&P 500 index), while the right subplot is the 
corresponding 𝛽𝑡

𝑀
curve. The 𝛼𝑡

𝑀
curve falls to the bottom at the end of 2015 and the end of 2018, and becomes volatile in the year 

of 2019 and 2020. Notice that the 𝛽𝑡
𝑀

curve essentially mimics the volatility dynamics of market returns, and becomes significantly 
more volatile from the end of 2018. We also give the predicted parameter curves for the individual stock returns in Fig. A.5 and A.6. 
The three curves in each row present the dynamics of 𝛼𝑡𝑖 (left), 𝛽𝑡𝑖 (middle), and 𝛾𝑡𝑖 (right), predicted by our GF-AGRU model. From 
the results of AAPL, we see that its 𝛼𝑡𝑖 is much larger than those of other stocks. This is consistent with the intuition that AAPL is 
one of the best-performing stocks. For many stocks, the 𝛽𝑡𝑖 curve suffers from a spike in the year of 2020, consistent with the market 

crash caused by the pandemic. Similar patterns are observed in the 𝛾𝑡𝑖 curves.

Fig. A.4. Predicted time-varying parameters of the market returns (S&P 500 index). The left shows the curve of predicted 𝛼𝑡
𝑀

and the right shows the curve of 
predicted 𝛽𝑡

𝑀
.

16
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Fig. A.5. Predicted time-varying parameters of individual stock returns: AAPL, AXP, JPM, IBM, and XOM. The three curves in each row present the dynamics of 𝛼𝑡𝑖
(left), 𝛽𝑡𝑖 (middle), and 𝛾𝑡𝑖 (right), predicted by our GF-AGRU model.
17
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Fig. A.6. Predicted time-varying parameters of individual stock returns: BA, CAT, CSCO, CVX, and GS. The three curves in each row present the dynamics of 𝛼𝑡𝑖 (left), 
𝛽𝑡𝑖 (middle), and 𝛾𝑡𝑖 (right), predicted by our GF-AGRU model.
18
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Table B.4

The three coverage tests for 99%-VaR estimations of each stock given 
by GF-AGRU model.

Stock Number of

Violations

𝑝-value

of POF

𝑝-value

of CCI

𝑝-value

of CC

S&P 500 1 0.9762 0.8881 0.9897

AXP 2 0.395 0.7773 0.6691

XOM 3 0.1129 0.055 0.0452

AAPL 0 0.1502 1.0 0.3552

BA 1 0.9762 0.8881 0.9897

CAT 0 0.1502 1.0 0.3552

CSCO 0 0.1502 1.0 0.3552

CVX 3 0.1129 0.6698 0.26

GS 1 0.9762 0.8881 0.9897

HD 2 0.395 0.7773 0.6691

PFE 1 0.9762 0.8881 0.9897

IBM 2 0.395 0.7773 0.6691

INTC 0 0.1502 1.0 0.3552

JNJ 2 0.395 0.7773 0.6691

KO 1 0.9762 0.8881 0.9897

JPM 1 0.9762 0.8881 0.9897

MCD 1 0.9762 0.8881 0.9897

MMM 1 0.9762 0.8881 0.9897

MRK 0 0.1502 1.0 0.3552

MSFT 0 0.1502 1.0 0.3552

NKE 0 0.1502 1.0 0.3552

PG 1 0.9762 0.8881 0.9897

TRV 1 0.9762 0.8881 0.9897

UNH 0 0.1502 1.0 0.3552

RTX 1 0.9762 0.8881 0.9897

VZ 0 0.1502 1.0 0.3552

WBA 0 0.1502 1.0 0.3552

WMT 1 0.9762 0.8881 0.9897

DIS 2 0.395 0.7773 0.6691

Rejection

Count (< 0.05)
0 0 1

Table B.5

The three coverage tests for 95%-VaR estimations of each stock given 
by GF-AGRU model.

Stock Number of

Violations

𝑝-value

of POF

𝑝-value

of CCI

𝑝-value

of CC

S&P 500 6 0.7077 0.3303 0.5803

AXP 5 0.9457 0.2114 0.4569

XOM 7 0.4266 0.4729 0.5635

AAPL 1 0.0226 0.8881 0.0737

BA 5 0.9457 0.2114 0.4569

CAT 4 0.589 0.5677 0.734

CSCO 1 0.0226 0.8881 0.0737

CVX 5 0.9457 0.4727 0.7709

GS 3 0.2933 0.055 0.0913

HD 2 0.1057 0.7773 0.2596

PFE 4 0.589 0.1193 0.2569

IBM 6 0.7077 0.3863 0.6405

INTC 1 0.0226 0.8881 0.0737

JNJ 5 0.9457 0.4727 0.7709

KO 2 0.1057 0.7773 0.2596

JPM 3 0.2933 0.6698 0.5256

MCD 3 0.2933 0.6698 0.5256

MMM 5 0.9457 0.2114 0.4569

MRK 2 0.1057 0.7773 0.2596

MSFT 1 0.0226 0.8881 0.0737

NKE 2 0.1057 0.7773 0.2596

PG 3 0.2933 0.6698 0.5256

TRV 2 0.1057 0.7773 0.2596

UNH 0 0.0012 1.0 0.0051

RTX 6 0.7077 0.3303 0.5803

VZ 2 0.1057 0.7773 0.2596

WBA 6 0.7077 0.3303 0.5803

WMT 2 0.1057 0.7773 0.2596

DIS 2 0.1057 0.7773 0.2596

Rejection

Count (< 0.05)
5 0 1

Appendix B. Coverage tests

We test how well the proposed model predicts the return distribution of each stock, especially focusing on the tail risk estimations. 
The non-linear transformation in our generative factor model provides flexible heavy-tail properties for stock returns. To be more 
specific, we conduct some coverage tests to backtest the predictions of VaR at 99%, 95%, or 90% level for each stock.

In detail, we utilize the generative mechanism of the proposed GF-AGRU model and simulate 𝑛 = 10, 000 samples at each predic-

tion date 𝑡 using the predicted parameters of the generative factor model. Then for each stock (as well as S&P 500), we estimate VaR 
from these samples with confidence level 𝑞 = 0.99, 0.95, 0.90 and repeat the procedure over the out-of-sample set to form a sequence 
of VaR estimations with a total length 𝐿 = 103. We apply the classic POF unconditional coverage test (Kupiec et al., 1995) to test the 
proportion of violations of VaR predictions (a violation means an observation is higher than the VaR prediction of the loss), which 
employs a likelihood ratio to assess the consistency between the violation probability and the probability implied by the VaR confi-

dence level. Besides, we also check whether the probability of observing a new violation depends on the past violation occurrence, 
i.e., conducting the independence test. For this purpose, we utilize the likelihood-ratio-based Conditional Coverage Independence 
(CCI) test (Christoffersen, 1998). At last, we adopt a unified test combining the unconditional coverage test and the independence 
test, denoted as the Conditional Coverage (CC) test (Dias, 2013).

Table B.4 shows the number of violations of our VaR estimations against the real monthly returns for each stock, together with 
the 𝑝-value of each test, under the confidence level 𝑞 = 0.99. In such a case, the expected number of violations shall be around 1 and 
we see that the maximum number of violations is 3. The three coverage tests also scarcely lead to rejections of the null hypothesis 
(𝑝-value is smaller than 0.05) and we conclude that our GF-AGRU model provides robust 99%-VaR estimations and performs well 
in tail risk coverage. Table B.5 and Table B.6 are coverage test results of VaR estimations under the confidence level 𝑞 = 0.95 and 
19

𝑞 = 0.90, respectively. They also show acceptable test results with small rejection counts.
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Table B.6

The three coverage tests for 90%-VaR estimations of each stock given 
by GF-AGRU model.

Stock Number of

Violations

𝑝-value

of POF

𝑝-value

of CCI

𝑝-value

of CC

S&P 500 11 0.8199 0.4352 0.7187

AXP 6 0.1284 0.3303 0.196

XOM 10 0.9212 0.9825 0.9949

AAPL 7 0.2526 0.4729 0.4017

BA 11 0.8199 0.8447 0.9559

CAT 7 0.2526 0.3096 0.3102

CSCO 4 0.0195 0.1193 0.0195

CVX 6 0.1284 0.3303 0.196

GS 7 0.2526 0.0628 0.092

HD 3 0.0053 0.6698 0.0189

PFE 5 0.0554 0.159 0.0592

IBM 10 0.9212 0.9825 0.9949

INTC 8 0.4335 0.6338 0.6569

JNJ 8 0.4335 0.276 0.4066

KO 5 0.0554 0.4727 0.1233

JPM 6 0.1284 0.3863 0.2163

MCD 5 0.0554 0.4727 0.1233

MMM 9 0.6633 0.1517 0.3256

MRK 3 0.0053 0.6698 0.0189

MSFT 1 0.0001 0.8881 0.0006

NKE 5 0.0554 0.2114 0.0731

PG 5 0.0554 0.2114 0.0731

TRV 4 0.0195 0.5677 0.0556

UNH 4 0.0195 0.1193 0.0195

RTX 10 0.9212 0.3021 0.5843

VZ 3 0.0053 0.6698 0.0189

WBA 9 0.6633 0.8062 0.8826

WMT 7 0.2526 0.4729 0.4017

DIS 5 0.0554 0.0113 0.0065

Rejection

Count (< 0.05)
7 1 7

Appendix C. Robustness analysis

We check the robustness of our model across various settings or under some inevitable randomness. We mainly consider three 
cases of robustness analysis in line with the threads of our numerical experiment, covering the model hyper-parameter specifica-

tion, the randomness in training the neural network, and the randomness of simulation in CVaR optimization. Accordingly, in the 
following, we address these robustness concerns separately.

C.1. Robustness in hyper-parameter specifications

The flexibility in constructing a neural network-based model gives rise to a concern regarding the robustness in different 
hyper-parameter specifications. Regarding our GF-AGRU model, we focus on the primary hyper-parameters that impact the model 
performance most, that is, the hidden dimensions in GRU. The default hidden dimension we have used for the market return fitting 
step is 𝐷𝑀

ℎ
= 4, whereas for individual stock fitting, the default hidden dimension is set as 𝐷𝑖

ℎ
= 6. These values are determined by us 

to be twice the output dimension of GRU, which is 2 in the market fitting step and 3 in the individual stock fitting. In detail, in Algo-

rithm 1, we anticipate obtaining time-varying forecasts of the model parameters Θ𝑡
𝑀

= {𝛼𝑡
𝑀
, 𝛽𝑡
𝑀
} as the outputs of TV-AGRU, which 

have a dimension 2. Similarly, in Algorithm 2 for individual stocks, the forecasting parameters Θ𝑡𝑖 = {𝛼𝑡𝑖 , 𝛽
𝑡
𝑖 , 𝛾
𝑡
𝑖} have a dimension 3. 

We thus set moderate dimensions for 𝐷𝑀
ℎ

and 𝐷𝑖
ℎ
, to reduce the risk of overfitting or underfitting.

To further examine the impact of 𝐷𝑀
ℎ

and 𝐷𝑖
ℎ

(as the primary hyper-parameters), we introduce some perturbations to the 
two hidden dimensions and examine the portfolio performance. Based on some previous experience, we refrain from considering 
large hidden dimensions because both the input dimensions (2 or 4) and the output dimensions (2 or 3) of GRU are small. So, 
the two alternative specifications we will explore are: 𝐷𝑀

ℎ
= 3, 𝐷𝑖

ℎ
= 5 (referred to as the Hidden-less setting) and 𝐷𝑀

ℎ
= 5, 𝐷𝑖

ℎ
= 7

(referred to as the Hidden-more setting). The investment performance displayed in Table C.7 demonstrates that compared with the 
default Origin setting, smaller hidden dimensions (Hidden-less) yield notable improvements under 𝑅1 and 𝑅ew, but slightly reduce 
20

the performance under 𝑅2 and 𝑅3. On the other hand, larger hidden dimensions (Hidden-more) seem to result in some moderate



Journal of Economic Dynamics and Control 160 (2024) 104821C. Sun, Q. Wu and X. Yan

Table C.7

Robustness of the GF-AGRU model in different hidden dimension specifications, by exhibiting the investment performance of CVaR portfolio 
optimization on the Dow Jones stocks with different settings of confidence level 𝑞 and sample size 𝑛. Three specifications are considered: the 
default hidden dimensions 𝐷𝑀

ℎ
= 4, 𝐷𝑖

ℎ
= 6 (Origin), the Hidden-less setting 𝐷𝑀

ℎ
= 3, 𝐷𝑖

ℎ
= 5, and the Hidden-more setting 𝐷𝑀

ℎ
= 5, 𝐷𝑖

ℎ
= 7. We 

still include the EW method as a benchmark. 𝑅1 , 𝑅2 , and 𝑅3 represent the target returns of 0.01, 0.02, and 0.03, respectively. 𝑅ew represents the 
time-varying target return achieved by EW. Given a specific target return, the best performance under each evaluation metric is displayed with 
bold.

Panel A: CVaR Optimization with 𝑞 = 0.90, 𝑛 = 5000

Metric EW Origin Hidden-less Hidden-more

𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.151 0.243 0.311 0.318 0.334 0.312 0.258 0.3 0.358 0.226 0.313 0.318 0.281

SD 0.139 0.171 0.183 0.238 0.22 0.167 0.172 0.237 0.22 0.173 0.181 0.247 0.233

IR 1.088 1.42 1.698 1.337 1.517 1.87 1.5 1.266 1.627 1.311 1.725 1.287 1.207

MD 0.256 0.202 0.196 0.236 0.202 0.17 0.201 0.245 0.139 0.198 0.209 0.243 0.19

ES 1.133 1.0 1.053 1.491 1.155 0.915 1.117 1.557 1.082 0.983 1.065 1.605 1.305

SK -1.610 0.213 0.21 0.277 1.314 -0.142 -0.346 0.167 1.305 0.999 -0.01 0.157 1.12

CR 0.133 0.243 0.295 0.213 0.289 0.341 0.231 0.193 0.331 0.23 0.294 0.198 0.215

RR 0.191 0.307 0.361 0.275 0.355 0.41 0.294 0.254 0.399 0.293 0.36 0.259 0.277

Panel B: CVaR Optimization with 𝑞 = 0.95, 𝑛 = 10000

Metric EW Origin Hidden-less Hidden-more

𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.151 0.242 0.318 0.323 0.328 0.319 0.254 0.299 0.353 0.213 0.302 0.314 0.292

SD 0.139 0.167 0.183 0.238 0.222 0.166 0.17 0.236 0.219 0.154 0.173 0.244 0.235

IR 1.088 1.452 1.739 1.357 1.48 1.922 1.493 1.269 1.608 1.385 1.747 1.29 1.242

MD 0.256 0.202 0.196 0.234 0.202 0.17 0.201 0.25 0.139 0.22 0.245 0.245 0.19

ES 1.133 1.0 1.053 1.483 1.159 0.915 1.11 1.542 1.095 0.987 1.156 1.588 1.291

SK -1.610 0.235 0.162 0.245 1.276 -0.164 -0.356 0.079 1.317 -0.416 -0.623 0.046 1.074

CR 0.133 0.242 0.302 0.218 0.283 0.348 0.229 0.194 0.322 0.215 0.261 0.198 0.226

RR 0.191 0.306 0.368 0.28 0.349 0.417 0.292 0.255 0.39 0.277 0.326 0.259 0.289

Panel C: CVaR Optimization with 𝑞 = 0.99, 𝑛 = 50000

Metric EW Origin Hidden-less Hidden-more

𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew 𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.151 0.218 0.317 0.324 0.309 0.301 0.271 0.307 0.339 0.172 0.265 0.302 0.286

SD 0.139 0.159 0.183 0.238 0.22 0.171 0.179 0.239 0.224 0.145 0.16 0.242 0.23

IR 1.088 1.372 1.737 1.36 1.402 1.762 1.521 1.286 1.514 1.182 1.659 1.247 1.244

MD 0.256 0.202 0.196 0.234 0.202 0.198 0.202 0.252 0.2 0.191 0.204 0.249 0.19

ES 1.133 0.971 1.05 1.478 1.158 1.007 1.115 1.561 1.214 0.948 1.049 1.565 1.262

SK -1.610 0.216 0.173 0.26 1.359 -0.068 -0.171 0.102 1.103 0.006 -0.41 0.125 1.159

CR 0.133 0.225 0.302 0.219 0.267 0.299 0.243 0.196 0.279 0.181 0.253 0.193 0.226

RR 0.191 0.287 0.369 0.281 0.331 0.366 0.307 0.258 0.345 0.241 0.317 0.254 0.289

inferiority in performance. This confirms our suggestion that small hidden dimensions are preferred. Overall, minor adjustments to 
the hidden dimensions will cause some variations in the performance, but with no significant deterioration. Most importantly, the 
settings in Table C.7 all produce better performance than the benchmark models in Table 2.

C.2. Robustness in training randomness

The neural network model training procedure inherently introduces stochasticity, which may contribute to some variations in 
the resulting outcomes. Note that in our experiment, we do not employ random selection for batch splitting as many deep learning 
models do. Furthermore, in the gradient descent process for parameter optimization, we adopt the RMSProp optimizer provided by 
PyTorch, which is a deterministic optimizer that does not introduce additional randomness during training. Consequently, the only 
source of variability is attributed to the initialization of the neural network.

Also, notice that we have utilized an ensemble averaging technique to reduce some randomness, but stochasticity still exists. 
Therefore, to investigate the robustness of the model’s performance in training randomness, we examine by repeating the training 
procedure multiple times and computing both the average and the variability of the performance. In detail, we select a total of 
6 groups of random seeds, with each group consisting of 𝐵𝑟 = 5 different seeds (e.g., {10, 20, 30, 40, 50}). Each group is used to 
train the GF-AGRU model and then obtain the performance one time, as we do in the previous subsection. Then this will result 
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in 6 distinct outcomes, for studying the robustness. We compute the mean and the standard deviation of these six outcomes, as 
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Table C.8

Robustness in training randomness of the GF-AGRU model, by exhibiting the invest-

ment performance of CVaR portfolio optimization on the Dow Jones stocks with 
different settings of confidence level 𝑞 and sample size 𝑛. 𝑅1 , 𝑅2 , and 𝑅3 represent the 
target returns of 0.01, 0.02, and 0.03, respectively. 𝑅ew represents the time-varying 
target return achieved by EW. The results reported are the averages from 6 groups of 
trainings and the corresponding standard deviations are shown in brackets.

Panel A: CVaR Optimization with 𝑞 = 0.90, 𝑛 = 5000

𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.261 (0.0315) 0.296 (0.0243) 0.313 (0.0083) 0.329 (0.0128)

SD 0.176 (0.0049) 0.179 (0.0069) 0.239 (0.01) 0.224 (0.0035)

IR 1.481 (0.1606) 1.657 (0.1289) 1.314 (0.0685) 1.464 (0.0605)

MD 0.199 (0.004) 0.2 (0.0028) 0.242 (0.0169) 0.204 (0.0105)

ES 1.021 (0.0328) 1.06 (0.0295) 1.536 (0.0755) 1.211 (0.0553)

SK 0.212 (0.1947) 0.026 (0.288) 0.216 (0.2131) 1.192 (0.1184)

CR 0.256 (0.0355) 0.28 (0.031) 0.204 (0.0134) 0.272 (0.0207)

RR 0.32 (0.0373) 0.345 (0.0325) 0.266 (0.014) 0.337 (0.0217)

Panel B: CVaR Optimization with 𝑞 = 0.95, 𝑛 = 10000

𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.25 (0.0289) 0.294 (0.0276) 0.312 (0.0104) 0.325 (0.0107)

SD 0.174 (0.0063) 0.177 (0.0067) 0.238 (0.0091) 0.226 (0.0032)

IR 1.438 (0.1548) 1.656 (0.1329) 1.311 (0.0606) 1.441 (0.0533)

MD 0.199 (0.0034) 0.2 (0.0028) 0.246 (0.0163) 0.198 (0.005)

ES 1.029 (0.0473) 1.055 (0.0309) 1.523 (0.0746) 1.219 (0.057)

SK 0.197 (0.2229) 0.008 (0.2643) 0.181 (0.15) 1.175 (0.1)

CR 0.244 (0.0369) 0.279 (0.0346) 0.206 (0.0151) 0.267 (0.0164)

RR 0.307 (0.0388) 0.345 (0.0364) 0.267 (0.0159) 0.332 (0.0173)

Panel C: CVaR Optimization with 𝑞 = 0.99, 𝑛 = 50000

𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.233 (0.0269) 0.291 (0.0316) 0.314 (0.0111) 0.318 (0.0156)

SD 0.172 (0.0094) 0.178 (0.0064) 0.239 (0.009) 0.228 (0.0065)

IR 1.357 (0.1482) 1.63 (0.149) 1.314 (0.0613) 1.395 (0.0898)

MD 0.205 (0.0133) 0.201 (0.0028) 0.248 (0.0164) 0.221 (0.0359)

ES 1.037 (0.0758) 1.061 (0.026) 1.538 (0.0746) 1.286 (0.1247)

SK 0.204 (0.2372) 0.004 (0.2433) 0.185 (0.1399) 1.029 (0.3159)

CR 0.226 (0.0358) 0.275 (0.0359) 0.204 (0.0147) 0.25 (0.031)

RR 0.289 (0.0376) 0.34 (0.0377) 0.266 (0.0155) 0.313 (0.0326)

presented in Table C.8. We observe that the mean performance of the GF-AGRU model maintains its superiority over the benchmark 
models as well as the two variants, indicating consistent advantages. Regarding the variability, for most metrics, we see that the 
standard deviations in the brackets are smaller than 0.1 in most considered scenarios, indicating adequate robustness in model 
training randomness.

C.3. Robustness in simulation randomness

The GF-AGRU model is constructed with a generative approach, enabling it to simulate samples from the learned model. At each 
investment date within the test period, we simulate 𝑛 samples for the multivariate stock returns based on the Attention-GRU forecasts 
(averaged from 𝐵𝑟 = 5 independent trainings), where 𝑛 is the sample size corresponding to the confidence level 𝑞. Subsequently, we 
conduct mean-CVaR optimization with these samples. Given the inherent randomness associated with the generation of these samples, 
it is necessary to assess the robustness in simulation randomness.

We perform the simulation of 𝑛 samples 10 times, and solve the CVaR optimization 10 times correspondingly, to report the 
average of the results. Actually, this is what we have exactly done in all above tables and figures. Meanwhile, it is also essential to 
showcase the variation of the results observed across different simulations, and hence we provide the standard deviations in brackets 
in Table C.9. It is obviously observed that the standard deviations of these metrics are below 0.1, and most of them are even smaller 
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than 0.01. The results indicate significantly reliable robustness in the simulation randomness in CVaR optimization.
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Table C.9

Robustness in simulation randomness for the GF-AGRU model, by exhibiting the in-

vestment performance of CVaR portfolio optimization on the Dow Jones stocks with 
different settings of confidence level 𝑞 and sample size 𝑛. 𝑅1 , 𝑅2 , and 𝑅3 represent the 
target returns of 0.01, 0.02, and 0.03, respectively. 𝑅ew represents the time-varying 
target return achieved by EW. The results reported are the averages from 10 sim-

ulations & optimizations and the corresponding standard deviations are shown in 
brackets.

Panel A: CVaR Optimization with 𝑞 = 0.90, 𝑛 = 5000

𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.243 (0.0121) 0.311 (0.0038) 0.318 (0.0026) 0.334 (0.0041)

SD 0.171 (0.0013) 0.183 (0.001) 0.238 (0.0016) 0.22 (0.0004)

IR 1.42 (0.0688) 1.698 (0.0166) 1.337 (0.0114) 1.517 (0.0189)

MD 0.202 (0.0) 0.196 (0.0006) 0.236 (0.0032) 0.202 (0.0)

ES 1.0 (0.0) 1.053 (0.0054) 1.491 (0.0078) 1.155 (0.0072)

SK 0.213 (0.0364) 0.21 (0.0413) 0.277 (0.0607) 1.314 (0.0175)

CR 0.243 (0.0121) 0.295 (0.0044) 0.213 (0.0017) 0.289 (0.0039)

RR 0.307 (0.0127) 0.361 (0.0046) 0.275 (0.0018) 0.355 (0.0041)

Panel B: CVaR Optimization with 𝑞 = 0.95, 𝑛 = 10000

𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.242 (0.0053) 0.318 (0.0013) 0.323 (0.0026) 0.328 (0.0013)

SD 0.167 (0.001) 0.183 (0.0004) 0.238 (0.0007) 0.222 (0.0002)

IR 1.452 (0.0245) 1.739 (0.0065) 1.357 (0.0106) 1.48 (0.0056)

MD 0.202 (0.0) 0.196 (0.0003) 0.234 (0.0036) 0.202 (0.0)

ES 1.0 (0.0) 1.053 (0.0049) 1.483 (0.0112) 1.159 (0.0052)

SK 0.235 (0.0165) 0.162 (0.0175) 0.245 (0.0279) 1.276 (0.0071)

CR 0.242 (0.0053) 0.302 (0.0019) 0.218 (0.0029) 0.283 (0.0019)

RR 0.306 (0.0056) 0.368 (0.002) 0.28 (0.0031) 0.349 (0.002)

Panel C: CVaR Optimization with 𝑞 = 0.99, 𝑛 = 50000

𝑅1 𝑅2 𝑅3 𝑅ew

AV 0.218 (0.0006) 0.317 (0.0004) 0.324 (0.0006) 0.309 (0.0021)

SD 0.159 (0.0001) 0.183 (0.0002) 0.238 (0.0002) 0.22 (0.0001)

IR 1.372 (0.0035) 1.737 (0.0028) 1.36 (0.0029) 1.402 (0.01)

MD 0.202 (0.0) 0.196 (0.0001) 0.234 (0.0019) 0.202 (0.0)

ES 0.971 (0.0) 1.05 (0.0017) 1.478 (0.0049) 1.158 (0.0021)

SK 0.216 (0.0027) 0.173 (0.0062) 0.26 (0.007) 1.359 (0.0066)

CR 0.225 (0.0006) 0.302 (0.0005) 0.219 (0.001) 0.267 (0.0017)

RR 0.287 (0.0006) 0.369 (0.0006) 0.281 (0.0011) 0.331 (0.0018)

References

Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein generative adversarial networks. In: International Conference on Machine Learning. PMLR, pp. 214–223.

Athey, S., Imbens, G.W., Metzger, J., Munro, E., 2021. Using Wasserstein generative adversarial networks for the design of Monte Carlo simulations. J. Econom.

Bahdanau, D., Cho, K.H., Bengio, Y., 2015. Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning 
Representations. ICLR 2015.

Ban, G.Y., El Karoui, N., Lim, A.E., 2018. Machine learning and portfolio optimization. Manag. Sci. 64, 1136–1154.

Beasley, J.E., Meade, N., Chang, T.J., 2003. An evolutionary heuristic for the index tracking problem. Eur. J. Oper. Res. 148, 621–643.

Biglova, A., Ortobelli, S., Rachev, S.T., Stoyanov, S., 2004. Different approaches to risk estimation in portfolio theory. J. Portf. Manag. 31, 103–112.

Carbonneau, A., 2021. Deep hedging of long-term financial derivatives. Insur. Math. Econ. 99, 327–340.

Chen, L., Pelger, M., Zhu, J., 2023. Deep learning in asset pricing. Manag. Sci.

Chen, S., Ge, L., 2019. Exploring the attention mechanism in lstm-based Hong Kong stock price movement prediction. Quant. Finance 19, 1507–1515.

Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y., 2014. On the properties of neural machine translation: encoder–decoder approaches. In: Proceedings of 
SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111.

Christoffersen, P.F., 1998. Evaluating interval forecasts. Int. Econ. Rev., 841–862.

Cont, R., Cucuringu, M., Xu, R., Zhang, C., 2022. Tail-gan: nonparametric scenario generation for tail risk estimation. arXiv preprint. arXiv :2203 .01664.

Corielli, F., Marcellino, M., 2006. Factor based index tracking. J. Bank. Finance 30, 2215–2233.

Creal, D.D., Tsay, R.S., 2015. High dimensional dynamic stochastic copula models. J. Econom. 189, 335–345.

Dai, Z., Li, L., Zhang, G., 2022. Evaluation of deep learning algorithms for quadratic hedging. J. Deriv. 30, 32–57.

De Nard, G., Ledoit, O., Wolf, M., 2021. Factor models for portfolio selection in large dimensions: the good, the better and the ugly. J. Financ. Econom. 19, 236–257.

DeMiguel, V., Garlappi, L., Uppal, R., 2009. Optimal versus naive diversification: how inefficient is the 1/n portfolio strategy? Rev. Financ. Stud. 22, 1915–1953.

Dias, A., 2013. Market capitalization and value-at-risk. J. Bank. Finance 37, 5248–5260.

Engle, R., 2002. Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J. Bus. Econ. 
Stat. 20, 339–350.

Engle, R., Kelly, B., 2012. Dynamic equicorrelation. J. Bus. Econ. Stat. 30, 212–228.
23

Engle, R.F., Ledoit, O., Wolf, M., 2019. Large dynamic covariance matrices. J. Bus. Econ. Stat. 37, 363–375.

http://refhub.elsevier.com/S0165-1889(24)00013-7/bib246E392887F3B8AB9996AE669DB27C6As1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibAE24F3462CAB2E21D378398D698A9C3Fs1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib78549AEF66D0C33DFE5BBC86089352C4s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib78549AEF66D0C33DFE5BBC86089352C4s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib5D7889FDC29D70753410C24277E83EB4s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib48EA51F2F7C7474B3D229241B50B79B9s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib9867F928BF96D555BBAE82E6AC9D25F8s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibB460D7205E8BDF2328E26E0F379C298Cs1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibC7E00A77D23506C26A01F4EA5907F75As1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibC0BB36A75071CA873870E051101516C1s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib77686BE1B12D524099D46B7E9AEE15C1s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib77686BE1B12D524099D46B7E9AEE15C1s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibD4DE3F34F09C82F8C8051D4C12EF6CC6s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib9BE0B4510F9BEC9F5DC63F5B5A5D4B08s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib00F3D69F4B3E72584BA975C2CB72816Bs1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib1F74E9CA9129B2E608860B1EC3EF356Es1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibC05493C3F107BD720EFCFAFC75BC8A46s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib1D7EFB6515A6ACF6A1BE460333175F2Cs1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib65562D637B391CD2D66923115159B45Cs1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib1CDEAB71293F9539D0DC06AAF547C557s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibE7635B5FD07A8889B35FC9AA5ABBFF55s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibE7635B5FD07A8889B35FC9AA5ABBFF55s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib263DB30339AC7694F95BE295C4C11274s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibD23DFA0F43820E5E66123D6F16311E7Bs1


Journal of Economic Dynamics and Control 160 (2024) 104821C. Sun, Q. Wu and X. Yan

Farinelli, S., Ferreira, M., Rossello, D., Thoeny, M., Tibiletti, L., 2008. Beyond Sharpe ratio: optimal asset allocation using different performance ratios. J. Bank. 
Finance 32, 2057–2063.

Fischer, T., Krauss, C., 2018. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 270, 654–669.

Gaivoronski, A.A., Krylov, S., Van der Wijst, N., 2005. Optimal portfolio selection and dynamic benchmark tracking. Eur. J. Oper. Res. 163, 115–131.

Giamouridis, D., Vrontos, I.D., 2007. Hedge fund portfolio construction: a comparison of static and dynamic approaches. J. Bank. Finance 31, 199–217.

Glasserman, P., Xu, X., 2013. Robust portfolio control with stochastic factor dynamics. Oper. Res. 61, 874–893.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2020. Generative adversarial networks. Commun. ACM 63, 
139–144.

Gu, S., Kelly, B., Xiu, D., 2020. Empirical asset pricing via machine learning. Rev. Financ. Stud. 33, 2223–2273.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9, 1735–1780.

Hwang, I., Xu, S., In, F., 2018. Naive versus optimal diversification: tail risk and performance. Eur. J. Oper. Res. 265, 372–388.

Kingma, D.P., Welling, M., et al., 2019. An introduction to variational autoencoders. Found. Trends Mach. Learn. 12, 307–392.

Kirby, C., Ostdiek, B., 2012. It’s all in the timing: simple active portfolio strategies that outperform naive diversification. J. Financ. Quant. Anal. 47, 437–467.

Kobyzev, I., Prince, S.J., Brubaker, M.A., 2020. Normalizing flows: an introduction and review of current methods. IEEE Trans. Pattern Anal. Mach. Intell. 43, 
3964–3979.

Kupiec, P.H., et al., 1995. Techniques for Verifying the Accuracy of Risk Measurement Models. Division of Research and Statistics, Division of Monetary, vol. 95. 
Affairs, Federal Reserve Board.

Ledoit, O., Wolf, M., 2004. Honey, I shrunk the sample covariance matrix. J. Portf. Manag. 30, 110–119.

Levy, B.P., Lopes, H.F., 2021. Dynamic portfolio allocation in high dimensions using sparse risk factors. arXiv preprint. arXiv :2105 .06584.

Markowitz, H., 1952. Portfolio selection. J. Finance 7, 77–91.

Martin, R.D., Rachev, S.Z., Siboulet, F., 2003. Phi-alpha optimal portfolios and extreme risk management. In: The Best of Wilmott 1: Incorporating the Quantitative 
Finance Review, vol. 1, p. 223.

MathWorks, 2023a. Financial toolbox (r2023a).

MathWorks, 2023b. Optimization toolbox (r2023b).

Ni, J., Xu, Y., 2021. Forecasting the dynamic correlation of stock indices based on deep learning method. Comput. Econ., 1–21.

Nian, K., Coleman, T.F., Li, Y., 2021. Learning sequential option hedging models from market data. J. Bank. Finance 133, 106277.

OpenAI, 2023. Gpt-4 technical report. Arxiv preprint arXiv :2303 .08774.

Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S., Lakshminarayanan, B., 2021. Normalizing flows for probabilistic modeling and inference. J. Mach. 
Learn. Res. 22, 2617–2680.

Rockafellar, R.T., Uryasev, S., et al., 2000. Optimization of conditional value-at-risk. J. Risk 2, 21–42.

Sant’Anna, L.R., Filomena, T.P., Guedes, P.C., Borenstein, D., 2017. Index tracking with controlled number of assets using a hybrid heuristic combining genetic 
algorithm and non-linear programming. Ann. Oper. Res. 258, 849–867.

Sezer, O.B., Gudelek, M.U., Ozbayoglu, A.M., 2020. Financial time series forecasting with deep learning: a systematic literature review: 2005–2019. Appl. Soft 
Comput. 90, 106181.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I., 2017. Attention is all you need. Adv. Neural Inf. Process. Syst. 30.

Wu, Q., Yan, X., 2019. Capturing deep tail risk via sequential learning of quantile dynamics. J. Econ. Dyn. Control 109, 103771.

Yan, X., Wu, Q., Zhang, W., 2019. Cross-sectional learning of extremal dependence among financial assets. Adv. Neural Inf. Process. Syst. 32, 3852–3862.

Yoon, J., Jarrett, D., Van der Schaar, M., 2019. Time-series generative adversarial networks. Adv. Neural Inf. Process. Syst. 32.

Zhai, J., Cao, Y., Liu, X., 2020. A neural network enhanced volatility component model. Quant. Finance 20, 783–797.

Zhang, C., Zhang, Z., Cucuringu, M., Zohren, S., 2021. A universal end-to-end approach to portfolio optimization via deep learning. arXiv preprint. arXiv :2111 .09170.

Zhang, J., Huang, W., 2021. Option hedging using lstm-rnn: an empirical analysis. Quant. Finance 21, 1753–1772.

Zhang, Z., Zohren, S., Roberts, S., 2020. Deep learning for portfolio optimization. J. Financ. Data Sci.
24

Zhu, S., Fukushima, M., 2009. Worst-case conditional value-at-risk with application to robust portfolio management. Oper. Res. 57, 1155–1168.

http://refhub.elsevier.com/S0165-1889(24)00013-7/bibCC9501D8805048B7D5100CC3F3FB8B19s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibCC9501D8805048B7D5100CC3F3FB8B19s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib6EB012910183CC88913F08805C2E8498s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibD7674130FE2C65874A17F01271FE553Es1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib17CFF60BAD51A1A8F4FE8AFB305CFE9Bs1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib4A8F7652C3BED64AC242EA84D475823As1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibB5CB5908C753D05E8CF86EADB14AB745s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibB5CB5908C753D05E8CF86EADB14AB745s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib9DF6FBED3087A4CD94DBB6563C8C7EA0s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibCF8B94E44A7943374FCFDA18594AE9ABs1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib1CA27B4A745CB2251C1F24F7B3698D83s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib12462207DE9A6C19508E97AA035CBD0Cs1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib5FC8A78AA00359A829A9FD2F0EB1F7DBs1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib35B20A18AAE7E2F1C89DC79BAB6804A0s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib35B20A18AAE7E2F1C89DC79BAB6804A0s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibADD147C52BB5573763C7B5F500C2EE58s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibADD147C52BB5573763C7B5F500C2EE58s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib774A6FB30CF7A0F8532E5F659811D700s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibD7B263011FDDC1FDE2BC07C4BA3BFF44s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib0B991EC90EE4EEBB812F336F9A61BC89s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib699179610BFC2988AB5C8755E0F9A8D1s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib699179610BFC2988AB5C8755E0F9A8D1s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib1D72AA003AC2EF827442A1D66357C095s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib48AB29F113D6C32607A06C66E94C04FDs1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib3EC4BF892B189945096BA3E76F95F00As1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibCCCD07808ABB9795AFB6BDFEE16DB286s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib13A309701E41BF8911F7606951CF42DCs1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib25AA4670EF2812F2213BDBA014CD3F79s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib25AA4670EF2812F2213BDBA014CD3F79s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibB7D4A53265AB3EEAF308EA0AC6E10B42s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib16E3BB5DF72D8BCDF31556CD26880760s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib16E3BB5DF72D8BCDF31556CD26880760s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib87426C21E7357CF88B51CAADB3B9F067s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib87426C21E7357CF88B51CAADB3B9F067s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibF30FAD9A6C529BF754D0AB70F953E271s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib424C0B70A0EB92FEDC7D3F5F545E09E2s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibFEA9D3076C184EDC3F0E9840CD8EE3EEs1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib24CE517FF865BF125FD922988F39B0F4s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibE05233F8AD04A00F1D5C22E6E8062283s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib73BF54E2F04C8CF48A44AE35F21B456Bs1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bib5A8EC75BA3A9BE08CF7F418131B5EB13s1
http://refhub.elsevier.com/S0165-1889(24)00013-7/bibDC2D5545797879557B5869A7B94CAFB3s1

	Dynamic CVaR portfolio construction with attention-powered generative factor learning
	1 Introduction
	2 Preliminaries
	2.1 Static allocation and dynamic allocation
	2.2 The CVaR portfolio optimization
	2.3 Generative machine learning models
	2.4 The GRU network and attention mechanism

	3 Methodology
	3.1 The naive factor model
	3.2 The dynamic generative factor model with tail properties
	3.3 Loss functions
	3.4 The two-step training with alternately updating
	3.4.1 Market return fitting
	3.4.2 Individual stock return fitting

	3.5 Computational complexity
	3.6 CVaR portfolio construction

	4 Competing methods
	4.1 The factor-DCC model
	4.2 GANs

	5 Numerical experiment
	5.1 Data and model settings
	5.2 Estimated time-invariant tail parameters
	5.3 Predicted time-varying parameters and coverage tests
	5.4 Portfolio optimization settings
	5.4.1 Evaluation metrics

	5.5 Discussion on performance
	5.6 Ablation study
	5.7 The cumulative return curves
	5.8 Robustness of our model

	6 Conclusion
	Acknowledgement
	Appendix A Predicted time-varying parameters ΘtGF
	Appendix B Coverage tests
	Appendix C Robustness analysis
	C.1 Robustness in hyper-parameter specifications
	C.2 Robustness in training randomness
	C.3 Robustness in simulation randomness

	References


