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Abstract
Addressing challenges in domain invariance
within single-cell genomics necessitates innova-
tive strategies to manage the heterogeneity of
multi-source datasets while maintaining the in-
tegrity of biological signals. We introduce TarDis,
a novel deep generative model designed to disen-
tangle intricate covariate structures across diverse
biological datasets, distinguishing technical arti-
facts from true biological variations. By employ-
ing tailored covariate-specific loss components
and a self-supervised approach, TarDis effectively
generates multiple latent space representations
that capture each continuous and categorical tar-
get covariate separately, along with unexplained
variation. Our extensive evaluations demonstrate
that TarDis outperforms existing methods in data
integration, covariate disentanglement, and robust
out-of-distribution predictions. The model’s ca-
pacity to produce interpretable and structured la-
tent spaces, including ordered latent representa-
tions for continuous covariates, enhances its util-
ity in hypothesis-driven research. Consequently,
TarDis offers a promising analytical platform for
advancing scientific discovery, providing insights
into cellular dynamics, and enabling targeted ther-
apeutic interventions.

1. Introduction
Domain invariance tackles the challenge of learning from
datasets that, while representing the same physical phenom-
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ena, originate from disparate sources such as different users,
acquisition devices, or locations (Andéol et al., 2023). As
the data source often lacks direct relevance to the task, the
objective is to develop a model that maintains performance
robustness by being invariant to these domain variations.
This invariance not only enhances model reliability across
shifts, whether subpopulational (Koh et al., 2021) or distri-
butional (Goel et al., 2020), but also is an end in itself where
the source is obscured to comply with data protection re-
quirements (Hajihassnai et al., 2021). Such shifts, frequently
observed in practical machine learning scenarios, necessi-
tate models to be resilient to variations in multi-domain
datasets by learning to minimize the disparity in data distri-
butions within the representation space; ideally achieving a
low metric distance between them. This concept is closely
aligned with distributionally robust optimization strategies,
promoting the development of universally applicable ma-
chine learning models that withstand out-of-distribution
variations (Lu et al., 2021a; Yin et al., 2021; Guo et al.,
2024; Sturma et al., 2024).

The identification of spurious correlations within these
multi-domain datasets can provide critical insights for cer-
tain downstream applications, enriching the interpretive
scope beyond mere domain invariance. Moreover, models
leveraging data representations or predictors derived from
true correlations, including domain-specific attributes or nui-
sance factors, more effectively discern causal relationships,
thereby enhancing their generalization capabilities (Ahuja
et al., 2020; Aliee et al., 2023). This recognition has spurred
interest in disentangled representation learning, aiming to
segregate and independently model spurious and invariant
characteristics within the data (Aliee et al., 2023; Arjovsky
et al., 2019; Kong et al., 2022). Developing invariant rep-
resentation learning models is a complex multi-objective
optimization problem, frequently necessitating linear con-
straints on the data representations and classifiers (Ahuja
et al., 2020; Kong et al., 2022; Ahuja et al., 2021), or the
incorporation of conditional priors within the VAE frame-
work (Aliee et al., 2023; Lu et al., 2021b).

Existing invariant representation learning methods often fail
for continuous domain problems, an area that is significantly
underexplored yet critically important (Yong et al., 2024;
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Azzam et al., 2021; Zhang & Davison, 2021). Examples
include patient monitoring systems where physiological
spurious data varies daily and across activities (Cao et al.,
2023), finance, where models predicting stock prices or
market trends must generalize across varying economic con-
ditions and times (Huang et al., 2023), and climate modeling,
where models use invariant learning to forecast weather or
long-term climate changes across diverse locations and time
periods (Beucler et al., 2024). Existing methods are gener-
ally designed for discrete categorical domains and struggle
with the continuous nature of many real-world tasks. This
leads to challenges such as sparse data in each domain, mak-
ing it hard to accurately estimate invariant correlations, and
segmentation of continuous data into discrete blocks which
can misrepresent true data distributions. Addressing these is-
sues is crucial for advancing model robustness and ensuring
applicability in dynamic environments.

In the context of domain invariance, multi-domain and multi-
condition single-cell genomics datasets present a critical
testbed where the integration of data representations con-
fronts complex challenges in biological and pharmaceutical
research (Heumos et al., 2023). Single-cell genomics offers
a granular view of individual cells’ genetic diversity, high-
lighting the variability among cells and essential for under-
standing cellular and molecular processes (Inecik & Theis,
2023; Perez et al., 2022; Bergen et al., 2020). However, the
data often come from a range of labs and varied experimen-
tal setups, incorporating batch effects and technical artifacts
that can mask true biological signals (Eraslan et al., 2019;
Lopez et al., 2018). These challenges are compounded when
data includes cells affected by chemical or genetic pertur-
bations, sourced from diseased states, or differing in their
origin, such as specific organs, organisms, developmental
stages, ethnicity, age, sex and other factors that further con-
tribute to variability (Srivatsan et al., 2020; Sikkema et al.,
2023; Hrovatin et al., 2023; Haniffa et al., 2021; Muus et al.,
2021). Effective data integration is vital for separating tech-
nical artifacts from relevant biological signals, facilitating a
robust comparison of biological landscapes across various
domains and enhancing our understanding of the underlying
cellular dynamics, with significant implications for advanc-
ing disease research and therapeutic development (Regev
et al., 2017; Rood et al., 2022).

Hence, it becomes essential to disentangle invariant and
spurious correlations for single-cell data integration, where
spurious correlations often obscure biological signals. The
disentanglement of these elements not only enhances data
integration by clarifying underlying biological processes
but also bolsters out-of-distribution (OOD) prediction capa-
bilities (Aliee et al., 2023; Liu et al., 2024). Furthermore,
there is a compelling need for researchers to explore the
potential effects of one covariate on another, whether cate-
gorical or continuous, by manipulating such disentangled la-

tent representations. For instance, adjusting the continuous
‘drug dose’ representation while holding the representations
of ‘disease state’, ‘patient’, and continuous ‘age’ constant
could reveal the dose-dependent effects on gene expression
independent of the disease’s progression or patient charac-
teristics. Such analyses would deepen our understanding of
the interactions between various factors at the cellular level,
thereby unlocking new avenues for complex, hypothesis-
driven research with single-cell genomics data.

To address the complexities inherent in multi-domain and
multi-condition datasets, we introduce TarDis, a novel end-
to-end deep generative model specifically designed for the
targeted disentanglement of multiple covariates, such as
those encountered in extensive single-cell genomics data. 1

TarDis employs covariate-specific loss functions through
a self-supervision strategy, enabling the learning of disen-
tangled representations that achieve accurate reconstruc-
tions and effectively preserve essential biological variations
across diverse datasets. It eschews additional architectural
complexities, enabling straightforward application to large
datasets. TarDis ensures the independence of invariant sig-
nals from noise, enhancing interpretability that is crucial for
extracting biological insights obscured by spurious data cor-
relations. TarDis handles both categorical and, notably, con-
tinuous variables, demonstrating its adaptability to diverse
data characteristics and allowing for a granular understand-
ing and representation of underlying data dynamics within
a coherent and interpretable latent space. This capability
is instrumental for exploring complex biological phenom-
ena and conducting hypothesis-driven research. Empirical
benchmarking across multiple datasets highlight TarDis’s
superior performance in covariate disentanglement, data in-
tegration, and out-of-distribution predictions, significantly
outperforming existing models. 2 3

2. Method
Let D represent a single-cell genomics dataset contain-
ing NC cells, where each cell, denoted as n, is charac-
terized by its gene expression (xn) and associated covari-
ates (sn). The gene expression is represented by a count
vector xn = [xng]

NG
g=1, where xng ∈ Z≥0 is the expression

count of gene g, and NG is the total number of genes in
the dataset. Additionally, each cell n is associated with a
vector of covariates sn = [snk]

NK

k=1, which may be either
continuous or discrete, and NK indicates the number of
covariates. TarDis constructs a latent representation zn for
gene expression xn, organized as zn = (zn0, [znk]k∈Jk

),
where Jk ⊆ {1, . . . , NK} denotes the subset of covariates

1“A place for everything, and everything in its place.” —
Benjamin Franklin

2See Appendix A for discussions regarding relevant works.
3Source code is on GitHub, under theislab/tardis.
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targeted for disentanglement. Specifically, znk is a latent
vector constructed for each targeted covariate, while zn0
captures residual information independent of targeted co-
variates. During model training, TarDis employs a novel
approach to foster disentanglement by generating pairs of
additional latent vectors (z(k)n )− and (z

(k)
n )+ corresponding

to two data points (x(k)
n )− and (x

(k)
n )+. These data points

are selected randomly and differ in the kth covariate value,
such that (s(k)nk )

+ = snk and (s
(k)
nk )

− ̸= snk.

The primary objective of TarDis training is to opti-
mize the latent vectors based on a distance measure F .
While F is defined conceptually as a real-valued func-
tion, F : R|znk| → R≥0, here just to illustrate the un-
derlying concept, practical implementation typically em-
ploy multiple loss terms instead of a single function for
optimizing latent vectors, as will be discussed in fur-
ther detail. For each covariate k ∈ Jk, F should satisfy
F (znk, (z

(k)
nk )

−) ≥ F (znk, (z
(k)
nk )

+), implying that latent
vector znk should be more similar to another vector that
shares the same covariate value, (z(k)nk )

+, than to a vec-
tor with a different covariate value, (z

(k)
nk )

−. Further-
more, the latent vector zn0 should show equal similarity
to any other vectors regardless of their covariate values,
whether (z(k)n0 )

− and (z
(k)
n0 )

+, thus fulfilling the condition:
F (zn0, (z

(k)
n0 )

−) = F (zn0, (z
(k)
n0 )

+). This equality ensures
zn0 remains unaffected by covariate-specific information,
thereby providing a covariate-neutral representation of the
cell’s gene expression. Ultimately, the aim of TarDis is to
produce a latent representation in which znk reflects the in-
fluence of its corresponding covariate snk, while zn0 offers
a covariate-neutral representation of the cell’s gene expres-
sion profile, unaffected by any covariate-specific variations.

2.1. VAE Skeleton

TarDis builds upon a variational autoencoder (VAE) to con-
struct a high-fidelity generative model that underpins our
disentanglement objectives. The VAE component optimiza-
tion guided by the Evidence Lower Bound (ELBO), a surro-
gate for the intractable marginal log-likelihood as shown in
Equation 1 (Kingma & Welling, 2013). Here, the covariates,
sn, are pivotal for capturing factors that might influence
the observed data, such as batch effects. TarDis incorpo-
rates the target covariates as sn, and also allows inclusion
of non-target covariates, providing flexibility in managing
different types of data impacts. The first term of LVAE rep-
resents the reconstruction loss, LR, which quantifies the
expected negative log-likelihood of the observed data xn,
conditioned on the latent variables, zn. The reconstruction
loss is formally expressed using the negative binomial (NB)
distribution, ideal for capturing the count variability inher-
ent in data types like single-cell genomics (Equation 2). In
this equation, Γ denotes the gamma function, µ and θ refer
to the mean and inverse dispersion parameters of the neg-

ative binomial distribution, respectively (Inecik & Theis,
2023). The second term measures the Kullback-Leibler di-
vergence (KL), LKL, penalizing deviations of the learned
posterior distribution qϕ(zn | xn, sn) from the prior distri-
bution p(zn). In Equation 3, the approximate posterior
distribution is assumed to be Gaussian distribution with
mean µn and diagonal covariance matrix Σn, and the prior
distribution p(zn) is typically a standard normal distribution
N (0, I) where I is the identity matrix in R|zn|×|zn|.

LVAE(θ, ϕ;xn, sn) =
[
− Eqϕ(zn|xn,sn) [log pθ(xn|zn)]

+DKL(qϕ(zn | xn, sn) ∥ p(zn))
] (1)

LR =
Γ(xn + θn)

Γ(xn + 1)Γ(θn)

(
θn

θn + µn

)θn
(

µn

θn + µn

)xn

(2)

LKL = DKL(N (µn,Σn) ∥ N (0, I)) (3)

2.2. Auxiliary Loss

In TarDis model training, the VAE optimization is in-
tertwined with the novel auxiliary loss component in-
troduced, LC, to construct zn = (zn0, [znk]k∈Jk

) with
znk ∼ N (µnk,Σnk). The overall loss function of TarDis
integrates these components through a weighted sum, con-
trolled by hyperparameters λC, λKL, and λR (Equation 8).
Specifically, LC is a composite loss function that incorpo-
rates four distinct loss components for each covariate. For
each target covariate snk, the loss function, L(k)

C , includes
(N

(k)
L )+ positive and (N

(k)
L )− negative loss terms. Simi-

larly, for the covariate-free representation zn0, it includes
(N

(k0)
L )+ positive and (N

(k0)
L )− negative terms. The losses

for positive pairs and negative pairs given in Equations 4
and 5, respectively. Here, the λ values are hyperparameters
that determine the weight of each loss component, while the
L loss functions encompass metrics such as KL divergence
and MSE4. Thus, the overall covariate loss, L(k)

C , is com-
puted as the sum of these two pair losses, as specified in
Equation 6. By aggregating these individual covariate losses,
the total auxiliary loss, LC, is expressed in Equation 7.

The configuration of L(k)
C is meticulously designed to meet

several critical objectives within the TarDis framework.
First, by minimizing the distance between (z

(k)
nk )

+ and znk,
the model ensures that the latent representations of positive
examples closely align with their corresponding covariate
within respective latent subset, accurately reflecting spe-
cific characteristics. In contrast, it maximizes the distance
between (z

(k)
nk )

− and znk, thereby promoting clear differ-
entiation in the latent representations of negative examples
and enhancing the distinction between different covariates.
Additionally, the model strategy involves maximizing the
distance between (z

(k)
n0 )

+ and zn0, while minimizing the dis-
tance between (z

(k)
n0 )

− and zn0. This approach ensures that
zn0 remains free from covariate-specific influences, main-
taining its role as a covariate-neutral representation. These

3



TarDis: Achieving Robust and Structured Disentanglement of Multiple Covariates

operations collectively ensure that covariate information is
precisely captured in the respective targeted latent subsets,
znk, and effectively isolated from zn0.

(L(k)
C )+(ϕ;xn, sn) =

[ (N
(k)
L )+∑
i=1

(λ
(k)
C )+i (L

(k)
C )+i (ϕ;xn, sn)

(N
(k)
L )+

+

(N
(k0)
L )+∑
i=1

(λ
(k0)
C )+i (L

(k0)
C )+i (ϕ;xn, sn)

(N
(k0)
L )+

]
(4)

(L(k)
C )−(ϕ;xn, sn) =

[ (N
(k)
L )−∑
i=1

(λ
(k)
C )−i (L

(k)
C )−i (ϕ;xn, sn)

(N
(k)
L )−

+

(N
(k0)
L )−∑
i=1

(λ
(k0)
C )−i (L

(k0)
C )−i (ϕ;xn, sn)

(N
(k0)
L )−

]
(5)

L(k)
C (ϕ;xn, sn) = (L(k)

C )+(ϕ;xn, sn) + (L(k)
C )−(ϕ;xn, sn)

(6)

LC(ϕ;xn, sn) =
1

|JK |

|JK |∑
k=1

L(k)
C (ϕ;xn, sn) (7)

LTarDis = λCLC + λKLLKL + λRLR (8)

Although the theoretical framework primarily employs KL
divergence as the loss metric, the principle is also applicable
to various losses between anchor points and negative or pos-
itive samples with minor adjustments 4. The optimization
of various hyperparameters, including the individual loss
weights, is conducted once and uniformly applied across
all experiments, unless explicitly stated otherwise 5. The
experiments and benchmarking processes utilize a diverse
array of datasets to ensure comprehensive testing and val-
idation of the model. Each dataset is selected to represent
different types and scales of data challenges 6. Various eval-
uation metrics are used to assess the model’s performance,
with a full discussion provided in Appendix H 7. The as-
sumptions behind the theoretical framework are discussed
in Appendix E8.

3. Results
3.1. TarDis achieves robust disentanglement of

covariates into isolated latent spaces

We assessed the TarDis model’s ability to disentangle co-
variates using the Afriat single-cell genomics dataset, which
includes three distinct covariates: age, zone status, and
time (Appendix C.1). Experiments were conducted with

4See Appendix F for a discussion on the loss function options.
5See Appendix G for experiment hyperparameters and settings.
6See Appendix C for a description of the datasets used.
7See Appendix H for the evaluation metrics employed.
8See Appendix E for a discussion of the model assumptions.

two methodologies: disentangling all covariates simulta-
neously, TarDismultiple

9, and disentangling each covariate
individually followed by concatenating the reserved latent
spaces, TarDissingle. The disentanglement performance was
benchmarked using the maximum mutual information gap
(maxMIG), as detailed in Figure 1a, demonstrating that
both configurations of TarDis surpassed existing models
(Appendix A) and achieved nearly 0.9 maxMIG scores on
validation sets (Shamsaie et al., 2024). These results un-
derscore the efficacy of TarDis in handling multiple covari-
ates simultaneously without compromising disentanglement
quality. Further analysis using the mutual information (MI)
metric reveals minimal differences in the preservation of in-
formation within the unreserved and reserved latent spaces
between the two training strategies, indicating the model’s
effective scalability for disentanglement tasks (Figure 1b).
Notably, for all subsequent experiments detailed in this pa-
per, we have exclusively employed the multiple-covariate
disentanglement approach.

An ablation study was performed to evaluate the model’s
robustness against feature reduction, where varying percent-
ages of input features were systematically removed. Results
in Figure 1c show that TarDis maintained high maxMIG
and R2 reconstruction scores, above 0.65 and 0.94 respec-
tively, affirming its resilience to input variability. Addition-
ally, modifying the auxiliary loss weight, λC, systematically
influenced the clustering quality and disentanglement ac-
curacy, as indicated by the increased maxMIG score and
mean centroid distance with higher λC values (Figure 1d
and Supplementary Figure 7). Moreover, the silhouette
scores, calculated on the unreserved latent space zn0 us-
ing cell type annotations as the labels, provided empirical
evidence that effective disentanglement correlates with en-
hanced biological signal representation, as further investi-
gated in Results 3.2. Overall, these results not only validate
the robustness of TarDis in disentangling complex covariate
structures but also highlight its utility in preserving essen-
tial biological variations, pivotal for advancing single-cell
genomic data analysis.

3.2. TarDis achieves superior performance in single-cell
genomics data integration

To probe the efficacy of invariant representation learning, we
turned our attention to the Suo dataset, a massive single-cell
genomics dataset capturing human embryonic development.
This dataset includes about 850k cells from various organs
and time points, using multiple methods, instruments, sam-
ples, and platforms, as well as a wide range of cell types
(Appendix C.2). Its complexity makes it an ideal testbed
for evaluating model performance in integrating intricate

9See Supplementary Figure 6 for UMAP visualizations of re-
served latent space representations.
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(a) (b) (c) (d)

Figure 1. (a) Comparison of disentanglement performance using maxMIG, showing that TarDis variants outperform existing models.
(b) MI in the reserved, znk, and unreserved, zn0, latent spaces for TarDis under multiple and single covariate training conditions across
various covariates and data splits. (c) Relationship between the percentage of input features removed and the corresponding maxMIG and
R2 reconstruction scores, indicating robustness to feature removal. (d) Impact of auxiliary loss weight (λC) on mean centroid distance in
reserved latents, znk, and average silhouette width (ASW) scores at the unreserved latent, zn0.

datasets. We assessed the data integration quality using
the scIB package metrics (Luecken et al., 2022), which are
recognized benchmarks in the single-cell genomics com-
munity for evaluating the balance between biological sig-
nal preservation and batch effect mitigation (Appendix H).
This balance is crucial as inadequate correction can lead
to data clustering by batch, obscuring true biological vari-
ance, while over-correction may suppress biological signals,
reducing the biological relevance of the outcomes.

In our experimental setup, we tested two configurations
of the TarDis model. TarDis-1 focuses on covariates typi-
cally considered as batch keys in single-cell data integration
tasks, such as library platform, donor, sample status, and
instruments. TarDis-2 extends this disentanglement to addi-
tional covariates including sex, age, and notably, organ. The
comparative results, detailed in Table 1, show that TarDis,

particularly TarDis-2, outperforms state-of-the-art models10

and maintains an optimal balance between biological con-
servation and batch correction. By effectively disentangling
various spurious correlations from invariant biological sig-
nals, TarDis has demonstrated its robust capability to man-
age the complexities inherent in vast and heterogeneous
datasets.

3.3. TarDis generates ordered latent representation for
continuous covariates

In addressing the challenge of learning the representation
of disentangled continuous covariates, TarDis provides a

10All models were trained under configurations that aimed to
closely mirror the training of TarDis models given in Appendix G,
ensuring consistency in architectural choices and the selection of
analogous hyperparameters where applicable.

Table 1. Benchmarking data integration performance by scIB package (Luecken et al., 2022) metrics, organized into biological signal
conservation and batch correction categories (Appendix H). Quantification employed a comprehensive set of metrics, with aggregate
scores derived according to scIB standards. Cell-type annotations are incorporated in the metrics where labels are necessary. Covariates
such as library platform, donor, sample status, and instrument are used as batch keys when required.

Metric PCA Harmony scVI scANVI inVAE TarDis-1 TarDis-2

Bio conservation

Isolated Labels 0.610 0.563 0.638 0.774 0.798 0.662 0.767
K-means NMI 0.691 0.620 0.649 0.792 0.651 0.634 0.713
K-means ARI 0.226 0.182 0.209 0.360 0.191 0.185 0.228
Silhouette Label (AWS) 0.504 0.482 0.496 0.576 0.508 0.497 0.508
Cell-type LISI (cLISI) 0.999 0.997 0.999 1.000 0.999 0.998 0.999

Batch correction

Silhouette Batch 0.851 0.862 0.867 0.861 0.840 0.903 0.896
Integration LISI (iLISI) 0.057 0.100 0.098 0.093 0.040 0.094 0.080
kBET per Label 0.309 0.475 0.487 0.526 0.194 0.448 0.430
Graph Connectivity 0.793 0.671 0.866 0.912 0.836 0.866 0.879
PCR Comparison 0.000 0.350 0.699 0.222 0.000 0.931 0.850

Aggregate score
Bio conservation 0.606 0.569 0.598 0.701 0.629 0.595 0.643
Batch correction 0.402 0.492 0.603 0.523 0.382 0.648 0.627
Total 0.524 0.538 0.600 0.629 0.530 0.616 0.637
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Figure 2. UMAP visualization (McInnes et al., 2018) of TarDis latent space representations from the Sciplex dataset (a) Comparing the
performance of scVI and TarDis models in capturing drug responses and dosage effects. The upper row displays clusters differentiated by
drug types, while the bottom row illustrates the ordered representation of dosage, showcasing the ability of TarDis to structurally organize
cellular responses across different drug concentrations. (b) TarDis model training generates three distinct latent spaces: unreserved, dose,
and drug. Displayed UMAPs are the dose and drug latent subspaces, demonstrating structured separation and ordered representation.

solution that captures data variations without reducing them
to mere categorical approximations. Continuous covariates
such as age or treatment dosage are critical for understand-
ing gradients in biological processes, cellular behavior, and
disease progression. To manage the subtleties associated
with these variables, TarDis employs a distance-based loss
function for each auxiliary loss component. The model em-
ploys negative pair losses weighted by the distance between
the values of the continuous covariates, omitting positive
pair losses due to the continuous nature of the covariate,
which results in generating an ordered and interpretable
latent space (Figure 2).

We here focused on two primary continuous covariates, age
and drug dosage, which present distinct challenges due to
their variability and significant impact on cellular pheno-
types. We employed two datasets to evaluate the effective-
ness of TarDis in producing ordered latent representations
of these covariates. The first dataset, named Sciplex (Ap-
pendix C.5), involves drug perturbation experiments and
helps in analyzing the structured response of cells to vary-
ing drug dosages. The second dataset, referred to as Braun
(Appendix C.3), comprises 1.6 million cells from human
embryonic brain development, providing a complex scenario
for assessing the impact of time as a continuous variable.
Through TarDis, we managed to produce ordered latent rep-
resentations of these covariates within isolated latent subsets
while concurrently disentangling other variables such as the
type of library platform, donor characteristics, sample status,
instrumentation used, and tissue types (Figure 2, 3).

This representation has enabled previously unfeasible
hypothesis-driven biological analyses. For example, TarDis
allows for the exploration of organ-specific developmental

gene expression patterns for specific cell types, an analy-
sis that previously wasn’t optimal with non-batch-corrected
input spaces. Unlike existing models such as scVI and
scANVI, which address batch effects but often fail to retain
essential biological information like age or organ specifics
—either being overly corrected by batch keys or inade-
quately accounted for (Lopez et al., 2018; Xu et al., 2021)—
TarDis allows researchers to isolate cells from two different
organs using the organ-specific latent subset and, for a given
cell type, compare expression patterns across developmen-
tal stages in a massive multi-organ developmental single-
cell dataset. This analysis benefits from a batch-corrected
latent space, thanks to a set of other latent subsets that
disentangle batch effects. In Figure 3 upper right, TarDis
enabled to identify genes including EGR2-3-4, KLF2-4,
RTL1, SPRY4-AS1, and FOSB, that decrease in expres-
sion through embryonic development of human forebrain
neurons within the Braun dataset, which were shown to
be associated with brain development, aging, and diseases
including Down syndrome and bipolar disorder (Manning
et al., 2019; Chou et al., 2022; Kitazawa et al., 2021; Yin
et al., 2015; Palmer et al., 2021; Poirier et al., 2007). In a
parallel experiment using the Sciplex perturbation dataset,
TarDis effectively disentangled the influences of drug type
and dosage (Figure 2, 3). Using the data points correspond-
ing to Nutlin cluster in drug latent, we analyzed how gene
expression responds to increasing doses. As shown in Fig-
ure 3 bottom right, this approach allowed us to pinpoint the
expression patterns of genes such as TP53I3, CDKN1A,
GDF15, MDM2, FDXR, and NUPR1, which are notably re-
sponsive to escalating doses of Nutlin (Voltan et al., 2014;
Huang & Vassilev, 2009).

6



TarDis: Achieving Robust and Structured Disentanglement of Multiple Covariates

D
at

as
et

 S
ci
pl
ex

D
at

as
et

 B
ra
un

MDM2, TP53I3,
GDF15, NUPR...

KLF2-4, CNN1,
EGR2-3-4, NR4A3...

Figure 3. Ordered latent spaces for dose and age (post-conception week) in the Sciplex and Braun datasets, respectively. (left) Principal
Component 1 (PC1) of the continuous covariate latent space plotted against Palantir pseudotime (Setty et al., 2019), which uses a k-nearest
neighbor graph to infer cell pseudotime trajectories. (middle) Density distribution of the continuous covariate in the respective latent
subset, illustrating ordered peaks corresponding to varying levels of the covariate. (Right) Differential gene expression profiles plotted
against the continuous covariate latent space, identifying genes that show variation in expression levels associated with changes in the
covariate, indicative of underlying cellular processes. Gene expression patterns are highlighted with (upper right) increasing doses of
Nutlin and (bottom right) through human embryonic developmental stages of forebrain neuron.

3.4. TarDis predicts counterfactual gene expressions
accurately under OOD conditions

The capacity of predictive models to generate accurate gene
expressions under OOD conditions is pivotal for extrapolat-
ing research findings to new or novel environments. In eval-
uating this capacity, TarDis was systematically tested using
two distinct datasets to gauge its effectiveness in predicting
counterfactual gene expressions. Using the Afriat dataset,
previously introduced, multiple models were trained, each
excluding a different combination of three covariates to cre-
ate respective OOD sets. Additionally, the Miller dataset,
which comprises samples from human developmental em-
bryonic lung, was utilized to disentangle the effects of age
and donor covariates (Appendix C.4). Similar to the Afriat
dataset, combinations of two covariates were systematically
omitted during training to simulate various OOD conditions.

TarDis demonstrated superior performance in predicting
gene expressions under OOD conditions, outperforming
CPA10, another model that concurrently disentangles mul-
tiple covariates, in both the Afriat and Miller datasets. In
the Afriat dataset, TarDis achieved notably higher R2 re-

construction scores, showcasing its strong capability for
accurate reconstruction under varied and unseen conditions
(Appendix H.12). In the Miller dataset, the challenge intensi-
fied with the evaluation focusing on differentially expressed
genes, DEGs, (Appendix H.13). TarDis excelled, achieving
significantly better OOD predictions for DEGs compared
to CPA. These results, shown in Figure 4, affirm the util-
ity of TarDis not only in disentangling complex covariate
interactions within datasets but also in its capability to gen-
eralize across novel, unseen domains, key to advancing the
precision and reliability of predictive models in single-cell
genomics.

3.5. TarDis produces interpretable latent
representations of disentangled covariates

In exploring the capabilities of TarDis to yield interpretable
latent representations, we utilized the Norman dataset,
a comprehensive collection comprising 108k cells sub-
jected to single or combinatorial gene perturbations (Ap-
pendix C.6). This dataset is particularly challenging due
to the diversity and complexity of its perturbations, with
a total of 284 distinct perturbation conditions included in

Dataset MillerDataset Afriat

Figure 4. Performance comparison of TarDis and CPA in predicting counterfactual gene expressions under out-of-distribution conditions
using the Afriat and Miller datasets. R2 scores for reconstructed gene expressions and differentially expressed genes (DEG) across varying
unseen covariate combinations highlight TarDis’s superior predictive capabilities.
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Figure 5. UMAP visualization of the TarDis perturbation latent space derived from the Norman dataset: (a) Clusters corresponding to sets
of perturbations associated with similar cell programs as identified in the original publication (Norman et al., 2019), demonstrating the
model’s ability to capture underlying biological patterns. (b) UMAP visualization of TarDis latent space, colored by 270 perturbations.
Representative clusters are highlighted, illustrating the model’s capability to align identical perturbations accurately despite nominal
labeling differences, thus confirming label reconciliation. Wasserstein distances are computed to quantitatively confirm the close, often
overlapping, clustering of identical perturbations (Vallender, 1974).

this analysis. In this experiment, the inference model in
TarDis relied solely on input features without the introduc-
tion of covariate information, sn. This approach ensured
that the learning process was purely driven by the data’s in-
herent structure rather than external annotations. Our results
indicate that TarDis effectively disentangles these perturba-
tions, with each perturbation distinctly isolated in the latent
space. Significantly, perturbations that share a common cel-
lular program, as identified in the original publication of the
dataset (Norman et al., 2019), were found to cluster closely.
The results support TarDis ability to capture interpretable
and biologically meaningful patterns, as the clustering is not
random qualitatively but reflects the underlying biological
relationships (Figure 5a).

A particularly rigorous test of the model’s interpretability in-
volved the re-labeling of certain perturbations in the dataset.
Specifically, the labels were altered to appear as two dis-
tinct entities: ‘X+0’ and ‘0+X’, despite originating from
the same perturbation. This was designed to test whether
TarDis could recognize and reconcile these as identical de-
spite their nominal differences. The results were in line
with our expectations: TarDis successfully overlapped these
perturbations in the latent space, affirming its capability to
generate biologically coherent and interpretable latent rep-
resentations, even under challenging conditions (Figure 5b).
This analysis not only confirms the robustness of TarDis’s
disentanglement capabilities but also highlights its potential
in generating actionable insights from complex genomic
data, where interpretability is crucial for meaningful biolog-
ical inference.

4. Conclusion
In this study, we presented TarDis, a novel deep genera-
tive model designed for the targeted disentanglement of
covariates in complex multi-domain and multi-condition
datasets, particularly focusing on the challenges presented

by single-cell genomics data. Our approach leverages a
series of covariate-specific loss functions to facilitate ro-
bust disentanglement and invariant representation of both
continuous and categorical variables, thus enhancing data
integration capabilities and enabling more insightful biolog-
ical analyses. Through rigorous benchmarking against exist-
ing models and diverse datasets, TarDis has demonstrated
superior performance not only in its capacity to disentan-
gle complex covariate structures but also in maintaining
essential biological signals crucial for accurate data inter-
pretation and analysis, and generating robust predictions
under out-of-distribution conditions. Moreover, TarDis’s
ability to generate ordered latent representations of continu-
ous covariates significantly enhances differential analyses
across varying conditions. The model perform robustly
in generating interpretable and biologically meaningful la-
tent representations, which could empower researchers to
conduct advanced hypothesis-driven research, potentially
unveiling novel insights and therapeutic targets.

TarDis establishes a robust approach for exploring complex
biological questions, offering researchers unprecedented
clarity in dissecting the nuanced interactions between di-
verse covariates. This capability is instrumental in advanc-
ing personalized medicine, supporting the development of
customized therapeutic strategies grounded in a profound
understanding of individual responses to different treat-
ments. Considering the expansion of TarDis applications
beyond genomics, for instance into neuromarketing using
EEG event-related potentials (ERP) data, it becomes cru-
cial to acknowledge that modifications to the model may be
necessary to accommodate different types of data. We are
actively investigating these potential applications, aiming
to extend the reach and impact of TarDis across various
scientific and applied fields11.

11Refer to Appendix D for a discussion regarding the limitations.
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A. Related Work
Models like single-cell Variational Inference (scVI) facilitate data integration by incorporating environmental variables such
as experimental batches or sequencing protocols alongside gene data, using one-hot vectors processed through a conditional
variational autoencoder (cVAE) to reduce technical noise (Lopez et al., 2018). Its extension, single-cell ANnotation using
Variational Inference (scANVI), builds on this by introducing cell annotations in a semi-supervised approach, thus enhancing
cell integration across diverse environments and adeptly capturing cell type variations (Xu et al., 2021; De Donno et al., 2023).
Despite their effective integration, these models may over-correct, adjusting biological signals while targeting technical
noise, which can obscure subtle biological variations such as inter-patient differences or treatment effects. Moreover,
these methodologies tend to aggregate all sources of spurious correlations indiscriminately, failing to discern the unique
characteristics of each source (Lopez et al., 2018; De Donno et al., 2023; Tran et al., 2020). This approach inadequately
addresses the nuanced interactions between these sources and biological signals, particularly problematic with continuous
spurious covariates such as age or drug dosage. Models equipped to continuously adapt to these subtle variations are thus
essential, ensuring that biological insights derived from single-cell genomics are not confounded by these varying conditions.

Several models in single-cell genomics have explored creating multiple latent spaces to handle different sources of variability
distinctly. For instance, contrastiveVI models each covariate separately, developing a shared latent space for the common
variability across covariates and an exclusive latent space for the target covariate’s unique variability (Weinberger et al.,
2023). Similarly, single cell disentangled Integration preserving condition-specific Factors (scDisInFact) develops a shared
latent space specifically designed to account for and eliminate batch effects, while simultaneously maintaining separate
latent spaces for other covariates, isolating and preserving the variations from batch influences. (Zhang et al., 2024). Yet,
none of these approaches offer a control latent space dedicated to retaining batch effects while filtering out the influences
of other covariates, essential for accurately distinguishing between variations caused by batch effects and those arising
from true biological differences. Such methods draw inspiration from broader approaches focused on fair and disentangled
representation, such as Flexibly Fair VAE (FFVAE) and Fader networks, and unsupervised disentanglement techniques such
as Total Correlation VAE (β-TCVAE) (Shamsaie et al., 2024; Oh et al., 2022; Lample et al., 2018; Chen et al., 2018). The cell
optimal transport model (CellOT) uses optimal transport (OT) methods to align cells from control and perturbed conditions,
but its non-generative, single-covariate focus limits broader applicability (Bunne et al., 2023). Biolord offers a unique
approach to supervised disentanglement, yet it faces scalability issues due to per-cell optimization (Piran et al., 2024). The
invariant VAE (inVAE) method introduces conditional priors within the VAE framework to effectively disentangle spurious
and invariant correlations. While it offers nuanced disentanglement, inVAE faces optimization challenges, particularly
in large datasets, and does not separate latent representations for individual covariates, and does not support continuous
covariates naively limiting its ability to analyze complex interactions between various biological conditions in detail (Aliee
et al., 2023). On the other hand, Compositional Perturbation Autoencoder (CPA) handles drug perturbations and produce
latent embedding but their assumption of linearity in the latent space limits capturing complex, non-linear biological
interactions (Lotfollahi et al., 2023; Inecik et al., 2022).

While existing approaches in single-cell genomics have notably advanced the disentanglement of spurious and invariant
correlations, they predominantly excel within narrowly defined scenarios. Many models, however, simplify continuous
covariates by categorizing them, which undermines the granularity of biological insights and limits their applicability in
precision medicine. Beyond this, there’s a critical need for models that not only handle the diversity of single-cell data but
also scale efficiently and train effectively given the heterogeneity inherent in these datasets. Despite the innovative nature of
these methods, they are often tailored to specific experimental conditions rather than offering a universal solution across
the diverse landscape of single-cell analysis. There remains an unmet need for a comprehensive model that excels in data
integration, out-of-distribution prediction, and serves as a robust platform for addressing intricate biological questions across
various conditions and experimental setups.
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B. Supplementary Figures
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Figure 6. UMAP visualization of TarDismultiple latent space representations from the Afriat dataset. The TarDis model training produces
four distinct latent spaces: unreserved, status, zone, and time. The UMAP plots for the status, zone, and time latent subspaces illustrate a
well-structured separation of the covariates, indicating effective encoding of the underlying data distributions and disentangled relationships
within these subspaces.
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Figure 7. UMAP visualizations of disentangled time representation of Afriat dataset in the TarDis model with varying weights of the
auxiliary loss λC. Each panel illustrates the latent space representation of targeted time covariate, highlighting how different λC values
influence the clustering and separation of data points corresponding to different time points. As λC increases, given above of the UMAP
visualizations, the disentanglement quality improves, evidenced by more distinct clusters, indicating the model’s enhanced ability to
preserve temporal information while disentangling other covariates. These visualizations provide qualitative support for the quantitative
findings on the impact of auxiliary loss weight on disentanglement performance.
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C. Datasets
Please be aware that this section contains embedded hyperlinks, which are essential for accessing the referenced datasets
and additional resources. For optimal functionality and ease of navigation, it is highly recommended to consult the PDF
version of this document. The PDF format ensures that all hyperlinks are active and can be directly accessed, facilitating
seamless retrieval of the associated data and supplementary information.

C.1. Afriat Dataset

Description: The Afriat dataset, named after the first author of the study, provides high-resolution single-cell RNA
sequencing and single-molecule transcript imaging data of host and parasite gene expression during the liver stage of the
rodent malaria parasite Plasmodium berghei ANKA. It highlights spatial differences in gene expression across hepatocyte
lobule zones, revealing insights into the molecular interactions between host and parasite (Afriat et al., 2022).

Number of Samples: The dataset comprises 19,053 individual cells.

Number of Features: It encompasses expression profiles across 8,203 genes.

Source: The data is publicly accessible. The raw dataset can be found under GEO accession number GSE181725. Processed
data are available as a Seurat object (Butler et al., 2018) at Zenodo. The AnnData (Virshup et al., 2021) format, utilized in
this study, was downloaded from Figshare, as prepared by Biolord study (Piran et al., 2024). No preprocessing or subsetting
was performed on our part.

C.2. Suo Dataset

Description: Named after a co-author of the originating study, the Suo dataset offers a multi-organ, single-cell transcriptomic
perspective, capturing dynamic immune system developments across nine prenatal human tissues during embryonic
stages. This comprehensive dataset details the temporal and spatial maturation of immune cells, highlighting embryonic
developmental timing and the interaction between different organ systems in shaping the immune landscape (Suo et al.,
2022).

Number of Samples: From an initial count of 908,178 individual cells, 841,922 cells met quality control standards set by
established single-cell best practices (Heumos et al., 2023).

Number of Features: The dataset, which initially profiled 33,538 genes, has been refined to focus on 8,192 highly variable
genes (HVGs), following established single-cell sequencing best practices (Heumos et al., 2023).

Source: Processed data are available in AnnData format, accessible at Cellatlas portal. Additional metadata with more
detailed annotation is available through the cellxgene server (Biology et al., 2023). The metadata was then refined and
corrected for errors by the authors.

C.3. Braun Dataset

Description: Named for the first author, the Braun dataset provides a comprehensive single-cell transcriptomic analysis of
the human brain during the crucial first trimester. Spanning 5 to 14 postconceptional weeks across 26 brain specimens, the
dataset includes over 1.66 million cells dissected into 111 distinct biological samples. This extensive dataset captures the
early spatial and transcriptional blueprint of brain development, with detailed insights into neuronal and glial differentiation
trajectories (Braun et al., 2023).

Number of Samples: From an initial count of 1,665,937 individual cells, 1,661,498 cells met quality control standards set
by established single-cell best practices (Heumos et al., 2023).

Number of Features: The dataset, which initially profiled 59,459 genes, has been refined to focus on 8,192 highly variable
genes (HVGs), following established single-cell sequencing best practices (Heumos et al., 2023).

Source: Raw sequencing data are available from the European Genome Phenome Archive under the accession number
EGAS00001004107). The data can be browsed interactively at SciLifeLab Portal and cellxgene server. The metadata was
then refined and corrected for errors by the authors.
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C.4. Miller Dataset

Description: The Miller dataset, named after the first author of the paper, provides a detailed single-cell mRNA sequencing
atlas of human lung development from 11.5 to 21 weeks, integrated with studies on homogeneous human bud tip organoid
cultures. This dataset specifically investigates the role of SMAD signaling in the differentiation of bud tip progenitors into
airway lineages, showcasing how in vitro conditions mirror in vivo airway structures and function. This comprehensive atlas
underscores critical insights into the cellular mechanisms guiding human airway differentiation (Miller et al., 2020).

Number of Samples: From an initial count of 8443 individual cells, 7405 cells met quality control standards set by
established single-cell best practices (Heumos et al., 2023).

Number of Features: The dataset, which initially profiled 36,601 genes, has been refined to focus on 8,192 highly variable
genes (HVGs), following established single-cell sequencing best practices (Heumos et al., 2023).

Source: The raw scRNA-seq data associated with this study are available in the EMBL-EBI ArrayExpress database under
accession number E-MTAB-8221. The metadata was then refined and corrected for errors by the authors.

C.5. Sciplex Dataset

Description: The Sciplex dataset, derived from the sci-Plex technology using nuclear hashing, quantifies transcriptional
responses to chemical perturbations at single-cell resolution. Applied to three cancer cell lines and exposing them to 188
distinct compounds, it evaluates dose-dependent effects and different drug responses. This high-throughput chemical screen
profiles approximately 650,000 single-cell transcriptomes across about 5000 samples in a single experiment, revealing
cellular heterogeneity in drug response, commonalities within compound families, and nuanced differences within compound
types, particularly histone deacetylase inhibitors (Srivatsan et al., 2020).

Number of Samples: The dataset comprises 14,811 individual cells.

Number of Features: It encompasses expression profiles across 4999 genes.

Source: Both processed and raw data are accessible via NCBI GEO under accession number GSE139944. The dataset used,
in its preprocessed and subsetted format, aligns with the methodology described in the CPA paper (Lotfollahi et al., 2023),
provided courtesy of the authors of CPA. No further preprocessing or subsetting was conducted by our team.

C.6. Norman Dataset

Description: Named for the first author, the Norman dataset leverages high-content Perturb-seq (single-cell RNA-sequencing
pooled CRISPR screens) to explore cellular and organismal complexity through combinatorial gene expression. The dataset
features transcriptional responses from 284 different single or double gene knockouts, allowing for the exploration of
genetic interactions at scale. This includes the mapping of regulatory pathways, classification of genetic interactions
such as suppressors, and the mechanistic study of synergistic effects, notably between CBL and CNN1 in erythroid
differentiation (Norman et al., 2019).

Number of Samples: The dataset comprises 108,497 individual cells.

Number of Features: It encompasses expression profiles across 5000 genes.

Source: Raw data is accessible via NCBI GEO under accession number GSE133344. The dataset used, in its preprocessed
and subsetted format, aligns with the methodology described in the CPA paper (Lotfollahi et al., 2023), provided courtesy of
the authors of CPA. No further preprocessing or subsetting was conducted by our team.
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D. Limitations
While TarDis introduces significant advancements in disentangling complex covariate structures in single-cell genomics, it
is important to acknowledge several inherent limitations. TarDis operates under a supervised learning paradigm, which
necessitates access to pre-labeled covariates. This requirement limits its applicability to datasets where such labels are
readily available and accurately annotated, constraining its utility in less structured environments.

A notable limitation of TarDis is the potential for overfitting. Although rigorous validation protocols and robust regularization
strategies, including elevated dropout rates and weight decay—more aggressive than those utilized in generic VAE models
like scVI—are employed, the risk remains. In our study, the hyperparameters were carefully optimized at the onset of all
experiments, ensuring consistent conditions across all tests, which mitigated the concerns of overfitting. It is important to
note that our successful one-time optimization and the avoidance of overfitting in single-cell genomics data do not guarantee
similar outcomes across other data types, hence users must conduct cautious benchmarking on validation splits to ensure the
model’s generalizability.

Moreover, the disentanglement of interdependent covariates introduces unique challenges. For example, accurately
disentangling age and donor in a single-cell genomics data as covariates requires the presence of multiple donors of varying
ages to prevent the model from conflating these factors. Without such diversity, the model risks inaccurately attributing the
influence of one covariate to another, thereby undermining the reliability of the disentanglement, particularly evident in our
validation splits.

Additionally, the implementation of TarDis introduces computational overhead, slightly slowing down the processing
speed. Nevertheless, this does not significantly impact performance, even with large datasets like the Braun dataset, which
comprises 1.6 million cells. The primary bottleneck arises from the selection of counteractive minibatches for each covariate
during training, which is quantified to increase the average training time by approximately 1.8 times in comparison to scVI,
when three covariates were targeted.

The encoding of covariates in a one-hot format, sn, while optional as mentioned in Section 2, generally fosters better disen-
tanglement in the validation splits. However, the dependency of disentanglement on the input space may necessitate further
optimization. This adjustment is crucial for enhancing the model’s utility in specific downstream tasks, as demonstrated in
our analysis using the Norman dataset in Section 3.5.

Lastly, TarDis necessitates numerous hyperparameters, especially concerning the loss weights for each of the four terms
associated with every covariate. This complexity was manageable in our experiments through our aforementioned one-time
optimization, and it did not present issues for single-cell data. However, adapting the model to new datasets could necessitate
further tuning, potentially complicating its application across varied contexts. It is also important to underscore the model
assumptions in Appendix E, as these foundational assumptions highlight potential limitations and areas where TarDis might
encounter challenges.
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E. Theoretical Assumptions
- Gene Dependency: The model implicitly assumes that the expression of genes can be considered independently

(conditional on the latent space and covariates) when calculating losses. However, genes often exhibit co-expression or
are co-regulated, which the model might not account for without specific modifications.

- Homogeneity of Cell Populations: It’s implicitly assumed that cell populations are homogeneous within groups defined
by covariates, which might not be the case in heterogeneous biological conditions such as tumors or developing tissues.

- Distribution of Gene Expression Counts: The model assumes that gene expression counts can be modeled effectively
using a Negative Binomial distribution. This assumption is common but might not always capture the real variability
and distribution in different types of datasets.

- Linearity and Gaussianity of Latent Space: The auxiliary loss assumes a Gaussian distribution for the latent vectors
znk. This implies assumptions about linearity and normality in the latent space, which may not hold in more complex
or non-linear biological data structures. This assumption is critical for the model’s simplicity and tractability:

znk ∼ N (µnk,Σnk) (9)

- Static Covariate Definition: The model assumes static and well-defined positive or negative sample definitions in terms
of covariate values. This is critical for the stability of the training process: s(k)+nk and s

(k)−
nk are fixed and consistent

throughout the dataset.
- Consistency and Availability of Covariate Labels: Consistent and accurate labeling of covariates across all cells is

required. Incomplete or inaccurate labels can undermine the model’s effectiveness:

p(snk = s′) = 1 ∀n ∈ NC (10)

- Smoothness of Latent Space: The auxiliary loss assumes the latent space is smooth and continuous, allowing for
meaningful interpolation and extrapolation:

∀znk, ∃ continuous function g such that g(znk) = xn (11)

- Sensitivity to Outliers: The model does not explicitly account for outliers, which can skew learned representations. It’s
assumed that:

p(xn is outlier) = 0 (12)

- Assumption of Sufficient Sample Size: The effectiveness of the model in disentangling and accurately representing
biological phenomena is contingent upon having a sufficiently large number of samples to cover the variability and
complexity of the data. Small sample sizes could lead to overfitting and poor generalization to new data:

min
k

( ∑
n∈NC

I(snk = s′)

)
≥ threshold (13)

- Data Sparsity: The model assumes it can handle sparsity in single-cell genomic data without additional modifications.
- Consistency of Environmental and Experimental Conditions: It’s assumed that all cells are subject to similar environ-

mental and experimental conditions, aside from the controlled variations represented by covariates. Variability in these
conditions could introduce unmodeled noise and bias.
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F. Loss Functions
Without loss of generality, various choices for the loss function are investigated, focusing on elucidating the loss incurred
between the anchor point xnk and the positive sample (x

(k)
nk )

+. The loss between the anchor point and the negative sample
(x

(k)
nk )

− can be derived similarly, with appropriate adjustments to maximize this loss.

F.1. Mean Squared Error (MSE)

The MSE between the latent representation of the anchor znk and its positive counterpart (z(k)nk )
+ for the kth covariate is

given by:

(L(k)
C )+i (ϕ;xn, sn) = MSE(znk, (z

(k)
nk )

+) =
1

|znk|

|znk|∑
j=1

(znkj − (z
(k)
nkj)

+)2 (14)

However, minimizing the L2 distance between normal vectors from distinct multivariate normal distributions with unique
diagonal covariance matrices does not inherently ensure the convergence of their distributions. While this minimization
may align distribution means, it disregards differences in variances and higher-order moments essential for comprehensive
distributional characterization.

Mathematically speaking, if znk ∼ N (µnk,Σnk) and (z
(k)
nk )

+ ∼ N ((µ
(k)
nk )

+, (Σ
(k)
nk )

+), by using linearity of expectation
and properties of the transpose, the expected squared L2 distance between znk and (z

(k)
nk )

+ can be simplified to:

E
[
∥znk − (z

(k)
nk )

+∥22
]
= E

[
zTnkznk

]
− E

[
(znk)

T (z
(k)
nk )

+
]
− E

[
((z

(k)
nk )

+)T znk

]
+ E

[
((z

(k)
nk )

+)T (z
(k)
nk )

+
]

(15)

For any vector znk with mean µnk and covariance Σnk, the following identity holds:

E
[
zTnkznk

]
= tr(Σnk) + µT

nkµnk (16)

Applying this to (z
(k)
nk )

+ and also knowing znk and (z
(k)
nk )

+ are independent, we have:

E
[
((z

(k)
nk )

+)T (z
(k)
nk )

+
]
= tr((Σ(k)

nk )
+) + ((µ

(k)
nk )

+)T (µ
(k)
nk )

+ (17)

E
[
zTnk(z

(k)
nk )

+
]
= µT

nk(µ
(k)
nk )

+ (18)

E
[
((z

(k)
nk )

+)T znk

]
= ((µ

(k)
nk )

+)Tµnk (19)

where tr(·) denotes the trace of a matrix. Substituting back, we find:

E
[
∥znk − (z

(k)
nk )

+∥22
]
= tr(Σnk) + µT

nkµnk − 2µT
nk(µ

(k)
nk )

+ + tr((Σ(k)
nk )

+) + ((µ
(k)
nk )

+)T (µ
(k)
nk )

+ (20)

To simplify further, recognizing the vector identity ∥∆∥22 = ∆T∆ for squared terms where ∆ = (µ
(k)
nk − (µ

(k)
nk )

+):

E
[
∥znk − (z

(k)
nk )

+∥22
]
= tr(Σnk) + tr((Σ(k)

nk )
+) + ∥∆∥22 (21)

This expression reveals that the expected squared L2 distance depends on both the aggregate covariances and the squared
difference between the means. Minimizing this distance reduces the mean disparity term ∥∆∥22, but does not necessarily
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minimize the covariance term tr(Σnk+(Σ
(k)
nk )

+), which reflects distributional variability. However, it is crucial to ensure the
convergence of our latent representations of similar pairs across their entire characteristics. Notably, as Tong & Kobayashi
(2021) demonstrated, differences in the diagonal covariances of multivariate normal distributions can significantly influence
the optimal transport cost and Wasserstein distance, even when the means are aligned. This highlights the importance of
considering both mean and covariance differences for accurate distribution comparison. Consequently, we redirect our focus
towards statistical metrics like KL divergence, which encompass the entire distribution and provide a more comprehensive
assessment of distributional convergence.

F.2. KL Divergence

Unlike the L2 distance, which primarily measures central tendency, the KL divergence accounts for both dispersion and
correlation structure. Specifically, KL divergence is sensitive to differences in the means and covariance matrices of the
distributions, offering a comprehensive measure of how well one distribution approximates another, beyond merely the
distance between their centers.

To frame our problem contextually, assume we have determined the representation of a positive data point in a lower-
dimensional space, i.e., (z(k)nk )

+ is fixed. With this in mind, we aim to represent the anchor point to reflect its partial
similarity in its corresponding latent representation znk. Therefore, we utilize the encoder distribution of the positive sample,
qϕ((z

(k)
nk )

+|(x(k)
nk )

+, (s
(k)
nk )

+) = N ((µ
(k)
nk )

+, (Σ
(k)
nk )

+) as the target for the current point’s distribution, qϕ(znk|xnk, snk) =
N (µnk,Σnk) given that the gradients for the forward pass of the positive sample are not computed.

Based on the KL divergence between these two multivariate Gaussian distributions, the positive pair loss
(L(k)

C )+i (ϕ;xn, sn) = −DKL(N (µnk,Σnk) ∥ N ((µ
(k)
nk )

+, (Σ
(k)
nk )

+)) can be calculated using a straightforward and effi-
cient formula:

(L(k)
C )+i (ϕ;xn, sn) =

1
2

[
tr(inv((Σ(k)

nk )
+)Σnk) + ((µ

(k)
nk )

+ − µnk)
T inv((Σ(k)

nk )
+)((µ

(k)
nk )

+ − µnk)− |znk|+ log

∣∣∣(Σ(k)
nk )+

∣∣∣
|Σnk|

]
(22)

Here, inv(.) stands for the inverse of a matrix, |.| represents the determinant of a matrix, |znk| is the dimensionality of the
distributions, Σnk = diag((σnk1)

2, . . . , (σnk|znk|)
2) and (Σ

(k)
nk )

+ = diag(((σ
(k)
nk1)

+)2, . . . , ((σ
(k)
nk|znk|)

+)2). Furthermore,
the determination of the determinant for such matrices is simplified, requiring only the multiplication of their diagonal
elements. Therefore, equation 22 becomes:

(L(k)
C )+i (ϕ;xn, sn) =

1
2
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[
(σnkj)

2

((σ
(k)
nkj)
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+

((µ
(k)
nkj)

+−µnkj)
2

((σ
(k)
nkj)

+)2
− 1 + 2 log (σ

(k)
nkj)

+ − 2 log σnkj

]
(23)

We propose summing the KL divergence over all covariates k, analogous to the total correlation (TC) in the objective
function of the Relevance Factor VAE (RF-VAE)(Kim et al., 2019). This approach is designed to promote independence
among latent variables. Consequently, we apply this method to the KL loss term by calculating the KL divergence between
each latent representation and the standard normal distribution individually, and then summing the results.

Additionally, instead of assigning a weight to each positive pair loss function with respect to covariate k and the KL
divergence between its latent representation and the prior distribution (standard normal distribution), we introduce relevance
indicators, r(k) and r

(0)
j respectively. These indicators can be learned via a variational approach. They are parameterized

and updated during the training process.

r
(0)
j = W

(0)
j · znj + b

(0)
j ∀j ∈ {0} ∪ Jk

r(k) = W(k) · znk + b(k) ∀k ∈ Jk
(24)

Hence the primary objective function to maximize for becomes:
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(LC)
+(ϕ;xn, sn) =

1

|Jk|
∑
k∈Jk

[
−r(k)DKL(N (µnk,Σnk) ∥ N ((µ

(k)
nk )

+, (Σ
(k)
nk )

+))
]

+
1

|Jk|+ 1

∑
∀j∈{0}∪Jk

[
−r

(0)
j DKL(N (µnj ,Σnj) ∥ N (0, I)

]

F.3. Bhattacharyya Loss

When comparing the Bhattacharyya Loss (DB) to the KL divergence, several key distinctions arise. KL divergence
can be less effective in handling outliers and noise compared to DB , which provides a more robust measure in noisy
environments (Silva et al., 2013). Studies have demonstrated that in high-dimensional data scenarios, DB can outperform
KL divergence in both clustering accuracy and robustness to data anomalies (Cao et al., 2017).

Incorporating DB as a loss function offers several additional advantages. First, it has shown superior performance in
distinguishing between different distributions, which is essential for effective novelty detection (Sintini & Kunze, 2020)
and a key aspect of disentanglement. Disentangling different factors of variation in the data often requires a measure that
can accurately differentiate between various underlying distributions. Thus, the superior performance of DB in this regard
directly supports its use in disentanglement tasks. In the domain of single-cell RNA sequencing (scRNA-seq), DB has been
successfully applied to detect fear-memory-related genes from neuronal data, demonstrating its ability to handle the high
heterogeneity and dropout noise inherent in such datasets (Zhang et al., 2022). Furthermore, it has been integrated into
k-means clustering, enhancing the efficiency and memory-saving capabilities for large-scale scRNA-seq data analysis (Baker
et al., 2021). DB is also robust to outliers and noise, ensuring more reliable and consistent results, which is crucial for noisy
datasets (Moon et al., 2018). Disentangling factors of variation in noisy datasets requires a measure that can reliably handle
outliers and noisy data points without compromising the integrity of the disentangled components. DB’s robustness makes it
a suitable choice for such tasks. Additionally, its symmetry and comprehensive capture of distributional differences enhance
the accuracy of various analytical models (Wang et al., 2019). For disentanglement, accurately capturing and separating
the underlying factors of variation in the data is essential. DB’s mathematical properties ensure that it can provide a more
precise and reliable measure of these differences, facilitating better disentanglement.

Therefore, we can write the positive pair loss utilizing DB as follows:
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=
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+ − µnk)
T

(
Σnk + (Σ

(k)
nk )

+

2

)−1

((µ
(k)
nk )

+ − µnk)

+
1

2
ln


∣∣∣(Σnk + (Σ

(k)
nk )

+)
∣∣∣

2

− 1

2
ln

(√
|Σnk|

∣∣∣(Σ(k)
nk )

+
∣∣∣)]

=
1

4

|znk|∑
j=1

((µ
(k)
nkj)

+ − (µnkj))
2

(σnkj)2 + ((σ
(k)
nkj)

+)2
+

1

2

|znk|∑
j=1

ln

(
(σnkj)

2 + ((σ
(k)
nkj)

+)2

2 · σnkj(σ
(k)
nkj)

+

)
(25)

F.4. Mahalanobis Loss

Mahalanobis Loss (DM ) is a robust metric for quantifying the distance-like measure between a point and a distribution, or
between two points within a distribution-defined space. Unlike KL divergence and DB , DM measures the deviation of a
point from the mean of a distribution and can be extended to compare the central tendencies of two distributions.

The innovative use of DM significantly enhances data interpretation and clustering accuracy. The DR-A model, combining a
VAE with a generative adversarial network (GAN) leverages DM for dimensionality reduction, achieving superior clustering
and more precise low-dimensional representations of scRNA-seq data (Lin et al., 2020). This precision is crucial for
accurately representing covariates in lower-dimensional spaces.
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The scDREAMER framework integrates DM within an adversarial VAE to tackle skewed cell types and nested batch effects,
improving batch correction and preserving biological variability across heterogeneous datasets (Shree et al., 2023). Table
1 highlights that while our model excels in batch correction, there is room for improvement in biological conservation.
Therefore, we can adopt DM to measure the dissimilarity between the latent representation of the anchor point znk and the
respective posterior distributions qϕ((z

(k)
nk )

+ | (x(k)
nk )

+, (s
(k)
nk )

+) as follows:

(L(k)
C )+i (xn, sn) = DM (znk, (z
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= (

√
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(k)
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(k)
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+)−1(znk − (µ
(k)
nk )

+))2
(26)

The inverse covariance matrix computation simplifies to the reciprocal of each diagonal element, resulting in:

(L(k)
C )+i (ϕ;xn, sn) =

|znk|∑
j=1

(znkj − (µ
(k)
nkj)

+)2

((σ
(k)
nkj)

+)2
(27)

Minimizing DM encourages zn and (z
(k)
nk )

+ to be located within high-probability regions of the latent space, as defined
by the Gaussian distribution. The latent representation of the positive example (z

(k)
nk )

+ serves as a reference, with all
adjustments made relative to the current anchor point znk.

F.5. Fisher Information

Fisher information can be used to measure the amount of information that a random variable (z
(k)
nk )

+ carries about
the unknown parameters µnk and Σnk of a probability distribution modeling (z

(k)
nk )

+. This measurement allows for a
more precise identification of the most informative latent factors, leading to more interpretable representations. Because
Fisher information is grounded in information theory, the resulting disentangled factors are often more meaningful and
easier to understand, which is beneficial for tasks requiring human interpretability of covariates (Tschannen et al., 2018).
Representations derived using Fisher information have been shown to improve performance in downstream tasks such as
classification, clustering, and anomaly detection (Khemakhem et al., 2020), which is the ultimate goal of learning latent
representations of single-cell RNA-seq data. Therefore, in the context of VAEs, Fisher information aids in analyzing
information loss during the encoding process:

Iµnkj
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[(
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∂µnkj
log qϕ((z

(k)
nk )

+ | xn, sn)

)2
]

(28)
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(L(k)
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[
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]
(30)

In our case, the log-likelihood function for a single observation xn is given by:
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For the mean parameter µnkj :
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For the variance parameter σ2
nkj :
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G. Experimental Details
G.1. Model

Table 2: Hyperparameters for model configuration: This table lists the hyperparameters used in the model configuration,
including their descriptions and assigned values.

Parameter Description Value

n_input Number of input features.
n_batch Number of batches. If 0, no batch correction is

performed.
0

n_labels Number of labels. 0
n_hidden Number of nodes per hidden layer. Passed into

Encoder and Decoder.
512

n_latent Dimensionality of the latent space. 24 +8 * NK

n_layers Number of hidden layers. Passed into Encoder and
Decoder.

3

n_continuous_cov Number of continuous covariates. 0
n_cats_per_cov A list of integers containing the number of categories

for each categorical covariate.
None

dropout_rate Dropout rate. Passed into Encoder but not Decoder. 0.25
dispersion Flexibility of the dispersion parameter, which can be

"gene", "gene-batch", "gene-label", or
"gene-cell", when gene_likelihood is either
nb or zinb.

"gene"

log_variational If True, use torch.log1p on input data before
encoding for numerical stability (not normalization).

True

gene_likelihood Distribution to use for reconstruction in the generative
process. ("zinb", "nb", "poisson")

"nb"

latent_distribution Distribution for the latent space. ("normal", "ln") "normal"

encode_covariates If True, covariates are concatenated to gene expression
prior to passing through the encoder(s).

False

deeply_inject_covariatesIf True and n_layers > 1, covariates are
concatenated to the outputs of hidden layers in the
encoder(s) and the decoder.

True

batch_representation Method for encoding batch information. ("one-hot",
"embedding")

"one-hot"

use_batch_norm Specifies where to use torch.nn.BatchNorm1d in
the model. ("encoder", "decoder", "none",
"both")

None

use_layer_norm Specifies where to use torch.nn.LayerNorm in
the model. ("encoder", "decoder", "none",
"both")

"both"

use_size_factor_key If True, use the anndata.AnnData.obs column
as defined by the size_factor_key parameter in
the model’s setup_anndata method as the scaling
factor in the mean of the conditional distribution.

False

use_observed_lib_size If True, use the observed library size for RNA as the
scaling factor in the mean of the conditional
distribution.

True

library_log_means Vector of shape (1, n_batch) of means of the log
library sizes that parameterize the prior on library size.

None

library_log_vars Vector of shape (1, n_batch) of variances of the
log library sizes that parameterize the prior on library
size.

None

var_activation Callable used to ensure positivity of the variance of the
variational distribution. Passed into Encoder. The
default is the exponential function.

None
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Parameter Description Value

deeply_inject_disentengled_latents If True, deeply inject disentangled latents. True

include_auxillary_loss If True, include auxiliary loss. True

beta_kl_weight Weight for the KL divergence term in the loss function. 0.5

G.2. Training

Table 3: Hyperparameters used for optimization: It provides a comprehensive overview of the configurations necessary to
monitor and enhance model performance throughout the training

Parameter Description Value

max_epochs Maximum number of training epochs. 600
train_size Proportion of data used for training. 0.8
batch_size Number of samples per batch. 128
check_val_every_n_epoch Frequency of validation checks in epochs. 10
limit_train_batches Fraction of training batches to use. 1.0
limit_val_batches Fraction of validation batches to use. 1.0
learning_rate_monitor Monitor learning rate during training. True

early_stopping Enable early stopping. False

early_stopping_patienceNumber of epochs with no improvement after which
training will be stopped.

150

early_stopping_monitor Metric to monitor for early stopping. "elbo_train"

n_epochs_kl_warmup Number of epochs for KL divergence warmup. 600
lr Learning rate. 1e-4
weight_decay Weight decay (L2 penalty). 1e-4
optimizer Optimizer to use. "AdamW"

reduce_lr_on_plateau Reduce learning rate when a metric has stopped
improving.

True

lr_patience Number of epochs with no improvement after which
learning rate will be reduced.

100

lr_scheduler_metric Metric to monitor for learning rate scheduler. "elbo_train"
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G.3. Loss

Table 4. Summary of LC configuration designed for covariates, namely status control, time, and zone in TarDismultiple model trained on
Afriat dataset. It provides insights into how each covariate contributes to the overall model loss.

Configuration Auxiliary Losses

Covariate Res
Dim

Target
Type

Loss
Type

Latent Group Weight Count
Type

Opt
Type

status 8 categorical MSE
reserved 100 − max

10 + min

completely
unreserved

10 − min
100 + max

time 8 categorical MSE
reserved 100 − max

10 + min

completely
unreserved

10 − min
100 + max

zone 8 categorical MSE
reserved 100 − max

10 + min

completely
unreserved

10 − min
100 + max

G.4. Compute Resources and System Configuration

For the computational tasks in our research, we employed NVIDIA Tesla A100 GPUs, which feature 40 GB of high-bandwidth
HBM2 memory each. This GPU architecture is specifically designed for accelerating machine learning and high-performance
computing applications, providing substantial throughput for both single and mixed-precision computations. We allocated
64 GB of GPU memory for processing large training datasets, which facilitated efficient handling of extensive computational
operations without the need for frequent data swapping, thereby minimizing I/O overhead. For smaller datasets, a reduced
memory allocation of 16 GB was used, which optimized resource utilization without compromising performance. On the
CPU side, our computational nodes were equipped with dual Intel Xeon Gold 6230 processors. Each processor offers
20 cores operating at a base frequency of 2.1 GHz, which can boost up to 3.9 GHz. This setup provided a robust and
responsive environment for handling non-GPU-intensive tasks and managing the preprocessing and postprocessing stages of
our experiments. The system’s main memory configuration included 256 GB of DDR4 RAM per node, which was crucial for
supporting the high-throughput demands of data-intensive operations, particularly when dealing with large-scale datasets
and complex computational models. Computational experiments were orchestrated using an internal SLURM (Simple
Linux Utility for Resource Management) compute cluster. We configured SLURM to efficiently allocate resources based
on the demands of queued jobs, with dynamic adjustments based on priority and current load. It should be noted that the
computational resources described here sufficed for all phases of the research project; the full project did not require more
compute resources than those reported for the experiments.
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H. Evaluation Metrics
H.1. Average Silhouette Width

The average silhouette width (ASW) (Rousseeuw, 1987b) evaluates clustering quality by measuring the relationship between
within-cluster and between-cluster distances. ASW values range from -1 to 1, where -1 indicates misclassification, 0
indicates overlapping clusters, and 1 indicates well-separated clusters.

For each data point xn, the silhouette coefficient s(xn) is calculated as:

s(xn) =
dinter(xn)− dintra(xn)

max (dintra(xn), dinter(xn))
(34)

where dintra(xn) is the average distance from point xn to all other points within the same cluster (intra-cluster distance)
and dinter(xn) is the minimum average distance from point xn to points in any other cluster (nearest-cluster distance). The
overall ASW is the mean of the silhouette coefficients for all points in the dataset:

ASW =
1

NC

NC∑
n=1

s(xn) (35)

where NC is the total number of data points. ASW is particularly relevant in single-cell genomics for assessing how well
cells cluster based on their gene expression profiles (Rousseeuw, 1987a). This metric provides an intuitive measure of
clustering quality and batch mixing, crucial for understanding both biological conservation and batch effect removal. It is
particularly useful in clustering-based analyses but may be sensitive to noise and outliers.

H.2. Cell Type Average Silhouette Width

Cell type average silhouette width (Cell type ASW) (Luecken et al., 2022) evaluates cell clustering quality in single-cell
transcriptomics by measuring how well cells are grouped based on type labels. The silhouette coefficient for each cell is
computed similarly to general ASW. To scale the ASW values between 0 and 1, the following transformation is applied:

celltypeASW =
ASWc + 1

2
(36)

where ASWc is the ASW computed over all cell type labels c.

H.3. Batch Average Silhouette Width

Batch average silhouette width (Batch ASW) (Luecken et al., 2022) assesses the quality of batch mixing in integrated
datasets, which is essential in single-cell transcriptomics to ensure that technical variations do not obscure biological signals.
The silhouette coefficient for each cell, based on batch labels, is computed similarly to general ASW.

To obtain a Batch ASW score between 0 and 1, the following transformation is applied for each batch label j:

batchASWj =
1

|Cj |
∑

xn∈Cj

(1− sbatch(xn)) (37)

where Cj is the set of cells with batch label j, |Cj | is the size of this set, and sbatch(n) is the silhouette coefficient for each
cell n based on batch labels. The final Batch ASW score is calculated by averaging the batch ASW values across all batch
labels:

batchASW =
1

|B|
∑
j∈B

batchASWj (38)
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where B is the set of unique batch labels. A Batch ASW score closer to 0 indicates good batch mixing, meaning batch
effects have been effectively corrected (Haghverdi et al., 2018).

H.4. Isolated Label F1 Score

Precision, also known as positive predictive value, gauges the proportion of correctly predicted positive instances among
the total predicted positives. It’s calculated by considering True Positives (TP) against False Positives (FP), following the
formula:

Precision =
TP

TP + FP
(39)

In contrast, Recall, also called sensitivity or true positive rate, measures how well the model identifies actual positive
instances, crucial when false negatives are costly. Its calculation focuses on TP relative to FN, given by:

Recall =
TP

TP + FN
(40)

The F1 score, a harmonic mean of precision and recall, offers a single metric balancing both aspects, with high values
indicating a well-balanced model. It is calculated as:

F1 = 2× Precision × Recall
Precision + Recall

(41)

Isolated Label Scores are used to evaluate the clustering and separation of cell identity labels shared by a few batches.
Specifically, the isolated label F1 score, also known as the class-wise F1 score, evaluates the F1 score for individual classes
and is optimized to achieve the best clustering of these isolated labels, ensuring effective integration of rare cell types. This
metric is particularly valuable for handling imbalanced datasets, such as those in single-cell genomics, where it assesses
the accuracy of identifying rare cell types (Sokolova & Lapalme, 2009; Luecken et al., 2022). The original scIB package
typically employs a cluster-based F1 scoring method by default. However, for the sake of speed and simplicity, we are
opting to use the ASW instead as implemented in scib-metrics package (YosefLab, 2024). The isolated label ASW
measures the separation quality of these labels. These scores address the challenge of integrating rare cell types, ensuring
that integration methods can effectively manage rare cell populations. However, the performance of these scores is heavily
influenced by the quality of initial annotations.

H.5. Mutual Information

Mutual information (MI) quantifies the reduction in uncertainty about one variable given knowledge of another between
variables in complex systems, making it a valuable measure in both theoretical analyses and practical applications (Duncan,
1970; Kraskov et al., 2004). It measures the amount of information shared between two random variables z+n and z−n as
follows:

I(z+n , z
−
n ) = p(z+n , z

−
n ) log

(
p(z+n , z

−
n )

p(z+n )p(z
−
n )

)
(42)

where p(z+n , z
−
n ) is the joint probability distribution of z+n and z−n , and p(z+n ) and p(z−n ) are their marginal distributions.

The value of MI is non-negative, I(z+n , z
−
n ) ≥ 0, and measures the reduction in uncertainty of z+n given z−n and vice versa.

When I(z+n , z
−
n ) = 0, the variables are statistically independent, meaning that knowing z+n does not provide any information

about z−n . A higher value of MI indicates a greater level of dependency between the variables.

H.6. Normalized Mutual Information

MI is influenced by dataset size and cluster entropy, complicating comparisons across datasets. Normalization techniques,
which adjust MI to a standard range, typically [0, 1], enable more equitable comparisons.
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NMI(z+n , z
−
n ) =

I(z+n , z
−
n )√

H(z+n )H(z−n )
(43)

where H(z+n ) and H(z−n ) are the entropies of z+n and z−n .The higher values indicate superior clustering quality (Vinh et al.,
2010). In the context of single-cell genomics, the normalized mutual information (NMI) is critical for evaluating how
well clusters correspond to known cell types (Luecken et al., 2022). This metric evaluates how well cell-type labels are
preserved post-integration. It is often used in scenarios requiring validation of clustering results against known labels. While
it provides an intuitive measure, it may not distinguish well between near-perfect and perfect clustering.

H.7. Maximum Mutual Information Gap

The maximum mutual information gap (maxMIG) is a metric designed to evaluate the disentanglement of latent variables in
complex datasets where the number of covariates exceeds two, a complexity that only particular methods are equipped to
manage (Shamsaie et al., 2024; Chen et al., 2018; Higgins et al., 2017; Wu et al., 2022; Kumar et al., 2017; Kim & Mnih,
2018) due to its ability to generalize and be unbiased (Chen et al., 2018; Sepliarskaia et al., 2019; Lotfollahi et al., 2023).
This measure quantifies the MI between latent representations and observed covariates, focusing on how effectively these
latent variables independently capture the informative characteristics of each covariate.

The maxMIG is defined for a set of latent variables [zk]
NK

k=1 and corresponding covariates [sk]
NK

k=1 as:

maxMIG(z1, . . . , zNK
; s1, . . . , sNK

) =
1

NK

NK∑
k=1

1

H(sk)
max
j ̸=k

[MI(zk, sk)− MI(zk, sj)] (44)

The maxMIG score is computed by averaging the normalized differences between the mutual information of each latent
variable with its corresponding covariate and the highest mutual information with any other covariate. This focus on
maximizing the information gap helps evaluate the specificity and relevance of each latent variable to its respective covariate.
Higher maxMIG values suggest better disentanglement, indicating that each latent variable is more uniquely aligned with a
specific covariate, thus enhancing the model’s interpretability and generalizability.

H.8. Rand Index

The Rand index (RI) serves as a pivotal metric for evaluating the concordance between two clustering outcomes. It
quantifies the degree of similarity by scrutinizing the allocation of data points into clusters across two distinct clustering
results. Computed as the ratio of the sum of agreements to the total number of data point pairs, RI encapsulates both
intra-cluster cohesion and inter-cluster separation. The formula for calculating the Rand Index is as follows:

RI =
TP + TN(

N
2

) (45)

where N = TP + TN + FP + FN. While the Rand Index offers valuable insights into clustering performance, it may have
limitations when dealing with varying cluster sizes or datasets with an uncertain number of clusters.

H.9. Adjusted Rand Index

The RI quantifies the proportion of agreements between the two clusterings out of all possible pairings of elements. However,
because the RI does not adjust for the chance grouping of elements, the Adjusted Rand Index (ARI) (Hubert & Arabie,
1985a; Luecken et al., 2022) is often preferred, which is defined as:

ARI =
RI − Expected RI

Max RI − Expected RI
(46)

where the Expected RI is the expected value of the RI for random clusterings and the Max RI is the maximum possible value
of the RI. Mathematically, the ARI can be expressed as:

31



TarDis: Achieving Robust and Structured Disentanglement of Multiple Covariates
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(47)

where nij is the number of elements in the intersection of cluster i in X and cluster j in Y , ai is the number of elements in
cluster i of X , bj is the number of elements in cluster j of Y , and

(
n
2

)
denotes the binomial coefficient. This adjustment

provides a corrected-for-chance measure, making the ARI a more reliable metric for clustering comparison.

Values of ARI above zero indicate better-than-random agreement, with a value of 1 representing perfect agreement (Hubert
& Arabie, 1985b). In single-cell data analysis, ARI is useful for validating the consistency of cell type assignments across
different clustering methods. This metric is key for evaluating clustering performance in the presence of noise and is
commonly used to validate clustering results in datasets with known ground truth. However, it can be less intuitive to
interpret compared to simpler metrics.

H.10. k-nearest neighbor Batch Effect Test

The k-nearest neighbor batch effect test (kBET) (Büttner et al., 2018; Luecken et al., 2022) assesses batch effects in
high-dimensional datasets by testing the homogeneity of batch labels within the k-nearest neighbors of each data point. It
evaluates whether the neighbors of a cell are more likely to come from the same batch than expected under random mixing.
kBET is a robust method designed to quantify batch effects in single-cell RNA sequencing (scRNA-seq) data. To implement
kBET, one first constructs a k-nearest-neighbor (kNN) graph for each cell in the dataset, using an appropriate distance metric
such as Euclidean distance in a principal component analysis (PCA)-reduced space. For each cell n, the algorithm identifies
its k nearest neighbors and calculates the proportion of cells from each batch within this neighborhood, denoted as pjn,
where j indexes the batches. Under the null hypothesis of no batch effect, the expected proportion of cells from each batch
should reflect the overall batch composition in the dataset, represented as qj . The kBET then compares the observed batch
proportions pjn with the expected proportions qj using a statistical test, such as the Chi-square test or a permutation-based
test. The test statistic for each cell n is computed as

χ2
n =

|B|∑
j=1

(pjn − qj)
2

qj

where |B| is the number of batches. The p-value associated with the Chi-square statistic indicates the likelihood that the
observed batch composition within the neighborhood of cell n is consistent with the global batch composition. These
p-values are aggregated across all cells to assess the overall presence of batch effects in the dataset. The kBET statistic is:

kBET =
1

N

N∑
n=1

1(pn<α) (48)

where N is the number of neighborhoods tested, pn is the p-value from a chi-squared test, and α is the significance threshold.

This method was evaluated using peripheral blood mononuclear cells (PBMCs) from healthy donors, effectively distinguish-
ing cell-type-specific inter-individual variability from changes in relative proportions of cell populations. kBET is crucial
for evaluating the effectiveness of batch effect correction methods in single-cell transcriptomics. The kBET tool and its
detailed implementation are available on the kBET GitHub repository.

H.11. Graph Connectivity

Graph connectivity evaluates whether the kNN graph of integrated data effectively connects all cells with the same identity.
For each cell identity label, a subset kNN graph is created. The graph connectivity score is then computed as the average
size of the largest connected component relative to the number of nodes with that cell identity (Luecken et al., 2022). This
metric ensures that cells of the same type remain connected post-integration, a critical aspect for evaluating graph-based
methods. Despite its importance, calculating graph connectivity can be computationally intensive for large datasets.
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In single-cell genomics, graph connectivity assesses the robustness of cell interaction networks. The formula for graph
connectivity is:

Graph Connectivity =
1

|C|
∑
c∈C

|LCC(G(Nc, Ec))|
|Nc|

(49)

where C is the set of cell identity labels, LCC(G(Nc, Ec)) is the largest connected component of the graph for cells with
labelc, and|Nc| is the number of nodes with cell identity c.

H.12. Coefficient of determination in VAE

The R2 Reconstruction metric, often referred to as the coefficient of determination, is a statistical measure used to evaluate
the performance of VAEs in reconstructing input data. This metric quantifies how well the reconstructed outputs from a
VAE approximate the original inputs, indicating the proportion of variance in the data that is captured by the model. R2

Reconstruction is particularly useful in the evaluation of VAEs because it provides a clear metric to gauge the accuracy of
data reconstructions, facilitates comparison between different VAE architectures or configurations on the same dataset, helps
identify areas where the model might be lacking, guiding further refinements. This metric is critical for researchers and
practitioners using VAEs to ensure that their models not only generate new data that is statistically similar to the input data
but also effectively reconstruct specific instances of input data (Inecik et al., 2022; Hetzel et al., 2022).

In the context of VAEs, the R2 Reconstruction is defined as:

R2 = 1−
∑NC

n=1 ∥xn − x̂n∥2∑NC

n=1 ∥xn − x̄∥2
(50)

where xn represents the original input data, x̂n represents the reconstructed data produced by the VAE, and x̄ is the mean of
the original input data.

The R2 value ranges from 0 to 1, where a higher value indicates that the model has effectively captured more of the variance
in the input data through its reconstructions. An R2 value of 1 signifies perfect reconstruction, whereas a value close to 0
indicates that the model performs no better than a model that would simply predict the mean of the input data for all outputs.

H.13. Coefficient of determination for Differentially Expressed Genes in VAE

In computational biology, the evaluation of VAEs reconstruction often focuses on differentially expressed genes (DEG),
which show significant changes in expression under different conditions, are critical for understanding biological processes
and disease mechanisms. The R2 Reconstruction metric is adapted in this context to specifically assess how well VAEs can
reconstruct the expression patterns of these DEG. Refer to Appendix H.12 for details of R2 reconstruction score (Inecik
et al., 2022; Hetzel et al., 2022).

The R2 Reconstruction for DEG is defined as:

R2
DEG = 1−

∑NC

n=1 ∥xn − x̂n∥2∑NC

n=1 ∥xn − x̄DEG∥2
(51)

where xn represents the expression levels of DEG in the original data, x̂n represents their reconstructed levels from the
VAE, and x̄DEG is the mean expression level of DEG.

Focusing on DEG, the R2 Reconstruction metric specifically evaluates how effectively the VAE captures the variability
and regulatory patterns in gene expression that are most biologically relevant and likely to be impacted by experimental
conditions. A high R2 value indicates that the VAE has effectively learned to model the critical aspects of gene expression
relevant to the study’s goals.

Reconstructing differentially expressed genes is inherently more difficult yet more critical than reconstructing overall gene
expression due to several factors:
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(i) Biological Relevance DEG often carry more biological significance than stably expressed genes, directly reflecting the
cellular responses to biological stimuli or disease states.

(ii) High Variability DEG typically exhibit high variability in expression levels, making accurate reconstruction a complex
challenge that tests the model’s sensitivity and precision.

(iii) Data Reduction By concentrating on DEG, researchers can reduce the dimensionality of the data, focusing computa-
tional resources and analytical efforts on the most informative parts of the dataset.

(iv) Improved Sensitivity Models tuned to capture changes in DEG can be more sensitive to subtle but biologically important
changes that might be overlooked when considering all genes.

Evaluating VAE performance using the R2 Reconstruction metric on DEG provides insights into the model’s ability to
handle the most critical and dynamic components of biological data, facilitating the development of more accurate and
biologically informative models.

H.14. Principal Component Regression

The principal component regression (PCR) quantifies batch removal by calculating the variance contribution of the batch
effect per principal component (PC) (Luecken et al., 2022). The variance contribution of the batch effect is computed as the
product of the variance explained by each PC and the corresponding R2 value from a linear regression of the batch variable
onto each PC. Mathematically, it is expressed as:

Var(C|B) =

G∑
g=1

Var(C|PCg)×R2(PCg | B) (52)

where Var(C|PCg) is the variance of the data matrix C explained by the gth principal component and R2(PCg|B) is the
coefficient of determination for the batch variable B. This metric provides a quantitative measure of batch effects, allowing
for direct comparison between methods, and is essential for assessing how well integration methods remove technical
variability, particularly in large-scale multi-batch studies. However, it may not fully capture non-linear batch effects.

H.15. Local Inverse Simpson’s Index

The graph local inverse Simpson’s index (LISI) is a metric for evaluating batch mixing (iLISI) and cell-type separation
(cLISI) in integrated single-cell datasets. It uses graph-based distances and the inverse Simpson’s index to measure diversity
within neighborhood compositions. Scores are rescaled from 1 to the total number of batches to a range of 0 to 1, where 0
indicates minimal integration or separation, and 1 indicates optimal mixing or segregation. This metric is especially useful
for graph-based integration methods and allows for cross-method comparisons, although it requires careful parameter tuning
and interpretation (Korsunsky et al., 2019; Luecken et al., 2022).

cLISI assesses the integration of diverse cell types within a combined dataset. For each cell, its kNN are identified, and the
composition of cell types within this neighborhood is analyzed. The diversity is quantified using the Inverse Simpson’s
Index:

DcLISI =
1∑NC

n=1 p
2
n

(53)

where pn is the proportion of the n-th cell type in the neighborhood, and NC is the total number of distinct cell types. The
average cLISI score across all cells indicates how well cell types are mixed, with high values showing effective mixing and
low values indicating poor mixing.

iLISI measures dataset mixing within the local neighborhood of each cell, quantifying how well cells from different datasets
are integrated. iLISI close to the number of datasets suggests good mixing, meaning datasets are well integrated where
cLISI close to 1 indicates good preservation of cell types, meaning different cell types remain well separated.
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Balancing iLISI and cLISI ensures datasets are integrated effectively while preserving distinct cell type identities. Graph
LISI’s unified measure for both batch mixing and cell-type separation makes it a valuable tool for single-cell data integration
studies, providing a standardized framework for comparing integration methods and identifying optimal strategies.
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