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Abstract

This paper proposes Constrained Exploitability
Descent (CED), a model-free offline reinforce-
ment learning (RL) algorithm for solving adver-
sarial Markov games (MGs). CED combines the
game-theoretical approach of Exploitability De-
scent (ED) with policy constraint methods from
offline RL. While policy constraints can perturb
the optimal pure-strategy solutions in single-agent
scenarios, we find the side effect less detrimental
in adversarial games, where the optimal policy
can be a mixed-strategy Nash equilibrium. We
theoretically prove that, under the uniform cov-
erage assumption on the dataset, CED converges
to a stationary point in deterministic two-player
zero-sum Markov games. We further prove that
the min-player policy at the stationary point fol-
lows the property of mixed-strategy Nash equi-
librium in MGs. Compared to the model-based
ED method that optimizes the max-player policy,
our CED method no longer relies on a general-
ized gradient. Experiments in matrix games, a
tree-form game, and an infinite-horizon soccer
game verify that CED can find an equilibrium
policy for the min-player as long as the offline
dataset guarantees uniform coverage. Besides,
CED achieves a significantly lower NashConv
compared to an existing pessimism-based method
and can gradually improve the behavior policy
even under non-uniform data coverages. When
combined with neural networks, CED also outper-
forms behavior cloning and offline self-play in a
large-scale two-team robotic combat game.

1School of Artificial Intelligence, University of Chinese
Academy of Sciences 2Institute of Automation, Chinese Academy
of Sciences. Correspondence to: Yuanheng Zhu <yuan-
heng.zhu@ia.ac.cn>, Dongbin Zhao <dongbin.zhao@ia.ac.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Data-driven learning of policies is appealing, especially in
scenarios where the interaction with the environment is ex-
pensive, e.g., robotic manipulation, autonomous driving,
and health care. Therefore, offline reinforcement learning
(RL) (Levine et al., 2020) has become an increasingly at-
tractive research topic in recent years. However, offline
RL faces an inherent challenge of distributional shift (Ross
et al., 2011), which arises from visiting out-of-distribution
states and actions. A direct way to address this issue is
to apply policy constraints, which constrain how much the
learned policy differs from the behavior policy in the dataset
(Kakade & Langford, 2002; Schulman et al., 2015). In
single-agent Markov decision processes (MDPs), such con-
straints can lead to suboptimality of the learned policy since
the optimal policy is usually a pure strategy that assigns the
optimal action probability one at each state (Sutton & Barto,
2018). Since the behavior policy derived from a set of offline
transitions can hardly be a pure strategy, applying policy
constraints with respect to the behavior policy will sacrifice
the optimality of the learned policy, even if the coverage
of the offline data is theoretically sufficient for learning the
optimal policy (e.g., satisfying uniform concentration).

For multi-agent scenarios, the optimal solution can still
be a pure strategy when it is fully cooperative. However,
in adversarial games, e.g., two-player zero-sum Markov
games (MGs), we usually characterize the optimal solution
with the concept of Nash equilibrium (NE), which admits
mixed strategies. For example, in a two-player Rock-Paper-
Scissors (RPS) game, the unique NE is the mixed strategy
( 13 ,

1
3 ,

1
3 ) for both players. It is thus possible that policy

constraint methods under a mixed-strategy behavior policy
may not sacrifice policy optimality in MGs. While recent
research in the field of game theory has developed vari-
ous efficient equilibrium-learning dynamics that can be ex-
tended into model-free RL algorithms (Lanctot et al., 2017;
Lockhart et al., 2019), it has not been examined if these
algorithms can be further combined with existing offline
learning techniques (Siegel et al., 2020; Wu et al., 2019)
while preserving the guarantee to find an exact Nash equi-
librium under sufficient assumptions on the data coverage.

On the other hand, while the existing pessimism-based meth-
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ods are provably efficient for solving offline MDPs and MGs
(see Jin et al. (2021); Xiong et al. (2023)), they have certain
limitations when they are practically applied to real-world
games. First, they require infinitely many samples to fully
capture the stochasticity of the game and achieve the opti-
mal solution, i.e., Nash equilibrium. However, when the
game is deterministic (e.g., chess and Go), they become no
longer optimal since the game transition can be determined
by a finite number of samples, which are already sufficient
for finding NE. Second, existing pessimism-based methods
usually require information about the game horizon (see Cui
& Du (2022a;b); Zhong et al. (2022); Xiong et al. (2023)) or
the dynamics model (see Yan et al. (2024)) to solve Markov
games. Zhang et al. (2023), as an exception, suffers from
computational inefficiency. Therefore, it is still challeng-
ing to propose a practical model-free algorithm to solve
infinite-horizon MGs offline with theoretical guarantees.

With the above-mentioned concerns, we ask the question:

Is it possible to find mixed-strategy Nash equilibrium offline
via model-free learning dynamics with policy constraints?

This paper provides a positive answer to this question.
Specifically, our contributions are threefold:

• We propose a novel model-free RL algorithm to find
mixed-strategy Nash equilibrium in adversarial Markov
games possibly with an infinite horizon. The algorithm,
named Constrained Exploitability Descent (CED), is
constructed by combining the policy constraint meth-
ods from offline RL with a game theoretic approach
called Exploitability Descent (ED).

• We prove that, under the uniform coverage (concen-
tration) assumption, CED converges in deterministic
two-player zero-sum MGs (Theorem 5.2) without rely-
ing on a generalized gradient like ED. We further show
that the min-player policy becomes unexploitable when
the opponent converges to an interior point of the con-
strained policy space (Theorem 5.6). By exchanging
the status of the two players and running CED twice,
we can obtain a potential mixed-strategy NE.

• We verify the equilibrium-finding capability of CED
by conducting experiments in matrix games, a tree-
form game, a soccer game, and a two-team robotic
combat game1. From a finite dataset, CED can find
NE policies in all scenarios with uniform coverage,
guaranteeing an ultimate NashConv significantly lower
than the baseline from a pessimism-based method. As a
practical offline method, CED also gradually improves
the behavior policy under non-uniform data coverages.
In the large-scale robotic combat game, CED clearly
outperforms behavior cloning and offline self-play.

1https://github.com/lryforeal/CED-Implementation

2. Related Work
Pessimism-based methods in offline games. The recent
works that directly examine offline games basically focus
on sample complexity and rely on pessimistic value func-
tions, which have been well understood in single-agent RL
(Rashidinejad et al., 2021; Xie et al., 2021). These works
typically append bonuses to the original Bellman operators
and obtain confidence bounds on the duality gap for the
policy computed from dynamic programming (Cui & Du,
2022a;b; Zhong et al., 2022; Xiong et al., 2023; Yan et al.,
2024). In the theoretical analyses, corresponding concen-
tration inequality is utilized to capture the stochasticity of
the transition function. As a fundamental work, Cui & Du
(2022a) proves that the coverage assumption of unilateral
concentration is sufficient for finding Nash equilibrium of-
fline in two-player zero-sum games by providing algorithms
with Hoeffding/Bernstein-type bonuses. Subsequent works
improve the sample complexity (see Cui & Du (2022b))
and extend the analyses to more complex scenarios concern-
ing linear/general function approximations (see Xiong et al.
(2023); Zhang et al. (2023)).

Equilibrium-learning dynamics. The field of algorithmic
game theory (Roughgarden, 2016; Nisan et al., 2007) exam-
ines a wide range of equilibrium-learning dynamics. While
the basic method of dynamic programming (or more simply,
backward induction) can only deal with perfect information
games like Markov games, game-theoretic learning dynam-
ics, including Fictitious Play (FP) (Brown, 1951), Policy
Space Response Oracle (PSRO) (Lanctot et al., 2017), and
Exploitability Descent (ED) (Lockhart et al., 2019), can
solve a broad class of games even with imperfect infor-
mation. Among them, PSRO is already extended through
deep reinforcement learning. ED exhibits best-iterate con-
vergence and is conducive to offline RL extensions. While
other methods like optimistic multiplicative weights update
(OMWU) also enjoy last-iterate convergence (see Lee et al.
(2021)), they have not been examined in infinite-horizon
Markov games. Therefore, we consider ED as the basic dy-
namic to construct a new method for solving offline games.

3. Preliminaries

3.1. Problem Formulation

Two-player zero-sum Markov games. An infinite-horizon
two-player zero-sum Markov game (Littman, 1994; Shapley,
1953) is represented by a tuple MG = (S,A,B, P, r, γ):
S is the state space. A is the action space of the max-
player, who aims to maximize the cumulative reward. B
is the action space of the adversarial min-player. P ∈
[0, 1]

|S||A||B|×|S| is the transition matrix. r ∈ [0, 1]
|S||A||B|

is the reward vector. γ ∈ (0, 1) is the discount factor.
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Algorithm 1 Exploitability Descent (ED) in two-player zero-sum Markov games

Input: game model MG and iteration number K
Output: last iterate µK for max-player

For k ∈ {1, 2, · · · ,K}
Compute Qk = Qµk−1,ν

†
under MG, where ν† = br(µk−1) is a best response against µk−1

For s ∈ S

Update µk(s) = argmin
µ(s)∈∆(A)

{ ∑
a∈A

(
µ(s, a)−

(
µk−1(s, a) + α

∑
b∈B

ν†(s, b)Qk(s, a, b)

))2
}

In this paper, we focus on the deterministic two-player zero-
sum MG with P ∈ {0, 1}|S||A||B|×|S|, which means that
the transition is deterministic. As a multi-agent extension to
the deterministic MDP (see Castro (2020)), it can describe
various games ranging from real-world combat games (Chai
et al., 2023) to video fighting games (Tang et al., 2023).

Policy and value functions. We use (µ, ν) to represent the
joint policy of the two players, where µ is the policy of the
max-player (pursuers) and ν is the policy of the min-player
(evader). Specifically, µ(s) ∈ ∆(A) (resp., ν(s) ∈ ∆(B))
is the max-player’s (resp., min-player’s) action distribution
at state s ∈ S, with µ(s, a) (resp., ν(s, b)) being the proba-
bility of selecting action a ∈ A (resp., b ∈ B). Furthermore,
as in single-agent MDPs, define value functions V µ,ν(s) =
E [
∑∞

t=0 γ
tr(st, at, bt) |s0 = s;µ, ν ] and Qµ,ν(s, a, b) =

E [
∑∞

t=0 γ
tr(st, at, bt) |s0 = s, a0 = a, b0 = b;µ, ν ].

Nash equilibrium. A Nash equilibrium (NE) in a game
corresponds to a joint policy where each individual player
cannot benefit from unilaterally deviating from his/her own
policy. Specifically, in a two-player zero-sum MG, an NE
(µ∗, ν∗) satisfies V µ,ν∗ ≤ V µ∗,ν∗ ≤ V µ∗,ν for any µ and
ν. As is well known, every two-player zero-sum MG has
at least one NE, and all NEs share the same value V ∗(s) =
V µ∗,ν∗

(s) = maxµminνV
µ,ν(s) = minνmaxµV

µ,ν(s).

For fixed µ and ν, define best-response value functions
V µ,∗(s) = minνV

µ,ν(s) and V ∗,ν(s) = maxµV
µ,ν(s).

Furthermore, let ρ0 ∈ ∆(S) be an initial state distribution
and define NashConv(µ, ν) = Es∼ρ0 [V

∗,ν(s)− V µ,∗(s)].
NashConv equals to the sum of the exploitability of the each
player’s policy and corresponds to the duality gap from the
minimax perspective in two-player zero-sum games. For an
arbitrary NE (µ∗, ν∗), we have NashConv(µ∗, ν∗) = 0.

In this paper, we aim to find approximate Nash equilibria,
which are the joint policies with NashConv close to zero.
An important property of NE in two-player zero-sum games
is that if (µ1, ν1) and (µ2, ν2) are both NEs, then (µ1, ν2)
and (µ2, ν1) are also NEs. Therefore, it is reasonable to
unilaterally learn the equilibrium policy for the max-player
and the min-player. An NE policy can be constructed by
combining any two of the individual equilibrium policies.

3.2. Exploitability Descent

Exploitability Descent (ED) (Lockhart et al., 2019) is a
game-theoretic approach that generalizes the classic convex-
concave optimization for solving matrix games. The core
idea is to iteratively update the current policy along the gra-
dient computed against a best response from the opponent.
Compared to the methods of fictitious play (Brown, 1951)
and regret minimization (Hart & Mas-Colell, 2000), ED
exhibits best-iterate convergence rather than average-iterate
convergence in two-player zero-sum games. Therefore, ED
can be readily extended to online RL algorithms (like Zhu
& Zhao (2022)) with policies parameterized by neural net-
works. In two-player zero-sum Markov games, ED for
optimizing max-player policy µ is shown in Algorithm 1.

Define the utility function u(µ, ν) = Es0∼ρ0
[V µ,ν(s0)].

For each (s, a),
∑

b∈B ν†(s, b)Qk(s, a, b) can make up
a generalized gradient of µk−1’s worst-case utility
∇µ(s,a)u(µ, br(µ)) ∈ ∂minνu(µ, ν) (Clarke, 1975). Fol-
lowing the generalized gradient, µk can approach a local
optimum µ̂ of the minimax problem maxµminνu(µ, ν). To
optimize min-player policy ν, we run Algorithm 1 again by
exchanging the status of µ and ν and using an opposite re-
ward. Then, (µ̂, ν̂) constructs a potential Nash equilibrium.

3.3. Policy Constraint Methods

In offline RL, the training process is always affected by ac-
tion distributional shift (Kumar et al., 2019), which is one of
the largest obstacles for model-free applications of the learn-
ing dynamics like Algorithm 1. In single-agent scenarios,
the effect can be weakened by applying constraints to the
learned policy π to keep it close to the behavior policy πβ ,
which corresponds to the state-action distribution of the of-
fline data. This ensures that the process of value estimation
has a lower chance of considering the out-of-distribution
actions. The extrapolation error in value estimation can be
thus mitigated at the expense of policy suboptimality.

Such constraints are commonly realized using direct policy
constraints on the policy update (Siegel et al., 2020) or indi-
rect policy penalties on the value functions (Wu et al., 2019).
Both methods require using a certain measure D(·, ·) (e.g.,
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Algorithm 2 Constrained Exploitability Descent (CED)

Input: offline dataset D, discount factor γ, and iteration number K
Output: last iterate νK for min-player

Set policy constraint measure D(·, ·) and range δ, policy penalty parameter ϵ, and learning rate α
Extract non-repetitive transition set D∗, state set S, and action sets A,B from D
Compute state distribution ρD and behavior policy (µβ , νβ) from D
{% Evaluate the value function under behavior policy}

Compute Qµβ ,νβ = argmin
Q

 ∑
(s,a,b,r,s′)∈D∗

(
Q(s, a, b)−

(
r(s, a, b) + γE a′∼µβ(s

′)

b′∼νβ(s
′)

[Q(s′, a′, b′)]

))2


Initialize Q0 = Qµβ ,νβ , µ0 = µβ , ν0 = νβ

For k ∈ {1, 2, · · · ,K}
{% Apply Bellman operator to the current value function}

Update Qk = argmin
Q

 ∑
(s,a,b,r,s′)∈D∗

(
Q(s, a, b)−

(
r(s, a, b) + γE a′∼µk−1(s

′)

b′∼νk−1(s
′)

[Qk−1(s
′, a′, b′)]

))2


For s ∈ S
{% Update µ along ED-like gradient under policy constraint}

Update µk(s) = argmin
µ(s)∈∆(A), s.t.

D(µ(s),µβ(s))≤δ

{ ∑
a∈A

(
µ(s, a)−

(
µk−1(s, a) + αρD(s)

∑
b∈B

νk−1(s, b)Qk(s, a, b)

))2
}

For s ∈ S
{% Compute approximate best response ν under policy penalty}

Compute νk(s) = argmax
ν(s)∈∆(B)

{∑
b∈B

ν(s, b)

(
−
∑
a∈A

µk(s, a)Q
µβ ,νβ (s, a, b)

)
− ϵDKL (ν(s), νβ(s))

}

KL-divergence) to describe the closeness of two policies.

The following policy update formula is an example of ap-
plying direct policy constraints:

πk(s) = argmax
π(s)∈∆(A), s.t.

D(π(s),πβ(s))≤δ

{
Ea∼π(s) [Q

πk(s, a)]
}

In comparison, a regularized value is computed when using
indirect policy penalties:

πk(s) = argmax
π(s)∈∆(A)

{
Ea∼π(s) [Q(s, a)]− ϵD(π(s), πβ(s))

}
For direct policy constraints, the optimality of the learned
policy is preserved only when the behavior policy πβ is
close enough to the true optimal policy, which is in theory
a pure strategy in single-agent scenarios. However, this
is unlikely to happen since πβ is derived from an offline
dataset. For indirect policy penalties, they face the same
problem since the resulting solution could never be a pure
strategy (see Lemma 4.1 for the case of KL-divergence).

4. Constrained Exploitability Descent
For adversarial games, even if we only apply a constraint to
the computation of the best response ν† for the min-player

in Algorithm 1, the resulting max-player policy µ will surely
deviate from the equilibrium of the original game for the
same reason in single-agent scenarios. Surprisingly, we find
that it is possible to instead keep the min-player policy ν
unexploitable. We will further explain it through our subse-
quent mathematical derivations in theoretical analysis. With
this observation, we propose an offline equilibrium-learning
algorithm under policy constraints and call it Constrained
Exploitability Descent (CED; see Algorithm 2).

CED inherits the basic structure of ED in each iteration. A
Q value is computed, the current µ is updated, and a best
response ν is computed in preparation for the next iteration.
However, CED has multiple differences in detail:

• Qk is updated from the last Qk−1 rather than directly
solved under the current Bellman equation.

• The update of µ at each state s ∈ S is under a direct
policy constraint D(µ(s), µβ(s)) ≤ δ. An additional
factor ρD(s) is also appended after the learning rate α.

• The computation of ν is based on Qµβ ,νβ (without esti-
mating Qµk,νk ) and is under a KL-divergence penalty
DKL(ν(s), νβ(s)) with a regularization parameter ϵ.
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Note that νk can still be viewed as an approximate best
response to the current µk when (µk, νk) is kept close to
(µβ , νβ). As a result, the best iterate of µ locally minimizes
exploitability in a regularized game. However, under the ad-
ditional KL-divergence regularization, now νk has a unique
solution with a closed-form expression (see Lemma 4.1),
which allows µ to update along a deterministic gradient
rather than an arbitrary generalized gradient. This mitigates
the problem that following a generalized gradient can lead
to recurrence around a local optimum, making it possible to
prove last-iterate (rather than best-iterate) convergence.

Lemma 4.1 (Uniqueness of ν in CED). In Algorithm 2,
νk(s, b) can be uniquely determined by computing:

νβ(s, b) exp

(
− 1

ϵ

∑
a∈A

µk(s, a)Q
µβ ,νβ (s, a, b)

)
∑
b′∈B

νβ(s, b′) exp

(
− 1

ϵ

∑
a∈A

µk(s, a)Qµβ ,νβ (s, a, b′)

)

When ϵ > 0, the min-player policy ν is a mixed strategy and
no longer an exact best response to the max-player policy µ.
As a result, the limit point of µ deviates from the solution to
the original minimax problem. Instead, we will prove in the
following section that νk approaches an unexploitable min-
player policy ν̂. By exchanging the status of max-player and
min-player in the game and running Algorithm 2 again, we
can also obtain an unexploitable max-player policy µ̂. The
joint policy (µ̂, ν̂) constructs a potential Nash equilibrium.

5. Theoretical Analysis
In this section, we theoretically show that it is possible for
CED (Algorithm 2) to find an exact Nash equilibrium with
the following two steps: First, we prove that CED can con-
verge to a stationary point (Q̄, µ̄, ν̄) (Section 5.1). Second,
we prove that the min-player policy ν̄ at the stationary point
of CED is unexploitable, like any mixed-strategy Nash equi-
librium of full support (Section 5.2). All of the omitted
proofs are provided in Appendix A.

Throughout our analysis, we require the uniform coverage
assumption, which means that the non-repetitive transition
set D∗ derived from the dataset D covers all state-action tu-
ples (s, a, b). In Cui & Du (2022a), this assumption is called
uniform concentration, and a weaker assumption named uni-
lateral concentration is analyzed. By constructing a coun-
terexample where the exact NE becomes impossible to learn,
they proved that unilateral concentration is somewhat nec-
essary for finding Nash equilibrium offline. However, when
the NE is a completely mixed strategy (e.g., the unique NEs
of the matrix games in Section 6.1), unilateral concentra-
tion is equivalent to uniform concentration. Therefore, the
uniform coverage assumption can be necessary for our theo-
retical analysis on finding mixed-strategy Nash equilibrium.

5.1. Convergence of CED

Lemma 5.1 shows the explicit gradient of utility function
u(µ, ν) = Es∼ρ0

[V µ,ν(s)] with respect to µ. This can be
viewed as an application of the policy gradient theorem in
MDPs (Sutton et al., 1999) to multi-agent scenarios.
Lemma 5.1 (Policy Gradient in MG). Let ρµ,ν(s) =∑

k≥0 γ
k Pr (s|k;µ, ν), where Pr (s|k;µ, ν) is the proba-

bility of reaching state s at time step k under joint policy
(µ, ν). Then, it holds for all s ∈ S and a ∈ A:

∂u(µ, ν)

∂µ(s, a)
= ρµ,ν(s)

∑
b∈B

ν(s, b)Qµ,ν(s, a, b)

Using Lemma 4.1 and Lemma 5.1, we are able to demon-
strate the convergence of CED (Theorem 5.2) under an
approximation about the state visitation probability ρ.
Theorem 5.2 (Convergence of CED). When ρµ,ν approxi-
mates the true state distribution ρD of the dataset D, CED
with sufficiently small α and 1

ϵ will converge to a stationary
point (Q̄, µ̄, ν̄) under the uniform coverage assumption.

Proof. By Lemma 4.1, νk is uniquely determined by µk. As
D∗ covers all (s, a, b) tuples and the MG is deterministic,
Qk+1 in CED approximates the true value Qµk,νk when µ’s
learning rate α is close to zero. Therefore, we only need to
consider the convergence of µ. By Lemma 5.1, we have:

∂u(µk, ν(µk))

∂µk(s, a)
=

∂u(µk, νk)

∂µk(s, a)
+
∑
b∈B

∂u(µk, νk)

∂νk(s, b)

∂νk(s, b)

∂µk(s, a)

=
∑
b∈B

ρµk,νk(s)νk(s, b)Q
µk,νk(s, a, b)

+
∂u(µk, νk)

∂νk(s, b)

∂νk(s, b)

∂µk(s, a)


Note that ∂νk(s,b)

∂µk(s,a)
→ 0 when 1

ϵ → 0 (see Appendix A.3 for

details). When ρµ,ν approximates ρD, we have ∂u(µk,νk)
∂µk(s,a)

=

ρD(s)
∑

b∈B νk(s, b)Qk+1(s, a, b). Therefore, µk in CED
updates along the gradient of u(µ, ν(µ)) at a sufficiently
small learning rate α. As a result, µ will converge to a
local maximum µ̄ for u(µ, ν(µ)), which implies CED will
converge to a stationary point (Q̄, µ̄, ν̄).

Theorem 5.2 provides a direct convergence guarantee for
CED without relying on a generalized gradient like ED.
Besides, compared to ED’s underlying assumption that ρµ,ν

is uniform, the assumption of ρµ,ν ≈ ρD is more realistic.
The policy constraints employed in CED will keep (µ, ν)
close to the behavior policy (µβ , νβ) derived from D.

5.2. Relationship to Nash Equilibrium

Now we further show that the min-player policy ν̄ at the
stationary point of CED follows a property of mixed-strategy
Nash equilibrium in MGs, namely, being unexploitable.
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Definition 5.3 (Unexploitable). We say a joint policy (µ, ν)
in an MG is unexploitable if both µ and ν are unexploitable
with respect to each other. Specifically, ∀s ∈ S:

µ is unexploitable:
∑

a∈A µ(s, a)Qµ,ν(s, a, b) = cνµ(s),∀b

ν is unexploitable:
∑

b∈B ν(s, b)Qµ,ν(s, a, b) = cµν (s),∀a

Intuitively, a policy µ is unexploitable with respect to an
opponent policy ν in an MG if all of the opponent actions b
have the same constant value cνµ(s) under each s ∈ S. As a
result, the opponent cannot exploit µ by deviating from ν at
any state. Lemma 5.4 shows this property can characterize
the mixed-strategy Nash equilibria with full support.

Lemma 5.4 (Property of Interior NE). If a Nash equilibrium
(µ∗, ν∗) in an MG has full support on the action space
(thus being an interior point of the joint policy space), then
(µ∗, ν∗) is unexploitable.

Now we demonstrate that ν̄ at any stationary point of CED
is also an unexploitable min-player policy in the MG. We
first provide an auxiliary lemma to show the update of µ at
each state s ∈ S can be equivalently enforced within the
hyperplane of probability simplex, where

∑
a µ(s, a) = 1.

Lemma 5.5 (Update Projection). Let zsa be the original
update αρD(s)

∑
b∈B νk(s, b)Qk+1(s, a, b) for µk(s, a) in

CED. Let y =
∑

a∈A zsa be the summation over A and de-
fine the projected update as psa = zsa −

y
|A| . Then, replacing

all zsa with psa results in the same µk+1(s) in CED.

We call psa a projected update because
∑

a∈A psa = 0 and
(µ(s, a) + psa)a∈A is kept in the hyperplane of probability
simplex. Using Lemma 5.5, we can prove that ν̄ is unex-
ploitable under an interior point assumption (sufficient also
for the theoretical analysis of ED (Lockhart et al., 2019)).

Theorem 5.6 (Unilateral Unexploitability). Let Π(s) =
Π1(s) ∩Π2(s) be the feasible region for µ(s), where Π1(s)
is the probability simplex and Π2(s) is the region induced
by the constraint D(µ(s), µβ(s)) ≤ δ. For any stationary
point (Q̄, µ̄, ν̄) of CED, if µ̄(s) is an interior point of Π(s)
for all s ∈ S, then ν̄ is an unexploitable policy with respect
to µ̄ under the uniform coverage assumption.

Proof. As D∗ covers all (s, a, b) tuples and the MG is de-
terministic, a stable Q̄ with respect to (µ̄, ν̄) in CED cor-
responds to the true value Qµ̄,ν̄ . Since (µ̄(s, a) + psa)a∈A
is in the hyperplane of Π(s) and µ̄ is stable with respect to
(Q̄, ν̄), we can consider the following two cases:

Case i: (µ̄(s, a) + psa)a∈A belongs to Π(s). Then, µ̄(s) =
(µ̄(s, a) + psa)a∈A ⇒ psa = 0,∀a ∈ A.

Case ii: (µ̄(s, a) + psa)a∈A does not belong to Π(s). Then,
µ̄(s) is the closest point in Π(s) with respect to the point
(µ̄(s, a) + psa)a∈A in the same hyperplane. This contradicts
the assumption that µ̄(s) is an interior point of Π(s).

Therefore, it holds for all s ∈ S that psa = 0,∀a ∈ A,
which further implies that zsa = c(s),∀a ∈ A. As a result,∑

b∈B ν̄(s, b)Q̄(s, a, b) =
∑

b∈B ν̄(s, b)Qµ̄,ν̄(s, a, b) =
c(s),∀a ∈ A, which means that the min-player policy ν̄ is
unexploitable with respect to µ̄.

With Theorem 5.6, if we run Algorithm 2 twice by ex-
changing the status of the two players and both max-player
policies converge to an interior point, then the last iterates
(µ, ν̂) and (µ̂, ν) can construct an unexploitable joint policy
(µ̂, ν̂). Policy constraints play an important role in support-
ing this claim. On the one hand, the distance between µ
and µβ is restricted by the direct policy constraint. On the
other hand, the indirect policy penalty can also bound the
distance between µ̂ and µβ (corresponding to the νk and
νβ in Algorithm 2 after the status exchange; see Lemma
A.1 in Appendix A.6 for an explicit bound). Since both
µ and µ̂ are close to µβ under policy constraints, we have
Qµ,ν̂ ≈ Qµβ ,ν̂ ≈ Qµ̂,ν̂ , which implies that ν̂ is also un-
exploitable with respect to µ̂. By symmetry, it is direct to
show that the joint policy (µ̂, ν̂) is unexploitable and thus
constructs a potential mixed-strategy Nash equilibrium.

In Appendix C, we combine the existing theory to provide
an overall explanation about the advantages of the CED
method. In the next section, we will further verify through
experiments that CED can practically find NE policies un-
der uniform coverage. Under non-uniform data coverages,
we also find that CED can gradually improve the behavior
policy and eventually obtain a competitive policy.

6. Experiments
We conduct experiments for tabular CED in matrix games, a
tree-form game, and a soccer game. We also evaluate CED
under function approximations in a robotic combat game.

6.1. Matrix Game

We first examine if CED manages to find mixed-strategy
Nash equilibrium in static matrix games. We consider two
games with two valid actions from {1, 2} for both play-
ers. The payoff matrices are M1 = ((1, 0), (−2, 4)) and
M2 = ((1, 0), (−2, 3)), where the rows correspond to the
actions of the max-player and the columns correspond to
the actions of the min-player.

(
µ∗(1) = 6

7 , ν
∗(1) = 4

7

)
and(

µ∗(1) = 5
6 , ν

∗(1) = 1
2

)
are the unique NEs in the games.

The learning curves of (µ, ν) for CED (α = 0.01, ϵ =
1.0) under uniform coverage

(
µβ(1) =

1
2 , νβ(1) =

1
2

)
are

shown in Figure 1. The y-axis indicates the probability
of choosing action 1 under the corresponding policy. The
dashed lines show the action probabilities of the unique
NE policy. In both games, CED manages to learn the equi-
librium policy ν = ν∗ for the min-player. This result is
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Figure 1. CED learning curves in the matrix games
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Figure 2. CED and ED learning curves in the tree-form game

consistent with Theorem 5.2 and Theorem 5.6, which claim
that under uniform coverage, CED can converge to an unex-
ploitable ν (an NE policy in this case). We may find that the
learned µ for M2 also corresponds to the equilibrium. How-
ever, this is because νβ happens to be ν∗ in M2. Otherwise,
the divergence regularization applied to the computation of
ν will force the stationary point of µ to deviate from µ∗

because ν∗ is not an exact best response to the stationary
µ. This phenomenon is shown in the learning curve on M1,
with the ultimate µ ̸= µ∗ as a result of νβ ̸= ν∗.

We also test CED in a 5-action “Rock-Paper-Scissors-Fire-
Water” game denoted by M3. Besides the common rules of
the RPS game, fire beats everything except water, and water
is beaten by everything except it beats fire.

(
1
9 ,

1
9 ,

1
9 ,

1
3 ,

1
3

)
is an unexploitable policy for both players, and the unique
Nash equilibrium of M3 is constructed when both play-
ers use this policy. As is shown in Figure 1 (right), CED
(α = 0.01, ϵ = 0.1) manages to learn the mixed-strategy
equilibrium policy, where the black dashed lines correspond
to the action probabilities of 1

3 and 1
9 , respectively.

6.2. Tree-Form Game

Now we further consider dynamic games, where the Nash
equilibrium at a decision point is affected by the results
of subsequent game stages. We examine the learning be-
haviors in a tree-form game T consisting of three decision
points whose payoff matrices are M1, M2, and M3, re-

spectively. T starts with Stage 1 (M1) and enters Stage
2 (M2) or Stage 3 (M3) conditioned on the joint actions
of two players at Stage 1 (see Appendix B.1). By back-
ward induction, we can compute that the NE at Stage 1 is(
µ∗(1) = 13

16 , ν
∗(1) = 9

16

)
, which deviates from the origi-

nal equilibrium point
(
6
7 ,

4
7

)
in M1.

As is shown in Figure 2 (left & right), CED (α = 0.005, ϵ =
0.1) finds the NE policy for the min-player in the tree-form
game. As there is a mismatch between the convergence
speed at Stage 2 and Stage 3, ν at Stage 1 experiences an
oscillation and eventually converges to the solution. This
phenomenon is consistent with the intuition that the learning
process at the initial stage depends on subsequent stages
in dynamic games. Besides, we test the behavior of the
model-based ED algorithm in this scenario. As is shown in
Figure 2 (mid), while ED can approximate the NE policy
for the max-player, it suffers from continual oscillations as
a side effect of following a generalized gradient.

6.3. Soccer Game

While the theoretical analysis and the toy problem experi-
ments above have suggested the capability of CED to find
mixed-strategy Nash equilibrium, here we further verify the
conclusion in an infinite-horizon Markov game, the soccer
game (see Appendix B.2). To measure the performance
of CED, we compute the NashConv of the learned (µ, ν)
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Figure 4. Performance improvements over behavior policy by CED in the soccer game

and compare it with the result of a pessimistic model-based
algorithm, VI-LCB-Game (Yan et al., 2024), which prov-
ably finds approximate Nash equilibrium offline for infinite-
horizon MGs but requires infinitely many samples in theory.
In Figure 3 (left), the dashed line corresponds to the joint
policy derived from VI-LCB-Game, given the minimum
amount of samples for uniform coverage. Under the same
offline dataset, CED steadily reduces the exploitability of
the learned policy in this symmetric MG and eventually
obtains a policy with a significantly lower NashConv.

Theorem 5.2 proves the convergence of CED under a suffi-
ciently small α and 1

ϵ . However, we are also curious about
whether it is possible to use different α and ϵ in practice.
As is shown in Figure 3 (mid), an overly large α makes it
significantly harder for CED to converge, while an overly
small α slows down the speed of learning. Figure 3 (right)
shows that it does not affect convergence to use a small (but
not too small) regularization parameter ϵ. These results can
be viewed as a supplement to our theoretical analysis.

As CED is model-free and does not rely on the full game in-
formation, it is, in principle, applicable to an arbitrary set of
offline data, regardless of the coverage. Here we further ex-
amine if it can gradually improve the behavior policy when
the coverage is non-uniform, like those single-agent offline
RL algorithms. To be specific, we randomly banned one
action out of five for each player at each state and removed

all the related transitions from the dataset D. This makes it
impossible to learn an exact Nash equilibrium in theory, as
a preferred action from the NE can be completely removed.
As is shown in Figure 4 (left), CED still gradually improves
the behavior policy under such random data coverages.

Besides NashConv, we estimate the win rate to intuitively
show the improvement over behavior policy by CED. As is
shown in Figure 4 (right), whether under uniform or non-
uniform coverage, the policy learned by CED significantly
improves the practical performance, with win rates over
90% against the behavior policies. When playing against
the approximate Nash equilibrium policy learned by CED
from the dataset with uniform coverage, the learned policy
from non-uniform coverage still achieves a close win rate
(45.8%). As no policy can possibly win an NE policy with
probability over 50% in a symmetric two-player zero-sum
game, this result reflects that CED can learn a competitive
policy even from the datasets without uniform coverage.

6.4. Robotic Combat Game

Now we show that CED can also be combined with neu-
ral networks to approximately solve large-scale adversarial
games in an offline manner. We implement CED in a graph-
based two-team robotic combat game (see Appendix B.3).
We construct an offline dataset that contains 2000 game tra-
jectories, where the actual behavior policy for both teams is
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Figure 5. Learning curves under BC initialization (left) and random initialization (right) in the robotic combat game
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a cooperative multi-agent policy previously trained against
a rule-based opponent through online RL. We first use su-
pervised behavior cloning (BC) to approximate the behavior
policy from the dataset. This corresponds to the first step of
CED (Algorithm 2). As we verify that the learned behavior
policy has a win rate around 50% against the actual behav-
ior policy, we simply use the win rate against the learned
behavior policy from BC as the performance measure.

We compare the last-iterate performance of CED with of-
fline self-play (OSP in Chen et al. (2024)) under the same
network architecture that represents multi-agent policies on
graphs for both teams. We also consider two initializations
under behavior policy and random policy. As is shown in
Figure 5, under either initialization, both CED and OSP
eventually outperform BC-approximated behavior policy,
and CED has a comparatively better learning performance
than OSP. Figure 6 shows the tested win rates of the four
learned policies against each other. While the initializations
under behavior policy have a clear advantage over random
initializations, randomly initialized CED still has a close
win rate against BC-initialized OSP (45%) under the same
number of iterations (3000 or 5000). That is to say, CED
can consistently outperform BC and OSP methods.

7. Conclusion
In this paper, by proposing CED and analyzing its conver-
gence properties, we demonstrate for the first time that,
unlike in MDPs, an optimal policy can be learned under

policy constraints in adversarial MGs. This conclusion is
drawn from our theoretical and empirical results. With The-
orem 5.2 and Theorem 5.6, we prove that under uniform
coverage, CED converges to an unexploitable min-player
policy without relying on the generalized gradient. In the
experiments, our theory is verified by the practical results of
CED in multiple game scenarios. We also show that, similar
to single-agent offline RL algorithms, CED can improve
the behavior policy from datasets without uniform coverage,
even under function approximations for large-scale games.

We hope this work will inspire more research on solving of-
fline games. Actually, since CED is constructed based on the
game-theoretic approach of Exploitability Descent, which is
also capable of solving imperfect-information games (IIGs),
it is possible to use CED as an offline IIG solver by replacing
the state and value with the information state and counterfac-
tual value. However, how to estimate counterfactual value
under the current policy using offline game data remains an
open problem. Further theoretical analysis is still required.

CED has the theoretical limitation that it is only guaranteed
to find mixed-strategy Nash equilibria in two-player zero-
sum games. However, it may not be the unique way of
equilibrium learning under policy constraints, as a wide
range of algorithms that exhibit last-iterate convergence
(e.g., DRDA (Lu et al., 2025)) are currently available in the
field of game theory. Combining them with existing offline
RL techniques may lead to more offline RL algorithms with
possibly better guarantees to find Nash equilibrium.
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Lockhart, E., Lanctot, M., Pérolat, J., Lespiau, J.-B., Morrill,
D., Timbers, F., and Tuyls, K. Computing approximate
equilibria in sequential adversarial games by exploitabil-
ity descent. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, pp. 464–470, 2019.

Lu, R., Zhu, Y., Zhao, D., Liu, Y., and He, Y. Last-iterate
convergence to approximate Nash equilibria in multi-
player imperfect information games. IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–15,
2024. doi: 10.1109/TNNLS.2024.3516693.

Lu, R., Zhu, Y., and Zhao, D. Divergence-regularized dis-
counted aggregation: Equilibrium finding in multiplayer
partially observable stochastic games. In The Thirteenth
International Conference on Learning Representations,
2025.

Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V.
Algorithmic game theory. Cambridge University Press,
2007.

10



Constrained Exploitability Descent: An Offline Reinforcement Learning Method for Finding Mixed-Strategy Nash Equilibrium

Rashidinejad, P., Zhu, B., Ma, C., Jiao, J., and Russell,
S. Bridging offline reinforcement learning and imita-
tion learning: A tale of pessimism. Advances in Neural
Information Processing Systems, 34:11702–11716, 2021.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, pp.
627–635. JMLR Workshop and Conference Proceedings,
2011.

Roughgarden, T. Twenty lectures on algorithmic game the-
ory. Cambridge University Press, 2016.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International Con-
ference on Machine Learning, pp. 1889–1897. PMLR,
2015.

Shapley, L. S. Stochastic games. Proceedings of the Na-
tional Academy of Sciences, 39(10):1095–1100, 1953.

Siegel, N. Y., Springenberg, J. T., Berkenkamp, F., Abdol-
maleki, A., Neunert, M., Lampe, T., Hafner, R., Heess,
N., and Riedmiller, M. Keep doing what worked: Behav-
ioral modelling priors for offline reinforcement learning.
International Conference on Learning Representations,
2020.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in Neural Information
Processing Systems, 12, 1999.

Tang, Z., Zhu, Y., Zhao, D., and Lucas, S. M. Enhanced
rolling horizon evolution algorithm with opponent model
learning. IEEE Transactions on Games, 15(1):5–15, 2023.
doi: 10.1109/TG.2020.3022698.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Xie, T., Jiang, N., Wang, H., Xiong, C., and Bai, Y. Policy
finetuning: Bridging sample-efficient offline and online
reinforcement learning. Advances in Neural Information
Processing Systems, 34:27395–27407, 2021.

Xiong, W., Zhong, H., Shi, C., Shen, C., Wang, L., and
Zhang, T. Nearly minimax optimal offline reinforcement
learning with linear function approximation: Single-agent
MDP and Markov game. International Conference on
Learning Representations, 2023.

Yan, Y., Li, G., Chen, Y., and Fan, J. Model-based rein-
forcement learning for offline zero-sum Markov games.
Operations Research, 2024.

Zhang, Y., Bai, Y., and Jiang, N. Offline learning in Markov
games with general function approximation. In Inter-
national Conference on Machine Learning, pp. 40804–
40829. PMLR, 2023.

Zhong, H., Xiong, W., Tan, J., Wang, L., Zhang, T.,
Wang, Z., and Yang, Z. Pessimistic minimax value it-
eration: Provably efficient equilibrium learning from of-
fline datasets. In International Conference on Machine
Learning, pp. 27117–27142. PMLR, 2022.

Zhu, Y. and Zhao, D. Online minimax Q network learning
for two-player zero-sum Markov games. IEEE Transac-
tions on Neural Networks and Learning Systems, 33(3):
1228–1241, 2022. doi: 10.1109/TNNLS.2020.3041469.

Zhu, Y., Li, W., Zhao, M., Hao, J., and Zhao, D. Empirical
policy optimization for n-player Markov games. IEEE
Transactions on Cybernetics, 53(10):6443–6455, 2023.
doi: 10.1109/TCYB.2022.3179775.

11



Constrained Exploitability Descent: An Offline Reinforcement Learning Method for Finding Mixed-Strategy Nash Equilibrium

A. Omitted Proofs
A.1. Proof of Lemma 4.1

Proof. First, we prove:

π = argmax
π∈∆(A)

{∑
a∈A

π(a) (r(a)− log π(a))

}
⇒ π(a) ∝ er(a)

Write the corresponding optimization problem:

maximize
∑
a∈A

π(a) (r(a)− log π(a))

s.t.
∑
a∈A

π(a) = 1

π(a) ≥ 0, ∀a ∈ A

Using the Lagrange multiplier, we have:

L =
∑
a∈A

π(a) (r(a)− log π(a))− λ

(∑
a∈A

π(a)− 1

)
∂L

∂π(a)
= 0 ⇒ r(a)−

(
log π(a) +

π(a)

π(a)

)
− λ = 0

⇒ π(a) = er(a)−λ−1 ⇒ π(a) ∝ er(a)

By definition of νk, we have:

νk(s) = argmax
ν(s)∈∆(B)

{∑
b∈B

ν(s, b)

(
−
∑
a∈A

µk(s, a)Q
µβ ,νβ (s, a, b)

)
− ϵDKL (ν(s), νβ(s))

}

= argmax
ν(s)∈∆(B)

{∑
b∈B

ν(s, b)

(
−1

ϵ

∑
a∈A

µk(s, a)Q
µβ ,νβ (s, a, b)− log

ν(s, b)

νβ(s, b)

)}

= argmax
ν(s)∈∆(B)

{∑
b∈B

ν(s, b)

(
log νβ(s, b)−

1

ϵ

∑
a∈A

µk(s, a)Q
µβ ,νβ (s, a, b)− log ν(s, b)

)}

Therefore:

νk(s, b) ∝ exp

(
log νβ(s, b)−

1

ϵ

∑
a∈A

µk(s, a)Q
µβ ,νβ (s, a, b)

)

which implies:

νk(s, b) =

νβ(s, b) exp

(
− 1

ϵ

∑
a∈A

µk(s, a)Q
µβ ,νβ (s, a, b)

)
∑
b′∈B

νβ(s, b′) exp

(
− 1

ϵ

∑
a∈A

µk(s, a)Qµβ ,νβ (s, a, b′)

)

12
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A.2. Proof of Lemma 5.1

Proof. By definition:

∂V µ,ν(s)

∂µ(ŝ, a)
=

∂

∂µ(ŝ, a)

∑
a∈A

µ(s, a)
∑
b∈B

ν(s, b)Qµ,ν(s, a, b)

=
∑
a∈A

(
∂µ(s, a)

∂µ(ŝ, a)

∑
b∈B

ν(s, b)Qµ,ν(s, a, b) + µ(s, a)
∑
b∈B

ν(s, b)
∂Qµ,ν(s, a, b)

∂µ(ŝ, a)

)

= I[s = ŝ]
∑
b∈B

ν(s, b)Qµ,ν(s, a, b) + µ(s, a)
∑
b∈B

ν(s, b)
∂

∂µ(ŝ, a)
(r(s, a, b) + γV µ,ν(s′))

= I[s = ŝ]
∑
b∈B

ν(s, b)Qµ,ν(s, a, b) +
∑
a∈A

µ(s, a)
∑
b∈B

ν(s, b)γ
∂V µ,ν(s′)

∂µ(ŝ, a)

= · · · · · ·

=

∞∑
k=0

γk Pr(s → ŝ|k;µ, ν)
∑
b∈B

ν(ŝ, b)Qµ,ν(ŝ, a, b)

where I[·] is the indicator function and Pr(s → ŝ|k;µ, ν) is the probability of reaching ŝ from s using k steps under joint
policy (µ, ν).

Then, it is direct to show:

∂u(µ, ν)

∂µ(s, a)
=

∂

∂µ(s, a)
Es0∼ρ0

[V µ,ν(s0)]

=
∑
s0∈S

ρ0(s0)

∞∑
k=0

γk Pr(s0 → s|k;µ, ν)
∑
b∈B

ν(s, b)Qµ,ν(s, a, b)

=

∞∑
k=0

γk Pr(s|k;µ, ν)
∑
b∈B

ν(s, b)Qµ,ν(s, a, b)

= ρµ,ν(s)
∑
b∈B

ν(s, b)Qµ,ν(s, a, b)

13
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A.3. Details in the Proof of Theorem 5.2

Here, we will show that ∂νk(s,b)
∂µk(s,a)

→ 0 when 1
ϵ → 0.

By Lemma 4.1:

νk(s, b) =

νβ(s, b) exp

(
− 1

ϵ

∑
a∈A

µk(s, a)Q
µβ ,νβ (s, a, b)

)
∑
b′∈B

νβ(s, b′) exp

(
− 1

ϵ

∑
a∈A

µk(s, a)Qµβ ,νβ (s, a, b′)

)

Besides:

∂ exp

(
− 1

ϵ

∑
a∈A

µk(s, a)Q
µβ ,νβ (s, a, b)

)
∂µk(s, a)

=

−1

ϵ
Qµβ ,νβ (s, a, b) exp

(
−1

ϵ

∑
a∈A

µk(s, a)Q
µβ ,νβ (s, a, b)

)

Therefore:

∂νk(s, b)

∂µk(s, a)
=

1

ϵ
νβ(s, b) exp

(
−1

ϵ

∑
a∈A

µk(s, a)Q
µβ ,νβ (s, a, b)

)
·

∑
b′∈B

νβ(s, b
′) exp

(
− 1

ϵ

∑
a∈A

µk(s, a)Q
µβ ,νβ (s, a, b′)

)
(Qµβ ,νβ (s, a, b′)−Qµβ ,νβ (s, a, b))( ∑

b′∈B
νβ(s, b′) exp

(
− 1

ϵ

∑
a∈A

µk(s, a)Qµβ ,νβ (s, a, b′)

))2

Now, it is clear:

lim
1
ϵ→0

∂νk(s, b)

∂µk(s, a)
= 0 ·

∑
b′∈B

νβ(s, b
′) (Qµβ ,νβ (s, a, b′)−Qµβ ,νβ (s, a, b))( ∑

b′∈B
νβ(s, b′)

)2 = 0

14
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A.4. Proof of Lemma 5.4

Proof. Without loss of generality, we prove the first half that µ∗ is unexploitable with respect to ν∗. We show that∑
a∈A

µ∗(s, a)Qµ∗,ν∗
(s, a, b1) >

∑
a∈A

µ∗(s, a)Qµ∗,ν∗
(s, a, b2) leads to a contradiction when (µ∗, ν∗) is a Nash equilibrium

with full support. By definition, the value at state s is:

V µ∗,ν∗
(s) =

∑
b∈B

ν∗(s, b)
∑
a∈A

µ∗(s, a)Qµ∗,ν∗
(s, a, b)

When ν∗(s) has nonzero probability at each b ∈ B, decreasing ν∗(s, b1) and increasing ν∗(s, b2) should decrease the value
for the min-player. Therefore, ν∗ is not a best response against µ∗, which contradicts the NE assumption.

A.5. Proof of Lemma 5.5

Proof. By definition:∑
a∈A

(µ(s, a)− (µk(s, a) + zsa))
2

=
∑
a∈A

(
µ(s, a)−

(
µk(s, a) + psa +

y

|A|

))2

=
∑
a∈A

(
(µ(s, a)− (µk(s, a) + psa))−

y

|A|

)2

=
∑
a∈A

(µ(s, a)− (µk(s, a) + psa))
2
+
∑
a∈A

(
y

|A|

)2

− 2y

|A|
∑
a∈A

(µ(s, a)− (µk(s, a) + psa))

=
∑
a∈A

(µ(s, a)− (µk(s, a) + psa))
2
+

y2

|A|
− 2y

|A|

∑
a∈A

µ(s, a)−
∑
a∈A

µk(s, a) +
∑
a∈A

zsa −
∑
a∈A

∑
a∈A

zsa

|A|


=
∑
a∈A

(µ(s, a)− (µk(s, a) + psa))
2
+

y2

|A|
− 2y

|A|
(1− 1)

=
∑
a∈A

(µ(s, a)− (µk(s, a) + psa))
2
+

y2

|A|

Therefore:

µk+1(s) = argmin
µ(s)∈∆(A)

∑
a∈A

(µ(s, a)− (µk(s, a) + zsa))
2
= argmin

µ(s)∈∆(A)

∑
a∈A

(µ(s, a)− (µk(s, a) + psa))
2

15



Constrained Exploitability Descent: An Offline Reinforcement Learning Method for Finding Mixed-Strategy Nash Equilibrium

A.6. Policy Penalty Bound

We use the following lemma to rigorously demonstrate that the indirect policy penalty in CED can bound the distance
between the learned policy νk and the behavior policy νβ .

Lemma A.1 (Policy Penalty Bound). Let Qmax and Qmin be the maximum and minimum values of Qµβ ,νβ and let C > 0
be any threshold. When ϵ ≥ Qmax−Qmin

log(1+C) , it holds that ∥νk(s)− νβ(s)∥1 ≤ C for all s ∈ S in the CED algorithm.

Proof. By Lemma 4.1, we have:

νk(s, b) =

νβ(s, b) exp

(
− 1

ϵ

∑
a∈A

µk(s, a)Q
µβ ,νβ (s, a, b)

)
∑
b′∈B

νβ(s, b′) exp

(
− 1

ϵ

∑
a∈A

µk(s, a)Qµβ ,νβ (s, a, b′)

)

Let t = νβ(s,b)
νk(s,b)

=
∑
b′∈B

νβ(s, b
′) exp

(
1
ϵ

∑
a∈A

µk(s, a) (Q
µβ ,νβ (s, a, b)−Qµβ ,νβ (s, a, b′))

)
.

By definition of Qmax and Qmin, we have:

Qmin −Qmax ≤ Qµβ ,νβ (s, a, b)−Qµβ ,νβ (s, a, b′) ≤ Qmax −Qmin

Since
∑
a∈A

µk(s, a) = 1, we have:

Qmin −Qmax

ϵ
≤ 1

ϵ

∑
a∈A

µk(s, a) (Q
µβ ,νβ (s, a, b)−Qµβ ,νβ (s, a, b′)) ≤ Qmax −Qmin

ϵ

Since
∑
b′∈B

νβ(s, b
′) = 1, we further have:

exp

(
Qmin −Qmax

ϵ

)
≤ t ≤ exp

(
Qmax −Qmin

ϵ

)

Since ϵ ≥ Qmax−Qmin

log(1+C) , it holds that exp
(

Qmax−Qmin

ϵ

)
≤ 1 + C. Therefore, t ≤ 1 + C.

When C ≥ 1, it is clear that exp
(

Qmin−Qmax

ϵ

)
≥ 1− C. When 0 < C < 1, we have:

ϵ ≥ Qmax −Qmin

log (1 + C)
≥ Qmax −Qmin

− log (1− C)
=

Qmin −Qmax

log (1− C)

It is also clear that exp
(

Qmin−Qmax

ϵ

)
≥ 1− C. Therefore, t ≥ 1− C.

Since |νk(s, b)− νβ(s, b)| = |νk(s, b)(1− t)| ≤ νk(s, b) |1− t|, we have:

∥νk(s)− νβ(s)∥1 ≤
∑
b∈B

νk(s, b) |1− t| = |1− t| ≤ C
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B. Test Environments
B.1. Tree-Form Game

We use a tree-form game T as a test environment for both CED and ED algorithms. Figure 7 is an illustration of T , which
consists of three decision points with payoff matrices M1, M2, and M3, respectively. T starts with Stage 1 (M1) and
enters Stage 2 (M2) or Stage 3 (M3) conditioned on previous actions. If both use the same action 0 or 1, T enters Stage 2.
Otherwise, T enters Stage 3.

Figure 7. Illustration of tree-form game

B.2. Soccer Game

We use a two-player zero-sum soccer game as a small-scale environment for infinite-horizon MGs. Figure 8 is an illustration
of the game. The two players are marked with A and B. The player who keeps the ball is marked with a circle. Each player
can choose an action from “up”, “down”, “left”, “right”, and “stay” at each time step. If the two players collide after the
simultaneous move, then the ball possession exchanges. When the ball carrier moves into the opponent’s goal, the game
terminates. The winning player receives a reward of +100, and the opponent receives a reward of −100. The initial state
distribution ρ0 is set to be uniform, and the discount factor γ is set to be 0.95.

go
al

go
al

AB

Figure 8. Illustration of soccer game

B.3. Robotic Combat Game

We use a two-team zero-sum robotic combat game as an environment for large-scale MGs. Figure 9 is an illustration of the
game, where each team consists of three homogeneous robots. The game map is abstracted as a 100-node graph, where each
robot can move to an unoccupied adjacent node or attack an enemy at each time step. The HP reduction is influenced by the
terrain and actual distance between the attacker and the target. The robots under different terrains cannot damage each other
(e.g., green cannot damage purple but can damage orange since nodes 55 and 72 are at the same level), and the damage to
node 55 from node 61 is much higher than from node 72. A team of robots wins if all opponents’ HP is reduced to zero.

C. Further Explanations of CED
Recall that the NE strategy µ∗ for the max-player always satisfies µ∗ = argmaxµ {minνu(µ, ν)}. The idea of ED is to
update µ along the gradient of minνu(µ, ν). However, this gradient may not exist since br(µ) := argminνu(µ, ν) may
have multiple solutions. Therefore, by fixing an arbitrary ν′ ∈ br(µ), a generalized gradient ∂u(µ,ν′)

∂µ ∈ ∂minνu(µ, ν) is

17
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Total Step: 1
Circle Survival: [True, True, True], Square Survival: [True, True, True]
Circle HP: [10.00, 10.00, 10.00], Square HP: [10.00, 10.00, 10.00]

Figure 9. Illustration of robotic combat game (Team Circle vs Team Square)

used instead. Lockhart et al. (2019) prove that the best iterate of the max-player policy µ can converge to a Nash equilibrium.

For CED (Algorithm 2), since the computation of ν is under divergence regularization (indirect policy constraint), it is
uniquely determined by µ but is no longer an exact best response to µ. The benefit is that we can directly prove last-iterate
convergence (see Lu et al. (2024)) rather than best-iterate convergence of µ. The problem is that the update of µ does not
follow a gradient induced by its best response and cannot converge to the NE strategy. However, as long as the limit point is
interior in the constrained policy set, we can use the projected update formula in Lemma 5.5 to prove that µ has the same
value for all actions at any given state s ∈ S. Therefore, the min-player policy ν satisfies the property of mixed-strategy NE,
i.e., being unexploitable with respect to its opponent policy. The NE policies in our matrix/tree-form game experiments
are the explicit examples. Note that ED itself does not have this property because the learned policy is unstable around a
local optimum of the minimax problem. From the perspective of offline RL, the policy constraints in CED also mitigate the
problem of encountering out-of-distribution states and actions, guaranteeing a bounded distributional shift.

Besides, directly extending ED to deep RL algorithms faces the problem that we need to approximate a best response (BR)
of the current µ in every single gradient update. However, this requirement is relaxed in CED (Algorithm 2). Actually,
the “approximate best response” that we require in the second inner loop is only at the level of each single state, under a
state-action value function Qµβ ,νβ preprocessed outside the main loop. This is in sharp contrast to computing an exact BR
against the current µ and does not need a separate BR oracle at all. In our tabular experiments, we simply traverse all states
and compute the current ν by Lemma 4.1. When we employ a function approximator for ν, a direct approach is to update its
parameters along the gradient of the current target in the first inner loop. Since this target only changes with µ(s) at each
state s ∈ S, it is reasonable for ν to take a comparative amount of gradient steps as µ in each iteration of the main loop.

D. Parameter Selection Details
For the learning rate α, Theorem 5.2 provides a guideline that it should be sufficiently small. However, an overly small α
will slow down the speed of convergence, as is shown in Figure 3 (mid). Therefore, there is a trade-off with respect to the
selection of α. For the policy penalty parameter ϵ, Theorem 5.2 also provides a guideline that it should not be overly small,
as is verified in Figure 3 (right). However, it is risky to set an overly large ϵ because the interior point condition in Theorem
5.6 is implicitly affected by the policy constraint on the min-player policy ν. Therefore, there is also a trade-off with respect
to the selection of ϵ. From our experience, as long as ϵ is sufficiently large for the practical convergence of CED, a relatively
small ϵ generally guarantees a relatively low NashConv of the learned policy ν under the same number of iterations.
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