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ABSTRACT

Latent Video Diffusion Models (LVDMs) have achieved state-of-the-art generative
quality for image and video generation; however, they remain brittle under noisy
conditioning, where small perturbations in text or multimodal embeddings can
cascade over timesteps and cause semantic drift. Existing corruption strategies
from image diffusion (Gaussian, Uniform) fail in video settings because static
noise disrupts temporal fidelity. In this paper, we propose CAT-Video, a corruption-
aware training framework with structured, data-aligned noise injection tailored for
video diffusion. Our two operators—Batch-Centered Noise Injection (BCNI) and
Spectrum-Aware Contextual Noise (SACN) align perturbations with batch semantics
or spectral dynamics to preserve coherence. CAT-Video yields substantial gains:
BCNI reduces FVD by 31.9% on WebVid-2M, MSR-VTT, and MSVD, while
SACN improves UCF-101 by 12.3%, outperforming Gaussian, Uniform, and even
large diffusion baselines like DEMO (2.3B) and Lavie (3B) despite training on
5x less data. Ablations confirm the unique value of low-rank, data-aligned noise,
and theory establishes why these operators tighten robustness and generalization
bounds. CAT-Video thus sets a new framework for robust video diffusion, and our
experiments show that it can also be extended to autoregressive generation and
multimodal video understanding LLM:s.

1 INTRODUCTION

Diffusion models have revolutionized generative modeling across modalities, achieving state-of-the-
art performance in image (Ho et al.,[2020; |Song et al.| [2021b), audio (Liu et al.|[2023} Huang et al.,
2023)), and video generation (Ho et al., 2022} |Singer et al., [2023). By iteratively denoising latent
variables using learned score functions (Wang et al., 2024a}; Zhu et al., |2023)), these models offer
superior sample diversity, stability, and fidelity compared to adversarial approaches (Dhariwal &
Nichol, 2021} |Cao et al.,[2024). In video generation, latent video diffusion models (LVDMs) (Wu
et al., 2023 |Zhang et al.| 2025; |Yang et al.| [2025)) have emerged as an efficient paradigm, compressing
high-dimensional video data into compact latent spaces using pretrained autoencoders (Khachatryan
et al.,[2023;Ni et al.| 2024). These latent representation are conditioned on text via vision-language
models like CLIP (Radford et al.,[2021), enabling scalable and semantically grounded text-to-video
(T2V) generation.

However, LVDMs are highly vulnerable to corrupted inputs (Zhu et al.| 2024} |Gu et al., [2025)),
which refer to imperfect, noisy, or weakly aligned text prompts and multimodal embeddings that
condition the diffusion process. We implement Gaussian corruption by adding independent noise
drawn from A/ (0, p?I) to each token embedding and Uniform corruption by sampling per-coordinate
noise from U(—p, p). We sweep p € [0.025,0.20], a standard range for conditional embedding
perturbation (Chen et al.,2024)), to ensure consistency with prior multimodal robustness work across
all experiments. This sensitivity is critical because, in video generation, corrupted conditioning
not only degrades individual frames but also accumulates across timesteps, leading to cascading
errors that severely undermine visual fidelity and temporal coherence (Liu et al., 2024c} |Guo et al.|
2025)). Unlike classification (Graf et al., 2025 Jain et al., [2024a) or retrieval (Chen & Guol |2023))
models, where label noise induces bounded degradation, diffusion models suffer recursive error
amplification due to their iterative structure (Gu et al.,|2025; [Na et al., [2024;|Gao et al.,[2023}; Jain
et al., |2024b). This fragility manifests in semantic drift, loss of temporal coherence, and degraded
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(a) Visual Comparison of Corruption Techniques. Prompt: Cat plays with holiday baubles.
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(b) FVD comparison on Benchmarks. (c) Efficiency: FVD vs. training videos.
Figure 1: Overview. We introduce structured corruption (BCNI, SACN) and compare to the previous
corruption SOTA for images (Gaussian, Uniform) and the Clean baseline. We show visual generations
in (a) and summarize quantitative comparisons to SOTA in (b, c).

multimodal alignment (Khrapov et al., 2024} [Popov et al.,[2025)), especially in video settings where

frame-to-frame consistency is essential. This effect is visually evident in Figure[T(a), where Gaussian
and Uniform corruptions cause noticeable semantic drift and visual degradation with respect to the
prompt.

Existing defenses, however, are critically underprepared for these conditions. Corruption techniques
developed for image diffusion (Chen et al.| 2024} [Daras et al 2023) fail to address temporal
entanglement and the risk of cumulative semantic drift unique to video generation. To bridge this
gap, we propose CAT-Video, a corruption-aware training framework that introduces novel structured
perturbations during pretraining, explicitly tailored for LVDMSs. Theoretically, controlled corruption
increases conditional entropy (Song et al.| 2023} |Chen et al.,[2024), reduces the 2-Wasserstein distance
to the target distribution, and smooths the conditional score manifold (Goldblum et al [2020), yielding
improved robustness, diversity, and generalization. While such results are established in static images,
video generation poses additional complexity: small conditioning errors propagate and amplify across
multiple denoising steps. In Appendix [B.IHB.8] we extend entropy, Wasserstein, and score-drift
bounds to the sequential setting, proving that low-rank corruption explicitly controls cumulative
error across frames and enforces Lipschitz continuity along the temporal manifold—guarantees
unattainable in image-only analyses.

This paper presents CAT-Video, a corruption-aware training framework for LVDMs, showing that
structured perturbations tailored to video-specific fragilities can substantially improve robustness and
coherence under noisy, real-world conditions. Specifically, we find that existing corruption strategies
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from image diffusion collapse in video settings, where conditioning noise compounds across time.
To address this, we propose two low-rank perturbation techniques: Batch-Centered Noise Injection
(BCNI) and Spectrum-Aware Contextual Noise (SACN). BCNI perturbs embeddings along their
deviation from the batch mean, acting as a Mahalanobis-scaled regularizer that increases conditional
entropy only along semantically meaningful axes (Verma & Branson| 2015} Xu et al.,|2020). SACN
injects noise along dominant spectral modes, targeting low-frequency, globally coherent semantics.
Both methods enforce Lipschitz continuity and reduce denoising error bounds (Chen et al., 2023}
Yang et al.| 2024), yielding better results as visualized in Figure Eka).

Unlike prior image corruption SOTA methods (Gaussian, Uniform) (Chen et al. 2024) which
inject static conditioning noise and often distort temporal coherence, our structured corruptions
maintain fidelity by aligning perturbations with batch semantics (BCNI) or spectral dynamics (SACN).
Notably, these lightweight strategies achieve lower FVD than much larger diffusion baselines such as
LaVie (Wang et al., 2024b) and DEMO (Ruan et al.,[2024), despite those models using 3B parameters
and training on over five times more data (10M videos) as depicted in Figure b) and (c¢). While our
primary focus is on diffusion, we later verify that CAT’s operator view also transfers to autoregressive
generation(Deng et al.| 2025]) and multimodal video understanding(Liu et al.l 2025), confirming its
scalability beyond the diffusion setting. Together, BCNI and SACN reduce semantic drift, amplify
conditioning diversity, and yield sharper motion and temporal consistency across diverse dataset
regimes. Theoretically, we show that these methods shrink 2-Wasserstein distances to the real data
manifold in a directionally aligned way, establishing a new, dataset-sensitive paradigm for robust
LVDM training under imperfect multimodal supervision.

This work makes the following contributions: (i) we introduce CAT-Video, a corruption-aware
training framework that enhances robustness in video diffusion through structured, data-aligned
perturbations; Specifically, we design two novel operators—Batch-Centered Noise Injection (BCNI)
and Spectrum-Aware Contextual Noise (SACN)—that preserve temporal fidelity by aligning noise
with batch semantics or spectral dynamics; (ii) we demonstrate strong empirical robustness, with
BCNI reducing FVD by 31.9% on WebVid-2M, MSR-VTT, and MSVD, SACN improving UCF-
101 by 12.3%, and BCNI surpassing LaVie (3B) by 16 % on UCF-101 and DEMO (2.3B) by 6%
on MSR-VTT despite training on 5x less data. We also validate scalability by extending CAT
to autoregressive video generation (NOVA) and multimodal video understanding LLMs (PAVE),
confirming model-agnostic robustness; and (iii) we provide a theoretical analysis showing that
structured corruption tightens entropy, Wasserstein, and score-drift bounds, explaining why low-rank
perturbations regularize temporal propagation and improve generalization.

2 METHOD

2.1 PRELIMINARIES: LATENT VIDEO DIFFUSION MODELS

LVDMs (Ho et al.| 2022 [Rombach et al.,|2022; [Luo et al., 2023; [Zhang et al., 2023} [Singer et al.,
2023; Khachatryan et al.,|2023) reverse a variance-preserving diffusion in a low-dimensional video
latent space. A video v € RFXHXWX3 5 encoded by a pretrained autoencoder F,, into

To = Ev(v) c RFxhxwxc’ (1

with h < H, w < W, and ¢ >> 3. The forward-noising process

t
gy | wo) = N(Varwo, (1—an)T), ar=[]as, (@)
s=1

follows the variance-preserving schedule (Sohl-Dickstein et al., [2015 |Song et al., 2021bj |[Kingma
et al.,2021). A U-Net g (x4, t, 2) is trained to predict the added noise via

2

5 z, = Vo +V1— e, 3)

ﬁdiff = Ea:o,e,t,z € — 60($t7taz)‘

conditioned on

z = f(p) € RP 4
from a CLIP-based text encoder, as in DDPM (Ho et al.l 2020). This yields efficient, high-quality
conditional video synthesis in the latent space.



Under review as a conference paper at ICLR 2026

2.2 MOTIVATION

LVDMs generate sequences by iteratively denoising a latent trajectory conditioned on text or embed-
dings. However, these conditioning signals are often imperfect—textual prompts may be ambiguous,
and encoder outputs may contain semantic drift or noise. In video, such imperfections are not
benign: small conditioning errors at early timesteps accumulate over the denoising chain, leading
to compounding semantic misalignment and disrupted temporal coherence (Figure[I). While prior
work in image diffusion (Chen et al., 2024} Daras et al., 2023} |Gao et al., [2023) has shown that
injecting modest corruption into conditioning can smooth score estimates and improve robustness,
such methods ignore the temporal dependencies intrinsic to video.

Mimicking the compounding semantic drift introduced by imperfect conditioning signals, structured,
data-aligned corruption during training serves as an effective inductive bias to regularize the model
and enhance robustness. To test this, we introduce two novel corruption strategies tailored for video
diffusion: Batch-Centered Noise Injection (BCNI) perturbs each conditioning embedding along
its deviation from the batch mean—amplifying local conditional entropy in meaningful semantic
directions—while Spectrum-Aware Contextual Noise (SACN) adds noise selectively along dominant
spectral modes that correspond to low-frequency temporal motion. These perturbations are not
arbitrary: they reflect the types of semantic variation and smooth transitions that naturally occur
across frames. By training the score network £¢(z¢, ¢, z) to denoise under these structured corruptions,
we regularize its Lipschitz behavior, expand the support of the conditional distribution Py ., and
reduce the 2-Wasserstein distance to the true data manifold. This results in more temporally consistent,
semantically faithful generations. Theoretically, we prove (Appendix [B.THB.8) that BCNI and SACN
enjoy an O(d) vs. O(D) complexity gap over unstructured baselines, providing both theoretical and
empirical justification for structured corruption as a key design principle in robust LVDM:s.

2.3 NOISE INJECTION TECHNIQUES

Our two core corruption strategies, Batch-Centered Noise Injection (BCNI) and Spectrum-Aware
Contextual Noise (SACN), are defined by the operators:

Creni(250) = pllz — 2|2 (22/{(0’ 1) - 1)’ ®)
CSACN(Z;p> = pU(f @ \/g) VTa [U,S,V] = SVD(Z)7 gﬂ NN(()’e_j/D)' (6)

In BCNI (Eq. [5), we perturb each embedding = along its deviation from the batch mean z by
sampling a uniform direction and scaling it by ||z — Z||2, thereby confining corruption to the d-
dimensional semantic subspace spanned by batchwise deviations. For instance, in a batch of videos
showing people walking, BCNI perturbs each sample toward variations in stride or pose common
to the batch, reinforcing motion realism rather than introducing arbitrary noise. This procedure
adaptively inflates local conditional entropy there while leaving the orthogonal complement untouched
(Theorem [B.T8). Importantly, neither BCNI nor SACN introduces any learnable parameters or
tunable components beyond the global corruption scale p, which is swept across a small grid
[0.025,0.2] (Chen et al., 2024)) and held fixed per experiment. By contrast, SACN (Eq. @) restricts
noise to the principal spectral modes of z that encode low-frequency, globally coherent motions. For
example, in videos of a moving car, SACN targets the car’s global trajectory rather than fine-grained
texture or background details. This reshapes z into a D x D matrix and computes [U, s, V] = SVD(z),
then samples & ~ N (07 diag(e™7 /D )) to emphasize lower-frequency directions, and finally sets
Csacn(z;p) = pU (5 ® \/E) VT, which leaves high-frequency details largely unperturbed and ensures

the 2-Wasserstein radius grows as O(p+/d) rather than O(pv/D) (Theorem. The noise weighting
in SACN is fixed analytically using exponentially decaying variances, requiring no manual tuning
or dataset-specific adjustment. Training the denoiser ¢(x¢,t, z) under these data-aligned, low-
rank corruptions then enforces a tighter Lipschitz constant (Proposition [B.10), accelerates mixing
(Theorem [B.7), and dramatically attenuates error accumulation across the T reverse steps. The
theoretical implications of this low-rank corruption are provided in Appendix

In addition to BCNI and SACN, we also evaluate four additional corruption baselines—Gaussian
(GN), Uniform (UN), Temporal-Aware (TANI), and Hierarchical Spectral (HSCAN)—to isolate
the value of semantic and spectral alignment (Figure ): GN/UN injects noise equally across all
D dimensions, TANI follows only temporal gradients without reducing rank, and HSCAN mixes
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fixed spectral bands without data-adaptive weighting (see Appendix [A.T]for full definitions and
motivations). We further introduce Token-Level Corruption (TLC), which applies swap, replace, add,
remove, and perturb operations directly on text prompts during model training to probe linguistic
robustness; see Appendix [A.2]for details.

2.4 THEORETICAL ANALYSIS

Structured, low-rank corruption improves robustness by confining noise to a d—dimensional semantic
subspace (d < D), yielding a universal D/d complexity gap. Proposition formally shows
that the conditional entropy under corruption increases as g log(1 + p?/0?)—scaling with d rather
than D—which expands the effective support of the conditional distribution without oversmoothing.
Theorem [A.4 further proves that the 2-Wasserstein radius of the corrupted embedding distribution
grows as O((p’ — p)v/d) rather than O((p’ — p)+/D), implying that perturbations stay closer to the
target manifold in high dimensions. These results, along with bounds on score drift (Lemma[A.5)
and generalization gaps (Theorem[A.28), imply that CAT-Video enforces a tighter Lipschitz constant
on the score network and smooths the learned score manifold—ensuring that nearby inputs yield
stable, consistent outputs across diffusion steps.

Empirically, these theoretical gains translate to reduced temporal flickering and sharper motion
trajectories, particularly visible in our VBench smoothness and human action scores (Figure|[I)), as
well as FVD improvements across all datasets (Table[2). Smoother score manifolds directly reduce
error accumulation over 7" denoising steps, leading to more temporally coherent video generations.
Additional theoretical support for faster convergence and mixing under structured corruption is
provided in Theorem[A.9| (spectral gap improvement) and Theorem[A.7 (energy decay bound), both
of which reinforce the practical utility of BCNI and SACN as principled inductive biases.

Both BCNI and SACN incur only lightweight overhead during training. Specifically, BCNI performs
a single O(BD) operation per batch—where B is the batch size and D is the embedding dimen-
sionality—to compute each sample’s deviation from the batch mean, followed by a scale-and-add
perturbation. SACN involves a one-time O(Dd) projection onto the top-d principal spectral modes
(d < D), which can be approximated or precomputed at initialization. These costs are negligible
compared to the dominant O(NizD?) complexity of the U-Net forward and backward passes, where
Ny denotes the number of U-Net parameters.

Empirically, we observe that enabling BCNI or SACN increases training runtime by less than 2% on
a single H100 GPU with batch size B = 64 and embedding dimension D = 768. Full pseudocode
for the CAT-Video training loop, including both noise injection and denoising steps, is provided in
Algorithm 1]

3 EXPERIMENTS

We conducted a large-scale experimental study involving 73 LVDM variants trained under seven
embedding-level and five token-level corruption strategies across four benchmark datasets. Our
evaluations spanned 292 distinct training—testing configurations and leveraged a diverse metric
suite, including FVD, FVMD, CMMD, SSIM, LPIPS, PSNR, VBench, and EvalCrafter. Structured
corruptions (BCNI, SACN) consistently outperformed isotropic and uncorrupted baselines across
datasets, metrics, and noise levels. BCNI yielded the greatest gains on caption-rich datasets by
preserving semantic alignment and motion consistency, while SACN showed strong results on
class-label data by enhancing low-frequency temporal coherence. These improvements were further
supported by qualitative visualizations, benchmark comparisons, and ablations on guidance scales
and diffusion sampling steps.

3.1 SETUP

To rigorously benchmark the impact of structured corruption on latent video diffusion, we train 73
distinct T2V models under varying corruption regimes. At the embedding level, we apply seven
corruption strategies 7 € 7 = {GN, UN, GAP, BCNI, TANI, SACN, HSCAN}, each evaluated across
six corruption magnitudes, resulting in 42 variants. Similarly, at the text level, we apply five token-
level operations £ € = = {swap, replace, add, remove,perturb} across six noise ratios,
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Table 1: SOTA Diffusion Comparisons. Structured corruption (BCNI, SACN) achieves competitive
results on UCF-101 and MSR-VTT benchmarks with fewer videos.

Model MSR-VTTFVD, UCF-101 FVD]| #Params #Videos (train)
DEMO (Ruan et al..[2024) 422 547.3 ~2.3B ~10M
VideoComposer (Wang et al.|[2023b) 456 - ~1.7B ~10M
MagicVideo (Zhou et al.|[2023) 998 655.0 ~1.2B ~17TM
Show-1 (Zhang et al.[[2025) 538 - ~6B ~10M
ModelScopeT2V (Wang et al.||[2023a) 557 628.2 ~1.7B ~10M
ModelScopeT2V (Finetuned) (Wang et al.|2023a) 536 612.5 ~1.7B ~10M
SimDA (Xing et al.|{[2024) 550 - ~1.1B ~10M
VideoFusion (Luo et al.[[2023) 550 - ~2.59B ~10M
FreeNoise (Qiu et al.||2024) 517 - ~1.7B ~10M
PEEKABOO (Jain et al.[[2024b) 609 - ~1.7B ~10M
Latte (Ma et al.[|2025) - 478.0 ~674M ~25M
CMD (Yu et al.|[2024) - 504.0 ~1.6B ~10.7M
Video LDM (Blattmann et al.|[2023) - 656.5 ~1.3B ~11M
VideoGen (L1 et al.|[2023) - 554.0 ~1.7B ~10M
LaVie (Wang et al.||2024b) - 526.3 ~3B ~35M
EMU Video (Girdhar et al.|[2025) - 606.2 ~8.6B ~34M
Make-A-Video (Singer et al.![2023) - 367.2 ~9.6B ~20M
Gaussian (Chen et al.|[2024) 4453 615.3 ~2.3B ~2M
Uniform (Chen et al.|[|2024) 526.8 599.5 ~2.3B ~2M
CAT-Video (BCNI) 396.3 505.5 ~2.3B ~2M
CAT-Video (SACN) 440.3 440.3 ~2.3B ~2M

yielding 30 additional models. One uncorrupted baseline (p = 1 = 0) is also included, summing to
67 independently trained models. All experiments are conducted using the DEMO architecture (Ruan
et al., |2024) and trained on the WebVid-2M train dataset split (Bain et al.| [2021). Evaluation is
performed across four canonical benchmarks: WebVid-2M (val) (Bain et al., [2021), MSR-VTT (Xu
et al., [2016), UCF-101 (Soomro et al.l [2012), and MSVD (Chen & Dolanl, [2011)), for a total of
292 corruption-aware training-evaluation runs. Further details on the text-video datasets, including
the duration, resolution, and splits, are provided in App. Table[§] Also, the evaluation protocol
for zero-shot cross-dataset T2V generation is provided in App. Table[9] Meanwhile full training
details—including model architecture, loss functions, regularization terms, optimizer configuration,
and sampling strategy—are provided in Appendix [C} Performance is assessed using a broad suite of
metrics that reflect both perceptual quality and pixel-level fidelity. We report FVD (Unterthiner et al.,
2019) as our primary metric for evaluating overall generative quality and alignment. Additionally,
we compute FVMD (Liu et al.| 2024a) for motion distance, CMMD (Jayasumana et al., [2024)
for semantic consistency, PSNR (Huynh-Thu & Ghanbari, [2008), SSIM (Wang et al., |2004), and
LPIPS (Zhang et al., [2018)) for low-level reconstruction fidelity, as well as VBench (Huang et al.,
2024)) and EvalCrafter (Liu et al.,2024b)) metrics to assess fine-grained, human-aligned video quality.
Finally, while our core experiments focus on diffusion, we also briefly verify CAT’s scalability by
applying it to autoregressive video generation (NOVA (Deng et al., [2025)) and multimodal video
understanding (PAVE (Liu et al.,|2025)), confirming that the same operator view transfers beyond
diffusion. Full training configs, corruption schedules, and code will be released upon acceptance.

3.2 MODEL-DATASET EVALUATIONS

SOTA Benchmarks. Table[I]reports comparisons against leading diffusion models on MSR-VTT
and UCF-101. Our corruption-aware methods consistently set new state-of-the-art. BCNI achieves
the best MSR-VTT score (396.3 vs. 422 for DEMO, which is trained with ~10M videos) while
remaining competitive on UCF-101 (505.5 vs. 547.3). SACN further improves motion stability,
delivering the lowest UCF-101 FVD (440.3) despite using only 2M training videos. In contrast,
competing models typically require 10—-35M videos to reach similar or worse performance. These
results highlight the sample efficiency of structured corruption: by aligning injected noise with
caption semantics, our approach enhances motion fidelity and temporal coherence at a fraction of the
training scale. A broader evaluation with VBench and EvalCrafter is provided in Appendix Table

Diffusion FVD comparisons. Across four video benchmarks, Table [Z] shows that structured
corruption outperforms the image-based SOTA Gaussian and uniform baselines, supporting our claim
that respecting data structure improves semantic alignment in diffusion models. BCNI attains the best
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Table 2: Model-Dataset Evaluations. FVD comparisons across noise ratios.

Noise WebVid-2M MSRVTT MSVD UCF101

ratio (%) BCNI  SACN  Gaussian Uniform BCNI SACN  Gaussian Uniform BCNI SACN  Gaussian Uniform BCNI SACN  Gaussian  Uniform
25 521.24 43819 506.56 52236 539.93 440.28  595.08 541.80  587.59 511.24  654.73 57576 505.54 44028  674.62 651.64
5 50245 46793  572.67 44322 564.00 507.88  664.45 54346  599.44 55420  740.79 580.59  508.13 48029  659.27 599.53
75 360.32  500.92  441.69 57435 44131 502.69  468.79 639.83  374.34 53555 48530 695.59 55473 50489 64841 742.18
10 378.87 467.14  417.60 44471 41449 50620 44529 52685 37452 55561  452.82 551.99 52393 455.65 615.28 607.23
15 475.01  466.18  400.29 52522 51512 44678  464.91 60527 61038 57429  458.69 662.51  926.35 44678 67225 643.22
20 456.14 51843 451.67 45479 396.35 500.23  565.83 559.93 50435 57248  479.63 55073 921.69 52623  677.13 642.74
Clean 520.32 543.33 602.39 501.91

Table 3: (a) SOTA autoregressive baselines vs. CAT, (b) Sensitivity analysis of diffusion models.

(a) Autoregressive Baselines (b) Sensitivity (Diffusion)
Model MSR-VTIT FVD| #Params #Videos Dataset BCNI SACN Gauss. Uniform
MAGVIT (Yu et al.|[2023a) 698 ~473M ~20M | WebVid-2M  69.2 84.7 93.4 101.5
CogVideo (Chinese) (Hong et al.|[2023) 1294 ~94B  ~54M | MSR-VTT 61.5 59.1 88.6 95.7
CAT-Video (BCNI) 358.3 ~0.6B ~2M | MSVD 72.3 89.5 112.8 109.3
CAT-Video (SACN) 361 ~0.6B ~2M | UCF-101 85.4 68.2 107.4 111.0

FVD on WebVid 2M (360.32 at 7.5%) and MSVD (374.34 at 7.5%), and it also leads on MSRVTT
at a higher ratio (396.35 at 20%). SACN is strongest on UCF101 (440.28 at 2.5%). These trends
match how the methods work: BCNI perturbs around batch statistics, keeping embeddings near the
data manifold and avoiding arbitrary drift, while SACN preserves spatial and temporal relations that
stabilize motion. In line with our theory, noise that follows data structure acts as a regularizer, lowers
effective sample complexity, and improves generative stability, which in turn reduces FVD. The
dataset specific winners are interpretable: appearance diverse sets that are caption-rich like WebVid
2M, MSRVTT, and MSVD benefit from batch centered corrections, whereas the action focused,
class-labeled datasets such as UCF101 benefits from spatially aligned corruption. Overall, structured
corruption improves robustness and semantic fidelity across diffusion benchmarks. Further ablations
with additional embedding- and token-level corruption strategies, along with metrics such as SSIM,
PSNR, LPIPS, FVMD for motion distance and CMMD for semantic consistency, reinforce this
observation; full results are provided in Appendix Tables[12] [T3] and Figure 4] For reproducibility,
we also report mean =+ std across three random seeds in Appendix Table

Sensitivity Analysis. To assess robustness beyond raw FVD values, we compute a sensitivity index
for each corruption strategy by linearly regressing FVD against corruption magnitude and combining
the slope with residual variance. This measures how smoothly performance degrades as noise
increases. Table[3[(b) shows that BCNI achieves the lowest sensitivity on caption-rich, appearance-
diverse datasets (WebVid, MSVD) and remains competitive on MSR-VTT, while SACN is most
stable on class-labelled, motion-heavy benchmarks UCF101. Gaussian degrades more sharply, and
Uniform remains the most brittle across all settings, with the steepest slopes and unstable responses.
Taken together, these results demonstrate that structured corruptions not only surpass prior noise
baselines but also generalize across both appearance- and motion-centric regimes, strengthening their
utility as robust training strategies. Beyond this linear sensitivity analysis, we conduct a broader
robustness study (Appendix Table using quadratic noise-response fits with HC3-robust SEs,
Monte Carlo win probabilities, and risk-adjusted regime analyses, which confirm SACN’s smoothest
degradation and BCNI’s dominance under mid/high corruption.

3.3 ANALYSIS OF CAT-VIDEO ON OTHER SCENARIOS

In this section, we show that CAT-Video can not only improve diffusion models, but can also
benefit different scenarios, including autoregressive models, adversarial attack, and multimodal video
understanding.

Scalability to Autoregressive Models. Table[3(a) highlights how we tested the scalability of CAT-
Video beyond diffusion backbones by applying it to autoregressive generation. Despite autoregressive
models like MAGVIT and CogVideo being far more parameter-heavy and trained on tens of millions
of clips, CAT-Video with BCNI and SACN attains substantially lower MSR-VTT FVD scores using
only ~2M training videos and a fraction of the parameters. This shows that CAT-Video generalizes
as a corruption-aware framework across paradigms, maintaining strong robustness and efficiency



Under review as a conference paper at ICLR 2026

Table 4: (a) CAT vs. adversarial baselines (b) AVSD results. Baselines are obtained from (Li et al.,
2025 ILiu et al., [2025)).

(a) Adversarial Baselines (b) AVSD Results
Method FVD(}) FVMD(}) CMMD (}) , Model Setting CIDEr (1)
Adversarial noise ~ 445.3 7263.8 0.585 LLaVA-OV-0.5B-FT task-specific 117.6
Text perturb. 468.7 8032.3 0.573 PAVE-0.5B (w/ audio) task-specific 134.5
CAT (ours) 360.3 2803.6 0.495 CAT (ours) corruption-aware 145.5

even in settings where autoregression is dominant. It underscores our broader claim: CAT is not tied
to one architecture but scales as a backbone-agnostic operator framework. Broader ablation studies
for corruption in AR models evaluated with FVD, FVMD, CMMD, and spanning multiple datasets

are in Appendix Tables [14] [T5] [T6]

Adversarial baselines. Table|4|(a) shows that CAT consistently improves all distributional metrics,
while adversarial and text perturbations trade one axis for another. Relative to adversarial noise,
CAT lowers FVD from 445.3 to 360.3 (=19% |) and slashes FVMD by ~61%. Against text
perturbations, it still reduces FVD by ~23% and FVMD by ~65%. CMMD also drops (0.585/0.573
— 0.495), signaling better text—video alignment rather than only smoother frames. Mechanistically,
indiscriminate noise inflates motion mismatch and semantic drift, whereas CAT confines corruption
to a low-rank, batch-aligned subspace, preserving the conditioning manifold and yielding coherent
long-horizon dynamics.

Scalability to multimodal video understanding. Tablef](b) demonstrates that the same corruption-
aware operators extend beyond generation to downstream multimodal tasks. On Audio-Visual
Scene-aware Dialog (AVSD), CAT achieves a CIDEr of 145.5, outperforming task-specific LLaVA-
OV-0.5B-FT (117.6) and PAVE-0.5B (134.5). This ~24% and ~8% relative gain shows that CAT’s
geometry-aware regularization not only stabilizes video generation but also scales naturally to
video-language reasoning, underscoring its generalizability beyond synthesis.

3.4 HYPERPARAMETER ROBUSTNESS

Extended ablations in Figure 2] evaluate the sensitivity of diffusion models to two key hyperparame-
ters: classifier-free guidance scale and DDIM sampling steps. Across all corruption ratios, BCNI
consistently maintains the best Pareto frontier—lower FVD and LPIPS alongside higher SSIM and
PSNR—demonstrating stable improvements in both perceptual quality and fidelity. In contrast,
isotropic corruptions such as Gaussian or Uniform noise exhibit brittle, non-monotonic trends, with
performance fluctuating sharply as the budget of guidance or steps changes. This robustness high-
lights CAT’s ability to preserve stability even under hyperparameter sweeps, a property essential for
reliable deployment in diverse computational regimes. Further ablations on the trio effects of DDIM
steps, guidance scales, and corruption settings are in Appendix Figures[5]and[f]

4 RELATED WORKS

LVDMs have become the dominant paradigm for T2V generation, offering high sample quality
and efficiency by operating in compressed latent spaces rather than pixel space (Wu et al.| 2023;
Khachatryan et al.l 2023} N1 et al., 2024} [Yu et al.l 2023b)). By leveraging pretrained video au-
toencoders (Gupta et al., 2025; Melnik et al., 20245 |Chen & Guol 2023)), LVDMs preserve motion
semantics while enabling scalable training. Early works like Tune-A-Video (Wu et al.l [2023)
and Text2Video-Zero (Khachatryan et al., 2023)) adapted image diffusion backbones for video via
temporal attention or zero-shot transfer. Recent models—such as CogVideo (Hong et al.| [2023]),
CogVideoX (Yang et al.,|2025), Show-1 (Zhang et al.,|2025)), and VideoTetris (Tian et al., 2024)—in-
troduce hierarchical, compositional, or autoregressive designs to improve motion expressiveness and
long-range coherence. Architectures like LaVie (Wang et al.l 2024b) and WALT (Gupta et al.| [2025)
emphasize photorealism via cascaded or transformer-based latent modules. Despite these advances,
robustness to conditioning noise—ubiquitous in web-scale datasets—remains underexplored. Our
work investigates this by introducing corruption-aware training to LVDMs, explicitly addressing
resilience under noisy or ambiguous conditions.
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Figure 2: Ablation Study: Guidance Scale and DDIM Steps. Expanded ablations covering diverse
corruption settings are in Figures E] and @

Diffusion models’ recursive denoising magnifies even mild conditioning noise into semantic drift
and visual artifacts (Gu et al., 2025} Na et al.} 2024])), yet recent work shows that structured perturba-
tions—whether in embeddings (Jain et al., 2024a}; |Daras et al.,|2023)) or at the token level (Chen et al.,
2024; Gao et al.,|2023)—can boost generalization by increasing conditional entropy and shrinking
Wasserstein gaps. While these regularization effects are well studied in image generation and classifi-
cation, their impact on latent video diffusion remains unexplored. To address this, we present the first
systematic study of corruption-aware training in LVDMs, leveraging low-rank, data-aligned noise to
enhance temporal coherence and semantic fidelity in video diffusion.

5 CONCLUSIONS

We introduced CAT-Video, a corruption-aware training framework for latent video diffusion that
substantially improves robustness to noisy conditioning through structured, data-aligned perturbations.
Our two operators, Batch-Centered Noise Injection (BCNI) and Spectrum-Aware Contextual Noise
(SACN), explicitly preserve temporal fidelity by aligning perturbations with semantic and spectral
structure. Experiments consistently show large improvements over existing corruption baselines
and even over large-scale diffusion models trained on far more data. From a theoretical standpoint,
we demonstrated how structured perturbations tighten entropy, Wasserstein, and score-drift bounds,
thereby linking noise design directly to improved generalization in video diffusion. Importantly,
CAT-Video generalizes beyond diffusion backbones, extending to autoregressive generation and
multimodal video understanding LLMs. Together, these results establish CAT-Video as a broadly
applicable paradigm for building resilient, semantically grounded generative models.

Limitations. CAT-Video has not yet been validated on very long-form videos, 3D video generation, or
high-resolution training beyond 2M clips. In addition, performance may vary with the choice and
quality of pretrained encoders, leaving the limits of scalability an open question.

Outlook. While CAT-Video is centered on diffusion, future work should test whether its benefits
persist under larger training scales, more diverse datasets, and longer rollouts where temporal drift is
harder to suppress. Promising directions include (1) designing adaptive, end-to-end learned corruption
strategies that go beyond fixed operators, (2) extending corruption-aware training to reinforcement
learning and embodied video agents where sequential fidelity is critical, and (3) scaling to multimodal
LLMs for tasks that demand robust integration of vision, language, and audio.
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Ethics Statement. This work focuses on improving the robustness of video generative models
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MSR-VTT, MSVD, UCF-101), and we do not use or release any sensitive or personally identifiable
data. While generative models could in principle be misused for misinformation or deepfakes, our
contributions are intended purely for advancing robustness and reliability in research contexts. All
pretrained models used in this study are publicly available and used under their respective licenses.
We believe this work contributes to safer, more reliable generative modeling by reducing failure
modes under noisy or imperfect inputs.

Reproducibility Statement. We have made every effort to ensure the reproducibility of our results.
Details of training datasets, corruption schedules, model architectures, and evaluation metrics are
included in the main paper and Appendix. We report results as mean + standard deviation over multiple
random seeds, and include extended tables in the supplementary material. Our implementation builds
on open-source frameworks (e.g., PyTorch, HuggingFace Diffusers), and we will release code,
configuration files, and pre-trained checkpoints to facilitate full reproducibility.
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USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT as a writing assistant for editing grammar, improving clarity, and condensing
drafts of the abstract, contributions, and conclusion. The model was also used to suggest alternative
phrasings for figure captions and to restructure technical descriptions for conciseness. All technical
ideas, methods, experiments, and results—including CAT-Video, BCNI, SACN, benchmarks, and
proofs—were conceived, implemented, and validated entirely by the authors. The LLM did not
generate novel research content or experimental results and was used solely as a tool for writing
refinement.

A ABLATIVE CORRUPTION STUDIES

We study two distinct corruption types—token-level and embedding-level—to rigorously disentangle
where robustness in conditional video generation arises. These two forms of corruption intervene at
different stages of the generative pipeline: foken-level corruption targets the symbolic input space
prior to encoding, while embedding-level corruption operates on the continuous latent representations
produced by the encoder. Studying both is essential because errors in text prompts (e.g., due to
noise, ambiguity, or truncation) and instability in embedding spaces (e.g., due to encoder variance
or low resource domains) represent orthogonal sources of degradation in real-world deployments.
Embedding-space perturbations expose the score network’s sensitivity to shifts in the conditioning
manifold—compounded during iterative denoising—while text-space corruption reveals failures in
semantic grounding and prompt fidelity. By introducing ablative baselines in both spaces, we show
that effective robustness in video diffusion depends not just on noise injection, but on structural
alignment between the corruption source and the level of representation it perturbs. This dual-space
benchmarking is therefore not only diagnostic, but essential for validating the effectiveness of our
proposed structured corruption strategies—BCNI and SACN—which are explicitly tailored for the
video generation setting and rely on principled alignment with both temporal and semantic structure.

A.1 EMBEDDING-LEVEL CORRUPTION

To rigorously isolate the contribution of our structured corruption operators, we introduce four
ablative noise injections at the embedding level: Gaussian noise (GN) (Chen et al.||[2024), Uniform
noise (UN) (Chen et al.,[2024)), Temporal-Aware noise (TANI), and Hierarchical Spectral-Context
noise (HSCAN). These ablations serve as minimal baselines that lack alignment with data geometry,
enabling us to attribute performance gains in CAT to semantic or spectral structure rather than to
noise injection per se. Both GN and UN represent canonical forms of Conditional Embedding
Perturbation (CEP) originally proposed in image diffusion settings (Chen et al.,[2024), where noise is
injected independently of temporal structure. GN applies isotropic Gaussian perturbations N(0, Ip),
uniformly expanding all embedding dimensions and inducing score drift proportional to p?D, while
UN samples from a bounded uniform distribution per coordinate, maintaining sub-Gaussian tails but
lacking concentration in any low-dimensional subspace—resulting in unstructured and spatially naive
diffusion behavior. TANI aligns corruption with temporal gradients—capturing local dynamics—but
offers no reduction in rank or complexity. HSCAN introduces multi-scale spectral perturbations via
hierarchical frequency band sampling but lacks global adaptivity to the data manifold or temporal
coherence.

In contrast, our proposed methods—BCNI and SACN—are explicitly designed for video generation,
aligning noise with intrinsic low-dimensional structure: BCNI exploits intra-batch semantic axes,
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while SACN leverages dominant spectral components of the embedding. These structured operators
yield theoretically grounded gains in entropy, spectral gap, and transport geometry, formalized as
O(d) vs. O(D) bounds in Appendix [B| By comparing against these unstructured baselines, we
demonstrate that CAT-Video’s improvements are not simply due to corruption, but to data-aligned
perturbations that respect and exploit the semantic and temporal geometry of multimodal inputs.

Let p denote a natural-language prompt and f a CLIP-based text encoder mapping p to a D-
dimensional embedding z = f(p) € RP. We define

Cembed : RY x T x R+ — RD, Zembed = Cembed (Z; T, P)7 @)

where 7 € T = {GN, UN, GAP,BCNI, TANI, SACN, HSCAN} selects one of six structured noise
types and p € {0.025,0.05,0.075,0.10,0.15,0.20} controls the corruption strength.

In Gaussian Noise (GN, Eq. [8]) we set
Con(zip) = p 756 e~N(0,Ip), ®)

Here, ¢ ~ N (0, Ip) is standard Gaussian noise and the scaling by 1/+/D ensures variance normal-
ization across embedding dimensions.

In Uniform Noise (UN, Eq.[9) we sample
D
Con(zip) ~U(~ L5, &5 ©)

which bounds the noise magnitude per dimension to p/+/D.

In Gradient-Aligned Perturbation (GAP, Eq. we scale isotropic Gaussian noise by the embedding
norm, aligning corruption with signal magnitude:

Caar(zip) = |Izll2-6, e~ N(0,p%Ip), (10)
where 2z € RP is the embedding, p is the noise ratio, and I is the D-dimensional identity.

Batch-Centered Noise Injection (BCNI, Eq.[3)) perturbs z by injecting a scalar noise sampled uniformly
from [—1, 1], scaled by the norm of its deviation from the batch mean z. Specifically, the corruption
is given by Cacnr(2;0) = pllz — Z||2 - (2U(0,1) — 1), ensuring that higher-variance embeddings
receive proportionally larger perturbations while remaining direction-agnostic.

Temporal-Aware Noise Injection (TANI, Eq. [TT) uses

() _ H(t=1)
TANI(Z p) p ||Z(t) — Z(til) H2 + €Estab

It perturbs z(*) by injecting Gaussian noise modulated along the instantaneous motion direction
between consecutive embeddings. The corruption vector is scaled by the normalized displacement
(2 — 2E=D) /(|2 — 2=V ||y 4 €5pap), ensuring directional alignment with recent temporal
change, while  ~ N(0, Ip) introduces stochastic variability and €1, safeguards numerical stability
in near-static sequences.

Spectrum-Aware Contextual Noise (SACN, Eq.[6) perturbs the embedding z via its singular vector
decomposition z = UsV T. Specifically, SACN samples a spectral noise vector ¢ where & ~
N(0,e77/P) and forms a shaped perturbation pU (¢ ® /5)V' T, which aligns the corruption with
the dominant spectral directions of z. This mechanism injects more noise into low-frequency
(high-energy) modes and less into high-frequency components, yielding semantically-aware and
energy-weighted perturbations in the embedding space.

Hierarchical Spectrum—Context Adaptive Noise (HSCAN, Eq. decomposes Z into frequency
bands {2*}, injects independent ¢* ~ A/(0, p?I) into each band, and combines via

Crscan(zip) = p Y ak Csacn(z sk) + ACen(2),
ko

L= P [Csacn (2 sk)ll3
>, exp [ICsaon(z 57|13

(12)
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Multi-scale perturbations are introduced by scaling z with coefficients s, € {1.0,0.5,0.25}, passing
each z - s, through SACN, and combining the resulting perturbations via softmax-weighted attention
ag. A residual Gaussian component weighted by A = 0.1 is then added, yielding a robust and
expressive multi-scale corruption signal.

We sweep p across six values to explore minimal through moderate corruption. BCNI (Eq.[5) and
SACN (Egqg. @) serve as our core structured methods, while GN, UN, TANI, and HSCAN act as
ablations isolating isotropic, uniform, temporal, and hierarchical spectral perturbations, respectively.
Together, these structured operators allow controlled semantic and spectral perturbation of language
embeddings during training.

In Gaussian Noise (GN, Eq.[g), isotropic perturbations exactly match the CEP scheme in prior image-
diffusion work (Chen et al.,2024; Daras et al.,[2023)), and because they uniformly expand all D axes,
Lemma shows the expected score-drift E[|Ac||? = O(p®D) and Theorem implies a v/ D
scaling in W, thus forfeiting the O(d) advantage. Uniform Noise (UN, Eq. E]) applies independent
bounded noise per coordinate, yielding sub-Gaussian tails (Corollary but likewise failing to
concentrate perturbations in any low-dimensional subspace and therefore incurring O(D) rates in all
functional-inequality bounds. Temporal-Aware Noise Injection (TANI, Eq.[TT) aligns perturbations
with the instantaneous motion vector z(*) — z(*=1)granting temporal locality yet not reducing the
effective rank—so entropy, spectral gap, and mixing-time measures remain © (D). Hierarchical
Spectrum—Context Adaptive Noise (HSCAN, Eq.[12) aggregates multi-scale SACN perturbations
at singular-value scales s via softmax-weighted attention o, plus a residual GN term; although
this richer spectral structure enhances expressivity, it still lacks a provable O(d) log-Sobolev or
Ty constant (Theorems [B.29), defaulting to ©(D). By contrast, BCNI and SACN leverage
data-aligned structure—batch-semantic axes and principal spectral modes, respectively—admitting
O(d) scalings in entropy (Proposition , Wasserstein (Theorem , and spectral-gap bounds
(Theorem[B.9), which underpins their empirical superiority across richly annotated (WebVid, MSR-
VTT, MSVD) and label-only (UCF-101) datasets.

A.2 TOKEN-LEVEL CORRUPTION

To further extend the ablation suite, we introduce Token-Level Corruption (TLC) as a text-space
baseline that mirrors the embedding-level variants in structural simplicity. TLC uniformly samples
from five token-level operations—swap, replace, add, remove, and perturb—and applies
them to spans within each prompt p at corruption strength 7, matching the embedding ablations
in scale and frequency. Our TLC strategy applies structured operations—swap, replace, add,
remove, and perturb—to text prompts in a controlled manner, simulating real-world caption
degradation scenarios such as typos, omissions, or grammatical shifts. Unlike embedding-space
noise, which operates after encoding, TLC intervenes directly on the linguistic surface, preserving
interpretability while stressing the model’s ability to maintain semantic alignment under symbolic
corruption. This form of noise is consistent with prior work in masked caption modeling and text
robustness pretraining (Chen et al.| | 2024; |Chang et al.| 2023} |Yang et al.| |2023)), where surface-level
alterations are used to regularize text encoders. However, as we show in Section E], such text-only
perturbations fail to match the temporal fidelity and overall generation quality achieved by our
structured embedding-space methods, BCNI and SACN, as measured by FVD. TLC is applied
on the text-video pairs of the WebVid-2M (Bain et al.| 2021) dataset which is used to pretrain
the DEMO model (Ruan et al. [2024). The qualitative effects of TLC are visualized in Figure [3|
where systematically varied corruption types and noise ratios illustrate how even small token-level
degradations distort prompt semantics and contribute to degraded visual generations—highlighting
the sensitivity of generative alignment to surface-level textual corruption.

All methods are evaluated under a shared corruption strength parameter p,n €
{0.025,0.05,0.075,0.10,0.15,0.20}, which quantifies the magnitude or extent of applied
noise—interpreted as the fraction of perturbed tokens in text-space or the scaling factor of injected
noise in embedding-space. This unified scaling ensures comparable perturbation budgets across
modalities and ablation types, following prior work in multimodal robustness (Chen et al., [2024]),
where consistent corruption levels are necessary for attributing performance differences to the
structure of the corruption rather than its intensity.
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B THEORETICAL SUPPLEMENT

This supplement develops the theory that explains why BCNI & SACN outperform isotropic CEP.

B.1 [Notation & Core Bounds} [entropyl [Wasserstein| [score drift in rank-d subspaces]

B.2 [Temporal Dynamics} [energy recursion} famplification| jmixing-time| (Theorem B.7| [Theo{

rem B.9).
B.3 [High-Order Concentration} [MGF| [Bernstein] [Stein discrepancies}

B.4 |[Functional Inequalities} [Log-Sobolev] [Talagrand—75} |OT gradient flow}
B.5 [Carge Deviation & Control} [LDP| [KL contraction| [Schrodinger-bridge cost gapl

B.6 [Talagrand 75, BL Variance, Oracle Bounds} |Brascamp—Lieb variancel [Rademacher com-
plexityl [PAC—Bayes oracle riskl

B.7 [Information Geometry & Minimax; |[Fisher—Rao curvature] [entropic OT duality| [capacity|
increment, jminimax lower bound!

Each section reveals a consistent d vs D compression factor, Grounding BCNI/SACN’s empirical
FVD advantage.

KEY SYMBOLS

Symbol Meaning

D, d Ambient embedding dim.; effective corrupted rank
Clean / corrupted CLIP embedding
M(z) Rank-d corruption matrix (BCNI or SACN)

N
[N3

p Corruption scale (0.025 < p <0.2)
xi" ) Latent video at reverse step ¢ under scale p
8¢ 28" — 2{9|, deviation

g, Oy Diffusion schedule; Jf =1-
Wa(-,-)  2-Wasserstein distance

H Differential entropy

KL Kullback-Leibler divergence

CLsi Log-Sobolev constant (rank-dependent)

Ty Talagrand quadratic transport—entropy constant
Ve.p Spectral gap of reverse kernel (Theorem

ASSUMPTIONS

We list the assumptions under which the theoretical results in this paper hold.

(A1) Corruption Operator Properties. The corruption function C(-) is a measurable function
that acts on the conditioning signal (text or video). It is stochastic or deterministic with well-
defined conditional distribution P¢ (x| x, and preserves the overall support: supp(P¢( X)) -
supp(Px).

(A2) Data Distribution Regularity. The clean data distribution P x and target distribution Py
are absolutely continuous with respect to the Lebesgue measure, i.e., they admit density
functions.

(A3) Latent Diffusion Model Capacity. The diffusion model py(y | x) is expressive enough to
approximate Py x and Py |¢(x) within bounded KL divergence or Wasserstein distance.

(A4) Entropy-Injectivity. The corruption operator injects non-zero entropy into the conditional
signal: H(C(X)) > H(X), and this increase is smooth and measurable under Pyx.

(A5) Corruption-Aware Training Alignment. The corruption-aware model is trained with the
correct marginalization over the corruption operator:

EQCNPX,O?N]P’C(X)\I [‘C(pQ( ‘ i‘)ay)] :
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(A6) Bounded Perturbation. The corruption C(x) introduces bounded perturbations:
Esnpy [d(z,C(2))%] <67
for some metric d(-, -), e.g., {2 or cosine distance.

(A7) Continuity of Generative Mapping. The generator Gy (x) is Lipschitz continuous in its
conditioning input:

d(Go(x), Go(C(2))) < L - d(z,C()).

(A8) Sufficient Coverage of Corrupted Inputs. The support of the corrupted data remains
sufficiently close to the clean distribution:

supp(Pe(x)) ~ supp(Px).

(A9) Markovian Temporal Consistency (Video). For video generation, the true generative
process assumes Markovian structure:

T

P(zy.7) = H]P’(xt | Z1:4-1),

t=1
and the corruption operator preserves this temporal causality when applied.

B.1 THEORETICAL IMPLICATIONS OF LOW-RANK CORRUPTION

We begin by recalling the standard forward process of video diffusion models, defined as a Markov

chain:

q(x¢ | x¢-1) = N (x5 /1 = B x¢—1, Be1), (13)
where (3; is the variance schedule. The reverse process is modeled as:

po(xi—1 | x¢) = N(x¢—1; po(x1, 1), 07 1), (14)

with g trained to approximate the reverse-time dynamics of g. Training proceeds by minimizing
a denoising score-matching loss under data sampled from pg,,,. We now investigate how injecting
corruption into the training data distribution pgq, affects these dynamics, particularly under structured
low-rank noise models.

We analyze how the distribution of training samples shifts under different corruption schemes.
Assume pga, is concentrated on a low-dimensional semantic manifold embedded in R?, and that
the intrinsic semantic directions span a subspace of dimension d < D. Under CEP (isotropic
corruption), noise is added along all D dimensions uniformly. In contrast, BCNI adds noise only
along the batch semantic directions (e.g., the top d principal components), and SACN restricts to the
leading eigenmodes of a covariance operator estimated across videos.

Given this setup, we analyze the impact of each corruption scheme on the resulting training distribu-
tion:

* Entropy: The conditional entropy increase scales as O(d) for BCNI/SACN instead of O(D)
(Prop. A.2).

+ Wasserstein distance: The 2-Wasserstein radius scales as O(pv/d), giving a \/d/D com-
pression benefit over CEP (Thm. A.4).

* Score drift: The deviation in the score function is bounded as O(p?d) instead of O(p*D)
([Cemma A 5).

» Mixing time: The reverse diffusion chain mixes faster, improving the spectral gap by a

factor of d/D (Thm. A.9).

* Generalization: The Rademacher complexity shrinks to O(py/d/N) instead of
O(py/D/N) (Thm. A.28).

These findings demonstrate that BCNI and SACN, by aligning perturbations with the underlying
semantic subspace, transform corruption from a random disruptor into a structured regularizer. This
alignment results in smoother score manifolds, reduced noise accumulation across timesteps, and
more coherent video generations. The subsequent sections formally establish these effects through a
series of statistical analyses and theorems.
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B.2 CONDITIONING—SPACE CORRUPTION: NOTATION
2~ Py CRP, 2= 24 pM(z)n, 1 ~N(0, 1),
M(z) e RP*4 d = Dg < D, p €[0.025,0.2].

BCNI: M(Z) = H z— 23”2 1 SACN: M(Z) =Uiq diag(\/sl:d)

Definition B.1 (Entropy Increment).
AH(p) = H(Py z,) — H(Px|z).

Proposition B.2 (Subspace Entropy Lower Bound). Let 02 = )\min(Cov[Z ]) >0 and assume p > 0.
For BCNI or SACN corruption of rank d,

AH(p) > g log(1+ p?0?),
whereas isotropic CEP attains the same bound with D in place of d.
Proof. Recall that if X ~ A(0,X) in R™, its differential entropy is (Cover & Thomas),[1991};2006)
H(X) = % log((2me)" det ).
Hence for our clean and corrupted embeddings we have
H(Z) = % log((2me)P detS,),  H(Z) = % log((2me)? det(X, + p> M M T)).

Subtracting yields

~ 1. det(%.4+p?MMT
AH(p) = H(Z) ~H(Z) = 5 log ( £ )

15)

We now invoke the matrix determinant lemma (Horn & Johnson, [1985)), which states:
Lemma B.3 (Matrix Determinant Lemma). For any invertible matrix A € RP*P and any U,V €
RP*4 e have
det(A+UVT) = det(A) det(Iq+V'TATU).
Apply this with A =3,, U =pM, VT = M7 to obtain
det(S, + p*M M) = det(X.) det(Iy + p* M TS M).
Plugging back into equation [I3] gives

1
AH(p) = 3 log det(Iy + p> M T2 M),

Next, since M TZz’lM is a d x d positive semidefinite matrix, let its eigenvalues be A1, ..., Ag > 0.

Then
d

det(Ig+ p* M7 M) = [T+ p*N),
i=1
SO

d
1
AH(p) = 3 > log(1+ p*Ni).
i=1
Finally, because ¥ ! = 0 2Ip where 02 = Apmin(X.), each \; > o 2. Therefore
1o d
> = 2 _—2)_¢ s
AH(p) > 5 i_zllog(l + p“o; ) 5 log(l + 03)’

which completes the proof. O
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Theorem B.4 (Directional Cost Reduction). Let Qf,“b be the conditional distribution with
BCNI/SACN corruption and Q;‘}b its counterpart at level p' > p. Then

W@ Q") < o .
whereas isotropic CEP satisfies Wy = /D (p' — p).
Proof. Recall that for two zero-mean Gaussians A(0,3) and N(0,%) on R™, the squared 2-
Wasserstein distance admits the closed form (see (Takatsul, 2011} |Givens & Shortt, |1984; Dowson &

Landaul, 1982} [Takatsul, 2011)):

WZ(N(0,%), N(0,%)) = |EV2 — ()22 = Te(D) + Tr(¥) — 2 Te[(EY/25 £/2)1/2].

(i) Subspace corruption (rank-d). Under BCNI/SACN,
QP =z+pM(z)n, n~N(0, 1),

so it is Gaussian with covariance ¥ = p? M M . Likewise ¥’ = p2M M T. Since M M is the
orthogonal projector onto a d-dimensional subspace,

SV =pM, ()= M,
and therefore
W3 (Q3™, Q") = [[pM — ' M3 = (p— ') M7 = (o — p)> Te(MT M) = (p — p)*d.
Hence
Wa (@3, Q) = 1o’ = p| Vd = O(p' = p).
(ii) Isotropic corruption (full rank). Under CEP,
QipSO:Z+p€7 GNN(Ole)v
so ¥ = p?Ip and ¥ = p”?Ip. Thus
W3 (Q5°,Q5°) = llpIp — p'Inlly = (o = p)? Tr(Ip) = (o' — p)* D,
and

W2 (Q5°,Q5°) =o' — p| VD.

p

Therefore, subspace-aligned noise lives in only a d-dimensional image and grows like (p’ — p) Vd,
whereas isotropic noise spreads across all D axes, incurring the extra v/D factor. O

Lemma B.5 (Local Score Drift). Let eg(x,t, z) be L-Lipschitz in the conditioning z, i.e. for all x,t
and 2,7,
|}59(I7 ta Z/) - 69(‘Ta t7 Z)||2 < L ||Z/ - 2”2
Then under subspace corruption with z = z + p M (2)n, n ~ N (0, I),
E[[leo(,t.2) — ol t,2)]

ﬂ < I2p2d = O(p%d),

whereas for isotropic CEP corruption with Z = z + pe, € ~ N(0, Ip), one obtains

E|:H€9(l‘,t,2)*Eg(x,t,z)||;i| < L?*p*D = O(pzD).
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Proof. By the Lipschitz property,
leo(z,t, 2) — eq(a, t, z)”2 < L|Z—=2%|2 = Lp HM(Z) 77“2'
Squaring both sides and taking expectation gives
E|lleo(.t, 2) — eo(at.2)[;] < 220 B[| M(2)nll3].
Since ) ~ N(0, I;) and M(z) € RP*? has orthonormal columns,
E[l| M(2)nll3] = E[n"M(2)" M(2)n] = tr(M(2) " M(2)) = d.

Hence
E[Hsg(x,t,é)—Eg(x,t,z)Hﬂ < L?p%d,

establishing the O(p*d) bound.
CEP case. For isotropic corruption, Z = z + pe with € ~ N (0, Ip), the same argument yields
12 = 2ll2 = pllell2,  Ellell3 = tx(Ip) = D,

and thus )
EHE(g(x,t,E)—59(95,1?,2)”2 < L?*p*D = O(p*D).

This completes the proof. O

Together, Propositions[B.2] Theorem [B.4]and Lemma[B.5]show that BCNI/SACN corruption

(i) enlarges the conditional entropy by a factor of order d rather than D,

(i1) shrinks the 2-Wasserstein distance to

W2(Qp, Qp) = O((¢) — p)Vd) insteadof O((p' — p)VD),
(iii) bounds the local score-drift as

Elleo(x,t,2) — co(a,t,2)||2 = O(p*d) instead of O(p*D).

These rank-d improvements then yield tighter temporal-error propagation (see Corollary [B.8)) and
faster reverse-diffusion mixing-time bounds (see Theorem [B.9).

B.3 TEMPORAL DEVIATION DYNAMICS IN REVERSE DIFFUSION

Reverse step. Fort—t—1

1 1-—
pr_)l = —(mﬁp) - 70%60(56?),1575)) +opwy, 0 =1—ay, w~N(0,1).

£/ Ot AV 1 — @t
B.3.1 ONE-STEP ERROR PROPAGATION

Lemma B.6 (Exact Recursion). Let

Ay = xip) — x§°>, Jy = 0, 59(m§0)7t,2),

and set
/8 - 1-— (673
T VT-a
Then under a first-order Taylor expansion (Garibbo et al.||2023) in the conditioning z,
1 .
Ay = T%(At — B (G- z)) + O(?).

In particular, for subspace corruption zZ = z + M (z) n and isotropic corruption 3050) — 2 4 ¢ one
obtains

Ay = Ay — Be e M(2)n — B Jy (z—i(iso)))_

sl
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Proof. We start from the standard reverse-diffusion update ( (Ho et al.,[2020)):

1
Ty—1 = ﬁ(xt — Bieo ($t7t72)) + oy w, (16)

whnere oy = — Q¢ and wyg ~ s . rite this for both the clean sequence (x ,Z2) an the
here 02 = 1 d w; ~ N(0, ). Write this for both the cl q ({”, 2) and th

corrupted one (x§P ), Z), and subtract to get

1 .
Atfl = \/7071& [(Z,EP) - xEO)) - Bt (59 (xgp)vtaz) — €& (x§0)7t72)>1| .

Set Ay = xﬁ” ) _ :cff)). Next, perform a first-order Taylor expansion of €4 in its dependence on

z (Protter, 2004), holding x; at the clean value a:ﬁo):

sg(xgp),t,i) =gy (J;,go),t,z) + 8x69(a:§0),t,z) JAVREE 8269(x§0),t,2) (2—-2) + R,
— —
O(1) Ji

where the remainder R = O(||A¢||? + |2 — 2]|?) = O(p?) is dropped. Substituting into the difference

above gives
1

Jar

where J, ; = 8${—:9(x§0), t, z). Absorbing the term j3;J, ; A, into the leading A, factor (since J ; is
bounded) yields the stated recursion.

Ay =

[At - ﬁt(Jx,t Ay 4+ Jy (5*2))} + 0(p?),

Finally, specializing to the two corruption modes:

Z=z+M(2)n, 50s0) — 7 4 ¢,

we have 7 — 2z = M(z)nand z — 205°) = —¢, s0
1 s (iso
Ay = \/77 ((1 - 5th,t) Ay — Be i M(2)n — B Je (2 — 2 ))>
up to O(p?). Renaming (1 — B Jx,t) ~ 1 in the small-step regime recovers exactly the formula in
the lemma. O

B.3.2 QUADRATIC ENERGY EVOLUTION

Let 07 = [| A][3.
Theorem B.7 (Expected Energy Inequality). If | J; M (2)|2 < Kq4 and ||J¢]|2 < Kp, then

E57.] < a7 ' (BIF) + 5207 K3d) + ofm,

where m = dim(z;). For isotropic CEP replace K3d by K% D.
Corollary B.8 (Cumulative Gap). With Gp = E[62] — Eis,[07],

T
Gr < /)Q(Kgd—KQDD)Zat_l t2
t=1

Because K2d = O(d) and K3 D = O(D), Gy < 0 whenever D >>d.

Proof. The contraction—plus—drift term here adopts the discrete-time Langevin analysis of Durmus
& Moulines (Durmus & Moulines} 2019), and its sharp O(p?d) scaling parallels Dalalyan’s dis-
cretization bounds (Dalalyan| [2017). The spectral-gap viewpoint invoked in Theorem [B.9|follows the
reflection—coupling approach of Eberle (Eberle, [2016), while the control of the o2m noise term uses
Poincaré-type estimates as in Baudoin et al. (Baudoin et al.; 2008). Finally, the overall Gronwall-type
aggregation is carried out via the energy—entropy framework in Bakry, Gentil & Ledoux (Bakry et al.|
2014). O
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B.3.3 MIXING-TIME VIA SPECTRAL GAP

Theorem B.9 (Spectral Gap Scaling). With score Lipschitz ¢ (Cobzas et al.}|2019),
Ve =1—X(Ks)p) > op — ﬂprZQd,

while CEP gives oy — B2 p?0?D. Hence 7. < (a — p2€2d) 7llogl.

13
B.3.4 WASSERSTEIN RADIUS ACROSS T' STEPS

Proposition B.10 (Polynomial Growth). Define the camulative Wasserstein radius by
1/2
(Z WQ (P) ) ) ,

where Q,Ep ) denotes the conditional distribution at reverse-step t under corruption scale p. Then for
BCNI/SACN corruption of (effective) rank d,

Rr(p) < pVdT,

whereas for isotropic CEP corruption of full rank D,

Rr(p) < pVDT.

Proof. We begin by observing that the reverse process can be seen as a sequence of small “jumps” in
distribution between consecutive timesteps t—1 — ¢. By the triangle inequality in W5 (Jordan et al.,
1998b)),

WQ( (P) Z Wg Ep)l)'

However, to obtain a sharper v/7T—scaling one passes to the root-sum-of-squares (RSS) norm (Villani,
2009), which still controls the total deviation in expectation:

T 1/2
S (@, Q) <\F<ZW ,§f:>1)2> = VT Rr(p).

Thus it suffices to bound each squared increment W2(Q'”, Q'*),) and then sum.

(i) Subspace corruption. By Theorem (Directional Cost Reduction), for any two corruption

levels p’, p we have
( sub’ qub) < ‘,0 7p| f

In particular, at each reverse-step ¢ the effective change in corruption magnitude is p; — p—1 < p
(since p;y < p for all ), so

Wy (QE”), yi)1) pVd.
Squaring and summing over t = 1,...,7 yields

IN

T

>owR@7,Qi%) < T (o d),
t=1

and taking the square-root gives the desired Rr(p) < pvdT.

(ii) Isotropic corruption. An identical argument applies, but with Theorem replaced by its

isotropic counterpart
( 1so leo) < |p/7p| \/B

Hence each step incurs at most pv/ D, leading to

_ (XT: W22>1/2 < /T (°D) = pVDT.
t=1
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Remark. One may also bound the raw sum of distances by > Wy < /T Rr(p), so the same
V/T-scaling appears even without passing to the RSS norm. O

Taken together, Proposition[B.7} Theorem [B.9] and Proposition [B.T0]show that the one-step energy
drift, the spectral gap (hence mixing time), and the cumulative Wasserstein radius all scale as O(d)

or O(v/d) rather than O(D) or O(v/D). This dimension-reduced scaling provides the analytical
foundation for the superior long-horizon FVD behavior of BCNI/SACN.

B.4 HIGH-ORDER CONCENTRATION FOR SACN AND BCNI
B.4.1 MOMENT-GENERATING FUNCTION (MGF) AND SUB-GAUSSIANITY FOR SACN

Recall that under SACN we perturb
Z=z+pUdiag(y/s1.4) &,

where '
£=(&,....&), & ~ N(0,e79/P) independently,

and U € RP* has orthonormal columns.
Lemma B.11 (MGF of Spectrally-Weighted Gaussian). Let X = Z — z. Its MGF is by definition

Mx(\) = E[*'X],  AeR”.
Writing X' = U "\ € RY, one has
d
T 5.
ATX =p (UTN) diag(y/s1:a) E=p Y N \/57 &
j=1
Since each & ~ N (0, efj/D) and they are independent, the MGF factorizes and gives

d d
Zlog E[e”/\ﬁ'\/?ffa‘] — Z (p)\ \ﬁ) e I/D

Jj=1 Jj=1

log Mx ()

2

d
_r —i/D.
—2; Zsje

Noting that ||N'||2 < || A||2 (since U is an isometry), we conclude the claimed form.

Moreover, if we set 02, = max;<j<q5; e /P, then
2 2 2 2
log Mix(3) < Fme |3 < Eme

By the standard sub-Gaussian criterion ( (Vershynin||2018)), this shows that X = Z — z is p o2
sub-Gaussian, i.e. for all \ € RP

.
B[] < exp(§ 00t [AI3)-

max

Proof. Let X = Z — z. By definition, the moment-generating function (MGF) is
Mx(\) = E[*"X],  AeR”
Writing \' = U T A € R?, we have

d
ATX = p(UTN) T diag(v/s1a) € = p D N, /57 &5

j=1
Since each &; ~ N(0,e~7/P) independently,
d a4 2
- iV EJ - ! /D _ P —3/D.
logMX()\)—;logIE[ep iVEi ;2 (pN;y/55)2 e 5 ; 2sjed
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2

max?*

log Mx () < 5 0° opmax A3,

max

inally, since 5 < 5 and max; s, e /P = ¢ we conclude
Finally, since [|'[|2 < [|A]|2 and max; s; e=7/P lud

2

which shows X is p?02, —sub-Gaussian. O

Corollary B.12 (Exponential Tail). Under the same assumptions as Lemma [B.T1] the perturbation
Z — z satisfies the following high-probability bound. For any 7 > 0,
2

3 T
Pz -zl >7) < exp(—m)7

where P[] denotes probability over the randomness in & and 02, = max; <j<q(s;e7/P).

B.4.2 BERNSTEIN-MATRIX INEQUALITY FOR BCNI

Recall that in BCNI we set
M(z) = p(z — ZB) la,
so that
MEM)T = p* (2= 2)(z — 25)"
is a rank-d positive semidefinite matrix whose spectral norm is | M (z) M (z) = 0%z — zB||3
We now show that, under a boundedness assumption on the embeddings, this deviation concentrates
atrate 1/B.

Lemma B.13 (Deviation of Batch Mean). Let z1, ...,z be i.i.d. random vectors in RP satisfying

T2

B
1
lz:ll2 < R almost surely, and write Zg = 5 Z z;. Then for every T > 0,
i=1

Br?
P[||z1 — 2 <2 (— )
[||z1 zZgll2 > T] < 2exp| ~5 s
Proof. For any fixed unit vector u € SP~1, define the scalar
Xi = ’LLTZZ',
so that | X;| < R. By Hoeffding’s inequality (and.|1963),
IP’[|uT(21 —zg)| > T] < 2exp<—%).

A standard covering-net argument on sb-1 (Vershynin, 2018) extends this to the Euclidean norm,
yielding the stated bound. ]

Theorem B.14 (Spectral-Norm Bound on BCNI Covariance). Under the same assumptions as Lemma
forany § € (0,1), the following holds with probability at least 1 — §:

_ 2log(2/4
[MEMET, = 2l -zl < o B2 2B,

Proof. Observe that
M(2)M(2)" = p* (2 = zp)(2 — ZB) |
is a rank-one matrix whose operator norm coincides with its trace:
|M(z)M(2)"||, =" Tr((z — 2B)(z — 2B) ") = p* ||z — zB]3.
By Lemma|[B.13] for any 7 > 0,

Br?
P -z < 9 (_7)

[z —zBll2 > 7] < 2exp 57

Setting
_ R /2loe(2/0)
T B
ensures P[||z — Zg||2 < 7] > 1 — §. On this event,
2log(2/6
[M(2)M(2)T ||, = o ||z — zBlI3 < p* 7% = p* R? %

as claimed. .
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B.4.3 STEIN KERNEL OF ARBITRARY ORDER

Let k(-, ) be a twice-differentiable positive-definite kernel with RKHS norm || - ||4.
Definition B.15 (Order-n Stein Discrepancy). For n > 1 define

SKa(PIQ) = s, [E[ABS]|, Arf = Vulog P@)S(@) + Va- f(a).

Proposition B.16 (Low-Rank Stein Decay). For BCNI or SACN corruption of rank d,
SK"(PX|Z||PX‘ZP) = O(p"d"/Q), whereas isotropic CEP scales as O(p™D"/?).

Proof. Recall that for any sufficiently smooth test function f with || f||x < 1, the Stein operator
satisfies
Epy, [AR£(X;2)] =0.

Hence

Eque [ABS] = Bz x[ABS(X;2)] — Ea x[ABF(X;52)] = ByExp. | ABS(X;24p M(2)n) — ABF(X;2)].

By a n-th order Taylor expansion in the conditioning argument,

n

m n 1 C n C

ApF(Xiz+A2) — Apf(X52) =Y il (OMARF(X;2)], (A2)®F) + Rup1(X;Az),
k=1

where Az = p M(z)n, (Az)®* is the k-fold tensor, and R,, 11 is the (n + 1)-st order remainder.

Under the usual smoothness assumptions one shows

Cn 1 n
|R71,+1(X;AZ)| = (n++1)! HAZHQ +1’

for some constant C,,; depending on higher derivatives of ApJ f.

Substituting back and using linearity of expectation,

C’n+1
(n+1)!

Since || f||x < 1 and the RKHS norm controls all mixed partials of A2 f up to order n + 1, there
exists a constant C’ > 0 (depending on n and the kernel) such that

H@Zk[AﬁﬂHOO <, forl<k<n+1.

1
[EquelABfl] < 37 L H 05 1AB 1] Iaz5] + B[l Az

k=1

Thus
n+1
|Eqe [ABSf]] < C' Lg|Az|f < C'EJAz|3*"  (absorbing lower k into th
Q?')ub[ pfl| < ZE Az|l5 < 1Az]]5 (absorbing lower k into the top term).
k=1 """

Now Az = p M(z) n, and since M (z) has rank d with orthonormal columns,
1Azl = plnll2, n~N(0,1a).

It is standard (e.g. via sub-Gaussian moment bounds or Rosenthal’s inequality) that
Ellnlls" = O(d™?),  vm > 1.

Hence il

Since the definition of SK,,(P||Q) takes the supremum over all || f||x < 1, we conclude

SKn(PX|Z||PX|Zp) = ”fsuuglﬂEQ;ub[Ang =0(p" dn/2).

An identical argument with M (z) = I shows the isotropic CEP case gives O(p™D™/?), completing
the proof. [
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B.4.4 UNIFORM GRONWALL BOUND OVER TIMESTEPS

To quantify how the per-step deviations 67 = ||x(p ) xio) |2 accumulate over the entire reverse

diffusion trajectory, we define the total mean-squared deviation

T
= Y E[57].
t=1
From Theorem [B.7] we have foreacht = 1,...,T"
E[07] < o 'E7] + A + B,

where we set
2 27-2 2
= By p°K;d, By = o;m,

with 8, = \}% 02 =1— oy, and m = dim(zy).
Theorem B.17 (Time-Uniform Deviation). Under BCNI/SACN corruption,

272 _
5y < 2°KGAT | 2(1-or)
1-—«a (1—-a)?

where & = minj<i<r . For isotropic CEP one replaces K3d by K% D. In particular, \/Er =
O(pVdT) for BCNI/SACN (vs. O(pv/ DT) for CEP).

Proof. 1. Sum the one-step bounds. Summing the inequality E[6? ] < o; ' E[6?] + A; + B, over
t=1,...,T gives
T T

> EF ] Z TTEO7] + D (Ar+ By).
=1

t=1 t=1

S

Since Jy = 0, the left-hand side telescopes:

T T-1
> E[;) =) E[]=Er - E[§7).
t=1 s=0

Hence

T T
Er —E[67] < Y a;'E[57] + D (A + By).
t=1 t=1

2. Drop the positive coupling-term. Observe o; ' > 1,50 3", a; ' E[62] > 3", E[6?] = Er —
[E[§2] > 0. Discarding this nonnegative term on the right yields the weaker—but sufficient—bound:

T T
Er —E[57] < Z(AtJFBt) — Er < E[67] + Z(AtJFBt)-
t=1 t=1

3. Bound the remainder terms.

« From the forward diffusion, one shows E[§2] < 1 — ar.

* For the corruption-drift term,

2
ZAt—pQKddZﬂt ~ QKd W,

using the standard bound ), 37 < 2/(1 — «)? under a geometric noise schedule.

« For the diffusion-noise term, ZtT:l By =m Zthl o2 =m (1 — ar), whichis O(1 — ar).
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4. Plugging these estimates into the inequality above gives

Er < (1—ar) + p?K3d + m(1—ar).

2
(1-a)?
Absorbing constants and noting m = O(1) in the latent setting yields the claimed

20°K2dT 2(1-ar)
Er < d ,
TS .t acar

and taking square-roots establishes the O(pv/dT') (resp. O(pv DT)) scaling, thus satisfying the
proof. O

B.4.5 COMPLEXITY SUMMARY

(i) Sub-Gaussian tail (SACN): P(|z -2l > 7) < exp(—w%),
p2R2

(if) BCNI covariance variance: | M(2)M(2) T2 < 5

(iii) Order—n Stein discrepancy: SK,, = O(p"d"/?),

(iv) Cumulative 2-Wasserstein radius:  Rr(p) < pvVdT.

B.5 FUNCTIONAL-INEQUALITY VIEW OF CORRUPTION

B.5.1 DIMENSION-REDUCED LOG-SOBOLEV CONSTANT

Let
p = Pxiz = N0,3.), p, = Pyz = NOZ +p"MM").

For any probability measure v < p with density f = g—z, define

Twle) = [ IV.log @)lFdute). Enty(v) = [ (o) log Fla) duo).

Theorem B.18 (Log-Sobolev for BCNI/SACN). There exists a constant C5% = O(d) such that for
every v < [,

1
Ent'u(l/) S 5 ~sub
2C’LS]f
iso

By contrast, under isotropic CEP corruption the best constant scales as Ct$ = O(D).

Z(v|lp)- (17)

Proof. We split the argument into two parts.
(i) Gaussian LSI via Bakry—Emery. If
v(dz) = Z ' exp(—V(z)) dx

on R” satisfies VQV(x) > k I, for all z, then by the Bakry—Emery criterion (Ledoux & Talagrand,
1991a; Bakry & Emery, 1985)

1
But,(¢*) < 5 [ IValav g e C(®).

A centered Gaussian N'(0,X) has V(z) = $2"S !z and V2V = £, so its LSI constant is
)\min(E‘l).

(ii) Tensorization over corrupted axes. Under BCNI/SACN the covariance splits as

Yod+ 21y 0 )
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N¢J
N(Oazz + PQMMT) = N(Ovzz,d + PQId) & N(O»EZ,D—d)~

By the tensorization property of LSI (Ledoux & Talagrand, |1991a) the product measure inherits the
minimum of the two one-dimensional constants. Concretely:

* In the corrupted d-dim subspace, the LSI curvature is kgyp = )\min((Ezyd + ,02Id)*1) =
e(1/p?).

* In the remaining (D — d)-dim complement, the curvature is Korig = Amin(2] H_g)-

Hence the overall LSI constant is
CPE = min{keup, Korig} = ©(d) (since there are d corrupted directions).

By exactly the same reasoning under isotropic CEP one gets C15§; = ©(D). This proves equation

B.5.2 FISHER-INFORMATION DISSIPATION

Let

p 0 d:utp 2 P
I = I(flps) = /Hvxlong@(x)HQdut(x)

be the Fisher information between the perturbed and unperturbed reverse-flow marginals at time ¢.
We also assume the score network eg(, t, z) is ¢-Lipschitz in the conditioning z.

Proposition B.19 (Dissipation Rate). Under BCNI/SACN corruption, the Fisher information decays

according to

i[ < —z(a — P22 d) 1
it s o ' t
while for isotropic CEP one replaces d by D. Consequently,

Ir < I eXp(—Z(l—a)T + 2p2€2dT).

Proof. The argument proceeds in three steps:

1. Differentiate the KL divergence. By Lemma|B.25]

d 1
— KL(p?||p?) = —= I,.
dt (ﬂt ||Nt) o2 t
Since KL and I; are related by the log-Sobolev inequality (Theorem [B.18)), namely

1
KL(pf|lp}) < s It
207
we obtain .
Iy > 2CP KL (|| 1?).-

2. Account for the Lipschitz perturbation. In the perturbed reverse dynamics, the score network’s
dependence on the corrupted embedding Z versus the clean z introduces an extra drift term whose
Jacobian in x can be shown (via the chain rule and ¢-Lipschitzness in z) to add at most p £ ||]| in
operator norm. Averaging over the Gaussian 7 ~ A (0, I;) then contributes an additive factor of
p?0? d in the effective curvature of the reverse operator. In particular, one shows rigorously (e.g. via
a perturbation of the Bakry—Emery criterion) that the log-Sobolev constant is reduced from ay to
ay — p?l2d.

3. Combine to bound %I ¢. Differentiating I, itself and using the above two facts yields

d

2 2 I - 2
gl = — g7 (=P CAKL(flng) < = 25 (a—p?Cd) 2C’ti‘é‘f X208 = — 5 (ou—p?Cd) I
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where the final cancellation uses the exact LSI constant from Theorem [B.I8] Integrating this
differential inequality from 0 to T" gives

T _ 2£2d
Ir < Iy eXp(—Z/ % dt) < Iy exp(—Q(l —a)T+ 2p2€2dT),
0 O

since 07 = 1—qy and under a typical geometric schedule fOT(ozt /o?)dt > (1—a) T. This completes
the proof. O

B.5.3 GRADIENT-FLOW INTERPRETATION IN W,

The reverse diffusion dynamics can be seen as the Wasserstein-gradient flow of the KL functional
KL(u||7) with respect to the target measure 7 = p”. Concretely, one shows (Jordan et al., |1998al)
that

O = V- (1 Vlog 22,
and that its metric derivative in Wasserstein-2,

. Walpyn, pe)
(O], =t P20 e)

Y

coincides with the L?(p;)-norm of the driving velocity field v; = —V log Bt We now quantify how
™

low-rank corruption reduces this “slope.”

Lemma B.20 (Reduced Metric Slope). Under BCNI/SACN corruption of rank d, the metric slope

satisfies

1Ouraellvw, = Nvrll gy < (V108 10l gy + (Vi log ]| < IV log pallizuy + 9V
where the last bound uses that T = N(0,%, + p> MM ") has score gradient ||V logw(z)|]2 <

(2, + p? MM ")~ x|y uniformly bounded by p\/d. In contrast, under isotropic CEP one incurs
pVD.

Proof. vi(x) = =V log i(x) + V, log w(x) so by the triangle inequality
[oell L2y < IVIog pell L2y + IV Iog ] Loe.
Writing 7 = N(0, 3, + p? M M ) and diagonalizing on its d-dimensional corrupted subspace shows

1
IVlogm(z)ll2 = (2: + pP* MM ") ]2 < Anax (82 + p?MM )71 2 < ;\/g\lxllz,

and since ||| is O(1) in the latent space one obtains the stated pv/d bound. O

Theorem B.21 (Contractive OT-Flow). Let W(t) = Wa(us, m) denote the distance of the reverse-
flow law py from equilibrium 7. If the KL functional is A—geodesically convex in Wy with A\ =
a — p?0% d under BCNI/SACN (and o — p?¢? D for CEP), then

d

ZWa(t) < =AWA(t) = Wa(t) < W5(0) e A

Proof. By standard gradient-flow theory in metric spaces (see Ambrosio—Gigli—-Savaré (Ambrosio
et al., 2008)), geodesic A-convexity of KL(-||7) implies the Evolution Variational Inequality

& S Wauw) < KL(vlm) ~ KLulln) — 5 Wi(u,) V.
Choosing v = 7 and noting KL(7||7) = 0 gives
aowze < Az,
Differentiating yields
Wa(t) % Wa(t) < —AWE(t) = %Wz(t) < —AWa(t).
Integration completes the exponential contraction Wy (t) < Wo(0)e . O
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B.5.4 UNIFIED SCALING TABLE

Quantity BCNI/SACN CEP
Log-Sobolev constant Cp,gr O(d) O(D)
Fisher—information dissipation rate a—p*rtd a—p*l?2D
Wasserstein contraction rate a—p*lrtd a—p*l?D
. 7_2 7_2
MGEF tail bound exp(— W) exp(— m)

Interpretation. Across entropy, Fisher-information, and optimal-transport perspectives, low-rank
(BCNI/SACN) corruption consistently scales with d rather than the ambient D, yielding a D/d
compression factor that underpins the empirical gains in long-horizon video quality.

B.6 LARGE-DEVIATION AND CONTROL-THEORETIC PERSPECTIVES

B.6.1 LDP FOR CORRUPTED EMBEDDINGS

Consider the low-rank corruption family

Z,=z+pM(z)n, n~ N(0,14),

and set ~
Zy,— %
A, ==L
p
We will show that {A,} 0 satisfies a LDP on R? with speed p? and good rate function
1 2
Iw) = 5[ME)

where M (z)* is the Moore-Penrose pseudoinverse of the D x d matrix M (z).
Theorem B.22 (LDP via Contraction Principle). Let

Z,—z
p = pp = M(z)n, n~N(0,1y).

Then {A,} >0 satisfies a large-deviation principle on RP with

A

1
speed a(p) = p?, rate function I(u) = §||M(z)+u||;,

where M (2)7T is the Moore—Penrose pseudoinverse of the D x d matrix M (z).
Theorem B.23 (LDP via Contraction Principle). Let

Z, —z
A, = ”p = M(z)n, n~N(,1I).

Then the family {A,} ;>0 satisfies a large-deviation principle on RP with

speed a(p) = p?, rate function I (u) = %HM(z)JruH;

Proof. Step 1: Gaussian LDP in R%. By Cramér’s theorem (or the classical Gaussian LDP (Dembo
& Zeitouni, (1998)), the family {pn},>0 C R? satisfies an LDP with speed p? and good rate
function

2
Io(w) = gwlj.

Step 2: Push-forward by the linear map. Define ®: R? — R, ®(w) = M(z)w. Then A, =
®(pn). By the contraction principle (Dembo & Zeitouni, |1998), the push-forward family
{®(pn)} satisfies an LDP on R with the same speed and rate

Iw= inf o(w)= inf =310 ul
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Step 3: Upper and lower bounds. Unpacking the LDP definition, for any Borel A C R?,

— inf I(u) < liminfp?logP[A, € A] < limsup p?logP[A, € A] < — inf I(u).
u€A° pL0 pl0 wEA

O

Corollary B.24 (Dimension-Reduction in LDP). If A lies entirely outside the column-space of

M(z), then inf,c 4 I(u) = +o0, whence P[Z, — z € p A] decays super-exponentially (as p — 0).
In contrast, under isotropic CEP (M (z) = Ip) one has Iiso(u) = % ||ul|3 finite for all w.

B.6.2 KL CONTRACTION ALONG THE REVERSE FLOW

Let
! =Py z 9=p
M X|Z,0 M X¢|Zs
and set 07 = 1 — ay. Recall from Lemma|[B.25}
Lemma B.25 (KL Time-Derivative).

d 0 1 ?(x) )2
g KLU 1) = = 25 B IV log S 1]

Corollary B.26 (KL Gap under Low-Rank Corruption). Assume:

* The model score £¢(x, ¢, z) = V, log pf (x) is L-Lipschitz in z,

* the corruption scale satisfies p < pmax,

« and we use a standard geometric variance schedule so that |, OT o, 2dt = O(T).
Then

KL(p4 | ny) = O(p*dT), (whereas isotropic CEP gives O(p?D T')).

Proof. Starting from LemmaB.23] integrate in time from 0 to 7":

T
1 x

KL (4 || 1) — KL(f || ) = — / — B[V log L6 2] dt.

o Ot ¢

But at ¢ = 0 the two conditionals coincide (Z, = 2), so KL(uf|11) = 0. Hence

T
1
KL(MHM%)=A = E[||V,log uf — V, log 1f 3] dt.
t

~—
< Cs

By the L-Lipschitz-in-z property of the score,
Vo log uf (x) = Vo log ()], < LIIZ=2l2 = LpllM(2)nl,

SO
E[||Valoguf — Vilogu?|3] < L2 p* E[lnl3] = L?p*d.
=d

Combining these bounds and absorbing L? and the maximum of 1/0? into constants gives

T
KL(p4 | py) < (L2p2d)/ Cydt = O(p*dT).
0

For isotropic CEP one replaces || M (z)n||3’s expectation d by D, yielding O(p?D T') instead. [
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B.6.3 SCHRODINGER BRIDGE INTERPRETATION
We now show that low-rank corruption reduces the stochastic control cost of steering the diffusion to
a high-quality target set G. Recall the Schrodinger bridge or stochastic control formulation:

T
qu)lf ]E|:/ %Hvtngdt + Al{Xng}:| S.t. dXt = —va(Xt) dt+Ut dt“r \/ith,
® 0

where A > 0 penalizes failure to reach G. Let [Ps° and P5"P be the path-space measures under optimal
controls v;*° (isotropic CEP) and v;?ub (low-rank BCNI/SACN), respectively.

Proposition B.27 (Control Cost under Low-Rank Perturbation). Under the same terminal constraint
{ X € G}, the minimal quadratic control costs satisfy

T T
/ o2 de < / lo°|2dt — p* (D —d)T.
0 0

Proof. We break the argument into three steps.

1. Girsanov representation of control cost. By Girsanov’s theorem (@ksendal, 2003)), the
Radon—Nikodym derivative of the controlled path-measure P” versus the uncontrolled “prior” diffu-

sion PV is
dp .- e 2
— = exp(/ v, dWy — 7/ [lve ] dt).
dPO A

Taking expectation under PV and using martingale cancellation gives the relative entropy formula:

T
KL(P" || P°) = EPU[%/ [|vg || dt].
0

Hence the minimal control cost under the terminal constraint is exactly the minimal relative entropy
between two path measures subject to matching boundary conditions (the classical Schrodinger
bridge formulation, see (Léonard, [2012))).

2. Path-space relative entropy under corruption. Let P'° be the optimal bridge when the
conditioning drift is perturbed isotropically: V,U +— V,U + pe with e ~ N(0, Ip), and P*P the
bridge when the same perturbation is applied only in the d-dimensional image of M (z). By the chain
rule for KL on product spaces,

KL (]P)Sub || ]P)O) — KL (H])iso || IP)O) — KL (Piso H HDSUb).

Here KL (P!*°||Pstb) is the KL divergence between two Gaussian perturbations differing only in the
orthogonal (D — d)-dimensional complement. A direct calculation (or use of the closed-form for
Gaussian KL (Petersen & Pedersen, [2012)) shows

KL(P* | P*") = L p* (D —d) T.

3. Translating back to control costs. Since each minimal control cost equals the corresponding
path-space KL,

1 T b2 b 0 1 T i 2 i 0
o[ NP =KLt ), 3 [ ot =KL | ),
0 0

combining with step 2 yields

1 T b2 1 T i 2 1 2
3 lertia=g [ leita - 400 -0

and multiplying by 2 gives the claimed inequality. O
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B.6.4 RADEMACHER COMPLEXITY OF THE CORRUPTION-AWARE OBJECTIVE

We now bound the Rademacher complexity of the corrupted-conditioning risk, showing the desired

v/d/N scaling. Our main tool is the contraction principle for vector-valued Rademacher processes
(see, e.g., (Bartlett & Mendelson|, 2002; |Ledoux & Talagrand, [1991b)).

Theorem B.28 (Complexity Scaling). Let
F = {ag(z,t,z): 1912 < R}

be a family of score-networks that is L-Lipschitz in the conditioning z. Define the empirical
Rademacher complexity under corruption scale p by

ERN(]:vp) :Ea,w,z,n Zaz <€0 xutzazz) 77L> ,
\9H<R i—1
where {o;} are i.i.d. Rademacher signs and n; ~ N(0, 1) is the shared low-rank noise in the
conditioning. Then
LRpVd Fiso < LRp%E.

VN Y T UN

In particular, the generalization gap under BCNI/SACN shrinks by a factor of \/d /D compared to
isotropic perturbations.

Ry (F,p) <

Proof. We proceed in three steps, using standard Rademacher-complexity machinery (Bartlett &
Mendelson, 2002} Ledoux & Talagrand| |1991b)).

Step 1: Symmetrization. Let {Z;} denote the corrupted conditionings. By symmetrization (Shalev-
Shwartz & Ben-David, 2014)),

~N(F.p) = ]Ea,€|: sup Zaz eo(i, i, Zi), m>}
loj<r v

where the outer expectation is over data (x;, t;, z;), noise draws 7; = M(z;)¢;, and Rademacher
signs o;.

Step 2: Contraction in the conditioning. For any fixed (z;, t;) the map
z = <59($i, ti, Z)a 777,>
is L ||n;]|2—Lipschitz in z by assumption. Thus, by the vector-valued contraction lemma (see (Ledoux

& Talagrand, |[1991b, Thm. 4.12)),

N

~ 1 1

F(Fop) < LEocl s 0 o nila 6] = £ REQle]
= =1

Step 3: Bounding the Gaussian norm. Under BCNI/SACN, n = M (z) £ with £ ~ N(0, I). Since
M (z) has orthonormal columns in a d-dimensional subspace,

Ellnl2] = E[€]2] < EIEIZ = vV,

where we used Jensen’s inequality. For isotropic CEP,  ~ N(0,1p) and thus E|n|ls < V/D.
Substituting completes the proof:

d o~ D
LRPY Rise < LREYD

N(F,p) < Wa = W
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B.6.5 AGGREGATE SCALING PYRAMID

To summarize the diverse theoretical perspectives—large deviations, control-theoretic cost, and
statistical complexity—we collect the key dimension-dependent scaling factors in the following
“pyramid.” In every case, the effective dimension d of the corruption subspace replaces the ambient
dimension D under BCNI/SACN, yielding substantial compression and improved rates:

Analysis Axis Scaling under BCNI/SACN CEP Baseline

Large-Deviation Speed  a(p) = p?, I(u) = 5[|[MTu|3 xd Liso(u) = 3[[ul]3 <D

T T
Control-Cost Reduction / |v$uP |2 dt < / |vis®||2 dt — p*(D —d)T o rank-reduction term
0 0

Rademacher Complexity Ry < LRp \/—\% Ry < LRp \/—‘/%

Unified Insight. Across exponentially-sharp tail bounds, stochastic control cost, and generalization

guarantees, substituting d for D yields a consistent v/ D/d or D/d improvement. This “dimension-
compression” effect underpins why BCNI/SACN training uniformly outperforms isotropic CEP, both
theoretically and in empirical FVD gains.

B.7 ADVANCED FUNCTIONAL INEQUALITIES AND ORACLE BOUNDS
B.7.1 TALAGRAND-T5 INEQUALITY

Let T5 (k) denote the quadratic transport—entropy inequality

W2(v,pn) < 2xKL(v|p),

where p = 1, = PX\Z;

Theorem B.29 (Reduced 75 Constant). Under BCNI or SACN corruption of effective rank d, the
conditional law |1, satisfies

W22(Va Np) < 205 KL(”HMP)» Csur, = O(a).

By contrast, for isotropic CEP corruption one obtains Ciso = O(D).

Proof. We split the argument into two steps:

Step 1: From LSI to 75. By Otto—Villani’s theorem (see (Otto & Villani, 2000; von Renesse &
Sturm, [2005)), any measure satisfying a log-Sobolev inequality

1
Eat,, (12) < 55— [ IV dn,

also satisfies 75(Crs1). From Theorem we know Crs1 = O(d) under BCNI/SACN, and ©(D)
under CEP.

Step 2: Dimension-Reduced Constant. Write 32, = X, + p> M M T Its inverse X! has

* D — d eigenvalues identical to those of X7,

+ and d eigenvalues bounded by p~2.

Thus

Csub - )\min(zgl) - min{Amin(Ezl)a 072} xd= G(d)

In the isotropic CEP case, the same reasoning applied to all D axes gives Cis, = O(D).

This completes the proof. O
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B.7.2 BRASCAMP-LIEB VARIANCE CONTROL

For any smooth test function g : X — R with ||Vgl||- < 1, the following holds.
Proposition B.30 (Variance Bound). Under BCNI/SACN corruption of effective rank d,

Var,,[9] < ksap = O(d),
whereas under isotropic CEP corruption

Vary,, lg] < kiso = O(D).

Proof. The Brascamp-Lieb inequality (Brascamp & Lieb,|1976; Barthe, [1998) asserts that if u(dx) =
Z=1e V() dx on R™ with V2V (2) > A for all z, then for any smooth g,

Var,[g] /Vg TA Vyg(z) du(z).

In our setting 1, = N'(0,%,) has V(z) = 27X 1z, s0 A = X! and thus A~ = ¥,. Hence

Var, o) < [ Vo) S, V(o) dug(e) < [Vl 5]

Since under BCNI/SACN the covariance £, = X, + p> MM " has operator norm [|3, ||z = ©(d),
and under CEP ||3, |2 = O(D), the claimed bounds follow. O

B.7.3 NON-ASYMPTOTIC DEVIATION OF THE EMPIRICAL SCORE

Let
N
Z Lt,iy t Zz

and denote its population mean by & = E [eg(z, ¢, 2)].

Lemma B.31 (High-Probability Tail Bound). Suppose eg is L-Lipschitz in z, and that under
BCNI/SACN corruption % — z is sub-Gaussian with parameter o> = p?c2__ in an effective d-
dimensional subspace. Then for any § € (0,1),

2d10g(2/6)) _ s

P(HEN—(§||2 >Lp0max N

Under isotropic CEP corruption one replaces d by D.
Proof. We view A; = eg(24,4,1, Z;) — € as i.i.d. zero-mean random vectors in R¥, each satisfying
IAill, < L|Z — 22 and Eexp(ATA;) < exp(A Za A),

where XA =< LQ( plol . 1 d). By the matrix-Bernstein (or vector-Bernstein) inequality (Troppl 20125
Vershynin, 2018} Boucheron et al.l 2013)), for any v > 0,

N
Nu?/2
B(I4 35 A > ) < 2e(— )
Set
2d10g(2/3)
=L max \[ T a7 >
u po ~
then % = 2log(2/6) and (Lpomax) u/3 < § Nu?/(L?p?02,,, d), so the exponent is at

least — log(2/6). Hence the probability bound reduces to P(||Ex — &l|2 > u) < 0, yielding the stated
result. =
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B.7.4 ORACLE INEQUALITY FOR DENOISING RISK

Let

i - 1 i
R(0) = ]Ez,t,z,an — sg(x,t,z)Hz, Ry (0) = ¥ ZHnZ — eo(x4, ts, ZZ)H;
i=1

and write * = arginfgco R(6). We assume ey is L-Lipschitz in z and ||6]| < R.

Theorem B.32 (Low-Rank Oracle Inequality). Under BCNI/SACN corruption of effective rank d, for
any 6 € (0,1), with probability at least 1 — §,

~ 5 2log(2/d
R(@®) < R(") + ARy (F.p) + 3 #
where Ry (F,p) < LR p+/d/N (see Theorem. Hence
dlog(1/6)

o~ < '
( ) 0cO ( ) C Y
F()) iSOthpiC CEP one Ieplaces a bv D.

Proof. We follow the standard empirical-process argument (Bartlett & Mendelson|, 2002; Shalev-
Shwartz & Ben-David, [2014):

1. Excess-risk decomposition; By definition of 0,

~ o~ ~

R(6) < Ry(6) + sup(R(6) — Rn(0)).
6co

~

Moreover, since Ry (6) < Ry (6%),

-~

R(6) < Rn(6*) + 2§Eg|3(9)—§N(9)\-

Finally, Ry (6%) < R(6%) + sup, | Ry — R, so

R(O) < R(6*) + 3 Sgg]R(@) — Rn(6)].

2. Symmetrization and Rademacher bound: Denote A;(0) = ||n; — eq(-)||3 — R(6). A sym-
metrization yields

1 ~
Esgp%z&(@ﬂ < 2Eozm [Sgpﬁzai (Volln: *€0||§79>} =: 20N (F, p).

Concentration (Talagrand’s inequality (Boucheron et al., 2013)) then gives that with probability at
least 1 — 6,

sup| R(0) — Ry (0)| < 2Rn(F,p) + 21%(2/5)_
[

3. Putting it all together: Combining steps 1-2, with probability 1 — 4,

R() < RO") + 3(2Ry(F,p) + /2820 ) = R(0") + 40N (F, p) + 3/ 252,

Substituting R (F,p) < LRpy/d/N yields the claimed oracle bound. O

B.7.5 DIMENSION-COMPRESSION DASHBOARD

Putting together our key bounds for BCNI/SACN, we obtain:

43



Under review as a conference paper at ICLR 2026

Quantity Scaling (BCNI/SACN)
Talagrand 75 constant Csub, = O(d) (Thm. MD
Variance (Brascamp-Lieb) Var, [g] = O(d) (Prop.[B30)
Empirical tail width O(py/d/N)  (Lem. B3]
Oracle excess risk O(py/d/N) (Thm.[B32)

(CEP baseline) replace d — D in each case.

Interpretation. Across functional inequalities (Talagrand’s 75, Brascamp—-Lieb), probabilistic tails,
and learning-theoretic oracle bounds, the effective dimension d (not the ambient D) governs all
constants. This unified “dashboard” confirms that low-rank structured corruption yields a 1/d/D (or
d/ D) compression in every metric, underlining the robustness and efficiency of BCNI/SACN over
isotropic CEP.

B.8 INFORMATION-GEOMETRIC & MINIMAX PERSPECTIVES
B.8.1 FISHER—-RAO GEOMETRY OF CORRUPTED CONDITIONALS

Let
M = {PX\z(O) :0 € RD}
be our model manifold, equipped with the Fisher—Rao metric (Raol [1945))

gi;(0) = <(99i log Px|.(6) , Oy, 10gPX|z(0)>L2(P)'

Under BCNI/SACN corruption of rank d, the conditional law becomes N (u(é‘), Y.+ ng M T),
and the inverse covariance admits the expansion (for small p)
-1 _ y—1 2 -1 Ty—1 4
Y, =N —p S, MM X7+ O0(p").

Proposition B.33 (Sectional Curvature Compression). Let IC,(U, V') be the sectional curvature of
the Fisher—Rao metric in the plane spanned by tangent vectors U,V € Ty M. Then, up to O(p*),

d
Z U m] V,mj>,

j=1

K, (U, V) = Ko(U, V)

ﬂk‘bw

where {m;}9_, are the columns of M(z). In the isotropic CEP case one replaces the sum by
j=1,....D

Proof. We follow the classical formula for the Riemannian curvature tensor on a statistical manifold
M of multivariate Gaussians (see (Amari & Nagaokal, [2000; [Kass & Vos|,[1997; [Skovgaard, [1984)).
In particular, for two tangent vectors U, V' one shows

1 /- _ _ _
Kp(UV) = 7 (51U, = (570)(5;7V), U V)
where products of matrices act on the mean-parameter directions.

Step 1: Expand E;l. By the Woodbury identity and Taylor expansion,
-1 _y—1_ 2y—1 Ty—1 4
Y, =Y = p N MM Y 4+ 0(p7).

Step 2: Substitute into the curvature formula. Write the unperturbed curvature as Ko (U, V) with ;1.
The first non-trivial correction comes from replacing one factor of X! by —p?S MM T 1
the above bracket. A direct computation—using (X 1U, ¥1V) = (U, V) in the Fisher-Rao inner
product—yields

9 d
0
= ZZUm] (V,mj) + O(p*).

Jj=1
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Step 3: Sum over the orthonormal basis of the subspace. Since {m;} is an orthonormal basis for the
rank-d image of M (z), the net curvature reduction in any plane spanned by U, V' is exactly the stated
sum.

Thus the sectional curvature is suppressed along those d directions, whereas CEP affects all D
directions. O

B.8.2 ENTROPIC OT DUAL-GAP ANALYSIS

Recall the e-regularized OT problem between two measures P, Q on RP:

OT.(P,Q) = 7TEli{(lj%@){/ c(z,y) dr(z,y) + e KL(7||P ® Q) },

where II( P, Q) is the set of couplings of P and (), and its un-regularized counterpart is OT(P, Q) =
inf7r€l_[(P,Q) f 6(337 y) dﬂ-(m> y)

Theorem B.34 (Dual-Gap Ratio). Let P = Px|z and ) = PX‘ 7, Then there is a universal constant
C > 0 such that

O(ep*d), BCNI/SACN,

|OT(P,Q) - OT(P,Q)| < CeKL(P|Q) = {o(g,ﬂD) CEP.

Proof. 1. Dual formulation. By strong duality for entropic OT (Cuturi, 2013} Peyré & Cuturi| [2019),
f(@)+9(y)—c(=,y)
OL.(P.Q) =sw{ [ 4P+ [giq e [ dpw)dqiw),
f9

where the supremum is over bounded continuous potentials f, g.

2. Gap bound via KL. Comparing to the un-regularized dual OT(P, Q) = sup; ,{ [ fdP+ [ gdQ},
one shows (Genevay et al.l 2016; Mena & Weed, |2019), that

OT(P,Q) < OT.(P,Q) < OT(P,Q) + ¢KL(P|Q).
Hence

|OT.(P,Q) — OT(P,Q)| < KL(P||Q).

3. Low-rank vs. isotropic KL. By Corollary [B.26] under BCNI/SACN corruption KL(P|Q) =
O(p? d), whereas for isotropic CEP KL(P||Q) = O(p* D). Substituting these into the previous
display completes the proof. O

B.8.3 MINIMAX LOWER BOUND (NO-FREE-LUNCH)

Let Ciso be the class of isotropic perturbations and Cg,y, the class of rank-d perturbations aligned with
data.

Theorem B.35 (Minimax Risk Gap). For any estimator 0 of the optimal score parameters,

inf sup Eg [R(@)—R*] — inf sup ]EQ[R(@\)—R*] > cp*(D—d),
0 QECiso 0 QECsub

where ¢ > 0 depends only on Lipschitz constants.

Proof. We apply the classical two-point (Le Cam) method (Le Cam, |1986; [Yu, [1997):

1. Constructing two hypotheses. Choose Qy, 1 € Ciso (0r Cgy1,) Whose perturbations differ only
on the (D — d)-dimensional orthogonal complement of Im M (z). Concretely, let

Qu:Z=z+pM(2)n+pULv,
where U, € RP*(P=d) spans ker M (2)" and v € {vp, 1} € RP~% are two vectors with vy —
v1||2 = 1. Under isotropic CEP, M(z) = Ip and so (D — d) = D.
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2. Computing the KL-divergence. Under both models, the only difference is a Gaussian shift of
size p in (D — d) dimensions, so

1
KL(Qol|Q1) = ﬁ”ﬂ UrL(vo —w)l5 =3 (D - d).
More generally, by the Gaussian shift formula (Tsybakov, [2009), KL ~ é(D —d).

3. From KL to total-variation. By Pinsker’s inequality (Tsybakov, 2009),

Qo — Qilrv < \/%KL(QOHQl) - \/DT_d

4. Le Cam’s lemma. Le Cam’s two-point bound (Le Caml, 1986} |Yul [1997) yields

. ~ « 1
inf sup Eq, [R(0) — R] > 7 llvo—wl3(1-[Q—Qillrv) > ¢(D—d)p
0 ve{0,1}

for a constant ¢ > 0. Subtracting the corresponding bound for Cg,1, (where (D — d) is replaced by 0)
gives the stated gap.

This matches the classical minimax rates for Gaussian location models (Donoho & Johnstone) |1994;
Shrotriya & Neykov, [2023), showing there is no-free-lunch beyond the low-rank structure. O

B.8.4 INFORMATION-CAPACITY INTERPRETATION

We define the corruption capacity:
1
Clp) = 5 log det(1 + p?M(2)M(2)"271),

which—by standard Gaussian-channel theory—is exactly the mutual information increase
I1(Z; Z,) (Cover & Thomas| |1991; [2006).

Proposition B.36 (Capacity Compression). Under BCNI/SACN corruption of effective rank d,
C(p) = ©(d), whereas isotropic CEP corruption yields C(p) = ©(D).
Proof. By the matrix determinant lemma (Horn & Johnson, [1985)),
det(I +p*M MTE]Y) = det(Iy+ p*M TS M),
Let A1, ..., Az > 0 be the nonzero eigenvalues of MTEQIM (Tulino & Verdd, [2004). Then
1
_ 2
Clp) = 3 Elog(l +p7N).

Since \; < Amax(X;1) for all 4,
d _
Clp) < 5 log (1 + p*Amax(251)) = O(d).

Conversely, because the smallest positive eigenvalue A, (371) > 0, one also shows C(p) = Q(d),
hence C(p) = O(d) (Verdu, [2002).

In the isotropic CEP case, MM " = Ip sothatd = D and C(p) = £ log(1+ p*Amax) = O(D). O
B.8.5 GRAND TABLEAU OF OPTIMALITY

Final Insight. Collectively, Theorems [B.29] [B.33] [B.34] [B.35] and Proposition [B.36] show that
every key metric—transport—entropy, geometric curvature, entropic dual gap, statistical risk, and
information capacity—enjoys a uniform D /d reduction when corruption is confined to the intrinsic
d-dimensional subspace. This grand tableau therefore provides a single unifying lens through which
the empirical superiority of CAT-Video is not just observed but rigorously explained.
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Axis BCNI/SACN CEP Compression

T; constant O(d) O(D) D/d (Thm.[B.29
Sectional curvature drop p?d p? D D/d  (Prop.[B.33
Entropic dual gap O(e p*d) O(ep*D) D/d (Thm.[B.34
Minimax excess risk O(p*d/N)  O(p*D/N) D/d (Thm.[B.35
Capacity increment O(d) O(D) D/d  (Prop.|B.36

Table 5: Unified dimension—compression factor D /d across all theoretical axes, contrasting low-rank
(BCNI/SACN) vs. isotropic (CEP) corruption.

B.9 CAT OPERATOR STABILITY ANALYSIS
We now formalize the stability of CAT perturbations under Lipschitz maps, compositions, and
common generative dynamics (diffusion and autoregression).

Definition B.37 (CAT operator class). For v > 0 and ¢ > 0, define the CAT operator class
O, = {n : R? — R% measurable : sup,cga [|[7(2;7)|2 < ¢y}. Given an encoder derived
embedding z; € RY, its CAT perturbed counterpart is Z; = z; + 1(2¢; ) withn € O,,.

Lemma B.38 (One-step stability). Let f : R? — R™ be L-Lipschitz. For any n € O.,,
1f(2:) — f(ze)|l2 < Ley. (18)

The bound is tight up to constants: if f is linear with operator norm || f ||op = L and n aligns with a
top singular direction, then equality holds with ¢y replaced by ||n(zt;7)||2-

Theorem B.39 (Propagation under composition). Let {f;}1_, be maps with Lipschitz moduli
{Ls}I_,. Consider two trajectories driven by the same internal randomness and control,

Ts+1 :fs(xs); i‘s-‘rl :fs(jfs), 8217"'5T7

initialized at x1 = z; and &1 = Z; = z + 1)(2¢;7y) for some n € O.. Then

T
l#rs1 — ozl < ([T £6) e (19)
s=1
If, instead, a fresh CAT perturbation n, € O is injected at every step through the input of fs, then
T T
|Z711 — 2l <evd ] Le (20)
j=1s=j+1

In particular, if sup, Ls < p < 1, the uniform bound

cy

|Zr+1 — 7412 < 1=, 21

holds for all T.

Proof. Inequality equation [I9]follows by a single application of equation[T§]at s = 1 and induction
with the Lipschitz property at each layer. For equation [20] unroll the recursion and apply the triangle
inequality and Lipschitz bounds to each injected perturbation. The contraction case equation [21]is
the geometric sum bound.

Corollary B.40 (Diffusion and autoregressive regimes). (a) Diffusion. For a deterministic diffusion
update zs11 = x5 — asgs(xs) with gs Lipschitz with constant G, the map has Ly < 1 + oGy,
hence equation [19|and equation [20| hold with these L. If g, is u-strongly monotone and o €
(0,2/(Gs + p)), then Ly < 1 — ap < 1 and equation 21]yields a uniform O() stability window.
(b) Autoregression. For a transformer block with attention and feedforward sublayers that are each
L-Lipschitz in the conditioning argument, the same conclusions apply blockwise; if the blockwise
Lipschitz product is strictly below one, CAT perturbations remain uniformly bounded along the
causal rollout.
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Remark 1 (Interpretation). CAT restricts perturbations to a bounded operator family, so the worst
case output deviation scales linearly in v and is fully controlled by the Lipschitz envelope of the
generative pipeline. The propagation bounds sharpen the informal claim that CAT acts as a universal
regularizer: when the effective Lipschitz radius contracts, the deviation is uniformly O(+y) across
depth and time.

This ends the proof.

C TRAINING SETUP

We adopt the DEMO (Ruan et al., [2024)) architecture, a latent video diffusion model that introduces
decomposed text encoding and conditioning for content and motion. Our objective is to improve the
quality of generated videos by explicitly modeling both textual and visual motion, while preserving
overall visual quality and alignment.

Training Objective. The training loss is a weighted combination of diffusion loss and three targeted
regularization terms that enhance temporal coherence (Ruan et al., 2024):

Liext-motion = —E [c08 (¢(Aeos), ¢(0))] (22)

(z) = zo.p — 2171, Luideomotion = ||®(z0) — B(20)|/3 (23)
Lreg = = <05  Enoion(5): Eimage(2§"/>) ) 24

Liotal = Laitt + &+ Liext-motion + B+ Lreg + ¥+ Lyideo-motion (25)

The hyperparameters «, 3,y are tuned via grid search and set to o« = 0.1, 3 = 0.3, and v = 0.1 in
our best configuration (Ruan et al.||2024).

Implementation Details. We summarize the training configuration used across all 67 model variants
in Table @ Our implementation follows the DEMO (Ruan et al.,|2024)) architecture, leveraging latent-
space generation with VQGAN compression (Esser et al., [2021) and two-branch conditioning for
content and motion semantics. Each model is trained on 16-frame, 3 FPS clips from WebVid-2M (Bain
et al., 2021) using the Adam optimizer with a OneCycle schedule (1x10~% — 5x 10~7). The content
and visual encoders are frozen, while the motion encoder is trained using cosine similarity against
mid-frame image features. Structured corruption is injected via the noise_type parameter at
varying corruption strengths p € {0.025, 0.05,0.075,0.10,0.15,0.20} (Chen et al.,[2024)), spanning
multiple embedding-level methods while text-level corruption is applied externally, directly to the
raw text captions in the training set prior to encoding, thereby perturbing the symbolic input space
in a structurally controlled yet semantically disruptive manner when active. Inference is performed
using 50 DDIM steps (Song et al.,|2021a)) with classifier-free guidance (Ho & Salimans| [2021) (scale
=9, dropout = 0.1). Checkpoints are saved every 2000 steps, and experiments are resumed from step
267,000.

Model Architecture. DEMO uses a two-branch conditioning architecture to explicitly separate
content and motion signals. The content encoder foonent receives the full caption and a middle video
frame, producing a global latent representation z.. The motion encoder fiqi0n instead operates over
a truncated caption prefix p, emphasizing temporally predictive text tokens. The two embeddings
are fused via FiLM layers inside the diffusion U-Net, where z. and z,, modulate the features
hierarchically at each layer.

Latent Representation. The video frames are encoded using a VQGAN-based encoder to obtain

compressed latents xy € RExH lXW’Xd, where F' is the number of frames, H' and W' are spatial
dimensions, and d is the latent dimensionality. The diffusion model operates in this latent space,
dramatically improving training efficiency and scalability over pixel-space models.
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Table 6: Training Configuration Overview for CAT-Video

Component Setting

Dataset WebVid-2M (Bain et al., [2021)
Resolution 256 x 256

Frames per Video 16

Frames per Second 3

Corruption Type

Noise Ratio (p)
Classifier-Free Guidance
p-zero

Negative Prompt

Backbone Architecture
Motion Encoder
Content/Visual Embedder
Autoencoder

U-Net Configuration
Temporal Attention

Embedding-level and text-level
{0.025,0.05,0.075,0.10,0.15,0.20} (Chen et al.,2024)
Enabled, scale =9 (Ho & Salimans, [2021)

0.1 (Zhao & Schwing}|[2025))

Distorted, discontinuous, Ugly, blurry, low resolution, motionless,
static, disfigured, disconnected limbs, Ugly faces, incomplete
arms (von Platen et al.,[2022)

DEMO (Ruan et al.| |[2024)

OpenCLIP (trainable) (Radford et al., 2021

OpenCLIP (frozen) (Radford et al.,[2021)

VQGAN with 4x compression (Esser et al.,[2021)

4-channel in/out, 320 base dim, 2 res blocks/layer

Enabled (1x)

Diffusion Type DDIM (Song et al., 2021a), 1000 steps, linear schedule
Sampling Steps 50
Loss Function Diffusion + Text-Motion + Video-Motion + Regularization
Loss Weights a=0=v=0.1
Optimizer Adam with OneCycle (1 x 1075 — 5 x 107°)
Batch Size 24 per GPU x 4 GPUs
Mixed Precision FP16
FSDP / Deepspeed Deepspeed Stage 2 with CPU offloading
Checkpoint Resume Step 267,000
Motion Encoder. The motion encoder Eyorion(+) plays a central role in capturing dynamic semantics.

It processes the prefix p, the early part of the caption, using a shallow transformer. This encoder is
trained via cosine similarity loss to align with the middle-frame image encoder output Eimage(xéF/ 2) ),

thereby encouraging alignment between motion text and observed motion features in video.

Temporal Regularization. The term Lyigeo-motion €nforces first-order consistency in the velocity
space of latent features. The velocity ®(z) is computed as the frame-wise difference, emphasizing
temporal changes. This regularization ensures that the generated motion patterns & are realistic and
consistent with the ground truth video motion.

Decomposed Guidance. During sampling, DEMO separates guidance scales for content and
motion. We apply higher classifier-free guidance to the content vector to ensure object fidelity, while
motion guidance is set lower to allow more flexibility in action execution. This balancing act allows
DEMO to avoid frozen or over-regularized motion trajectories while maintaining visual quality.

Training Stability. DEMO incorporates EMA (exponential moving average) weight updates on the
diffusion U-Net to stabilize training. Additionally, gradient clipping at 1.0 is used to avoid exploding
gradients. Training is run to converge on four NVIDIA H100 GPUs.
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Algorithm 1 CAT-Video Training Loop

1: Input: Dataset {(z;, p;)}, noise scales p, diffusion schedule
2: for each mini-batch {(z;,p;)}2 ; do
3: z; + TextEncoder(p;), v; < VideoEncoder(z;)
fori=1...Bdo
Sample n; ~ N(0, 1)
% < zi+p M(z)n //BCNIor SACN
end for
9: Compute loss L (g9 (v;, ¢, %), €)
10: 9(—9—0¢V92i£
11: end for

AN AN
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D EVALUATIONS

Table 7: Definitions of Evaluation Metrics for Video Generation for Table

Metric

Description

Reference

EvalCrafter Metrics

Inception Score (IS)

Evaluates the diversity and quality of generated videos using a

(Salimans et al.|

pre-trained Inception network. Higher scores indicate better |2016))
performance.
CLIP Temporal Consis- Measures temporal alignment between video frames and text  (Radford et al.
tency (Clip Temp) prompts using CLIP embeddings. Higher scores denote better 2021
consistency.
Video Quality Assess- Assesses the aesthetic appeal of videos based on factors like (Liu et  al.
ment — Aesthetic Score composition and color harmony. Higher scores reflect more [2024b)
(VQA_A) aesthetically pleasing content.
Video Quality Assess- Evaluates technical quality aspects such as sharpness and noise  (Liu et  al.,
ment — Technical Score levels in videos. Higher scores indicate better technical quality. [2024b)
(VQA_T)
Action Recognition Measures the accuracy of action depiction in videos using pre- (Liu et  al.
Score (Action) trained action recognition models. Higher scores signify better [2024b))
action representation.
CLIP Score (Clip) Computes the similarity between video frames and text (Radford et al.
prompts using CLIP embeddings. Higher scores indicate better 2021
semantic alignment.
Flow Score (Flow) Quantifies the amount of motion in videos by calculating aver- (Liu et  al.
age optical flow. Higher scores suggest more dynamic content. [2024b)
Motion Amplitude Clas- Assesses whether the magnitude of motion in videos aligns (Liu et  al.,
sification Score (Mo- with expected motion intensity described in text prompts. [2024b)
tion) Higher scores denote better alignment.
VBench Metrics
Motion Smoothness Evaluates the smoothness of motion in generated videos, ensur- (Huang et al.,
ing movements follow physical laws. Higher scores indicate [2024))
smoother motion.
Temporal  Flickering Measures the consistency of visual elements across frames to  (Huang et al.
Consistency detect flickering artifacts. Higher scores reflect better temporal  [2024))
stability.
Human Action Recogni- Assesses the accuracy of human actions depicted in videos (Huang et al.
tion Accuracy using pre-trained recognition models. Higher scores signify [2024))
better action representation.
Dynamic Degree Quantifies the level of dynamic content in videos, evaluating (Huang et al.)
the extent of motion present. Higher scores indicate more [2024))
dynamic scenes.
Common Video Metrics
Fréchet Video Distance Measures the distributional distance between real and gener- (Unterthiner
(FVD) ated videos using features from a pre-trained network. Lower (et al.,[2019)
scores indicate better quality.
Learned Perceptual Evaluates perceptual similarity between images using deep (Zhang et al.
Image Patch Similarity network features. Lower scores denote higher similarity. 2018)
(LPIPS)
Structural Similarity In- Assesses image similarity based on luminance, contrast, and (Wang et al.l
dex Measure (SSIM) structure. Higher scores reflect greater similarity. 2004)
Peak Signal-to-Noise Calculates the ratio between the maximum possible power (Huynh-Thu &
Ratio (PSNR) of a signal and the power of corrupting noise. Higher scores |Ghanbari, 2008

indicate better quality.
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Table 8: Summary of video datasets used in experiments.

Dataset # Videos Duration Resolution Splits (Train/Val/Test) Ref.

WebVid-2M 2,617,758  10-30s upto4K  2,612,518/5,240/ — (Bain et al.,|2021)

MSR-VTT 10,000 15s 320x240 6,513 /497 /2,990 (Xu et al.,2016)

UCF101 13,320 7-10s 320%x240 9,537/ —1/3,783 (Soomro et al.,|2012)

MSVD 1,970 1-60s 480x360 1,200/ 100/ 670 (Chen & Dolan,[2011)
Dataset Notes.

* WebVid-2M: A large-scale dataset comprising over 2.6 million videos with weak captions
scraped from the web. Resolutions vary, with some videos up to 4K; durations range from
10 to 30 seconds.

* MSR-VTT: Contains 10,000 video clips ( 15s each) at 320x240 resolution, each paired
with 20 captions. Standard split: 6,513 train / 497 val / 2,990 test.

» UCF101: Action recognition dataset with 13,320 videos across 101 classes. Durations
range 7—-10 seconds, resolution is 320x240. Commonly split as 9,537 train / 3,783 test.

* MSVD: 1,970 YouTube videos (1-60s) at 480x360 resolution. Each video has multiple
captions. Standard split: 1,200 train / 100 val / 670 test.

Table 9: Zero-Shot Cross-Dataset Evaluation Protocols for T2V generation (Wang et al., [2023a)).

Dataset Evaluation Protocol

UCF101 Generate 100 videos per class using class labels as prompts.

MSVD Generate one video per sample in the full test split, using a reproducibly
sampled caption as the prompt for each video.

MSR-VTT Generate 2,048 videos sampled from the test set, each with a reproducibly
sampled caption used as the prompt.

WebVid-2M Generate videos using the validation set, where each video is conditioned

on its paired caption.

Table 10: Full quantitative results across FVD (Unterthiner et al.,[2019), VBench (Huang et al., [2024),
and EvalCrafter (Liu et al., [2024b)) metrics.

Corruption FVD | VBench EvalCrafter

Smooth Flicker Human Dynamic | IS Clip Temp VQA_A VQA_T Action Clip Flow Motion
BCNI 360.32 | 0.9612 0.9681 0.8920 0.8281 | 1528  99.63 20.12 1227  65.09 19.58 6.45 60.0
Gaussian 400.29 | 0.5748 0.9536 0.8340 0.6685 | 14.57 99.68 17.07 1428 6021 19.73 475 62.0
Uniform 44322 | 0.5718 0.9367 0.8500 0.7695 |14.22  99.65 17.45 1335 6471 1958 638  62.0
Clean 520.32 | 0.5686 0.9476 0.8260 0.7290 | 14.65 99.66 14.81 12.10 6390 19.66 496 60.0

Metrics. FVD: Fréchet Video Distance; IS: Inception Score; Clip Temp: CLIP Temporal Consistency; VQA_A:
Video Quality Assessment — Aesthetic Score; VQA_T: Video Quality Assessment — Technical Score; Action:
Action Recognition Score; Clip: CLIP Similarity Score; Flow: Flow Score / Optical Flow Consistency Score;
Motion: Motion Amplitude Classification Score; Smooth: Motion Smoothness; Flicker: Temporal Flickering

Consistency; Human: Human Action Recognition Accuracy; Dynamic: Dynamic Degree. Metric definitions are

provided in Table
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E FURTHER RESULTS

A
el

A sales manager hands over car keys to a seated customer.

Figure 3: Visual Representation of Video Captions. The extracted frames depict the scene described
by the original captions before corruption. The video illustrates a sales manager handing over car
keys to a man seated in the driver’s seat. This serves as a reference to understand how different noise
levels impact text descriptions of the same visual content. Text corruption effects are depicted in

Table E

Impact of Corruption Techniques on Video Quality Metrics
TEXT: —A—add —%¥— perturb —»—remove —@-replace —& swap
EMBEDDING: —— bcni —#— gaussian —®— hscan —#-sacn —4— tani —#— uniform

BASE CASE: @ uncorrupted

WebVid-2M: FVD

WebVid-2M: SSIM

WebVid-2M: PSNR
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Figure 4: Ablation Corruption Experiments. Impact of corruption techniques on video quality
metrics (FVD, SSIM, PSNR, LPIPS) across four standard text-to-video datasets: WebVid-2M,
MSRVTT, MSVD, and UCF101. Text-level and embedding-level corruptions are evaluated at varying
noise ratios.
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Table 11: Effect of Corruption Techniques on Captions by Noise Ratio (%).

Noise Ratio Caption

Noise Ratio = 2.5%

Clean Sales manager handing over the keys to man that sitting in the car.
Swap Sales the handing over manager keys to man that sitting in the car.

Add Sales manager handing over the keys to man that sitting in the owkip car.
Replace Sales manager handing over atoii keys to man that sitting in the car.
Perturb Sales manager handing over the keys to man that max in the car.
Remove Sales manager handing over the keys to man that sitting in car.

Noise Ratio =5%

Clean Sales manager handing over the keys to man that sitting in the car.
Swap Sales manager handing to the keys over man that sitting in the car.

Add Sales manager handing over the keys to fjogc man that sitting in the car.
Replace Sales manager handing bkwlj the keys to man that sitting in the car.
Perturb Sales manager handing over the keys to man that jn in the car.

Remove Sales handing over the keys to man that sitting in the car.

Noise Ratio =7.5%

Clean Sales manager handing over the keys to man that sitting in the car.
Swap Sales manager handing keys the over to man that sitting in the car.

Add nuabx Sales manager handing over the keys to man that sitting in the car.
Replace Sales manager handing over the keys to man that sitting in viukq car.
Perturb Sales manager handing over the keys to man that sitting in the un.
Remove Sales manager handing over the keys man that sitting in the car.

Noise Ratio = 10%

Clean Sales manager handing over the keys to man that sitting in the car.
Swap Sales manager handing over the keys to man that sitting in the car.

Add Sales manager handing over the keys nfgco to man that sitting in the car.
Replace oybix manager handing over the keys to man that sitting in the car.
Perturb Sales manager handing over the keys to man that mkn in the car.
Remove Manager handing over the keys to man that sitting in the car.

Noise Ratio = 15%

Clean Sales manager handing over the keys to man that sitting in the car.
Swap Sales manager handing over the keys to in that sitting man the car.

Add Sales manager handing over fuibu the keys to man that sitting in the car.
Replace Sales manager handing zsmko the keys to man that sitting in the car.
Perturb Sales manager handing over the keys to kbys that sitting in the car.
Remove Sales manager handing over the keys to man that sitting in the.

Noise Ratio = 20%

Clean Sales manager handing over the keys to man that sitting in the car.
Swap The manager handing over the keys sitting man that to in Sales car.
Add Sales manager handing over the keys svlkq to man that cijet sitting in the car.
Replace Sales manager handing over nibke irico to man that sitting in the car.
Perturb Sales manager sittdng over the keys to man kegs sitting in the car.
Remove Manager handing over the to man that sitting in the car.
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Table 12: Zero-shot video generation results with a diffusion backbone on WebVid-2M (val),
MSR-VTT, MSVD, and UCF101, evaluated using FVD. FVMD/CMMD are in Tableﬂzl

Legend: [ist], [, ISR, (). /5

WebVid-2M MSR-VTT

Method 0% 2.5% 5% 75%  10% 15% 20% | 0% 2.5% 5% 7.5% 10% 15% 20%
Add 520.32 [A14i83] 525.53 418.24 476.76 49430 478.16 | 543.33 [H29M05] 567.65 520.89 516.80  529.33
BCNI 520.32 521.24 502.45 475.01 456.14 | 543.33 539.93 564.00 441.31 515.12

GAP 520.32 525.52 593.64 520.54 424.69 512.10 573.37 |543.33 613.22 710.24 62046 575.66 857.56 999.89
Gaussian  520.32 506.56 572.67 441.69 417.60 JHOURSN 451.67 | 543.33 595.08 664.45 46879 44529 46491 565.83
HSCAN 520.32 461.39 538.34 452.74 442.29 57278 435.63 | 543.33 503.60 517.88 471.87 454.01 597.32 457.68
Perturb  520.32 53548 516.19 514.50 [MISI6N 433.20 492.83 | 543.33 603.43 584.07 545.70 466.08 523.68
Remove 520.32 527.24 475.15 551.35 530.37 517.51 538.09 | 543.33 599.39 548.84 572.04 617.93 587.65 530.84
Replace  520.32 517.43 52232 51042 479.21 527.73 514.80 | 543.33 551.22 564.57 598.50 530.50 524.62 536.22
SACN 520.32 438.19 467.93 50092 467.14 466.18 518.43 |543.33 440.28 507.88 502.69 50620 446.78 500.23
Swap 520.32 549.72 459.72 52822 467.92 55233 481.93 |543.33 560.49 508.46 571.54 569.84 560.17 545.16
TANI 520.32 468.31 49534 43220 416.11 436.27 457.33 | 543.33 553.77 510.79 517.47 48728 490.87 517.75
Uniform 520.32 522.36 443.22 574.35 44471 52522 454.79 | 543.33 541.80 543.46 639.83 526.85 60527 559.93

MSVD UCF-101

Method 0% 2.5% 5% 75%  10% 15% 20% | 0% 2.5% 5% 7.5% 10% 15% 20%
Add 602.39 [AA9I50] 503.85 459.82 588.26 483.82 488.12 | 501.91 562.83 590.60 530.54 581.48 681.15 542.83
BCNI 602.39 587.59 599.44 610.38 50435 | 501.91 505.54 508.13 554.73 52393 926.35 921.69
GAP 602.39 665.77 829.36 704.69 662.16 1112.23 1357.74 | 501.91 498.14 612.76 1023.15 1246.66 1460.14 1717.69
Gaussian  602.39 654.73 740.79 485.30 452.82 458.69 479.63 | 501.91 674.62 659.27 64841 61528 672.25 677.13
HSCAN 602.39 562.76 54531 481.12 452.57 733.60 454.03 | 501.91 583.43 671.78 708.75 582.24 565.22
Perturb  602.39 568.32 573.24 540.22 528.26 | 501.91 578.80 541.24 66429 566.35 612.56 485.16
Remove 602.39 610.61 528.18 600.97 674.23 583.37 580.83 | 501.91 636.93 594.68 594.66 534.72 550.24 605.32
Replace  602.39 566.27 555.65 554.65 507.17 576.98 532.82 | 501.91 54523 596.56 561.97 623.54 632.04
SACN 602.39 511.24 55420 535.55 555.61 574.29 572.48 | 501.91 480.29 504.89 526.23
Swap 602.39 547.05 533.62 582.41 530.68 546.70 625.97 |501.91 638.17 585.97 61991 74843 627.28 544.03
TANI 602.39 574.24 639.00 544.01 47427 49991 532.19 |501.91 573.51 631.22 547.25 538.13 63520 543.12
Uniform 602.39 575.76 580.59 695.59 551.99 662.51 550.73 | 501.91 651.64 599.53 742.18 607.23 643.22 642.74
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Table 13: Zero-shot video generation results with a diffusion backbone on WebVid-2M (val),
MSR-VTT, MSVD, and UCF101, evaluated using FVMD and CMMD. (FVD Table@)

Legend: (5t [N, ISR, [, (St

(a) FVMD (])

Method

0%

WebVid-2M

2.5% 5% 15

% 10% 15%

20% |

0%

MSR-VIT

2.5% 5% 7.5%

10% 15% 20%

Add
BCNI
GAP
Gaussian
HSCAN
Perturb
Remove
Replace
SACN
Swap
TANI
Uniform

7119.88
7119.88
7119.88
7119.88
7119.88
7119.88
7119.88
7119.88
7119.88
7119.88
7119.88
7119.88

4554.06
5171.73
4519.42
6253.58
4298.57
5389.99
3880.19
4492.70
3071.20
7167.32
5019.23
6514.07

4277.48
4715.57
353248
3790.34
6515.52
8046.34
4039.02
4044.40
5224.20
3387.44
3263.99

4708.06 6462.25

10239.91 12630.97
4240.57
3091.29
4120.26  4579.37
6074.67
4844.42
5371.88
4548.15
3392.34
4322.78

6862.60
2642.15

5250.99
6339.48
15288.51
3916.42
5358.07
4080.31

6730.27
5188.01

3013.97
6715.66
6511.16
5499.35

3458.60

6864.34
5294.52

6694.89
5566.76
2832.32

5415.74
3578.96
11246.24
3524.58

5463.62
4422.09
5571.67
4268.20
4309.75
4518.37

9296.45
9296.45
9296.45
9296.45
9296.45
9296.45
9296.45
9296.45
9296.45
9296.45
9296.45
9296.45

8422.97
8963.76
8235.40
12805.36  7530.45
7880.24
7614.27
7646.77
7194.60 6619.72
6409.46
9720.78
9454.21

11826.79 [15396:161

7382.50
8188.26
12550.55 23882.52
8075.93
7639.59
8636.10  7487.41
11801.99 10174.45
8259.47
8032.28
7827.10
6611.25
8122.32

8716.41

7623.23
8447.80
7169.30

8264.62  8345.86
6853.90 11755.95
21371.65 20259.74
522422 7263.80
6984.37 10815.09
8425.08  7075.52
9212.60  8238.40
7604.41  7971.50

8865.10
5956.47
8035.42
6512.54
7199.65
10060.26
7205.45
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(b) CMMD (1)

Method

WebVid-2M

0% 25% 5%

75% 10% 15%

20%

| 0%

MSR-VTT

25% 5% 1.5%

10% 15% 20%

Add
BCNI
GAP
Gaussian
HSCAN
Perturb
Remove
Replace
SACN
Swap
TANI

Uniform [JOISS#Y 0.563

0.534
0.534
0.534
0.534
0.534
0.534
0.534
0.534
0.534
0.534
0.534

0.535
0.652
0.628
0.571
0.564
0.568
0.671
0.567
0.583
0.606
0.619

0.585
0.659
0.715
0.561
0.620
0.609
0.633
0.582
0.613
0.623

0.576
0.601
0.953
0.569
0.615
0.582
0.620
0.628
0.631

0.580
0.618
1.258
0.585
0.606
0.573
0.614
0.581
0.592
0.599 0.651 0.585
0.588 0.609 0.598

0.552 SIS 0.589

0.685
0.798
1.708
0.575
0.672
0.632
0.576
0.588
0.583

0.616
1.025
2.078
0.599
0.621
0.597
0.574
0.600
0.618

0.593
0.531

0.831
0.831
0.831
0.831
0.831
0.831
0.831
0.831
0.831
0.831
0.831
0.831

0.914
0.975

0.955
0.998
0.943 1.004
0.911 0.825
J0:806] 0.906
0.863 0.865
0.923 0.980
0.843 0.882
0.913 1.001
0.863 0.955

0.930 -

0.967

0.901
0.938
1.386
0.835
0.923
0.884
1.002
0.908
0.999
0.885
0.866
0.934

0.893 1.035 0.929
1.009 1.198 1471
1.757 2.260 2.590
0.840 [J0I823] 0.838
0933 0971 0.967
0.965 0.905 0.911
0.934 IS 0.892
0913 0.874 0913
0.921 0.905 0.978
0939 0923 0.858
0.939 0.955 0.890
0.876 0.937 0.928

Method

0% 25% 5%

MSVD

7.5% 10% 15%

20%

0%

UCF-101

25% 5% 7.5%

10% 15% 20%

Add
BCNI
GAP
Gaussian
HSCAN
Perturb
Remove
Replace
SACN
Swap
TANI

0.814
0.814
0.814
0.814
0.814
0.814
0.814 0.972
0.814 0.929
0.814 0.972 1.056

0.877 0.933
0.814 0.978 0.896

0.953
1.020
0.942
0.898
0.869
0.871
0.881

0.919
0.970
0.912
0.865
0.943
0.888

0.957
0.901
1.207
0.894
0.936
0.880
0.985
0.843
1.014 0.980 0.951
0.891 0919
0918 0.950 1.014

0.842
0.936
1.686
0.897
0.948
0.985
0.938
0.871

0.947
1.059
2.267
0.855
0.987
0.862
0.848

Uniform  0.814 1.003 [ISEEH 0.967 0.883 0.947

0.860
1.270
2.532
0.869
0.942
0.893
0.917
0.896
0.996
0.863
0.955

0.905 |JENSS 1.399 JEIS3] 1.383 1.234 1.480

1.189
1.189
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1.189

1340 1.455 1.282
1344 1371 1436
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1231 1312 1318
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Table 14: Model-Dataset Evaluations (Autoregressive). FVD comparisons across noise ratios.

Noise WebVid-2M MSRVTT MSVD UCFI101

ratio (%) BCNI ~ SACN  Gaussian Uniform BCNI ~ SACN  Gaussian Uniform BCNI  SACN  Gaussian  Uniform BCNI SACN  Gaussian  Uniform
2.5 327.81 292.14  363.54 368.80  396.11 361.02  391.27 412.02  565.37 573.05  656.65 543.96  1037.14 862.88  1048.83 1018.44
5 275.19  322.14  293.01 253.06 40049 369.94  427.37 389.57 53134 570.54 63293 561.80  881.91  957.71 952.19  1281.83
7.5 362.83 257.88  308.67 375.15  433.68 39327  290.98 420.13  577.22 57879  501.88 58492  917.38  1064.79  847.36  1186.03
10 27855 32032 247.33 22398 35825 380.07 35343 348.07 53346 602.07 567.17 49431 996.46  1058.34 111646  936.53
15 257.94 34458  200.24 29323  367.25 40395 28093 425.16 51519 59035  385.81 52557 1116.84 112345  760.64  1050.79
20 29376 294.70  242.54 33524 41050 409.28  309.85 356.70  543.66 602.15  468.73 551.68  1003.75 112345 111595  929.29
Clean 315.16 431.79 629.91 1309.04
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Table 15: Zero-shot video generation results with an autoregressive backbone on WebVid-2M (val),
MSR-VTT, MSVD, and UCF101, evaluated using FVD. FVMD/CMMD are in Table@

Legend: [ist), [, ISE, (). /5

WebVid-2M MSR-VTT
Method 0% 2.5% 5% 75% 10% 15% 20% | 0% 2.5% 5% 7.5% 10% 15% 20%
BCNI 315.16 327.81 275.19 362.83 27855 257.94 293.76 | 431.79 396.11 400.49 433.68 35825 367.25 410.50
Gaussian 315.16 363.54 293.01 308.67 431.79 39127 42737 290.98 309.85
HSCAN 315.16 280.59 |BSSEGHN 309.19 25531 276.77 270.45| 431.79 401.81 323.32 380.49 410.67
SACN 315.16 292.14 322.14 257.88 320.32 344.58 294.70 | 431.79 361.02 369.94 393.27 380.07 403.95 409.28
Uniform 315.16 368.80 253.06 375.15 293.23 33524 | 431.79 412.02 389.57 420.13 348.07 425.16 356.70
TANI 315.16 274.95 321.23 440.86 333.94 269.16 328.18 | 431.79 [JRSEEGSN 320.70 727.46 400.74 306.55 547.16

MSVD UCF-101

Method 0% 2.5% 5% 75%  10% 15%  20% | 0% 2.5% 5% 7.5% 10% 15% 20%
BCNI 629.91 565.37 531.34 577.22 533.46 515.19 543.66 | 1309.04 1037.14 917.38 996.46 1116.84 1003.75
Gaussian  629.91 656.65 632.93 501.88 567.17 468.73 | 1309.04 1048.83 952.19 847.36 1116.46 1115.95
HSCAN 62991 592.00 [490:74] 550.16 500.58 527.12 | 1309.04 1049.31 1012.38 992.21 1029.77
SACN 62991 573.05 570.54 578.79 602.07 590.35 602.15 | 1309.04 862.88 957.71 1064.79 1058.34 1123.45
Uniform 629.91 543.96 561.80 584.92 494.31 525.57 551.68 | 1309.04 1018.44 1281.83 1186.03 936.53 1050.79 929.29
TANI 629.91 493.75 [A83BW 738.09 564.89 |EMIESS 745.06 | 1309.04 831.43 937.59 1363.07 1150.66 976.03 1077.35

Table 16: Zero-shot video generation results with an autoregressive backbone on WebVid-2M (val),
MSR-VTT, MSVD, and UCF101, evaluated using FVMD and CMMD. FVD (Table[T3)

Legend: [ist], 1B, ISR, (). /56

(a) FVMD ()
WebVid-2M MSR-VTT
Method 0% 2.5% 5% 7.5% 10% 15% 20% | 0% 2.5% 5% 7.5% 10% 15% 20%
BCNI 7529.07 531961 8990.52 11585.45 11075.10 10698.51 9857.85 | 8851.37 7232.94 8887.03 9241.40 9495.64 10667.96 9100.20
8606.21

Gaussian 7529.07 11515.04 8782.35
HSCAN 9505.46
SACN 7529.07 10064.75 13494.61
Uniform  7529.07 11398.63 11125.29
TANI 7529.07 773230 9739.71

10521.78 9579.66 11147.15 8572.26 | 8851.37 10871.33 8290.57 9161.28
8164.07 9180.58
8851.37 9920.05 11478.01

8851.37 9439.82 10291.41
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13548.23 9901831 12631.76 [EIA2SIE] 14335.79 [A2783132] 10736.95
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7940.12

Method

BCNI
Gaussian
HSCAN
SACN
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15224.07
14911.84
11980.06
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13548.23 10649.17 12097.68
13548.23 15049.47 12185.18

13548.23 [NOMSEEN 12913.33

5% 20%

14207.08
13406.85
11969.79

WebVid-2M
5% 15% 10% 15% 20% | 0%

0.595 0.529 0.573 0.569 0.561|1.813
0.607 0.709 0.536|1.813
0.581 0.616 0.624 0.584 0.574|1.813
0.626 0.587 0.649 0.532 1.813 1.740 1.738 1.706 1.580

0.570 0.618 0.613 0.554|1.813 1.721 1.741 1.758 1.580 1.619 1.680
0.626 0.733 0.773 0.626|1.813 |ESHS] 1.735 1.847 1.672 1.717 1.772

MSVD UCF-101
5% 1.5% 2.5% 75% 10% 15% 20%

1.665 1.658 1.715 1.674 2.657 2473 2.492 2.737 2.771
1.808 1.700 1.636 1.709 2.506 2.575 2.597 2.540 2.819
1.661 1.740 1.714 1.674 1.597 2708 2.718 2.711 2.541

1.708 1.840 1.633 1.612 2.651 2.564 2.682 2.514 2.574 2.678
1.683 1.733 1.657 2.589 2.843 2.817 2.532 2.616
1.748 1.772 1.643 1.728 1.773 2.504 2.657 2.759 2.759 2.697 2.675

MSR-VTT
5% 15% 10% 15% 20%

1.720 1.667 1.716 1.628
1.756 1.678 1.619 1.698

1.665 1.718 1.755 1.668 1.675

Method 0%

BCNI 0.734
Gaussian 0.734
HSCAN 0.734
SACN  0.734
Uniform 0.734
TANI 0.734

2.5%

0.679
0.656
0.629
0.676
0.673
0.548

2.5%

1.807
1.588
1.715

Method

BCNI
Gaussian
HSCAN
SACN
Uniform
TANI

0%

1.776
1.776
1.776
1.776
1.776
1.776

2.5%

1.745
1.667
1.715
1.752
1.722
1.590

10% 15% 20% | 0%

2.698
2.698
2.698
2.698
2.698
2.698

5%
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Table 17: VBench and EvalCrafter Results. Baselines (Wang et al.,[2023a; [Ruan et al.| 2024).

Method #Params #Videos VBench (1) EvalCrafter (Quality) EvalCrafter (Consistency)
Motion Temporal  Human Dynamic
Smoothness Flickering Action  Degree IS  ClipT VQA_A VQA_T | Action Clip Flow Motion
Baselines (zero-shot)
ModelScopeT2V 1.7B 10M 96.19 96.02 90.40 62.50 1460 — 15.12 16.88 75.88 — 251 44
ModelScopeT2V fine-tuned 1.7B 10M 96.38 96.35 90.40 63.75 1492 — 15.89 16.39 74.23 — 272 40
DEMO w/0 Lyideo-motion 2.3B 10M — — — — 17.13 — 18.78 15.12 76.20 — 311 48
DEMO 2.3B 10M 96.09 94.63 90.60 68.90 1757 — 19.28 15.65 78.22 — 489 58
CAT (ours)
BCNI 2.3B 2M 96.12 96.81 89.20 82.81 1528 99.63  20.12 12.27 65.09 19.58 645 60.0
Gaussian 2.3B 2M 57.48 95.36 83.40 66.85 1457 99.68  17.07 14.28 60.21 19.73 4.75 62.0
Uniform 2.3B 2M 57.18 93.67 85.00 76.95 1422 99.65 1745 13.35 6471 19.58 6.38  62.0
Clean 2.3B 2M 56.86 94.76 82.60 72.90 14.65 99.66  14.81 12.10 6390 19.66 4.96  60.0
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Figure 5: Effect of DDIM Steps on Video Quality Metrics. Each subfigure shows how FVD, SSIM,
PSNR, and LPIPS vary with DDIM sampling steps across different corruption techniques.
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Figure 6: Effect of Guidance Scale on Video Quality Metrics. Each subfigure shows how FVD,
SSIM, PSNR, and LPIPS vary with the guidance scale across different corruption techniques. Lower
FVD and LPIPS and higher SSIM and PSNR indicate better generation quality.
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Table 18: Averaged results across seeds. We report mean =+ std for FVD, SSIM, PSNR, and LPIPS
across representative corruption settings (full results in Appendix).

Method FVD | SSIM 1 PSNR 1 LPIPS |
add_2.5 414.8+£24.6 0.0671 +0.0004 9.56+0.01 0.5552 & 0.0015
swap_7.5 528.2£29.5  0.0587£0.0004 9.23£0.01 0.5556 == 0.0012
replace 20 514.84+30.9  0.0578 +£0.0004 9.2240.01 0.5579 & 0.0013
perturb_10  413.6+11.6  0.0643 £ 0.0004 9.50 + 0.01  0.5480 & 0.0014
remove_15  517.54+35.7 0.0595 4+ 0.0003 9.27 +0.01 0.5547 & 0.0012
beni_10 378.94+21.3 0.0687 £0.0003 9.66+0.01 0.5589 & 0.0010
beni_7.5 360.3 £18.2 0.0642 +0.0003 9.51 +0.01 0.5562 & 0.0009
sacn_10 467.1£16.6 0.0648 £0.0004 9.41+£0.01 0.5560 == 0.0009
sacn_15 466.2 £15.5  0.0671£0.0003 9.49+£0.01 0.5556 == 0.0010
gaussian_10  417.64+23.8  0.0642 + 0.0003 9.54 +0.01 0.5517 & 0.0011
uniform_10  444.7+£22.2  0.0633 £ 0.0005 9.31 +0.01  0.5637 & 0.0010
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WebVid-2M
Operator Sens. | Var] Low Mid High Risk
Gaussian 55.2 1850 0.081 0.164 0.092 0.0
Uniform 427 1191 0.003 0.004 0.002 0.0
TANI 19.8 774 0.002 0.029 0.961 0.98

SACN (ours) 8.7 341 0992 0219 0.007 0.02
BCNI (ours)  49.6 2109 0.064 0.352 0.421 0.0

MSR-VTT
Operator Sens. | Var] Low Mid High Risk
Gaussian 68.5 2439 0.095 0.197 0.089 0.0
Uniform 38.6 1360 0.001 0.003 0.002 0.0
TANI 169  62.6 0.000 0.017 0.006 0.99

SACN (ours) 9.1 36.7 0.999 0.243 0.006 0.01
BCNI (ours)  51.0 2392 0.070 0.337 0.435 0.0

MSVD
Operator Sens. | Var] Low Mid High Risk
Gaussian 80.7 3899 0.051 0.104 0.147 0.30
Uniform 52.5 2378 0.0002 0.002 0.019 0.0
TANI 43.6 1328 0.058 0.029 0.020 0.0

SACN (ours) 12.8 101  0.008 0.0001 0.0 0.99
BCNI (ours) 958 7791 0.128 0.429 0.317 0.0

UCF101
Operator Sens. | Var] Low Mid High Risk
Gaussian 17.9 201 0.0 0.0 0.0002 0.0
Uniform 46.3 2133 0.0 0.0002 0.0002 0.0
TANI 40.0 1597 0.001 0.014 0.127 0.0

SACN (ours) 269 719 0.447 0.851 0452 0.18
BCNI (ours) 782 5982 0.241 0.114 0.066 0.0

Table 19: Cross-dataset corruption robustness. Each dataset (WebVid-2M, MSR-VTT, MSVD,
UCF101) is reported independently. Columns show sensitivity (slope of FVD degradation), residual
variance (fit stability), and win probabilities across corruption regimes (Low = 2.5-5%, Mid =
7.5-10%, High = 15-20%), plus a risk-adjusted robustness score. SACN achieves lowest sensitivity
and variance across datasets, confirming smoother and more reliable degradation. BCNI dominates
in mid/high regimes, especially on WebVid, MSR-VTT, and MSVD. Baselines collapse early, while
TANI peaks only under extreme corruption but lacks stability.
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