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Abstract

Solving strategic games with huge action spaces is a critical yet under-explored topic in
economics, operations research and artificial intelligence. This paper proposes new learning
algorithms for solving two-player zero-sum normal-form games where the number of pure
strategies is prohibitively large. Specifically, we combine no-regret analysis from online
learning with Double Oracle (DO) from game theory. Our method—Online Double Oracle
(ODO)—is provably convergent to a Nash equilibrium (NE). Most importantly, unlike normal
DO, ODO is rational in the sense that each agent in ODO can exploit a strategic adversary
with a regret bound of O(\/klog(k)/T), where k is not the total number of pure strategies,
but rather the size of effective strategy set. In many applications, we empirically show
that k is linearly dependent on the support size of the NE. On tens of different real-world
matrix games, ODO outperforms DO, PSRO, and no-regret algorithms such as Multiplicative
Weights Update by a significant margin, both in terms of convergence rate to a NE, and
average payoff against strategic adversaries.

1 Introduction

Understanding games with large action spaces is a critical topic in a variety of fields from economics to
operations research and artificial intelligence. A key challenge is in computing a Nash equilibrium (NE) Nash
et al. (1950), where no player is better off by deviating from their current strategy. Unfortunately, finding a
NE is generally intractable, and computing a two-player NE is known to be PPAD-hard Chen & Deng (2006).
An exception is two-player zero-sum games where an NE can be tractably solved as a linear program (LP)
Morgenstern & Von Neumann (1953). Despite the polynomial-time complexity of solving an LP van den
Brand (2020), LP solvers are not adequate for games with prohibitively large action spaces. As a result,
researchers have shifted their focus towards finding efficient approximation solutions McMahan et al. (2003);
Lanctot et al. (2017); Brown (1951b); Zinkevich et al. (2007).

Double Oracle (DO) algorithm McMahan et al. (2003) and its extension Policy Space Response Oracles
(PSRO) Lanctot et al. (2017) are efficient approaches to finding an approximate NE in games where the
support of a NE is relatively small. In DO McMahan et al. (2003), players are initialised with a subset of the
full strategy space, thus playing only a sub-game of the original game; then, at each iteration, a best-response
strategy to the NE of the last sub-game, which is assumed to be given by an Oracle, is added into each agent’s
strategy pool. The process stops when the best-response is already in the strategy pool or the performance
improvement of the sub-game NE becomes trivial. When an exact best-response strategy is not available,
an approximate solution is often adopted. For example, PSRO Lanctot et al. (2017) applies reinforcement
learning (RL) Sutton & Barto (2018) oracles to approximate a best response.

Whilst DO and PSRO both provide an efficient way to approximate the NE in large-scale zero-sum games,
they still face two open challenges. Firstly, they require both players to coordinate in order to solve the NE
in sub-games and update the strategy set; both players have to follow the same learning dynamics such as
Fictitious Play (FP) Brown (1951a) or implement LP to solve the sub-game NE together. This contradicts
many real-world scenarios where an opponent can play any (non-stationary) strategy in sub-games.

Secondly, and more importantly, DO methods are not rational Bowling & Veloso (2001), in the sense that
they do not provide a learning scheme that can exploit an adversary (i.e., achieving no-regret). Whilst a
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Table 1: Properties of existing solvers on two-player zero-sum games A, xm,. “:DO in the worst case has to solve all
sub-games till reaching the full game, so the time complexity is one order magnitude larger than LP van den Brand
(2020). t. Since PSRO uses approximate best-response, the total time complexity is unknown. ¥ Note that the regret
bound of ODO can not be directly compared with the time complexity of DO, which are two different notions.

Rational No Need to Know Time Complexity (O)

Meth

ethod (No-regret)  the Full Matrix A / Regret Bound (O) Large Games
Linear Programming O(nexp(—T/n>3))
Generalised Fictitious Play v @(Tfl/(n+mf2))
Multiplicative Weight Up- 7 T
date Y v O(V/1og(n)/T)
Double Oracle v O(nexp(=T/n33%))" v
Policy Space Response Oracle v xf v
Online Double Oracle v v o( k‘log(k)/T)i v

NE strategy guarantees the best performance in the worst scenario, it can be too pessimistic as a strategy
compared to a rational strategy. For example, in a repeated Rock-Paper-Scissors (RPS) game, playing the NE
of (1/3,1/3,1/3) every iteration makes one player un-exploitable. However, if the adversary acts irrationally
and sticks to one strategy, say “Rock”, then the player should exploit the adversary by consistently playing
“Paper” to achieve larger rewards than playing the NE. No-regret algorithms Cesa-Bianchi & Lugosi (2006);
Shalev-Shwartz et al. (2011) prescribe a learning scheme in which a player is guaranteed to achieve minimal
regret against the best fixed strategy in hindsight when facing an unknown adversary (either rational or
irrational). Notably, if both players follow no-regret algorithms, then it is guaranteed that their time-average
policies will converge to a NE in zero-sum games Blum & Monsour (2007) . However, the regret bounds
of popular no-regret algorithms Freund & Schapire (1999); Auer et al. (2002) usually depend on the game
size; for example, Multiplicative Weights Update (MWU) Freund & Schapire (1999) has a regret bound of
O(y/log(n)/T) and EXP3 Auer et al. (2002) in the bandit setting has a regret of O(y/nlog(n)/T), where n
is the number of pure strategies (i.e., experts). As a result, directly applying no-regret algorithms, though
rational, is not computationally feasible in solving large-scale games.

In this paper, we present a scalable solution to two-player zero-sum normal-form games where the game
size (i.e., the number of pure strategies) is prohibitively large. Our main analytical tool is no-regret analysis
from online learning Shalev-Shwartz et al. (2011). Specifically, by conducting no-regret analysis Freund &
Schapire (1999) within the DO framework (McMahan et al., 2003), we propose the Online Double Oracle
(ODO) algorithm which inherits the key benefits from both sides. It is the first DO method that enjoys the
no-regret property and can exploit unknown adversaries during game play. Importantly, ODO achieves a
regret of O(y/klog(k)/T) where k, the size of effective strategy set, is upper-bounded by the total number
of pure strategies n and often k£ < n holds in practice. We test our algorithm on tens of games including
random matrix games, real-world matrix games Czarnecki et al. (2020), and Kuhn and Leduc Poker. Results
show that in almost all games, ODO outperforms both DO and PSRO variants Lanctot et al. (2017); McAleer
et al. (2020), and the online learning baseline: MWU Freund & Schapire (1999) in terms of exploitability
(i-e., distance to an NE) and average payoffs against different types of strategic adversaries.

2 Related Work

ODO contributes to both the game theory and online learning domains. To summarise our contribution, we
present a list of existing game solvers for comparison in Table 1.

Approximating a NE has been extensively studied in the game theory literature. Fictitious Play (FP) Brown
(1951b) and generalised FP Leslie & Collins (2006) are classical solutions where each player adopts a strategy
that best responds to the time-average strategy of the opponent. Although FP is provably convergent to
NE in zero-sum games, it is prohibited from solving large games due to the need to iterate through all pure
strategies at each iteration; furthermore, the convergence rate depends exponentially on the game size Brandt
et al. (2010). In terms of large-scale zero-sum games, DO McMahan et al. (2003); McAleer et al. (2021)
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and PSRO methods Lanctot et al. (2017); McAleer et al. (2020); Feng et al. (2021) have shown remarkable
empirical success. For example, a distributed implementation of PSRO can handle games of size 10°© McAleer
et al. (2020). Yet, both FP and DO methods offer no knowledge about how to exploit an adversary in a
game (i.e., no-regret property) Hart & Mas-Colell (2001), and thus are regarded as not rational Bowling &
Veloso (2001). Modern solutions that are rational such as CFR methods Zinkevich et al. (2007); Lanctot
et al. (2009) are efficiently designed for extensive-form games only.

Algorithms with the no-(external) regret property can achieve guaranteed performance against the best-fixed
strategy in hindsight Shalev-Shwartz et al. (2011); Cesa-Bianchi & Lugosi (2006), thus they are commonly
applied to tackle adversarial environments. However, conventional no-regret algorithms such as Follow the
Regularised Leader Shalev-Shwartz et al. (2011), Multiplicative Weights Update (MWU) Freund & Schapire
(1999) or EXP-3 Auer et al. (2002) have regret bounds that are based on the number of pure strategies
(i.e., experts). Moreover, these algorithms consider the full strategy set during updates, which hinders their
applicability to large-scale games. In this paper, we leverage the advantages of both DO and no-regret
learning to propose ODO. ODO enjoys the benefits of both being applicable to solving large games, and
being able to maintain the no-regret property (i.e., being rational).

3 Notations & Preliminaries

A two-player zero-sum normal-form game is often described by a payoff matrix A of size n x m. The rows
and columns of A are the pure strategies of the row and the column players, respectively, and we consider
n and m to be prohibitively large numbers. We denote the set of pure strategies for the row player as
II:= {a',a?, ...a"}, and C := {c!,c?,...,c™} for the column player.

The set of mixed strategies for the row-player is A := {w|mw = > | z;a’, Y1 x; = 1,2; > 0,Vi € [n]},
and for the column player it is Ag := {cle = Y\, yic', 321" yi = 1,yi > 0,Vi € [m]}. The support of a
mixed strategy is written as supp(w) := {a* € II|z; # 0}, with its size being |supp()].

We consider A; ; € [0, 1] to represent the (normalised) loss of the row player when playing a mixed strategy
against the mixed strategy of the column player. At the ¢-th round, the expected payoff for the joint-strategy
profile (w; € Am, ¢ € Ag) is (—m, Acy, ' Ac;). In this paper, we consider the online setting in which
players do not know the matrix A, or the adversary’s policy, but instead only receive a loss value after their
strategy is played: e.g., at timestep ¢ + 1, the row player observes l; = Ac; from the environment and plays a
new strategy 1. The goal of the players is to reach a Nash equilibrium.

Nash Equilibrium. A NE of a two-player zero-sum game can be defined by the minimax theorem Neumann
(1928):
min max 7' Ac = max min 7' Ac = v, (1)
wEAD cEAC ceEAc TEARD
for some v € R. The (7*, ¢*) that satisfies Equation (1) is a NE of the game. In general, one can apply LP
solvers to find the NE in small games Morgenstern & Von Neumann (1953). However, when n and m are
large, the time complexity is not affordable. A more general solution concept is the e-Nash equilibrium.

e-Nash Equilibrium. For € > 0, we call a joint strategy (m,¢) € A x Ac an e NE if it satisfies

max ' Ac—e<w' Ac < min 7' Ac+e. (2)
ceEAc wEADN

3.1 Double Oracle Method

The pseudocode for DO McMahan et al. (2003) is listed in Appendix A.1. The DO method approximates a
NE in large-scale zero-sum games by iteratively expanding and solving a series of sub-games (i.e., games with
a restricted set of pure strategies). Since the sets of pure strategies of the sub-game are often much smaller
than the original game, the NE of the sub-games can be easily solved via approaches such as FP. Based on
the NE of the sub-game, each player finds a best-response to said NE, and expands their strategy set with
this best-response. PSRO methods Lanctot et al. (2017); McAleer et al. (2020) are a generalisation of DO in
which RL methods are adopted to approximate the best-response strategy. In the worst case scenario (e.g.,
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the support size of NE is large), DO may end up restoring the original game and will maintain no advantages
over LP solutions.

Although DO can solve large-scale zero-sum games, it requires both players to coordinate by finding a NE
in the sub-games; this is a problem for DO when applied in real-world scenarios, as it cannot exploit the
opponent who can play any non-stationary strategy (see the example of RPS in the Introduction). ODO
addresses this problem by combining DO with tools in online learning.

3.2 Online Learning

Solving for a NE in large-scale games is demanding, so an alternative approach is to consider learning-based
methods. We believe that by playing the same game repeatedly, a learning algorithm can approximate the
NE asymptotically. A common metric, (external)-regret, to quantify the performance of a learning algorithm
is to compare its cumulated payoff with the best fixed strategy in hindsight.

Definition 1 (No-Regret Algorithms). Let ¢1,co,... be a sequence of mized strategies played by the column
player, an algorithm of the row player that generates a sequence of mized strategies w1, s, ... is called a
no-regret algorithm if we have the following property hold.

If both players in a game follow a no-regret algorithm (not necessarily the same one), then the average
strategies of both players converges to a NE Cesa-Bianchi & Lugosi (2006); Blum & Monsour (2007). For
example, a well-known learning algorithm for games that has this no-regret property is the MWU algorithm
Freund & Schapire (1999):

Definition 2 (Multiplicative Weights Update). Let ¢, ¢, ... be a sequence of mixed strategies played by the
column player. The row player is said to follow MWU if w11 is updated as follows

(i) exp(—pa’ ' Acy)
Yy mi(i) exp(—mal T Acy)’

where py > 0 is a parameter, o = [1/n,...,1/n] and n is the number of pure strategies (a.k.a. experts).

Vi € [n] (3)

(i) =

Intuitively, MWU functions by putting larger weights on the experts who have lower losses in the long-run.
Thus, compared to the best-fixed strategy in hindsight (i.e., the expert with the lowest average loss), MWU
can achieve the no-regret property. However, since MWU requires updating the whole pure strategy set (of
size n) at each iteration, it is not applicable to solving large-scale games.

4 Online Single Oralce

In this section, we introduce Online Single Oracle (OSO), a no-regret algorithm followed by individual players
that can strategically exploit any non-stationary opponent unlike DO. Compared to the MWU algorithm,
OSO can be applied to solving large zero-sum games as it only considers a smaller subset of the full pure
strategy space. The following section is organised as follows: we start by setting out OSO, the key component
of ODO. We then discuss the bound on the effective strategy set k, the key element in the regret bound
of OSO. Finally, we set out two different questions on the effectiveness and efficiency of the best-response
oracle, and analyse OSQO’s performance when the player only has access to less-frequent or approximate
best-responses oracles.

4.1 Online Single Oracle Algorithm

One can think of OSO as an online counterpart to the Single Oracle in DO McMahan et al. (2003) which
can achieve the no-regret property. In contrast to classical no-regret algorithms such as MWU Freund &
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Algorithm 1: Online Single Oracle Algorithm

1: Input: Player’s pure strategy set I1
2: Init. effective strategies set: o = I1; = {a’},a’ € 11
3: fort=1to T do
4: if Ht = Htfl then
5 Compute 7; by the MWU in Equation (3)
6: else if II; # II;_; then
7 Start a new time window 7;; and
Reset m; = [1/|IL],...,1/|ILk|], =0
8  end if
9:  Observe I; and update the average loss in T}: 1 = > ver, U/|Ti]

10:  Calculate the best-response: a; = arg mingem(m, 1)
11:  Update the set of strategies: II;; = II; U {a;}

12: end for

13: Output: =7, llp

Schapire (1999) where the whole set of pure strategies needs considering at each iteration, i.e., Equation
(3), we propose OSO that only considers a subset of the whole strategy set. The key operation is that, at
each round ¢, OSO only considers adding a new strategy if it is the best-response to the average loss in a
time window (defined formally in the following paragraph). As such, OSO can save on exploration costs by
ignoring the pure strategies that have never been the best-response to any, so far observed, average losses, .

Our OSO is listed in Algorithm 1. We initialise the OSO algorithm with a random strategy subset IIy from
the original strategy set II. Without loss of generality, we assume that Il starts from only one pure strategy
(line 2). We call subset II; the effective strategy set at the timestep ¢, and define the period of consecutive
iterations as one time window 7; in which the effective strategy set stays fixed, i.e., T; := {t ’ IIL,| = z} At
iteration ¢, we update 7r; (line 5) whilst only considering the effective strategy set II; (rather than whole set
IT); and the best-response is computed against the average loss I within the current time window 7T} (line 9).
Adding a new best-response that is not in the existing effective strategy set will start a new time window (line
7). Notably, despite the design of effective strategy sets, the exact best-response oracle in line 10 still needs to
search over the whole strategy set II, which is a property that we relax through best-response approximation
later.

We now present the regret bound of OSO as follows,

Theorem 3 (Regret Bound of OSO). Let ly,ls, ...l be a sequence of loss vectors played by an adversary,
and {-,-) be the dot product, OSO in Algorithm 1 is a no-regret algorithm with

T T

1 ) klog(k)
7 (D0 (ot} —min 3 (moti)) < 02

t=1 t=1

where k = |Ilp| is the size of the effective strategy set in the final time window.

Proof. W.l.o.g, we assume the player uses the MWU as the no-regret algorithm and starts with only one
pure strategy in Ily in Algorithm 1. Since in the final time window, the effective strategy set has k elements,
there are exactly k time windows. Denote |T}],|T%|,...,|Tx| be the lengths of time windows during each of
which the subset of strategies the no-regret algorithm considers does not change. In the case of finite set of
strategies, k will be finite and we have
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In the time window with length |7;|, following the regret bound of MWU in Definition 2 we have:

| T4 |T;41] T3] B i—1
> (webi) — min > (ml) </ log(i), where [T = 3 _|T3]. (4)
t=|T;|+1 P =Ty |+ Jj=1

In the time window T;, we consider the full strategy set when we calculate the best response strategy in step
11 of Algorithm 1 and it stays in W7, 41 Therefore, the inequality (4) can be expressed as:

[T 41 T4

. T; .
Z (e, 1) — min (m, 1) < | 5 | log(i). (5)
tZITL‘Jrl t:‘TL|+1

Sum up the inequality (5) for ¢ = 1,...k we have:

k T k |Tiq1]
Z \/ Z e, L) Zglelg Z (m, 1)
t=1 i=1

i=1 t=|T;|+1
T k |Tz+1| T T

> Z<7‘l‘t, l;) mlnz; Z (m,l;) = Z<7Tt,lt> — Lnelgfz;(ﬂ', ) (6a)
t=1 i=1 ¢=|T;|+1 t=1 t=

[Tk log( =
g 2 Z 7, 1) gleigzm,lt). (6b)
t=1 t=1

Inequality (6a) is due to > min < min ) . Inequality (6b) comes from Cauchy-Schwarz inequality and Stirling’
approximation. Thus, we have the derived regret. O

We note here that in line 7 of Algorithm 1, each time OSO enters a new time window, it sets equal weight for
every pure strategy in the current effective strategy. Since we assume a fully adversarial environment, the
historical data that the agent learnt in the previous time window does not provide any advantages over the
current time window, thus in order to avoid any exploitation, the agent needs to reset the strategy as stated
in Algorithm 1. In situations where priority knowledge can be observed through historical data, our OSO
algorithm can exploit this knowledge by updating the starting strategy in each time window. We leave this
important extension to our future work.

Remark 1 (Worst-Case Regret Bound). Similar to all existing DO type of methods, in the worst-case
scenario, OSO has to find all pure strategies, i.e., k = |II|. Thus, the regret in the worst case scenario will
be: /|| log([TI])/v/2T. However, we believe k < |II| holds in many practical cases such as against strategic
adversary Dinh et al. (2021). In later sections, we provide both theoretical and empirical evidence that
real-world games tend to have k < |II].

In the next section, we discuss the relationship between the effective strategy set size k& and the full game size.

4.2 Size of Effective Strategy Set &

Generally, the practical success of ODO and other discussed methods (e.g., DO McMahan et al. (2003) /
PSRO Lanctot et al. (2017)) is based on the assumption that the support size of the NE is small. Intuitively,
since OSO is a no-regret algorithm, should the adversary itself follow a no-regret algorithm, the adversary’s
average strategy would converge to the NE. Thus, the learner’s best-responses with respect to the average
loss will include all the pure strategies in the support of the learner’s NE. Therefore, under the assumption
of DO and PSRO that the support size of NE is small, the effective strategy set size k is potentially a far
smaller number than the game size (i.e., n).

Note that the assumption of a NE having a small support size holds true in many situations. In symmetric
games with random entries (i.e., see Theorem 2.8 in Jonasson et al. (2004)), it has been proved that the
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expected support size of a NE will be (% + O(1))n where n is the game size; showing that the support size of
a NE strategy is only half of the game size. In asymmetric games with disproportionate action spaces (e.g.,
n > m), we provide the following lemma under which the support of a NE is small.

Lemma 1. In asymmetric games Ay, xm,n > m, if the NE (7*,c*) is unique, then the support size of the

NE will follow | supp(w*)| = | supp(c*)| < m.
(We provide the full proof in the Appendiz C.1.)

Empirically, we also show that the small support of a NE assumption holds on tens of real-world zero-sum
games Czarnecki et al. (2020) (see Table 2 in Appendix D) and randomly generated games (see Figure 1).

In the case when a dominant strategy exists, we can theoretically bound & by the following lemma.;:

Lemma 2. Suppose there exists a strictly dominant strategy for the player, then the size of the effective
strategy set will be bounded by 2.

Despite the practical success of our method and the DO/PSRO lines of work, there is no theoretical guarantee
about the relationship between the support size of a NE and the performance of the algorithm. In this paper,
we provide a negative result by constructing an example such that the size of the effective strategy set equals
the size of the full strategy set, even when the support of NE is small.

Lemma 3. Suppose the players start with the entry A; 1 and the game matriz A of the two-players zero-sum
game is designed such as

0.17
Aiﬂj =0.5 + TZ Vi S [ﬂ], Ai,i+1 =0.9V¢ S [7’1, — 1],
0.1
Ai,j =0.8 \V’j > 1+ 2,1 S [’I’L]7 Ai,j = Aiﬂ‘ + %Vj < Z,’L S [’I’L],

where n is the size of the pure strategy set for both players. Then the game has a unique Nash equilibrium
with support size of 1 (i.e., the entry A, n) and the effective strategy set in both DO and OSO will reach the
size of pure strategy set, that is, k =n.

We provide the full proof in Appendix C.3. The idea is that the the matrix A is designed such that the
sub-game NE will change from A; ; to A; ;41 for ¢ € [n], thus OSO will need to consider the full pure strategy
set before reaching the game NE at A,, ,. We would like to highlight that this negative result not only applies
to our method, but also to all existing DO/PSRO algorithms and their variations.

However, as described in our experiments, we find that the extreme situation shown in Lemma 3 rarely occurs
in practice. Later in Figure 1, we provide empirical evidence to support our claim that k < |II| and that
there exists a linear relationship between k£ and the Nash support size in many real-world applications.

4.3 0SO with Less-Frequent Best-Response

The first adaptation to the best-response process that we consider is to make calls to the best-response oracle
less frequently. Obtaining a best-response strategy can be computationally expensive Vinyals et al. (2019),
and OSO considers adding a new best-response strategy at every iteration. A practical solution is to consider
adding a new strategy when the regret in the current time window exceeds a predefined threshold a. To
make OSO account for this, we denote |T}| := 22;11 |T%| as the starting point of the time window T}, and
write the threshold at T; as ozi_m‘ where ¢ — |T;| denotes the relative position of round ¢ in the time window
T;. We can make OSO add a new strategy only when the following condition is satisfied:

t t

min (7 l->—min<7r l->>ai = 7

7\'€Ht< 72 J mell ’Z 7/ = Tt ()
J=|T3] J=|T;|

Note that the larger the threshold «, the longer OSO takes to add a new strategy into II;. However, choosing
a large o will prevent the learner from acquiring the actual best-response, thus increasing the total regret Ry
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by «. In order to maintain the no-regret property, the a needs to satisfy

k i

NIPNe"
lim @ 0. (8)
T— 00

t
Equation (7) and derive its regret bound of O(y/klog(k)/T) in Appendix B.1.

One choice of « that satisfies Equation (8) is ai_‘f_l =/t — |T;|. We list the pseudo-code of OSO utilising

4.4 Considering ¢-Best Responses

The second adaptation brings OSO more closely in line with the work of PSRO by considering a non-exact
best-response oracle. So far, OSO agents compute the exact best-response to the average loss function I
(i-e., line 10 in Algorithm 1). Since calculating the exact best-response is often infeasible in large games, an
alternative way is to consider an e-best response (e.g., through a RL subroutine similar to PSRO Lanctot
et al. (2017)) to the average loss.

By first analysing the convergence of DO, we can derive the regret bound as well as convergence guarantees
for an OSO learner in the case of an e-best response oracle.

Theorem 4. Suppose an OSO agent can only access the e-best response in each iteration when following
Algorithm 1, if the adversary follows a no-regret algorithm, then the average strategy of the agent will converge
to an e-NE. Furthermore, the algorithm is e-regret:

T
lim % <e¢ Ry = max Z (ﬂ'tTAct — ﬂ—TAct) .

T— A
[e'¢] TE thl

(We provide the full proof in Appendix B.2.)

Theorem 4 justifies that in the case of approximate best-responses, OSO learners can still approximately
converge to a NE. This results allows for the application of optimisation methods to approximate the
best-response, which paves the way to use RL algorithm in solving complicated zero-sum games such as
StarCraft Vinyals et al. (2019). Now that we have introduced the algorithms the individual player will follow,
we can now discuss the outcomes when both competing players follow such algorithms.

5 Online Double Oracle

Algorithm 2: Online Double Oracle Algorithm
Input: Full pure strategy set II, C
Init. effective strategies set: Ily = 1I;,Cy = C4
fort=1to T do
Each player follows the OSO in Algorithm 1 with their respective effective strategy sets Il;, Cy
end for
Output: 7,7, er, Cr

Recall that if both players follow a no-regret algorithm, then the average strategies of both players converge
to the NE in two-player zero-sum games Cesa-Bianchi & Lugosi (2006); Blum & Monsour (2007). Since OSO
has the no-regret property, it is then natural to study the self-play setting where both players utilise OSO,
which, we call Online Double Oracle (ODO), and to investigate its convergence rate to a NE in large games.

There are two major benefits of using ODO in comparison to DO: Firstly, ODO does not need to compute a
NE in each sub-game which can become computationally expensive for large sub-games. Secondly, ODO
produces rational agents which can exploit an adversary to achieve the no-regret property. The convergence
rate of ODO to a NE follows:
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Theorem 5. Suppose both players apply OSO. Let k1, ko denote the size of the effective strategy set for each
player. Then, the average strategies of both players converge to the NE with the rate:

. \/kllog(kl)+\/k210g(k2)
T 2T o

In the situation where both players follow OSO with a Less-Frequent Best-Response as in Equation (7) and

O‘ifﬁ“-\ =/t — [T}, the convergence rate to NE will be

k1 log(k1) kolog(ks) — vki+ vk
:\/12§1+\/22ng+ lﬁ -

Proof. Using the regret bound of OSO algorithm in Theorem 3 we have:

Tkilog(ky) Tks log(k
Zﬂ't Ac; — manﬂ' Ac; < \/1fg1 CeaXZj’rt Ac_zﬂ-tTAct %(2)_

From the above inequalities we can derive that

T k1 log (k1) ko log (k2) k1log(ky)
TAc > > = E T Ac, — /=2 > T - .
7 Ac ‘INHEIETS‘ TAc 7, Act 57 Igleaé( 7 Ac o7

Similarly, we have

T
_ _ _ 1 ko log(ks) . _ k1 log(kq) ko log(ks)
T < T <t T 2 < T _
7w Ac < Igleaé(ﬂ Ac < 7 tE:1 ™, Acy + a7 = Lnelrr}ﬂ' Ac+ 5T + 5T

Thus, with ey = \/kl log(k1) | \/k2 losk2) o have

T

max 7' Ac—ep < 7' A¢ < minw' AC+ e.
ceC et well

By definition, (7, €) is ep-Nash equilibrium.

In situation where both players follow OSO with Less-Frequent Best Response, following Theorem 6 in
Appendix B.1 we have:

k1

T T
) Tky log(k1) Tkylog(k1)
T T 1 g 1) 1 10g( /1
g ™, Act—glelg g 7w Ac < E ‘T‘ f—i—\/k‘l\/T

Tko log(ks) i Tko log (k2)
rcneaxZﬂ'tTAc—Zﬂ' Ac; < %—i—;am‘g 2o VoV

Thus, using the same above arguments in the case of OSO, with e = \/kl lg%p(kl) + \/k2 lg%p(kﬂ + \/E\;%\/E,

we have:
T
max 7l Ac— er < 7l Aé < minw' Ac+ €r.
ceC =1 well

O

Theorem 5 suggests that, similar to OSO, the convergence rate of ODO will not depend on the game size,
but rather the size of the effective strategy set of both players. As we studied in the OSO section, although
we can not theoretically prove the linear relationship between the size of the effective strategy set and the
size of the NE support, in many practical applications, such linear relationship holds true (shown in Figure
1). Thus, in the same way as DO, ODO will prove effective in solving large games where the size of the NE
support is indeed much smaller than the full game size (e.g., also see Table 2 in Appendix D).
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5.1 ODO vs. Double Oracle with MWU

It is important to highlight that ODO is markedly different from simply implementing DO with MWU to
solve for the sub-game NE (i.e., running MWU till convergence in the sub-game). Firstly, ODO checks for
a best-response that is outside of the current effective strategy set per MWU update, whereas DO adds
a best-response every time a sub-game NE is solved, which often requires thousands of MWU iterations.
Most importantly, the best-response target in ODO (i.e., the time-average loss 1) is not necessarily a NE;
this is in contrast to DO where the best-response is computed with respect to an exact NE. Intuitively, the
convergence of DO only requires the best-response target in the last sub-game to be a NE, thus calculating
the NEs in every sub-game to update the strategy set is not necessary. ODO tackles this problem by using
the time-average loss as the new best-response target. As a result, ODO performs much better compared to
DO in Figure 3. Finally, even if DO implements MWU to solve the sub-game NE, it is still not a no-regret
algorithm. This also explains the performance gap between OSO and DO with MWU in Figure 4.

6 Experiments & Results

In this section, we aim to demonstrate the effec-
tiveness of our practical use algorithms, OSO
and ODO. However, we begin by looking at
the major assumption of this work, and verify
the linear dependence between the size of the
effective strategy set and the NE support size
in random matrix games. Next, over multi-
ple real-world matrix games Czarnecki et al.
(2020), we evaluate OSO in both the self-play ﬁ/

. . . . —— Nash supp:10 —— Nash supp:30
setting (i.e., ODO) and when playing against a Nash supp:20 —— Nash supp:50
strategic adversary. Finally, to validate perfor- . 5 5 5 ]

0 2x10 4x10 6x10 8x10 1x10
mance on very large games, we show the per- Size of full strategy set
formance of ODO on Kuhn and Leduc Poker
which have huge size of pure strategies. As Figure 1: Sizes of effective strategy set (i.e., k) in cases of an
we benchmark on OSO iterations against other OSO agent playing against an MWU opponent with different
baselines, for fair comparison, we implement sizes of full strategy set and NE support. This plot shows
plain OSO in Algorithm 1 without the less- that the size of OSO’s effective strategy set does not increase
frequent best-response mentioned in Equation drastically with the full strategy size, but rather depends on
(7) for all our experiments. All hyperparameter the support size of the NE.
settings can be found in Appendix D.

o))
o

w
o

S
o

w
o

N
o

Size of effective strategy set (k)
=
o

6.1 Size of k£ vs. Support Size of NE

We consider a set of zero-sum normal-form games of different sizes, the entries of which are sampled from
a uniform distribution U(0,1). We run OSO as the row player against a no-regret column player ! until
convergence, and plot the size of the OSO player’s effective strategy set against its full strategy size. We
run 20 seeds for each setting. As we can see from Figure 1, given a fixed support size of the NE, which is
achieved by fixing the number of columns while increasing the number of rows in the game matrix, the size
of the effective strategy set k grows as the size of the full strategy set increases, but plateaus quickly. The
larger the size of the NE support (not the full strategy set!), the higher this plateau will reach. Clearly, we
can tell that the size of OSO’s effective strategy set does not increase drastically with the full strategy size,
but rather depends on the support size of the NE. This result confirms Theorem 3 in which we prove that
0OSO’s regret bound depends on k, which is related to the size of the NE support but not the game size.
Economically, this is a desired property as OSO can potentially avoid unnecessary computation, in contrast
to other no-regret methods that require looping over the full strategy set at each iteration.

1We choose MWTU for the column player in our experiment, but we expect other no-regret algorithms would give a similar
result.
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Figure 3: Performance comparisons under self-plays

6.2 Performance on Real-World Empirical Games

2.5x10%

5.0x10*
Iterations

7.5x10°

1.0x10°

We investigate ODO in terms of convergence rate to a NE. To demonstrate its applicability to real-world
problems, we replace the randomly generated normal-form games with 15 popular real-world zero-sum
empirical games from Czarnecki et al. (2020). We compare the exploitability Davis et al. (2014) (i.e., the
distance to a true NE) of ODO with other baseline methods (MWU, FP and DO ?). We run each game with
20 seeds. In Figure 3, ODO outperforms the baselines in almost all 15 games. The advantage of ODO in
terms of convergence rate over MWU and FP match our expectation as the support sizes of the NEs in these
games are much smaller than the game sizes (reported in Table 2 in Appendix D). For DO with MWU, since

it takes many iterations in each sub-game to converge to the NE, it performs poorly in comparison to ODO.

Apart from the self-play setting, we also look at the setting of playing against an MWU adversary in Figure

4. We can see that OSO outperforms MWU and DO baselines in average performance in almost all 15 games,

which confirms the effectiveness of our design. Notably, MWU achieves a constant payoff; we believe this is

2Following the discussion in the Online Double Oracle section and for fair comparisons, we implement DO by adopting MWU

as the sub-game NE solver and report the total number of MWU iterations DO needs to achieve a low exploitability.
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Figure 4: Performance comparisons against MWU adversary

because these games are symmetric and since both players follow MWU with the same learning rate, the
payoff will always be the value of the game (thus the ground truth), which OSO will eventually converge to
as well.

6.3 Performance on Poker Games

To further investigate ODQO'’s effectiveness, we test ODO on Kuhn and Leduc Poker. Since ODO is designed
only for normal-form games, we adopt the tabular setting McAleer et al. (2020); Lanctot et al. (2017) in
which an exact best-response is computed by a tree-traversal oracle (see OpenSpiel Lanctot et al. (2019)),
and for PSRO methods, we perturb the exact best-response with random noise. We benchmark how many
times such a best-response oracle is called by different methods. We compare against the state-of-the-art
PSRO method: P2SRO * McAleer et al. (2020), and two extensive-form game solvers, CFR Zinkevich et al.
(2007) and XFP Lanctot et al. (2019). As shown in Figure 2, ODO shows a significant improvement in
exploitability compared to all existing DO and PSRO baselines, and it almost catches up with the CFR solver
in Leduc Poker, and it outperforms CFR on Kuhn Poker. Importantly, ODO uses the fewest best-response
calls to achieve the lowest exploitability. We believe these are promising results, since ODO is not designed
for extensive-form games, but experimentally it matches up with efficient extensive-form methods. In our
future work, we hope to use the idea of ODO and Regret Matching Hart & Mas-Colell (2000) to create a
state-of-the-art solver in extensive-form games.

7 Conclusion

We propose a novel solver for two-player zero-sum games where the number of pure strategies n is huge.
Our method, Online Double Oracle, absorbs the benefits from both online learning methods and Double
Oracle methods; it achieves the regret bound of O(y/klog(k)/T) where k is the size of the effective strategy
set rather than the game size n. Importantly, ODO can exploit opponents during game play. In tens of
real-world games, we show that ODO outperforms a series of algorithms including MWU, DO and PSRO
both in terms of convergence rate to NE and average payoff against strategic adversaries.

3We have discounted the fact that P2SRO uses multiple workers (we use two) to compute best-responses.
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