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ABSTRACT

Powerful deep learning methods based on Transformers are used to model diverse
data modalities such as sequences, images, and graphs. These methods rely on
self-attention, which treats data as an unordered set of elements. This ignores
the neighborhood structure or graph topology of the data and requires the use of
inductive biases, such as position embeddings, to incorporate topology. However,
developing bespoke inductive biases for each task requires significant effort and
can introduce side effects that hinder generalization. In this work, we introduce
Chimera, a unified model that directly incorporates the data topology in a principled
way, bypassing the need for domain-specific biases. Central to Chimera is the
observation that state-space models—which naturally do not require position
embeddings—can be generalized to capture the any general graph topology. Our
model achieves state-of-the-art performance across language, vision, and graphs,
outperforming BERT on GLUE by 0.7 points, ViT on ImageNet-1k by 2.6%, and
all the baselines on the Long Range Graph Benchmark, demonstrating that it is
capable of modeling both short and long range interactions between nodes. Our
results validate Chimera’s principled methodological contributions and affirm the
long-held belief that data topology is a powerful inductive bias across modalities. We
further propose algorithmic optimizations to improve Chimera’s efficiency while
maintaining performance: 1) For the subclass of Directed Acyclic Graphs we
show that Chimera can be implemented as a linear time recurrence. 2) For general
graphs, we relax the method with a simple mathematical approximation, achieving
Transformer’s quadratic complexity without relying on domain-specific biases.

1 INTRODUCTION

Real-world data, ranging from sequential language and audio to high-dimensional images and
structured molecule data, often exhibit some notion of neighborhood, or graph topology, among its
constituent elements. For instance, language and audio have a directed line graph topology; Images
possess an undirected grid-graph topology; Structured molecule data has predefined nodes (atoms)
and edges (bonds) that constitute its topology. A typical approach to modeling real-world data is based
on Transformers (Vaswani et al., 2017) with self-attention at its core (Devlin et al., 2019; Dosovitskiy
et al., 2021; Rampášek et al., 2022). However, self-attention is permutation invariant and treats data
as an unordered set of elements, disregarding its topology. Consequently, significant research effort has
focused on developing domain-specific inductive biases, such as position embeddings (Su et al., 2023;
Devlin et al., 2019), and random walks (Behrouz & Hashemi, 2024; Wang et al., 2024), to incorporate
data topology into the model.

However, designing these inductive biases requires navigating a large search space for each domain.
For instance, RoPE embeddings (Su et al., 2023) work well in language (Touvron et al., 2023); in vision,
absolute and 2D-RoPE embeddings are widely used (Dosovitskiy et al., 2021; Heo et al., 2024); while
Laplacian embeddings or random walks are used in graphs (Rampášek et al., 2022). Moreover, these
techniques can produce undesirable side effects, such as poor out-of-domain generalization—RoPE
struggles to generalize to sequences longer than the training lengths (Kazemnejad et al., 2024),
while absolute position embeddings have inherently constrained context sizes due to their design.
Furthermore, it is unclear how effectively these techniques capture the underlying graph topology.

In this paper, we introduce Chimera, a unified framework that directly incorporates data topology—i.e,
the underlying graph structure—in a principled way and achieves state-of-the-art performance across
diverse domains. Chimera is motivated by the observation that State Space Models (SSMs) for causal
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language modeling—Mamba-2 (Dao & Gu, 2024a), RetNet (Sun et al., 2023), and Linear Attention
(LA) (Katharopoulos et al., 2020)—naturally capture the sequence order through recurrence, without
position embeddings. We formalize this property and generalize it beyond causal sequences to any
graph topology. This approach is in contrast with existing methods that instead apply attention or SSMs
as a black box to “flattened data” augmented with heuristics to compensate for loss of topological
information (Liu et al., 2024; Dosovitskiy et al., 2021). Chimera’s superior performance across a wide
range of domains validates its methodological improvement.

We first formally show that how SSMs capture the underlying directed line graph topology of language
data through recurrence (Sec 3). For this, we leverage the Structured Masked Attention (SMA)
representation (Dao & Gu, 2024a) of SSMs: methods such as Mamba-2, RetNet, and Linear Attention
are equivalent to the matrix M=L⊙(QKT ) multiplied with the input, where Q,K are the query and
key matrices, respectively, and L is the (data-dependent) mask matrix analogous to the causal mask in
attention. We show that the mask matrix fully encodes the topology of the underlying graph structure by
acting as the resolvent of the adjacency matrix, A, of a directed line graph, i.e. L=(I−A)−1=

∑
Ai,

where I is the identity matrix. This result allows us to generalize to any graph topology. Specifically, for
an “appropriately parameterized” adjacency matrix, A, of the graph topology, we compute the matrix
multiplication of M=L⊙(QKT ), where L=(I−A)−1, with the input. Intuitively, Aij captures the
“influence” between neighbors i and j, while the resolvent aggregates this influence over all paths, thus
capturing the underlying topology. In Section 3.3, we present the detailed parameterization scheme
used in Chimera which is important for both empirical performance and numerical stability.

The main bottleneck lies in the computation of the mask matrix, whose naive implementation incurs a cu-
bic cost. We propose two algorithmic optimizations to mitigate this cost while maintaining performance:

1) We specialize the method for the subclass of directed acyclic graphs (DAGs). This is motivated
by the fact that many graph topologies can be canonically decomposed into multiple DAGs. For
example, an undirected line graph can be decomposed into two directed line graphs (Fig 2), while
a grid graph can be divided into four directed grid graphs (Fig 3). We prove that for this subclass,
the resolvent can be computed by running a linear-time recurrence. We further propose a squaring
technique to compute the resolvent efficiently on modern hardware accelerators by leveraging matrix
multiplications, although at the cost of quadratic total FLOPs.

2) We relax the exact computation of the resolvent for general graphs with a finite sum approximation of
the Neumann series, i.e. (I−A)−1=

∑d
i=0A

i, where d is the diameter of the graph. We can efficiently
compute this approximation with a squaring technique, capturing the global topological structure. We
further show that the finite sum approximation performs as well as the method with the full infinte sum.

Overall, we make the following contributions:

• We propose Chimera, a unified model that directly incorporates graph topology in a principled way
by generalizing SSMs. This is in contrast with existing approaches that apply attention or SSMs
as a black box on “flattened data” with additional heuristics.

• We introduce algorithmic optimizations by specializing it to DAGs, and by relaxing the resolvent’s
computation with a finite-sum approximation, while preserving its performance.

• Our experiments demonstrate that Chimera consistently achieves state-of-the-art results across
diverse domains including language, images, and graphs—outperforming BERT (Devlin et al.,
2019) with a GLUE score (Wang et al., 2019) of 0.7, surpasses ViT (Dosovitskiy et al., 2021) on
ImageNet-1k (Deng et al., 2009) classification by 2.6%. Furthermore, our method outperforms
strong baselines on the Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2022).

2 PRELIMINARIES

We introduce State Space Models (SSMs), which are recurrent models designed to process sequential
data, such as language and audio. We formulate SSMs in their recurrent form and then introduce the
Structured Masked Attention (SMA) (Dao & Gu, 2024a) representation that unrolls and vectorizes
this recurrence as a matrix M acting on the input X. This SMA representation would allow us to show
that SSMs inherently operate on a directed line graph topology.

2.1 OVERVIEW OF STATE SPACE MODELS

SSMs, such as Mamba-2 (Dao & Gu, 2024a), Linear Attention (LA) (Katharopoulos et al., 2020), Ret-
Net (Sun et al., 2023), are recurrent sequence-to-sequence models that feature a linear state transition
function. This function is typically data-dependent which improves performance (Hwang et al., 2024).
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Formally, let X ∈RT×D denote the input sequence of T tokens, where each token has D channels.
Let the size of the hidden state be d. Let Y ∈RT×D be the output of the sequence-to-sequence model.
Then, SSMs first compute the following matrices:

B=fB(X),C=fC(X),V =fV (X)∈RT×d, (1)
where fB , fC , fV are model specific data dependent functions. For instance, in Mamba-2 each of
these functions is a composition of a linear projection of X along the channel dimension, followed by a
short convolution layer along the sequence dimension and a Swish activation function (Ramachandran
et al., 2017). In Dao & Gu (2024a), it was shown that we can view the B, C, V matrices as analogs
of the key, query, value matrices in self-attention, respectively.

Let vi =V [:,i]∈RT denote the input corresponding to channel i. Let Bt =B[t,:], Ct =C[t,:] for
any time t. Let yit=Y [t,i] and vit=vi[t]. Then, the model computes the following recurrence, starting
with the hidden state vector hi

−1=0∈Rd:
hi
t=ath

i
t−1+btBtv

i
t, (2)

yit=CT
t h

i
t, (3)

where at,bt are model-specific parameters that characterize the SSM. LA sets at=bt=1, RetNet sets
at=γ, bt=1 for a learnable parameter γ. In contrast, Mamba-2 sets at,bt in a data-dependent manner
that implicitly encodes a gated memory mechanism known as selectivity or the selection mechanism.
This allows the model to select and propagate important tokens across long sequences. Specifically,

∆=f∆(X)∈RT ;at=exp(−∆t),bt=∆t∈R, (4)
where ∆ is the selectivity matrix, and f∆ like fB , fC , fV is a data-dependent function. Selectivity
works by assigning larger values ∆t to important tokens, amplifying their contribution to the previous
hidden state, while assigning smaller values ∆t to unimportant tokens, which preserve the past hidden
state with minimal influence from these tokens.

2.2 THE STRUCTURED MASKED ATTENTION REPRESENTATION

Dao & Gu (2024a) introduced the Structured Masked Attention (SMA) representation for SSMs, which
vectorizes the time-stepped recurrence (Eq. 3) as a matrix multiplication, Y =MV . 1 Here, M
depends on the data-driven matrices B,C, and ∆, and can be expressed as M=L◦

(
CBT

)
, where L

is a mask derived from ∆. One can obtain this formulation by unrolling the recurrence across time.

Formally, define B̄t=btBt, and recall from Section 2.1 that bt=∆t, at=exp(−∆t) for Mamba-2;
bt=1, at=γ for RetNet; and bt=1, at=1 for Linear Attention. Then the output Y of the recurrence
(Eq. 3) can be vectorized as,

Y =MV =(L⊙CB̄T )V , (5)
where the mask matrix Lij=1[i≥j]Πj<k≤iak,

L=


1 0 ··· 0
a1 1 ··· 0
a1a2 a2 ··· 0

...
...

. . .
...

a1a2···aT−1 a2a3···aT−1 ··· 1

. (6)

The SMA representation of the recurrence (Eq. 3) is useful because it neatly isolates the effect of the
underlying topology within the recurrence computation into the mask matrix L (Sec. 3) This property
will allow us to generalize SSMs to arbitrary topologies by appropriately formulating L.

3 CHIMERA: INCORPORATING GRAPH TOPOLOGY

In this section, we introduce Chimera, a unified model that directly incorporates the underlying graph
topology of a domain by mathematically generalizing SSMs. This contrasts to existing methods, such
as Behrouz & Hashemi (2024); Devlin et al. (2019); Liu et al. (2021), that use attention or SSMs as a
black-box applied to ‘flattened data’ and rely on inductive biases to incorporate structural information.

Our motivation stems from the fact that SSMs on causal language modeling task do not require position
embeddings and naturally capture the sequence order with their recurrence. We seek to formalize
this result which then allows us to generalize it to arbitary graphs. To this end, we begin by defining
the resolvent of a linear operator and interpret its action when this operator is the adjacency matrix.

1Not all SSMs admit an SMA representation. We focus on those that do, such as LA, RetNet, and Mamba-2. In
this work, we use the term “SSMs” specifically to refer to this restricted class.
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Figure 1: SSMs inherently operate on a directed line graph topology: SSMs modeling a sequence of
tokens in the recurrent representation (left), the structured mask matrix from the SMA representation
of SSMs (center), The underlying directed line graph topology (right)

3.1 RESOLVENT OF AN ADJACENCY MATRIX ACCUMULATES INFLUENCE ALONG ALL PATHS

A graph consists of a set of nodes V that represent data elements, and edges E that encode the
underlying topological structure. We conceptualize the associated adjacency matrix A ∈R|V|×|V|

as capturing the influence between neighboring nodes. Specifically, Aij is the influence that node
j has on node i, for each edge (i,j). The desideratum is to extend the notion of influence to all node
pairs by incorporating the graph’s structure, accounting for all possible paths between them. To model
this cumulative influence, we introduce the concept of the resolvent of a linear operator
Definition 3.1 (Resolvent of a Linear Operator (Reed & Simon, 1980)). Let A∈RT×T be a linear
operator, I the identity operator, and λ a complex number. Then, the resolvent operator is defined as:

R(λ,A)=(λI−A)−1, (7)
which exists for all complex numbers λ that are not in the spectrum of A, i.e., λ /∈σ(A). In this work,
we set λ=1 to remain in the field of real numbers, and this is done without loss of generality, as any
choice of λ is equivalent upto scaling of the model.

We now demonstrate how the resolvent operator captures the influence between any two nodes in the
graph. Observe that the resolvent operation can be expanded using the Liouville-Neumann series if
the operator norm of the adjacency matrix is strictly less than 1, i.e. ∥A∥<1,

R(1,A)=(I−A)−1=

∞∑
k=0

Ak. (8)

Intuitively any term, Ak
ij , in this expansion represents the influence between nodes i and j accumulated

across all paths of length exactly k connecting them. We formalize this in the following Proposition 3.2.
Proposition 3.2 (Ak accumulate influence through paths of length k). Given the weighted adjacency
matrix A∈RT×T of a graph G=(V,E) with |V|=T , the (i,j)th entry of Ak is given as,

(Ak)ij=
∑

p1,p2,...,pk−1

Aip1
Ap1p2

···Apk−1j ,

where (p1,...,pk−1) is an ordered sequence of vertices forming a path of length k from node i to j.

Therefore, the series (I−A)−1
ij (Eq. 8) sums up the influence of node i on j over all path lengths.

3.2 SSMS OPERATE ON A DIRECTED LINE GRAPH

We now show that SSMs naturally operate on a directed line graph. Specifically, let V be the set of
tokens, and E be the edges connecting token t to the next token t+1. Let the weighted adjacency
matrix be As,t=1[t=s+1]at, where at is the SSM-specific parameter defined in Section 2.2.

Recall from Section 2.2 that SSMs are equivalent to the matrix action of M= L⊙ (CBT ) on the
input. We make the key observation that L is precisely the resolvent of A, that is L= (I−A)−1.
This mathematically ties SSMs’ recurrence to the directed line graph topology, with the mask matrix
encoding the topology (Fig 1).
Proposition 3.3. Under the notation established in Section 2, consider a weighted directed
graph G with nodes V = {0, ··· ,T − 1}, edges E = {(i− 1,i)|i ∈ V,i > 0}, and the edge weights
W={wi−1→i=ai|i∈V,i>0}. Let A be the weighted adjacency matrix of incoming edges,

A=


0 0 0 ··· 0
a1 0 0 ··· 0
0 a2 0 ··· 0
...

...
...

. . .
...

0···0 0···0 0 aT−1 0

, (9)
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then L=
∑∞

i=0A
i=(I−A)−1, and consequently, y=((I−A)−1⊙CB̄T )V .

We interpret this result intuitively: In a directed line graph, there is exactly one path between the tokens
i,j with i < j, and the corresponding mask matrix entry Lij =

∏
i≥k>jak, reflects the cumulative

influence of the intervening tokens along this path. Furthermore, Lij=0 for i<j restricts influence
in the forward direction, ensuring causality. This shows that SSMs inherently operate on a directed
line graph with the L matrix encoding the topology.

3.3 GENERALIZING SSMS TO ARBITRARY GRAPH TOPOLOGIES

Building on Proposition 3.3, we can generalize SSMs from causal sequences to arbitrary graph
topologies. Specifically, we compute the resolvent of the adjacency matrix, A, and model the output
as ((I−A)−1⊙(CB̄T ))V .

We focus on the parameterization of A with the following key points: 1. It ensures the numerical
stability of the method by addressing cases of non-invertibility or poor conditioning of resolvent; 2.
It generalizes Mamba-2’s selectivity that allows for modeling long-range dependencies.2

Formally, consider a graph G=(V,E) with |V|=T nodes, where each node has D channels. Let d
denote the generalized hidden state size. For each node, we compute,

B=fB(X),C=fC(X),V =fV (X)∈RT×d, (10)

∆=f∆(X)∈RT , (11)

where the functions fB , fC , fV (X), f∆ are linear projections applied to the input, followed by a local
graph convolution over neighboring nodes and a Swish activation as chosen in Mamba-2. Furthermore,
if the data set features edge embeddings E∈R|E|×D, we define ∆E=f∆′(Z)∈R|E| as the selectivity
matrix corresponding to the edges. Here f∆′ is computed similarly to f∆.

We parameterize the A matrix for each edge (i,j)∈E as,

Aij=exp

(
−
∆i+∆j+∆′

(i,j)

3

)
(12)

to incorporate context from both ends of the edge (i, j) as well as the edge embeddings. To add
directionality to Aij and to further increase the representational power of our model, we can also

maintain two (different) ∆’s such that Aij=exp

(
−∆

(1)
i +∆

(2)
j +∆′

(i,j)

3

)
.

Note that the matrix I − A may be non-invertible or poorly conditioned, which would inhibit
inverse computation and stable training of the model. We mitigate this issue with a data-dependent
normalization parameter Ψ = fΨ(X) ∈ RT , computed similarly to ∆, and perform a row-wise
normalization of the adjacency matrix using Ψ. Specifically, for each row i∈ [T ], we apply:

A[i,:]=
γA[i,:]

1TA[i,:]+exp(−Ψi)
,

where γ is a scaling hyperparameter. The following proposition shows that this normalization
guarantees the convergence of the Neumann series for the adjacency matrix A.
Proposition 3.4. Under Gaussian initialization, the row-wise normalization strategy ensures that
∥A∥<1 and ∥(I−A)−1∥ is bounded with probability >1−Φ(−1

γ ).

The proof for this proposition in Appendix A.1. Finally, we compute the resolvent matrix
L=(I−A)−1 and the output y as (L⊙CB̄T )V .

4 CHIMERA WITH IMPROVED EFFICIENCY

While Chimera supports arbitrary graph topologies, computing the resolvent incurs a cubic cost in
the number of nodes, which can be prohibitively expensive for large graphs.

In this section, we propose two algorithmic optimizations to mitigate this cost: First, we specialize
Chimera to a tractable yet expressive subclass of Directed Acyclic Graphs (DAGs) for which the
resolvent can be computed in linear time by running a recurrence on the topologically sorted graph.
Second, for general graphs, we relax the resolvent computation using a finite approximation, achieving
quadratic complexity of Transformers without domain-specific heuristics.

2Our approach applies to any SSM with an SMA representation and in this work, we specifically use Mamba-2.
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Table 1: Comparing Chimera on the undirected line graph (UG), and on DAG decomposed directed line
graphs (DAG) with other state-of-the-art models including M2 (Fu et al., 2023), MLP-Mixer (Tolstikhin
et al., 2021), FNet (Lee-Thorp et al., 2022), BERT (Devlin et al., 2019) on GLUE benchmark. Chimera
outperforms all baselines including BERT with a linear time complexity.

Method #Params Pretrain GLUE Tasks GLUE
AvgLce Acc (%) MNLI QNLI QQP RTE SST2 MRPC COLA STS

BERT-Base 110M 1.59 67.3 84.1 89.8 91.2 77.2 91.2 87.5 54.6 88.9 83.2
MLP-Mixer 112M 1.77 63.5 77.2 82.4 87.6 67.3 90.5 86.5 43.0 85.2 77.5
FNet 112M 1.94 61.3 74.9 82.1 85.7 63.6 87.6 86.4 42.7 83.1 75.8
M2 116M 1.65 65.9 80.5 86.0 87.0 69.3 92.3 89.2 56.0 86.9 80.9
Chimera (UG) 110M 1.49 68.5 83.63 88.98 89.32 73 93.67 89.4 56.95 88.82 82.97
Chimera (DAG) 110M 1.46 68.9 84.11 89.78 89.77 77.98 93.69 90.36 57.08 88.68 83.93

4.1 CHIMERA ON DAGS

In this section, ee introduce a tailored normalization scheme as well as a linear-time recurrent algorithm
for Chimera on DAGs. We further propose a modern accelerator-friendly technique to compute this
resolvent efficiently by leveraging matrix multiplications, although at the cost of quadratic FLOPs.

Our choice of the DAG subclass is motivated by its expressivity. Topologies such as undirected line
and grid graphs can be canonically decomposed into DAGs: line graph divides into two directed line
graphs (Fig 2) and grid graph divides into four directed grid graphs (Fig 3). This allows for an efficient
Chimera that preserves topology.

4.1.1 CHIMERA ON DAGS: THE METHOD

Formally, consider a DAG,G=(V,E), with |V|=T nodes, each withD channels and a hidden state size
of d. For any node i, let p(i) be the set of its parents. Let B,C,V ,∆ be the input projections as defined
in Section 3. We define the adjacency matrix A as Aij=exp(−∆i[j]) for each (i,j)∈E , and set B̄i=
∆iBi for each node i. Then the output y=(L⊙(CB̄T ))V . We first show that the resolvent exists.

Proposition 4.1. For a DAG, A is nilpotent, that is AT =0. Therefore, the inverse (I−A)−1 exists
and is given by the finite sum:

L=(I−A)−1=

T−1∑
t=0

At. (13)

While the resolvent always exists, we note that its entries can become exceedingly large which can
cause numerical instabilities. To show this, we first present an equivalent recurrent view (Prop. 4.2).
Proposition 4.2. Our method computes the following recurrence on each channel v of V :

hi=
∑

j∈p(i)

Aijhj−B̄ivi, yi=CT
i hi, (14)

where hl=0 for all leaf nodes l.
Recall from Section 3.1 that each Lij represents the cumulative sum of all paths from node j to i, and
in the worst case, the number of such paths and its resolvent entry grows exponentially with distance.
To address this, we introduce a normalization scheme built directly into the recurrence:
Proposition 4.3. The normalized method is:

hi=
1√
|p(i)|

∑
j∈p(i)

(Aijhj−ln(Aij)Bivi), (15)

yi=CT
i hi. (16)

This normalization ensures that Var(CT
i hi)≤ 1 under the assumption that the vectors {Bivi,Ci}i

are i.i.d. Gaussians, that is Bivi,Ci∼N (0,Id).
The detailed proof in Appendix A.2. Furthermore, in Appendix B.2 we describe the computational
complexity of the method and show that it is is efficient on DAGs.

4.2 APPROXIMATE CHIMERA FOR GENERAL TOPOLOGY

While DAGs allow for efficient computation in structured domains like images and language, directly
computing the resolvent L for general graph topology remains computationally expensive. To address
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Table 2: Evaluation of Chimera on LRGB Tasks (Dwivedi et al., 2022). The first section shows the best
performing numbers cited in the papers that introduce the given baselines. The second section shows
the result of better hyperparameter tuned baselines introduced by Tönshoff et al. (2023). Finally, we
also compare with other baselines that use SSMs as a blackbox replacement for a Transformer.

Method (< 500k params) Peptides-Func Peptides-Struct PascalVOC-SP COCO-SP

AP (↑) MAE (↓) F1 (↑) F1 (↑)
GCN (Kipf & Welling, 2016) 0.5930±0.0023 0.3496±0.0013 0.1268±0.0060 0.0841±0.0010
GINE (Hu et al., 2019) 0.5498±0.0079 0.3547±0.0045 0.1265±0.0076 0.1339±0.0044
Gated-GCN (Bresson & Laurent, 2017) 0.5864±0.0077 0.3420±0.0013 0.2873±0.0219 0.2641±0.0045
SAN+LapPE (Kreuzer et al., 2021) 0.6384±0.0121 0.2683±0.0043 0.3230±0.0039 0.2592±0.0158
Exphormer (Shirzad et al., 2023) 0.6527±0.0043 0.2481±0.0007 0.3975±0.0037 0.3430±0.0108
GPS+BigBird (Rampášek et al., 2022) 0.5854±0.0079 0.2842±0.0130 0.2762±0.0069 0.2622±0.0008
GraphGPS+Transformer (Rampášek et al., 2022) 0.6575±0.0049 0.2510±0.0015 0.3689±0.0131 0.3774±0.0150

GCN (Tönshoff et al., 2023) 0.6860±0.0050 0.2460±0.0007 0.2078±0.0031 0.1338±0.0007
Gated-GCN (Tönshoff et al., 2023) 0.6765±0.0047 0.2477±0.0009 0.3880±0.0040 0.2922±0.0018
GINE (Tönshoff et al., 2023) 0.6621±0.0067 0.2473±0.0017 0.2718±0.0054 0.2125±0.0009
GraphGPS+Transformer (Tönshoff et al., 2023) 0.6534±0.0091 0.2509±0.0014 0.4440±0.0054 0.3884±0.0055

Graph-Mamba (Wang et al., 2024) 0.6739±0.0087 0.2478±0.0016 0.4191±0.0126 0.3960±0.0175
Graph Mamba (Behrouz & Hashemi, 2024) 0.7071±0.0083 0.2473±0.0025 0.4393±0.0112 0.3974±0.0101

Chimera (Ours) 0.7021±0.003 0.2433±0.0006 0.4460±0.007 0.3977±0.016

this, we use a finite-sum relaxation of the resolvent operator and truncate its corresponding Neumann
series sum (Eq. 8) at some maximum power k∈N> 0. Specifically, let A be the adjacency matrix
of the graph topology defined in Section 3.3, then,

L=

∞∑
i=0

Ai≈L̂=

k∑
i=0

Ai. (17)

We choose k=diam(G), the diameter of the graph, to ensure that L̂ has access to the global structure
of the graph, that is, it includes contributions from every edge and node in the graph.
Proposition 4.4. If k≥dia(G), then for any pair of nodes (i,j), if Lij>0 in the original method, then
L̂ij>0 in the finite-sum relaxation.

As in Section B.2, we can compute this approximation efficiently using the squaring trick:
L̂=(I+A)(I+A2)(I+A4)···(I+Ap), (18)

where p is the smallest power of 2 larger than or equal to the graph diameter dia(G). This reduces the
computational cost of the method to O(log(dia(G))) matrix multiplications.

5 EXPERIMENTS

In this section, we will demonstrate that directly incorporating topology is a powerful inductive bias
for diverse domains such as language, images and graphs, eliminating the need for domain-specific
heuristics. In our experiments, Chimera consistently achieves state-of-the-art performance across
language modeling, image classification and long range graph tasks.

5.1 MASKED LANGUAGE MODELING

We evaluate Chimera on bidirectional language modeling, which has a line graph topology (Fig. 2).
We test two Chimera variants: the general method3 (Sec. 3) applied to an undirected line graph, and the
DAG method (Sec. 4.1), applied to the canonical DAG decomposition of undirected line graphs into
two directed line graphs and summing the resolvents of both DAGs (Fig. 2). Both methods are trained
on the Masked Language Modeling (MLM) (Devlin et al., 2019) task on the C4 dataset (Raffel et al.,
2020) for 70k steps, following the recipe used in M2 (Fu et al., 2023). The models are then fine-tuned
on the GLUE benchmark. We refer the reader to Appendix D for details.

From Table 1, observe that while BERT outperforms other linear baselines such as M2, MLP-Mixer,
FNet it does so with an additional quadratic cost. In contrast, Chimera achieves the best of both worlds,
incurring a linear time complexity while achieving state-of-the-art performance. This capability arises
from two key factors: first, our parameterization of the adjacency matrix allows the model to effectively
modulate the influence between tokens in the sequence, leading to strong performance. Second, the

3We use a slightly modified normalization scheme for the undirected line graph method to allow for larger
selectivity values in the adjacency matrix. See Appendix C.1 for details
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structured nature of the adjacency matrix enables a fast, linear-time resolvent operation, improving the
method’s computational efficiency. Additionally, note that our undirected graph (UG) variant performs
competitively with BERT while surpassing other recent linear baselines.

5.2 IMAGENET-1K CLASSIFICATION

Table 3: Top-1, Top-5 accuracies of vari-
ous methods on ImageNet-1K. Chimera
outperforms baselines including ViT-B.

Method (88M) Top-1 (%) Top-5 (%)

Acc AccEMA Acc AccEMA

ViT-B 78.8 80.6 94.2 95.2
S4-ViT-B 79.4 80.4 94.2 95.1
Hyena-ViT-B 78.4 76.4 94.0 93.0
Chimera-ViT-B 81.4 82.1 95.4 95.9

We evaluate Chimera on the ImageNet-1k (Deng et al.,
2009) classification task that has a grid graph topology. We
compare Chimera applied to the 2D-DAG decomposition
(Figure 3) topology against state-of-the-art ViT based
models, specifically we use ViT-B which has 88M
parameters as well as other SSM based baselines like
Hyena (Poli et al., 2023), S4 (Gu et al., 2022) in Table 3.
We note that all these baselines flatten the image into a 1D
sequence and apply 1D sequence models, and do not take
into account the underlying topology. For our experiments,
we simply replace the SSD layer in the Mamba block
introduced in Dao & Gu (2024a) with Chimera, and use
the ViT-B training recipe with minimal hyperparameter tuning.

Table 3 shows that Chimera’s 2D-DAG decomposition outperforms ViT by 2.6%. We note that our
method does not require any additional position embeddings which are still an active area of research
for ViT (Heo et al., 2024). We outperform methods such as Hyena (Poli et al., 2023) by 3%, and S4 (Gu
et al., 2022) by 2% that linearize the data and then apply an SSM on it. Furthermore, to demonstrate the
importance of incorporating topology, we perform an ablation (Appendix C.3) where we progressively
degrade the grid-graph structure, observing a monotonic drop in performance.

5.3 LONG RANGE GRAPH BENCHMARK

We evaluate Chimera on the Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2022). This
benchmark comprises tasks designed to challenge models in their ability to effectively capture both local
and long-range interactions within graph structures. We compare against convolution-based (GCN Kipf
& Welling (2016), GatedGCN Bresson & Laurent (2017)), Transformer-based (GraphGPS Rampášek
et al. (2022)) , Mamba-based (Graph-Mamba Wang et al. (2024), Graph Mamba Behrouz & Hashemi
(2024)), and other baselines like GINE Hu et al. (2019). These baselines incorporate topology using a
variety of techniques: convolution ones use local aggregation, transformer ones use local and global
aggregation via position embeddings, and Mamba ones use “data flattening” along with random walks,
position embeddings, and local encodings. The diversity of these methods highlights the significant
research effort dedicated to heuristics to incorporate topology, in contrast to our unified approach.

We show that Chimera achieves state-of-the-art results across all LRGB tasks (Table 2) Notably, we
observe that on tasks such as Peptides-Func and Peptides-Struct, where convolution-based models
typically outperform transformers, Chimera outperforms or matches their performance. Furthermore,
on tasks like PascalVOC and COCO where transformers do well, Chimera is competitive with the best
baselines. This validates our approach which effectively captures both local and global information.

6 CONCLUSION AND FUTURE WORK

We propose Chimera, a unified framework that directly incorporates the underlying graph topology
in a principled way. Unlike prior approaches that apply attention or State Space Models (SSMs) by
flattening the data, we instead generalize SSMs to any graph topology. We show that Chimera achieves
state-of-the-art performance across domains including language, vision, and graph tasks. We further
show that for the subclass of DAGs, the recurrent form of Chimera affords linear complexity.

However, our work has a few limitations, the most significant being that for general graphs, fully
capturing all node interactions has a cubic cost. This can be reduced to a quadratic cost by truncating
the Neumann sum to the diameter of the graph. That said, we still believe there is significant potential
for hardware optimization just as Mamba-based methods. Specifically, developing similarly optimized
kernels for specific graph structures—along with exploring graph approximations through DAG
decompositions is a promising direction for future work. Neverthless, we note that the current
implementation of Chimera achieves a reasonable time ratio of∼1.5× compared to Transformer-based
architectures which we believe provides a starting point for further exploration across novel domains.
We are hopeful that the community will apply Chimera to a broader range of domains with inherent
topological structures and continues to develop more efficient and performant extensions of Chimera.
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A DEFERRED PROOFS

A.1 PROOF OF PROPOSITION 3.4

Proof. Let ϵi∼T (0,IT ) be T i.i.d. random Gaussian vectors. Assuming Gaussian initialization for
the adjacency matrix A, it can be expressed as:

A[i,:]=
γϵi

∥ϵi∥+exp(−Ψi)
. (19)

We first show that ∥A∥≤γ<1. From the concentration of the norm of a Gaussian random vector, with
high probability ∥ϵi∥≥

√
T for all tokens i. Since exp(−Ψi)≥0, ∥ϵi∥+exp(−Ψi)≥

√
T . Consider

any unit vector u, then

∥Au∥=
T∑

i=1

γϵTi u

∥ϵi∥+exp(−Ψi)
≤γ

T∑
i=1

ϵi√
T
≤γ

√
Tϵ√
T

=γϵ<1, (20)

with probability greater than 1−Φ(−1
γ ), were ϵi,ϵ∼N (0,1). Finally, since the operator norm of ∥A∥

is less than one, we apply Banach’s Lemma to get,

∥(I−A)−1∥≤ 1

1−∥A∥
, (21)

which implies that the inverse exists.

A.2 PROOF OF PROPOSITION 4.3

Proof.

Var(CT
i hi)=

1

|p(i)|

 ∑
j∈p(i)

AijVar(CT
i hj)+ln(Aij)Var(CT

i Bivi)

, (22)

=
1

|p(i)|

 ∑
j∈p(i)

AijVar(CT
j hj)+

2

d
ln(Aij)

, (23)

where we have used the fact that Var(CT
j hj)=Var(CT

i hj), and that the variance of X 2 distribution
with d degrees of freedom is 2d. Let d≥4, then

Var(CT
i hi)≤

1

|p(i)|

 ∑
j∈p(i)

Aij+
2

d
ln(Aij)

≤ 1

|p(i)|
∑

j∈p(i)

1≤1, (24)

where we have used the fact that Aij ∈ [0,1].

A.3 PROOF OF PROPOSITION B.1

Proof. In the structured masked attention (SMA) framework Dao & Gu (2024b), the computational
complexity is the cost of the matrix-vector multiplication by the mask matrix L= (I−A)−1. For
DAGs, A is (up to conjugation by a permutation) a lower-triangular matrix with |E| nonzero entries.
Computing y=(I−A)−1x reduces to solving the system (I−A)y=x via forward substitution.

We perform Gaussian elimination by iterating over the ordered list {0,...,|V|−1} and choosing the
pivots (i,i). Since I−A is lower-triangular, each pivot operation affects only a single column rather
than the entire row, reducing the cost per step to O(nnz(A[:,i])), where nnz(·) denotes the number of
non-zero entries. Summing over columns, the complexity is,

O

 |V|∑
i

nnz(A[:,i])

=O(nnz(A))=O(|V|+|E|).

For our motivating example of Mamba, I−A has exactly 2|V| nonzero entries, ensuring a linear-time
complexity.

A.4 PROOF OF THEOREM B.2

Proof. Backward pass. The local update rule of backpropagation requires applying the chain rule
through the matrix inverse operation, in particular, using the following identity applied to Y =(I−A),

∂Y −1

∂θ
=−Y −1 ∂Y

∂θ
Y −1 (25)
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Because Y −1 is already computed in the forward pass, it can be cached, and then the marginal cost of
the local backpropagation is simply two extra matrix multiplications.

Forward pass. To compute L=(I−A)−1 more efficiently for DAGs, we leverage the equivalence of
Neumann series to the series L=I+A+A2+···, which comes to a finite sum for DAGs due to the
nilpotence of A matrix. We compute this sum more efficiently using the “squaring trick” as,

(I−A)−1=(I+A)(I+A2)(I+A4)···(I+Ak), (26)
where k is the smallest power of 2 larger than the graph diameter dia(G). This can be computed using
O(log(dia(G))) matrix multiplications to compute the powers of A for powers-of-two exponents, and
then O(log(dia(G))) matrix multiplications to multiply together the right-hand side.

12
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B ADDITIONAL DETAILS

B.1 DAG DECOMPOSITION OF LINE AND GRID GRAPHS

Figure 2: Canonical DAG decomposition of undirected line graph topology (left) into two directed line
graph topologies (right)

Figure 3: Grid graph (left). The canonical 2D-DAG decomposition of the grid graph (right). These
graphs are sufficient to capture the influence between all pairs of nodes in the undirected grid graph.

B.2 CHIMERA IS EFFICIENT ON DAGS

Finally, we highlight that DAGs are a particularly important case of Chimera because of additional
efficiency benefits, both through recurrent and vectorized implementations.

Linear-Time Complexity in the Recurrent View The intuition for linear complexity is that the
resolvent operation for DAGs is finite because of the lack of cycles. From the adjacency matrix
perspective, A is nilpotent, i.e. Ak=0, where k is the diameter of the graph (Prop 4.1). Thus, when
running Chimera as a recurrence on the DAG, the resolvent operation converges after one pass over the
graph in the topologically-sorted order, which takes linear time.
Proposition B.1. The Chimera structured mask matrix L can be computed in O(|V+|E|) complexity
where |V|,|E| is the number of vertices and edges of the graph, respectively.

The proof is provided in Appendix A.3. We note that the linear-time complexity of Mamba-2 can be
seen as a special case of Theorem B.1 specialized to the directed line graph, where both |V| and |E| is
equal to the sequence length.

Improving Efficiency Through Matrix Multiplications Finally, we note that on modern hardware
accelerators such as GPUs and TPUs, various computational algorithms can have different efficiency
tradeoffs. For example, on directed line graphs, the naive computation of SSMs and RNNs as a
recurrence is not parallelizable and is inefficient in practice (Gu & Dao, 2023). In the case of DAGs, we
present a technique to reduce both the forward and backward pass for Chimera to leverage only matrix
multiplications which are heavily optimized on modern accelerators. Although this technique is highly
parallelizable, it requires the materialization of the adjacency matrix which is quadratic in the number
of nodes, |V|.
Theorem B.2. In case of Chimera on DAGs, the forward pass can be computed with O(log(dia(G)))
matrix multiplications where dia(G) is the diameter of the graph (i.e. length of the longest path), and
the backward pass can be computed with O(1) matrix multiplications.

The proof is provided in Appendix A.4.
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C ADDITONAL EXPERIMENTS

C.1 MLM: CHIMERA ON UNDIRECTED LINE GRAPHS

For an undirected line graph (Figure 2, left), the adjacency matrix A takes the following form:

A=


0 a12 0 ··· 0
a21 0 a23 ··· 0
0 a32 0 ··· 0
...

...
...

. . .
...

0···0 0···0 0 aT−1,T 0

.
As discussed in Section 3.3, to ensure the existence of (I−A)−1, we introduced a row-wise sum
normalization strategy, wherein we normalized each row of the adjacency matrix with

∑
jAij+Ψi.

However, since this constraint is designed for general graphs, it is not sufficiently expressive. Therefore,
we instead use a strictyly more expressive constraint for line graphs which enforces Aij ·Aji+Ψi≤ 1

4
on each simple cycle of the graph.

Proposition C.1. Under the above constraint, the inverse (I−A)−1 exists as for any two nodes, the
sum of all paths between them is upper bounded by

∑
i(1/4)

i≤1/3.

C.2 IMAGENET: PARAMETER SHARING ABLATION

We study the trade-off between sharing parameters for B,C across different graphs as a domain-
dependent design choice. We explore four settings: No sharing, Complete sharing, Row-wise sharing,
and Diagonal sharing across the four DAGs. From Table 4, we observe that diagonal sharing achieves
the best performance, indicating it strikes the optimal tradeoff between parameter sharing and other
modes of increasing expressivity for modeling image data.

Method (22M) Top-1 (%) Top-5 (%)

Acc AccEMA Acc AccEMA

None 77.10 76.13 93.55 93.15
Complete 77.25 76.09 93.75 93.21
Row-wise 77.46 76.57 93.76 93.37
Diagonal 77.80 76.69 93.87 93.53

Table 4: Ablation: Diagonal parameter sharing
works best.

C.3 PRESERVING THE 2D GRID STRUCTURE ABLATION

To demonstrate the importance of incorporating topology, we perform an ablation where we progres-
sively degrade the grid-graph structure, observing a monotonic drop in performance. We consider three
topologies: 2D DAG is the 2D DAG decomposition that retains the grid structure (Fig 3, right); Fwd &
Rev (1D) flattens the grid into a 1D sequence with bidirectional edges like ViT (Fig 4, top); Fwd (1D)
is a 1D graph with only forward edges (Fig 4, bottom). We observe from Table 5 that as the topology is
lost, the accuracy drops from 77.8% (2D-DAG) to 76.5% (Fwd & Rev) to 73.8% (Fwd).

Table 5: Ablation: Comparing 2D grid structure with 1D flattening of patches.

Method (22M) Top-1 (%) Top-5 (%)

Acc AccEMA Acc AccEMA

Fwd (1D) 73.8 73.8 91.6 91.6
Fwd & Rev (1D) 76.5 75.6 93.4 92.8
2D DAG 77.8 76.7 93.9 93.5

Figure 4: Progressively destroying the 2D grid graph topology. Fwd & Rev (top): 1D flattened grid
with bidirectional edges. Fwd (bottom): 1D flattened grid graph with only forward edges.
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C.4 CHIMERA WHEN BOTH # LAYERS AND # PARAMETERS ARE CONTROLLED

Chimera’s architecture builds on the Mamba Block from Mamba-2, which utilizes a greater number
of layers than Transformers due to its higher parameter efficiency. In this section, we conduct an
ablation study where both the number of layers and total parameter count are controlled by adjusting the
expansion factor e in the Mamba Block to 4. Specifically, we compare three models on the bidirectional
language modeling task:

• Chimera-12L: 12 layers, baseline configuration with 70M parameters.
• BERT-6L: 6-layer Transformer baseline with 70M parameters.
• Chimera-6L: 6 layers with an expansion factor of 4, maintaining the same parameter count

as the other models.

To reduce computational costs, we train these models on a reduced ablation setting with 98M steps
instead of the standard 245M steps and the results are summarized in the table below. Notably, Chimera-
6L and Chimera-12L achieve nearly identical performance, both significantly outperforming BERT-6L.
This demonstrates that Chimera’s improvements are not simply a result of increased depth but rather
stem from its core methodological advancements.

Table 6: Ablation: Chimera maintains strong performance when both number of layers and number of
parameters are controlled.

Model Evaluation Metrics

Masked Accuracy (↑) Cross-Entropy Loss (↓)

BERT-6L 0.6176 1.9466
Chimera-6L 0.6360 1.8108
Chimera-12L 0.6363 1.8142

C.5 APPROXIMATE CHIMERA IS COMPETITIVE WITH TRANSFORMERS

In Table 7, we evaluate the approximate variant of Chimera with a finite-sum relaxation (Sec 4.2) that
truncates the Neumann series at the diameter of the graph. We show that the approximation variant
matches the strong transformer baseline of GraphGPS, however fully leveraging the entire graph
structure in Chimera provides clear performance benefits.

Table 7: Ablation: Chimera with approximate resolvent is competitive with the Transformer baseline.

Method Peptides-Func Peptides-Struct PascalVOC-SP COCO-SP

AP (↑) MAE (↓) F1 (↑) F1 (↑)

GraphGPS+Transformer 0.6534±0.0091 0.2509±0.0014 0.4440±0.0054 0.3884±0.0055
Chimera (Approx) 0.6979±0.0057 0.2420±0.0013 0.4353±0.00307 0.3833±0.0006
Chimera (Ours) 0.7021±0.003 0.2433±0.0006 0.446±0.007 0.3977±0.016
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D ARCHITECTURAL DETAILS

Figure 5: Chimera’s Architecture: The output of the Chimera layer is embedded within the gated
block introduced in Mamba-2 (Dao & Gu, 2024a). Here X matrix denotes the input to the block,
and fc,fB ,f∆ and fV are data dependent projections defined in Section 2. The operator ⊙ denotes
element-wise multiplications between matrices, and ⊕ defines addition. The output from the Chimera
layer is passed through a Gated-MLP, a final projection fY , followed by a residual connection.

D.1 MASKED LANGUAGE MODELING

Table 8: Architectural and Training Details for BERT-B and Chimera on MLM

Parameter BERT-B (110M) Chimera (110M)

Model dimension (dmodel) 768 768
Layers 12 23
Max sequence length 128 128
Num Heads 12 12
Head size 64 64
Optimizer Decoupled AdamW Decoupled AdamW
Learning rate 5e−4 8e−4
Optimizer momentum β1=0.9,β2=0.98 β1=0.9,β2=0.98
Weight decay 1e−5 1e−5
Batch size 4096 4096
Learning rate schedule Linear decay with warmup Linear decay with warmup
Training steps 70k 70k
MLM Probability 0.3 0.3

In Table 8, we provide the architectural and training details for BERT-B and Chimera on the MLM task.
For both the models, we follow the M2 recipe from Fu et al. (2023), adjusting the number of layers to
12 for BERT-B and 23 for Chimera to control for the number of parameters. We conducted a small
sweep to fine-tune the learning rate for Chimera, choosing 8e−4 over BERT-B’s 5e−4.
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D.2 IMAGENET-1K CLASSIFICATION

For the image classification experiments, we largely follow the ViT-B recipe with the following
adjustments as shown in Table 9: To control for the number of parameters, we adjust the number of
layers from 12 for ViT-B to 22 for Chimera. Additionally, we reduce the Cutmix augmentation from
1.0 to 0.1, as Chimera’s stronger inductive bias mitigates the risk of overfitting.

In Table 10, we present the reduced setting used for our ablation studies in Tables 4 and 5, where we
match the number of parameters of ViT-S (22M).

Table 9: Hyperparameters used for ViT-B and Chimera for ImageNet-1k classification task

Parameter ViT-B (88M) Chimera (88M)
Image size 2242 2242

Optimizer AdamW AdamW
Optimizer momentum β1,β2=0.9,0.999 β1,β2=0.9,0.999
Weight init trunc. normal (std=0.02) trunc. normal (std=0.02)
Learning rate 1e−3 1e−3
Weight decay 0.05 0.05
Batch size 1024 1024
Training epochs 310 310
Learning rate schedule cosine decay cosine decay
Warmup epochs 10 10
Warmup schedule linear linear
Patch Size 16 16
Layers 12 22
Num Heads 12 12
Droppath 0.3 0.3
Randaugment (9,0.5,layers=2) (9,0.5,layers=2)
Mixup 0.8 0.8
Cutmix 1.0 0.1
Random erasing 0.25 0.25
Label smoothing 0.1 0.25
Stochastic depth 0.1 0.25
Exp. mov. avg (EMA) 0.99996 0.99996

Table 10: Key differences between the original and the ablation setting for Chimera

Parameter Chimera-S (2D)
Model dimension (dmodel) 384
Number of layers 22
Number of Heads 3
Droppath 0.1

D.3 LONG RANGE GRAPH BENCHMARK

To train Chimera on the Long Range Graph Benchmark we follow a similar training recipe to that
provided in Rampášek et al. (2022) where we replace the Transformer layers with Chimera layers.
Moreover, in line with the baselines, we make sure that our models have less than 500k parameters.
While training Chimera on graphs we remove the Gated-MLP layer Z defined in Figure 5. We did
this to keep our training recipe as close to that provided in Rampášek et al. (2022) and highlight the
effectiveness of Chimera. The hyperparameters used to train Chimera are provided in Table 11.
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Table 11: Hyperparameters running Chimera on the Long Range Graph Benchmark

Peptides-Func Peptides-Struct PascalVOC-SP COCO-SP
Learning Rate 0.001 0.0015 0.0035 0.0035
Optimizer Adam Adam Adam Adam
dropout 0.1 0.1 0.05 0.05
#layers 8 8 8 8
hidden dim. 64 64 64 64
hidden state dim. 96 80 64 64
num heads 2 4 4 4
batch size 64 64 32 32
#epochs 200 200 200 200
norm LayerNorm LayerNorm LayerNorm LayerNorm
MPNN GCN GCN GCN GCN
#Param. 499k 504k 489k 489k
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